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Abstract
In this paper, a new over-constrained parallel driving mechanism (PDM) with planar sub-closed chains is proposed.
First, the number of over-constraints on the PDM is calculated. Then, an analysis is conducted as to the kinematics
of the hybrid manipulator, including positions, velocities, and accelerations of all bodies. Furthermore, the Newton–
Euler approach is taken to deduce the kinematic formula of each link and the formula of inertial force at the center
of mass. However, it remains difficult to solve the equation since the number of equations is smaller than that of
unknown variables. To solve this problem, the screw theory is applied in the present study to analyze the cause
of over-constraints, with the link’s elastic deformation introduced as the supplement of deformation compatibility
equations. Moreover, the actuation forces and constrained forces/moments are calculated simultaneously. Finally,
the dynamic model is verified through simulation and experimentation. The proposed modeling approach provides
a fundamental basis for the structural optimization and friction force computation of the over-constrained PDM.

1. Introduction
The creative design of mechanisms is widely regarded as one of the most important branches of the the-
ory of mechanisms [1]. As a new type of mechanism, parallel driving mechanism (PDM) [2] represents
a subset of hybrid manipulator [3–5]. By definition, the PDM consists of an operating mechanism, mul-
tiple driving mechanisms, and connecting joints. Based on this, this paper proposed a 2T2R PDM. The
2T2R manipulator organically combines spatial translation and rotation, and is widely used in indus-
try. For example, this manipulator can be combined with linear guide rail to form a five-axis linkage
CNC machine tool [6, 7] and can also be used as motion simulator [8], vibration isolation platform [9],
and so on. Among which, CNC machine tools have requirements for high accuracy of the manipulator,
while the others have certain requirements for high-frequency and high-acceleration characteristics. In
general, the PDM involves more sub-closed loops [10, 11] and over-constraints [12, 13]. Excluding actu-
ators, its operating mechanism is independent of the driving mechanism, which makes the mechanism
perform well in terms of structural stiffness [14, 15] and high acceleration [16, 17]. Similar to parallel
mechanisms, the PDM has drawbacks such as small workspace, difficulty in solving forward kinematics,
and complex control. In addition, there are new challenges in dynamic modeling due to over-constraints
and the closed-loop structure.

In contrast to the open-chain serial manipulators, the dynamic analysis of parallel manipulators
is inherently complex due to their closed-loop structure. Nevertheless, dynamic modeling plays an
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essential role in structural design and control scheme design for parallel manipulators. However, the
requirements for dynamic models are different, which depends on the exact application. For the control
scheme design, the dynamic model must be efficient enough for the real-time calculation; for the struc-
tural design, it is necessary to calculate the driving forces/torque and the constrained forces/moments
simultaneously [18]. In general, dynamic modeling methods [19–21] can be divided into four categories:
Lagrangian formula [22, 23], Newton–Euler method [18, 24, 25], virtual work principle [26, 27], and
Kane equation [28]. Among them, the Lagrangian formula is advantageous in solving the driving force
of manipulator, with its explicit dynamic form conducive to dynamic analysis and control. Newton–
Euler method can be used not only to solve the driving force but also to solve all the constraints/torques
of joints effectively. However, the number of equations is generally smaller than the unknown num-
ber under the over-constrained mechanism, which makes it challenging to solve the dynamic model.
At present, there have been some studies conducted on the dynamic modeling of the over-constrained
parallel manipulators. Xu et al. [29] proposed a new approach to the force analysis of over-constrained
parallel mechanisms with lower mobility parallel mechanism, with consideration given to the spatial
compound elastic deformation of the rod. Chen et al. [18] used the Newton–Euler formula and the natural
orthogonal complement method to establish dynamic models with and without constraint force/moment
simultaneously, with the deformation caused by over-constraint force/moment deduced. Bi et al. [30]
constructed the dynamic model of the over-constrained mechanism Exechon by combining Newton–
Euler formula with compliance conditions. The established dynamic model can be combined with the
control system to improve the precision and dynamic performance of real-time control. For a mecha-
nism subjected to the active and passive redundant constraints without parasitic motion, Chen et al. [31]
established an efficient dynamic model in line with the principle of virtual work by introducing classical
optimization criteria and deformation coordination conditions. To sum up, the above-mentioned studies
have contributed great ideas to solving the over-constrained mechanisms.

As can be seen from the above, introducing link flexibility is a common method for analyzing
over-constrained mechanisms. The links’ elastic deformation can not only supplement the deforma-
tion coordination equation [32, 33] in the over-constrained direction but also cause pose error of the
end-effector. The former provides a basis for the lightweight design. It focuses on using the links’ elas-
tic deformation to solve the constraint force/moment [34] and joint friction [35] of the manipulator. As
for the latter, it focuses on the impact of the rigid–flexible coupling [36–38] characteristics, large-range
rigid body motion, and the elastic deformation of the rod, on the errors in position and orientation of the
end-effector. However, the hybrid manipulator is free from large-range rigid body motion in the over-
constrained direction, and the link flexibility conforms to the assumption of linear elasticity and small
deformation. Therefore, it is proposed in this paper to supplement the deformation compatibility equa-
tion in the over-constrained direction by introducing the flexibility matrix and the superposition principle
into the process of theoretical calculation. To facilitate simulation, the assumed mode method is used
for the link flexibility in ABAQUS. Then, dynamic verification is carried out using the rigid–flexible
coupling dynamic model of the co-simulation of ADAMS and ABAQUS.

To sum up, there have been some methods developed to solve the over-constraint issue. However, the
PDM is still more challenging than the traditional parallel mechanism in terms of structural complexity
and static indeterminate times. In addition, sub-closed loops are another characteristic of PDM, and the
over-constrained mechanisms containing sub-closed loops [39, 40] are usually coupled in a nonlinear
manner, which makes it difficult to conduct kinematic and dynamic analysis of them [19, 41, 42]. At
present, there are still few reports on the dynamic modeling of the PDMs. In this paper, with a new 4-DOF
PDM as the research object, the over-constrained direction is first analyzed through the screw theory.
Then, the flexibility matrix and superposition principle are introduced to supplement the deformation
compatibility equation in the over-constrained direction. Finally, a complete dynamic model involving
all active forces/moments and restraint forces/moments is constructed. This modeling method is also
applicable to other over-constrained PDMs.
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Figure 1. Virtual prototype for the 4-DOF PDM.

The remainder of this paper is organized as follows. In Section 2, the system conceptual design is
described. Then, the kinematics modeling of the PDM is detailed in Section 3, where the positions,
velocities, and accelerations of all bodies in the manipulator are determined. In Section 4, dynam-
ics modeling is performed using the Newton–Euler method. Moreover, compatibility equations are
introduced in Section 5 to solve the over-constraint forces/moments. Then, numerical simulations and
experiments are conducted in Section 6. Lastly, the conclusions of this study are drawn in Section 7.

2. System conceptual design
2.1. Mechanism configuration design
In this paper, a new 4-DOF PDM with two rotational DOFs and two translational DOFs is taken as the
research object. The virtual prototype for the mechanism is represented in Fig. 1. $T1 and $T2 denote the
translation along x-axis and y-axis, respectively. $R3 and $R4 represent rotation around z-axis and x-axis,
respectively. The 4-DOF PDM is composed of a fixed platform, a moving platform (MP), an operating
mechanism and driving mechanisms. The driving mechanisms consist of four distributed limbs, with
two identical RPR limbs and two identical SPU limbs. Each limb is formed by a cylinder and a piston and
the prismatic joints of limbs are actuated, which are the inputs of the system, the position and orientation
of the MP is the output. The operating mechanism consists of a six-bar mechanism and a revolute joint
in series. As shown in Fig. 2, R1i, R2i, R3i, R4i, and R4(i = 1, 2) represent the revolute joint; U2j(j = 3, 4)
represents the universal joint; S2j denotes the spherical joint; P1i and P2j represent the prismatic joint.
The reference frame P-xyz and the moving frame A-xyz are attached to the MP and the base, respectively.
l1i and l2j denote the location of the prismatic joint in each limb. The geometric parameters are given in
Appendix A.

2.2. Workspace analysis
The boundary of the reachable workspace is determined with the help of boundary search method as
shown in Fig. 3(a), where the z-axis is parasitic motion. Figure 3(b) shows its projection in the x–y
direction. The link extensions, l11, l12, l23, and l24, are limited between −50 (mm) and 50 (mm) since the
left and right grounded prismatic links are assumed to be physically constrained by the ground at those
boundary angles. In addition, other link angles are also subject to certain constraints based on physical
properties.
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Table I. Joint type and number of the 4-DOF PDM.

Joint Symbol Value
Active component n 14
Spherical joint S 2
Universal joint U 2
Revolute joint R 11
Prismatic joint P 4
Actuator A 4

Figure 2. Schematic diagram of the 4-DOF PDM.

Figure 3. The reachable workspace of the 4-DOF PDM.

2.3. Over-constraint analysis
The PDM perform well in structural stiffness due to its closed-loop structure. Meanwhile, the closed-
loop structure brings more over-constraints, which is necessary for the mobility and force analysis. Next,
the over-constrained analysis of the 4-DOF PDM will be derived in detail. The joint type and number
are shown in Table I.

The number of over-constraints on the 4-DOF PDM is calculated as follows:

t = 3S + 4U + 5R + 5P + A − 6n = 9 (1)
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3. Kinematic analysis
Kinematic analysis is an indispensable step in the evaluation and application. Therefore, position, veloc-
ity, and acceleration analysis of the 4-DOF PDM are presented in this section. In the following, the
kinematics of the hybrid manipulator is solved in modules. As shown in Fig. 1, the module-1 represents
the operating mechanism, and the module-2 denotes the driving mechanisms, including the 1st, 2nd
RPR limbs and the 3rd, 4th SPU limbs. Meanwhile, the module-1 is solved prior to the module-2.

3.1. Inverse position analysis
3.1.1. Inverse position of module-1
Inverse position analysis determines the positions of each limb when the position and orientation of the
MP are given. Any vector in the frame P-xyz can map to the frame A-xyz.

R = TR′ + P (2)

in which

T = R(z0, α) R(x0, γ ) (3)

P = [
px py pz

]T (4)

where T and P denote the orientation matrix and the position vector of the MP, respectively.
For the 1st and 2nd driving limbs, the position vector R3i(i = 1, 2) with respect to the frame A-xyz can

be obtained based on the homogeneous transformation. In addition, the position vector R2i with respect
to the frame A-xyz can be expressed by θ1i. We can derive the closed-loop motion equation as

R1iR2i = R1iR3i + R3iR2i (5)

Eq. (5) can be simplified as follows

a1i cos θ1i + b1i sin θ1i = d1i (6)

in which

θ1i = a tan 2(b1i, a1i) ± a tan 2

(√
a2

1i + b2
1i − d2

1i, d1i

)
(7)

where atan2 stands for four-quadrant inverse tangent function. a1i, b1i, and d1i represent the simplified
values of Eq. (5), and their expressions are detailed in Appendix B.

3.1.2. Inverse position of module-2
According to the constraint relationship, the length of l1i can be obtained

l1i = ‖R2iR4i‖ (8)

Similar to Eq. (8), the position vector of U2j(j = 3, 4) with respect to the frame O-xyz can be obtained.
We can derive the length of l2j as

l2j =
∥∥U2jS2j

∥∥ (9)

3.2. Velocity and acceleration analysis
The displacement of the prismatic joint is given by Eqs. (8) and (9). However, to derive the inverse
dynamic formulation for the 4-DOF PDM with Newton–Euler method, the positions, velocities, and
accelerations of all bodies in the hybrid manipulator are required to be derived. In the following, we will
derive the inverse kinematics in detail.
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3.2.1. Velocity and acceleration of module-1
The angular velocity, acceleration, and linear acceleration of the MP can be obtained

amp = aτ

mp + an
mp (10)

in which
aτ

mp = εmp × rR4,P

an
mp = ωmp × (

ωmp × rR4,P

) (11)

where ωmp and εmp represent the angular velocity and acceleration of the MP, respectively. an
mp and aτ

mp

denote the normal and tangential acceleration of the MP, respectively.
For the operating mechanism, θ2i can be written as follows:

θ2i = acos
(
PR3i − PR2i

)
/r3i (12)

Furthermore, differentiating Eq. (12) with respect to time yields

θ̇2i =
(
vR2i − vR3i

)
/ (r3isθ2i)

θ̈2i =
(
aR2i − aR3i − r3icθ2iθ̇

2
2i

)
/ (r3isθ2i)

(13)

Since the operating mechanism is a planar mechanism, the angular velocity and acceleration of l3i

can be written as follows:

ωr3i =
[

0 0 θ̇2i

]T

εr3i =
[

0 0 θ̈2i

]T
(14)

Similarly, the acceleration of the operating mechanism can be written as

ar3i = aτ

r3i + an
r3i + aR2i (15)

in which
aτ

r3i = ωr3i × r3i

an
r3i = ωr3i × (ωr3i × r3i)

aR2i = aτ
R2i

+ an
R2i

(16)

3.2.2. Velocity and acceleration of module-2
The Euler angle of the 1st and 2nd driving limbs can be written as follows:

αli = a tan 2(bli, ali) (17)

The angular velocity and angular acceleration of li can be obtained by differentiating Eq. (17). Similar
to Eq. (14), the angular velocity and acceleration vector can be expressed as

ωli = [
0 0 ωli

]T

α̈li = [
0 0 α̈li

]T
(18)

Furthermore, the acceleration at the center of mass of the cylinder can be written as follows:

ali1 = at
li1 + an

li1 (19)

in which
at

li1 = αli × ri1

an
li1 = ωli × (ωli × ri1)

(20)

Similarly, the acceleration at the center of mass of the piston can be written as

ali2 = aτ

li2 + an
li2 + ak

li2 (21)
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Figure 4. Coordinate frame of the U joint.

in which
aτ

li2 = αli × ri2

an
li2 = ωli × (ωli × ri2)

ak
li2 = 2ωli × vr

(22)

where ak
li2 denote the Coriolis acceleration of the piston in 1st and 2nd driving limbs.

For the U joint in the 3rd and 4th driving limbs, many papers assume that the angular velocity and
acceleration are perpendicular to the direction along SPU limb for the convenience of derivation. In
this paper, the actual angular velocity and acceleration values are obtained through geometric constraint
relationship. The local coordinate frame attached to the U joint is shown in Fig. 4.

The coordinate systems of the 3rd and 4th driving limbs are shown in Fig. 4. First, we assume that
the orientation matrix of the 3rd and 4th driving limbs frame Q-xyz with respect to the reference frame
A-xyz can be derived in terms of three rotational angles α, β, and γ satisfying the z-x-z convention:

Rz(α) Rx(β) Rz(γ )

=
⎡
⎣ cαcγ − sαcβsγ −cαsγ − sαcβcγ sαsβ

sαcγ + cαcβsγ −sαsγ + cαcβcγ −cαsβ
sβsγ sβcγ cβ

⎤
⎦ (23)

where s and c represent the abbreviations of sine and cosine, respectively. In addition, Qj can be obtained
by the following equation:

Qj =
U2jS2j∥∥U2jS2j

∥∥ (24)

Hence, taking Eqs. (23) and (24) into account, the Euler angle of l2j can be written as follows:

α = −a tan 2
(
Qj (1, 1) , Qj (2, 1)

)
β = a cos

(
Qj (3, 1)

) (25)

Differentiating Eq. (25) with respect to time, α̇, α̈, β̇, and β̈ can be obtained, respectively. To derive
the Euler angle γ , it is necessary to supplement equations based on the geometric constraint relationship.
Hence, we can derive U j2 as

U j2 = Qj × U j1

Ue
j2 = Uj2|Uj2|

(26)

where vector Uj1 denotes the axis along with the MP at the U joint, vector Uj2 denotes the axis along
with the 3rd and 4th SPU limb. From Eqs. (23) to (26), γ can be expressed as

γ = a cos
(
Ue

j2 (3, 1)
)
/ sin(β) (27)

Differentiating Eq. (27) with respect to time, γ̇ , γ̈ can be obtained, respectively. In addition, Uj3 can
be obtained by vector cross product, which is the direction of the constrained torque at the U joint.

Uj3 = U j1 × U j2 (28)
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Figure 5. Mapping of Euler angles rate to angular velocity.

Furthermore, to obtain the angular velocity of each link, we need to map the Euler angles rate to the
angular velocity. The mapping principle is shown in Fig. 5.

According to the above transformation, Eq. (29) can be obtained⎡
⎣ωx

ωy

ωz

⎤
⎦= rot(z, α) rot(x, β)

⎡
⎣0

0
γ̇

⎤
⎦+ rot(z, α)

⎡
⎣ β̇

0
0

⎤
⎦+

⎡
⎣0

0
α̇

⎤
⎦ (29)

By sorting out Eq. (29), the following equation can be obtained

ωlj = J t

[
α̇lj β̇lj γ̇lj

]T (30)

in which

J t =
⎡
⎣0 cαlj sαljsβlj

0 sαlj −cαljsβlj

1 0 cβlj

⎤
⎦ (31)

Furthermore, differentiating Eq. (30) with respect to time, the following equation can be obtained

εlj = J t

[
α̈lj β̈lj γ̈lj

]T + J̇ t

[
α̇lj β̇lj γ̇lj

]T (32)

For the 1st and 2nd driving limbs, L1i represents the vector between the two joints R2i and R4i

L1i = r2i − r4i (33)

where r2i and r4i represent the vectors of joint R2i and R4i with respect to frame {A}, respectively.
Moreover, use Q1i to denote the unit vector along L1i

Qi = L1i/l1i (34)

The velocity of any point in the moving frame can be obtained by vector cross-product

V = V ′ + ω × r (35)

where ω and V represent the angular velocity and the linear velocity of the MP, respectively.
Differentiating Eq. (7) with respect to time yields:

θ̇1i = J0iṖ (36)

where Ṗ denotes the velocity matrix of the MP.
Similarly, linear velocity of li by differentiating Eq. (8) can be obtained

l̇1i = J1iṖ (37)

The linear acceleration of the MP can be obtained by the following formula

A = A′ + ε × r + ω × (ω × r) (38)

where ε denotes the angular acceleration of the MP.
Furthermore, differentiating Eq. (36) with respect to time yields:

θ̈1i = J0iP̈ + ṖTH0iṖ (39)

where P̈ denotes the acceleration matrix of the MP.
Similarly, linear acceleration of li can be obtained as time derivative of Eq. (37)

l̈1i = J1iP̈ + ṖTH1iṖ (40)
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Figure 6. Forces and moments analysis for the link-2.

For the 3rd and 4th driving limbs, the linear velocity can be calculated by Eq. (35)
VU2j = GU2j

p Ṗ (41)

l2
2j = L2j · L2j (42)

Differentiating Eq. (42) with respect to time, the following formula can be obtained
l2j l̇2j = L2j · V2j (43)

Hence, the velocity of the l2j can be expressed as follows:
l̇2j = QT

j VU2j = J1jṖ (44)
in which

J1j = QT
j GU2j

p (45)
According to the Eq. (38), the following formula can be obtained

AU2j = GU2j
p P̈ + ṖTH0jṖ (46)

Furthermore, linear acceleration of l2j can be obtained by differentiating Eq. (44)

l̈2j = QT
j AU2j +

(
VT

U2j
VU2j − l̇2

2j

)
/l2j (47)

Hence, the acceleration of the l2j can be written as follows:

l̈2j = J2jP̈ + ṖTH1jṖ (48)
So far, all the kinematic parameters required for the inverse dynamics are determined. In the next

section, attention will be paid on the deduction of dynamic equations of the 4-DOF PDM.

4. Dynamic analysis
For the structural design, the driving forces and the constrained forces/moments should be calculated
simultaneously to evaluate the force condition of the system. Therefore, this section presents the dynam-
ics modeling of the 4-DOF PDM. First, the force analysis of individual bodies, limbs are derived with
Newton–Euler method. Then, based on the flexibility matrix and compatible deformation are employed
to supplementary equations. Similar to the kinematic analysis, the dynamic derivation of the 4-DOF
PDM is also solved in modules.

4.1. Forces and moments analysis for the module-1
The forces and moments analysis diagrams of link r21 are given in Fig. 6. The reaction forces and
moments at fixed points R1i are denoted by f e1 and Me1. The forces and moments at moving points
R2i are denoted by f 32 and M32, respectively.
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Figure 7. Forces and moments analysis for the moving platform.

Figure 8. Forces and moments analysis for 1st and 2nd driving limbs.

The Newton–Euler equations for link r21 are given as∑
Fext = f ci − f 32 + f e1 + mr2g = mr2ar2∑

ci1next = AIcr2ω̇r2 + ωr2 × AIcr2ωr2

+ cr2

(−sr2 × f e1

)+ cr2

(
sr2 × f ci

)+ cr2

(
sr2 × −f 32

)+ Mci − M32 + Me1 (49)

Similar to link r21, other links’ forces and moments of the operating mechanism can be obtained.
Furthermore, the forces and moments analysis for the MP are shown in Fig. 7.
The Newton–Euler equations for MP are given as∑

Fext = f 4p + f U3 + f U4 + mpg = mpap∑
next = S1 × f 4p + S2 × f U3 + S3 × f U4 + MU3 + MU4 + M4p

= AIpω̇p + ωp × AIpωp

(50)

4.2. Forces and moments analysis of the module-2
Assume that each driving limb consists of two parts, the cylinder and the piston, where the velocities
and accelerations of their centers of masses are determined in Section 3. Assume that the centers of
masses of the cylinder and the piston are located at a distance of ci1 and ci3, and their masses are denoted
by mi1 and mi2, respectively. Moreover, consider that the cylinder and the pistons are symmetric about
their axes, and their centers of masses lie at their midlengths.

The forces and moments analysis diagrams of 1st and 2nd driving limb are given in Fig. 8. The
reaction forces and moments at fixed points R4i are denoted by f fi and Mfi. The forces and moments at
moving points R2i are denoted by f ci and Mci, and the internal forces and moments between cylinders
and pistons are denoted by f mi and Mmi, respectively.
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Figure 9. Forces and moments analysis for the piston.

Figure 10. Forces and moments analysis for 3rd and 4th driving limbs.

The Newton–Euler equation for 1st and 2nd driving limbs are given as(
AIci1

+ AIci2

)
ω̇i + ωi ×

(
AIci1

+ AIci2

)
ωi = Mfi + mi2(L1 − ci3) (si × (g − ai2))

+ mi1ci1(si × (g − ai1)) + L1

(
si × −f ci

)− Mci (51)

where AIci1
denotes the inertia matrix of the cylinder evaluated at a frame parallel to {A} located at point

ci1. Since the cylinder is moving with respect to this frame, this matrix can be evaluated by rotation rule
from the inertia matrix easily obtained about {Ai} attached to the cylinder at point ci1. This can be done
through the following transformation:

AIci1
= ARAi

AIci1
ART

Ai (52)

Note the formula of vector mixed product is as follows:

(a × b) · c = (b × c) · a = (c × a) · b (53)

Multiply ti on both sides of Eq. (51), and the following equation can be obtained

f ri
ci = mi1ci1ri · (g − ai1) + mi2(L1 − ci3) ri · (g − ai2)

− ti ·
((

AIci1 + AIci2

)
ω̇i

)− ti ·
(
ωi ×

(
AIci1 + AIci2

)
ωi

)
(54)

Forces and moments analysis for piston are shown in Fig. 9.
The Newton–Euler equations for piston are given as∑

Fext = mi2ai2 = f mi − f ci + mi2g (55)

By multiplying si on both sides of Eq. (55), formulas that only include driving force and kinematic
parameters can be derived as follows:

f s
ci
= τi + mi2g · si − mi2ai2 · si (56)

The forces and moments analysis diagrams of 3rd and 4th driving limbs are given in Fig. 10. The
reaction forces and moments at fixed points S2j are denoted by f sj and Msj. The forces and moments at
moving points U2j are denoted by f uj and Muj, and the internal forces and moments between cylinders
and pistons are denoted by f mj and Mmj, respectively.

The Newton–Euler equation for 3rd and 4th driving limbs are given as(
AIcj1 + AIcj2

)
ω̇j + ωj ×

(
AIcj1 + AIcj2

)
ωj = −Lj

(
sj × f uj

)− mi2

(
Lj − ci3

)
sj × (ai2 − g)

− mi1L31s × (ai1 − g) − Mujtuj (57)
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Figure 11. Forces and moments analysis for the piston.

According to Eq. (56), the following equation can be obtained

Muj = sj ·
((

AIci1 + AIci2

)
ω̇j

)+ sj ·
(
ωj ×

(
AIci1 + AIci2

)
ωj

)
−sj · tuj

(58)

Vector cross-product formula is as follows:

a × (b × c) = (c · a) b − (a · b) c (59)

Furthermore, by multiplying s on both sides of Eq. (57) and combing Eq. (59), the following equation
can be obtained

f uj =
(
sj · f uj

)+ 1

Lj

sj ×
((

mj2

(
Lj − cj3

)
sj ×

(
aj2 − g

))+ (
cj1mj1sj ×

(
aj1 − g

))
+ ((

AIcj1 + AIcj2

)
ω̇j

)+ (
ωj ×

(
AIcj1 + AIcj2

)
ωj

)+ Mujtuj

)
(60)

The forces and moments analysis of piston are shown in Fig. 11.
The Newton–Euler equations for piston segments are given as

f mj − f uj + mj2g = mj2aj2 (61)

Multiplying s on both sides of Eq. (61) and substituting Eq. (60) into Eq. (61), we have

f uj =
(
τj + sj · mj2g − sj · mj2aj2

)
sj

+ 1

Lj

sj ×
((

Lj − cj2

)
sj × mj2

(
g − aj2

)+ cj1sj × mj1

(
g − aj1

)
+ (

AIcj1 + AIcj2

)
ω̇j + ωj ×

(
AIcj1 + AIcj2

)
ωj + Mujtuj

)
(62)

To sum up, there are 84 equations based on the Newton–Euler method, but 93 unknown variables
need to be solved due to the over-constraints of the 4-DOF PDM. In the next section, nine compatibility
equations are introduced considering the flexibility matrix and compatible deformation.

5. Deformation compatibility analysis
Based on the redundant constraint analysis in Section 2.2, we know that the 4-DOF PDM possesses
nine passive redundant constraints, although the four actuator driving forces can be obtained with the
classical method, the internal force analysis of this manipulator is still a statically indeterminate problem,
and therefore the joint reaction forces cannot be uniquely determined. In this section, to obtain the unique
solution, the over-constrained direction is analyzed by the screw theory, and the flexibility of the limbs
is considered and the deformation compatibility condition is introduced.

5.1. Link’s elastic deformation
In this paper, the link is regarded as a homogeneous rod. As shown in Fig. 12, when the end link is sub-
jected to external forces F = [ Fx Fy Fz Mx My Mz ]T , corresponding six-dimensional deformation will
be formed, including tension, torsion, and bending.

The relation between the external force F and the corresponding small deflection X along the applied
force axis can be written as follows
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Figure 12. Schematic diagram of deformation at the end of uniform bar with regular section.

Figure 13. Deformation diagram of two link ends with regular section.

X = CF (63)

in which

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

EA
0 0 0 0 0

0
l3

3EIz

0 0 0
l2

2EIz

0 0
l3

3EIy

0 − l2

2EIy

0

0 0 0
l

GIp

0 0

0 0 − l2

2EIy

0
l

EIy

0

0
l2

2EIz

0 0 0
l

EIz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

where C represents the flexibility matrix with respect to frame {O}. Iy, Iz, and Ip denote cross-section
inertia parameters of the rod, respectively. l and A are rod length and cross-sectional area of rod. E and
G represent elastic modulus and shear modulus of materials, respectively.

For the two-link mechanism depicted in Fig. 13, according to the force balance condition of the rod,
the Jacobian matrix J as the projection of forces Fi to external forces F are given

Fi = J iF (65)

in which

Jk =
(

oi
okR 03×3

S
(

oiPok

)
oi
okR oi

okR

)
(66)

where oi
okR represents rotational transformation matrix between frame {Ok} and frame {Oi}. oiPok is the

position vector with respect to the frame {Ok}. S(oiPok) denotes antisymmetric matrix of position vector
oiPok.
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Meshed link

Rigid body
Flexible body

Figure 14. Rigid–flexible coupling model of the 4-DOF PDM.

Referring to Eq. (63), the relation between the force Fi and the corresponding small deflection X i

along the applied force axis can be written as follows

X i = CiFi (67)

Hence, the deformation of end link �X i caused by the deformation of the rod i is as follows

�X i = JT
i CiFi (68)

Therefore, the deformation of the end link under the external force F can be derived by the sum of
linear deformation of all rod i

X =
∑

�X i =
∑

JT
i CiJ iF (69)

5.2. Rigid-flexible coupling simulation
As indicated above, the 4-DOF PDM possesses nine passive redundant constraints. Since the SPU limb
own six degrees-of-freedom, the over-constraints are caused by other links besides the SPU limbs. In
this section, based on the screw theory, the over-constrained direction is analyzed. Moreover, the over-
constraints were verified via the co-simulation with ABAQUS and ADAMS software. First, the flexible
links are meshed by hexahedron elements in ABAQUS, and the mnf files of the meshed links are obtained
via ABAQUS. Then, loading the link files, rigid links are replaced with flexible bodies in ADAMS. The
simulation model is shown as Fig. 14.

From the above analysis, we know that over-constraints are caused by operating mechanism and two
RPR limbs. In order to supplement the deformation coordination equations, we need to further deter-
mine the direction of over-constraints. Based on the screw theory, the constraint screw of the limb is as
follows:

$rr
1 = [

0 0 1 0 0 0
]

$rr
2 = [

0 0 0 1 0 0
]

$rr
3 = [

0 0 0 0 1 0
] (70)

As shown in Fig. 15, the operating mechanism and two RPR limbs possess the constrained force along
z-axis and constrained couples around x-axis, y-axis, which means each link in the operating mechanism
and two RPR limb own three over-constrained motions.
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Figure 15. Schematic diagram of over-constrained direction analysis.

Figure 16. Limbs 1 and 2 deformation analysis.

5.3. Deformation compatibility equation
In this section, on the condition of the numbers and direction of over-constraints, we derive the deforma-
tion compatibility equation in detail. First, the operating mechanism and two RPR limbs are divided into
three modules. Then derive the deformation of each module according to the link’s elastic deformation
in Section 5.1. Finally, the deformation compatibility equations are derived at joints R21, R22, and R32.

The elastic deformation of limbs 1 and 2 at joint R32 as shown in Fig. 16.
Referring to Eq. (65), we have

B2FR4 = JB2,B1
B1Fr32,r4 + JB2,A

AF4p (71)

B3Fr4,r31 = JB3,B2
B2FR4 (72)

B4Fr31,r21 = JB4,B3
B3Fr4,r31 (73)

where B1Fr32,r4 is the force applied to link r4 by link r32 with respect to the frame {A}. JB2,A represents
the transformation matrix between frame {B2} and frame {A}.

Based on the Eq. (69), the elastic deformations of the links r21 and r31 at the joint R31 with respect to
the frame {B3} are

B3δR31 = C1
B3Fr4,r31 + JT

B4,B3

(
C1

B4Fr31,r21 + C1
B4Fl11,r21

)
(74)

Hence, the elastic deformation of the links r21, r31, and r4 at the joint R32 with respect to the frame
{A} are

AδR32_ lim b1 = JT
B1,A

(
JT

B3,B1
B3δR31 + JT

B2,B1C2
B2FR4 + C2

B1Fr32,r4

)
(75)

Similarly, the elastic deformation of limb2 at R32 is given as
B6Fr32,r22 = JB6,B5

B5Fr32,r4 (76)
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Figure 17. Limbs 3 and 4 deformation analysis.

Figure 18. Limbs 5 and 6 deformation analysis.

R22δR22 = C1
B6Fr32,r22 + C1

B6Fl12,r22 (77)

AδR32_ limb2 = JB5,A

(
JB6,B5

R22δR22 + C1
B5Fr4,r32

)
(78)

The deformation caused by limbs 3 and 4 at joint R32 as shown in Fig. 17.
Referring to Eq. (69), the elastic deformation of limb 3 at joint R21 is given as

AδR21_ limb3 = JT
B7,A

(
JT

B8,B7C4JB8,B7

(−B7Fl11,r21

)+ C3

(−B7Fl11,r21

))
(79)

Similarly, the elastic deformation of limb 4 at joint R21 is given as
AδR21_ limb4 = JT

B4,A

(
C1

B4Fl2,l1 + C1
B4Fl7,l1

)
(80)

The deformation caused by limbs 5 and 6 at joint R32 as shown in Fig. 18.
Based on the Eq. (69), the elastic deformation of limb 5 at joint R22 are given as

AδR22_ limb5 = JT
B9,A

(
JT

B10,B9C6JB10,B9

(−B9Fl12,r22

)+ C5

(−B7Fl12,r22

))
(81)

Similarly, the elastic deformation of limb 6 at joint R22 are given as
AδR22_ limb6 = JT

B6,A

(
C1

B6Fr32,r22 + C1
B6Fl12,r22

)
(82)

The deformations of the operating mechanism and two RPR limbs have to be compatible with
each other to satisfy the geometric constraints. Hence, translational deformation along z and rotational
deformation about x and y axis at joints R21, R22, R32 should be equal, namely

AδR32_ limb1 (k, 1) = AδR32_ limb2 (k, 1)
AδR21_ limb3 (k, 1) = AδR21_ limb4 (k, 1) (k = 3, 4, 5)
AδR22_ limb5 (k, 1) = AδR22_ limb6 (k, 1)

(83)

So far, the complete dynamics models with constrained forces/moments of the over-constrained 4-
DOF PDM with sub-closed chains are established. The actuation forces and constrained forces/moments
can be obtained simultaneously, which is essential for structure design. Also, clearance and friction can
be easily integrated into the system equation.
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6. Simulation and experiment
We set the trajectory of the end-effector of the manipulator with respect to the inertial reference frame
P-xyz as follows:

x(t) = Sx

(
t

T
− 1

2π
sin
(

2π
t

T

))
t ∈ [0, T]

y(t) = Sy

(
t

T
− 1

2π
sin
(

2π
t

T

))
t ∈ [0, T]

α(t) = Sα

(
t

T
− 1

2π
sin
(

2π
t

T

))
t ∈ [0, T]

γ (t) = Sγ

(
t

T
− 1

2π
sin
(

2π
t

T

))
t ∈ [0, T]

(84)

where Sx and Sy denote the displacement along the x-axis and y-axis with respect to the fixed reference
coordinate system, Sα and Sγ denote the angle along the x-axis and z-axis with respect to the fixed
reference coordinate system, respectively.

6.1. Simulation validation
According to the derivation of the above formula, the displacements, velocities, accelerations, driving
forces, and all constraint forces/moments of the 4-DOF PDM are obtained. The numerical simulation
results are qualitatively consistent with the theoretical results. As shown in Fig. 19, l1,a, v1,a, and a1,a

(i = 1, 2, 3, 4) denote the theoretical displacements, velocities, and accelerations of the slider respec-
tively. li,n, vi,n, and ai,n (i = 1, 2, 3, 4) denote the numerical displacements, velocities, and accelerations
of the slider, respectively.

The results of co-simulation with ADAMS and ABAQUS are shown in Fig. 14. Figure 20 shows
the active forces computed by the proposed method and ADAMS; Figure 21 shows the active forces
computed by the proposed method and Lagrangian method; Figure 22(a) and (b) show the constraint
forces/moments in the over-constrained direction at joints R32 and R21, respectively. f a

i_z, ma
i_x and ma

i_y(i =
1, 2) represent the theoretical value and f n

i_z, mn
i_x and mn

i_y(i = 1, 2) represent the simulation value.
It is assumed that the cylinders and pistons are symmetrically distributed in this paper. That is, the

influence of the eccentricity of the electric cylinder on the constraint torque at the U-joint is not con-
sidered. In order to verify the influence of acceleration on the constraint torque and driving force at the
U-joint, the constraint torques at the U-joint are calculated when the maximum translational accelera-
tion along y-axis is up to 50, 500, and 1000 mm/s2. Moreover, the driving forces are solved with and
without constraint torque at the U-joint, and the driving forces error percentage are plotted as shown in
Fig. 23(b).

6.2. Experiment validation
According to the CAD model displayed in Fig. 1, a physical prototype has been built for the motion
control experiment. As shown in Fig. 24, actuators are driven by the electric piston-cylinder, which are
connected to an embedded controller (CX5130) made by the company Beckhoff through an Ethercat
bus. Based on the position loop mode PID controller to achieve the target trajectory, it is one of the
commonly used controllers in academic research and industrial products. The motion control experiment
based on PID controller is shown in Figure 25. The measured values of displacements, velocities, and
accelerations of the four driving limbs are shown in Fig. 26, which are consistent with the theoretical
calculation.

In this paper, the control cycle of the embedded controller (CX5130) is 2 ms. As shown in Fig. 26,
the measured position and velocity of the four driving limbs are consistent with the theoretical value,
but the lag of phase is 20 ms. Due to the short control cycle, the position signal obtained by the encoder
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Figure 19. Numerical and theoretical results of displacement/velocity/acceleration.

Figure 20. Active forces computed by the proposed method and ADAMS.
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Figure 21. Active forces computed by the proposed method and Lagrangian method.

Figure 22. Partial constraint forces/moments simulation and theoretical value.

(a) (b)

Figure 23. Constraint torque at U-joint and driving force error percentage under different
accelerations.
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Figure 24. Physical prototype and control system.

Home position P1

(a) (b)

Figure 25. Trajectory planning based on classical PID control.

undergoes two differential and filtering processes, resulting in significant signal distortion. As shown in
Fig. 26, the measured acceleration not only have phase lag but also have attenuation in amplitude.

7. Conclusion
In this paper, a 4-DOF over-constrained PDM with sub-closed chains is proposed and its prototype is
developed. By considering the flexibility of the operating mechanism and two RPR limbs, the defor-
mation compatibility condition is introduced to solve a statically indeterminate problem. The actuation
forces and constrained forces/moments are obtained simultaneously, which is conducive to the design
of the PDM.

In the symmetrical structure of the electric piston-cylinder, the value of constraint moments at the
U-joint under different accelerations is analyzed by taking into account its impact on driving forces.
According to the results of comparative experiment conducted on the end-effector under different
accelerations in a certain direction, the impact on the active force is about 1%, regardless of the con-
straint moment at the U-joint. The effectiveness of the kinematic model is demonstrated by ADAMS
and the experiment based on classical PID control, while that of the dynamic model is confirmed by
the co-simulation with MATLAB, ADAMS and ABAQUS. In addition, the actuation forces are also
verified by using the Lagrangian method. The present study provides a valuable reference for future
study on structural optimization. In future studies, the rigid–flexible coupling dynamic model will
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Figure 26. Measured and theoretical results of displacement/velocity/acceleration.

also be established to obtain rigid–flexible coupling dynamic characteristics and an accurate constraint
forces/moments.
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Appendix A
The kinematic and dynamic parameters of the PDM virtual prototype used in the simulation are as
follows (default in mm unit):

r0 = 73.5, r1 = 180, r2i = r3i = 240, r4 = 180, g1 = 110.10719, g2 = 346.80127, g3 = 285.26279,

g4 = 99.91525, E = 7.1705e + 4 (Mpa) , u = 0.33, G = E/ (2 (1 + μ)) , D1 = 35, D2 = 60, D3 = 30

Appendix B

a1i = r2i

(
xR3i + (−1)

i+1 r1/2
)

b1i = r2i(yR3i − n1)

dli = r2
2i/2 − (

xR3i + (−1)
i+1 r1/2

)2
/2 + (yR3i − n1)

2
/2

− (r3i)
2
/2 + (

xR3i + (−1)
i+1 r1/2

) (
xR3i + (−1)

i+1 r1/2
)

Table II. The inertial parameters of the PDM.

Parameters Value (kg) Parameter Value (kgm210−4)
ml11 6.8385 Icl11 diag[309 252 88.4]
ml12 0.6824 Icl12 diag[49.3 49.3 0.99]
ml21 6.8385 Icl21 diag[309 252 88.4]
ml22 0.6824 Icl22 diag[49.3 49.3 0.99]
ml31 6.8385 Icl31 diag[106.9 87.2 30.6]
ml32 0.6215 Icl32 diag[30.9 30.9 0.94]
ml41 6.8385 Icl41 diag[106.9 87.2 30.6]
ml42 0.6215 Icl42 diag[30.9 30.9 0.94]
mr1 0.5689 Ir1 diag[46.7 41.1 9.68]
mr2 0.5689 Ir2 diag[50.9 41.1 13.8]
mr3 0.6887 Ir3 diag[31.1 25.8 10]
mr4 0.5689 Ir4 diag[50.9 41.1 13.8]
mr5 0.5689 Ir5 diag[46.7 41.1 9.68]
mmp 1.8722 Imp diag[347 310 54.8]

Cite this article: Y. Huang, J. Zhang, X. Xiong and S. Liu (2023). “Kinematic and dynamic analysis of a 4-DOF
over-constraint parallel driving mechanism with planar sub-closed chains”, Robotica 41, 3137–3159. https://doi.org/10.1017/
S0263574723000929

https://doi.org/10.1017/S0263574723000929 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000929
https://doi.org/10.1017/S0263574723000929
https://doi.org/10.1017/S0263574723000929

	
	Introduction
	System conceptual design
	Mechanism configuration design
	Workspace analysis
	Over-constraint analysis
	Kinematic analysis
	Inverse position analysis
	Inverse position of module-1
	Inverse position of module-2
	Velocity and acceleration analysis
	Velocity and acceleration of module-1
	Velocity and acceleration of module-2
	Dynamic analysis
	Forces and moments analysis for the module-1
	Forces and moments analysis of the module-2
	Deformation compatibility analysis
	Link"2019`s elastic deformation
	Rigid-flexible coupling simulation
	Deformation compatibility equation
	Simulation and experiment
	Simulation validation
	Experiment validation
	Conclusion
	
	

