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As a result of field fringing, the capacitance of a parallel-plate capacitor differs from that predicted by
the textbook formula. Using singular perturbations and conformal mapping techniques, we calculate
the leading-order correction to the capacitance in the limit of large aspect ratio. We additionally
obtain a comparable approximation for the electrostatic attraction between the plates.
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1 Introduction

The calculation of the capacitance of a parallel-plate condenser appears in any electrostatics
textbook. Assuming that the field lines are (i) confined between the plates and (ii) perpendicular
to them, one readily finds from Gauss law that the capacitance per unit area is given by the ratio of
the vacuum permittivity ε0 to the distance between the plates. In the convenient two-dimensional
idealisation, involving two plates of length 2l and separation 2h, the capacitance per unit length
is given by ε0λ, λ = l/h being the aspect ratio.

Of course, for any finite value of λ, however, large, the field lines are not confined between
the plates; in the vicinity of the edges, moreover, they are clearly not perpendicular to the plates.
There is accordingly an interest in correcting the ‘idealised-capacitor’ formula. Assuming plates
of zero thickness, Thomson [30] suggested the following approximation to the capacitance (per
unit length), normalised by ε0,

λ + ln(πλ) + 1

π
+ · · · . (1.1)

Approximation (1.1) incorporates the relative asymptotic corrections of both O(1) and O(ln λ).
When considering O(ln λ) terms on par with O(1) terms, as is the convention in asymptotic
analysis [12], this approximation appears to effectively provide a leading-order edge correction.

In the literature, Thomson’s approximation is typically derived in a heuristic manner, which
is forced by the appearance of a divergent integral (see, e.g., the treatment in Section 8.2.3 of
Binns and Lawrenson [3]). Edge corrections are briefly discussed by Landau and Lifshitz [21,
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Section 3], where the authors explain that, due to their intuitive handling of a logarithmically
divergent integral, only the O(ln λ) correction term can be trusted and that the calculation of the
associated O(1) correction term ‘demands considerably more elaborate methods’.

It turns out that the above reservation by Landau and Lifshitz applies to Thomson’s approx-
imation. The validity of that approximation was put into doubt by the expression obtained by
Bromwich [4] in 1902,

λ + ln(2πλ) + 1

π
+ · · · , (1.2)

which differs from (1.1) at O(1). In 1924, Love [23] obtained an exact solution (valid for arbitrary
values of λ) of the two-dimensional capacitance problem. This solution is expressed in terms of
elliptic functions and is accordingly rather cumbersome. Nonetheless, when degenerated to the
case of large aspect ratio, it reduces to (1.2). Thomson’s approximation indeed misses a term.

A comparable, though less dramatic, discrepancy appeared in the related problem of disk
capacitors, for which a non-rigorous approximation was originally provided by Kirchhoff [19]. A
later approximation by Ignatowsky [14] differed from that of Kirchhoff at the O(1/λ) correction.
In this problem, the exact solution of Sneddon [29, Chapter 8] revealed that it is the Kirchhoff
approximation which is the correct one.

As an alternative to asymptotic limits of exact solutions, large-aspect-ratio approximations
may be systematically obtained using asymptotic methods. There are essentially two manners
by which such approximations are derived in that context. The first makes use of an integral
representation of the potential problem, with the pertinent integral equations being solved in the
appropriate asymptotic limit [1]. This approach has been used extensively in the analysis of disk
capacitors [7,13,22] as well as in the related problem of added mass calculation [2]. The second
approach, which constitutes the natural follow-up of the intuitive calculations of Kirchhoff and
Thomson, attempts to solve Laplace’s equation directly, with the high-aspect-ratio singularity
being addressed from the outset using singular perturbations. This direct approach was carried
out by Shaw [28] for both strip and disk capacitors.

While the correct high-aspect-ratio approximations are available in the literature, they are
still largely unfamiliar. It is possible to find papers in the engineering community that, being
apparently unaware of the Bromwich–Love approximation (1.2), use Thomson’s erroneous
approximation (1.1) as a benchmark against which numerical calculations are compared [25].
There are several reasons for this unfamiliarity. Traditionally, the strip-capacitor problem was
viewed as an intermediate step in the analysis of a disk capacitor. Indeed, the Bromwich–
Love approximation (1.2) has been reproduced in several of the above-mentioned disk-capacitor
analyses, see, for example, equation (3.12) in Hutson [13] and equation (4.13) in Chew and
Kong [7]. As these analyses are quite involved, they are only known to a small group of experts.
Furthermore, in the few cases where the two-dimensional geometry was directly addressed, this
was done in a rather general context which has rendered the analysis quite technical. Thus,
Shaw [28] considered plates of a finite thickness, while Chew and Kong [7] allowed for a dielec-
tric slab between the plates. Another possible reason for the unfamiliarity has to do with the
appearance of key relevant papers [28] in the fluid-mechanical literature. This has to do with
the (virtually unknown) analogy between the electrostatic problem and the problem of iner-
tialess flow in a parallel-plate viscometer [8] (which implies, in turn, an analogy between the
capacitance in the electrostatic problem and the torque in the hydrodynamic problem).
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FIGURE 1. Parallel-plate geometry.

It therefore appears desirable to present a systematic derivation of the Bromwich–Love
approximation (1.2), which applies in the simplest problem of zero-thickness plates. The scope
of such a goal is more modest than that achieved by Shaw [28], which has actually gone to
higher asymptotic orders. However, Shaw’s work is very general and not easy to read. The
restricted derivation which follows may accordingly serve as a convenient introduction for
non-experts, supplementing both fundamental analyses of capacitance calculations [15, 16, 32]
as well as less mathematical discussions of the fringing effect [6,10,20,24,26]. This educational
goal will be accomplished in the present paper using matched asymptotic expansions [12],
where the electric potential is solved in different subdomains (defined via appropriate limit
processes). The capacitance may then be obtained by carefully adding the contributions from the
respective regions, with the result being independent of the exact manner by which these regions
are delineated. The asymptotic solution of the electric potential will also be used to obtain an
approximation for the attractive force between the plates; since the mathematical analog of that
force has no physical meaning in the problem of parallel-plate viscometer, this quantity has not
been sought by Shaw [28].

As will become evident, the major task in the present work involves the calculation of the
electric potential near the ‘edge’ of the capacitor. This task is accomplished using conformal
mapping techniques. Consistently with the expository nature of this paper, two alternative map-
pings will be described. Similarly, the electrostatic attraction is determined using two different
approaches, one direct, using the Maxwell stress concept, and one indirect, using the principle of
virtual work.

2 Formulation

Consider a two-dimensional capacitor, made out of two thin conducting plates of length 2l. The
plates are parallel to each other and separated at a distance 2h apart (see Figure 1). The plates
are set at electric potentials ±V relative to the potential at infinity. Our goal is the capacitance,
defined by

C = Q

2V
, (2.1)

in which, Q is the charge on the positive plate. Since Q is linear in V , the capacitance is
independent of it.
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FIGURE 2. Dimensionless problem in the upper xy-plane.

Normalising length variables by l, we employ Cartesian xyz coordinates with the x-axis run-
ning parallel to the plates, which extend between x = −1 and x = 1, and the y-axis running
perpendicular to them. We employ a dimensionless notation where electric potentials are nor-
malised by V and charges (per unit length in the z-direction) are normalised by ε0V , ε0 being
the permittivity of vacuum; the capacitance (per unit length in the z-direction) is consistently
normalised by ε0. In what follows, we find it preferable to employ ε = h/l instead of the aspect
ratio λ.

The electric potential ϕ is governed by (i) Laplace’s equation,

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0; (2.2)

(ii) the Dirichlet condition ϕ = ±1 at the two plates (respectively, positioned at y = ±ε); and (iii)
far-field decay,

ϕ = O(1/r) for r =
√

x2 + y2 � 1, (2.3)

the latter condition following from the absence of net charge in the two-plate system. It is evident
from the problem formulation that ϕ is an even function of x and an odd function of y. We
hereafter consider only y > 0, adding the symmetry condition (see Figure 2)

ϕ = 0 at y = 0. (2.4)

Since the dimensionless potential difference between the plates is 2, the dimensionless capac-
itance is given by c = q/2, wherein q is dimensionless charge on the upper plate (cf. (2.1)).
Making use of the two-dimensional variant of Gauss law, we find that

q = −
∮

∇ϕ · n̂ ds, (2.5)

where the line integral may be carried out over any simple closed contour which encircles (only)
the upper plate, n̂ denotes an outward-pointing unit vector normal to that contour and ds is a
differential length element. Upon deforming the contour and making use of the far-field decay
(2.3), we represent c as an integral over the x-axis, namely

c = 1

2

∫ ∞

−∞
∂ϕ

∂y

∣∣∣∣
y=0

dx, (2.6)

or, upon making use of the symmetry about x = 0,

c =
∫ ∞

0

∂ϕ

∂y

∣∣∣∣
y=0

dx. (2.7)
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FIGURE 3. The gap region.

The dimensionless capacitance c is a function of ε, the single parameter in the problem. Our
goal is to derive an approximation in the small-gap limit, ε � 1. When the fringing effect is
ignored and one consider only the region between the plates, it is evident that, in that region,

ϕ ≈ y/ε. (2.8)

Substitution into (2.7) then gives

c ≈ 1/ε. (2.9)

How is this ‘idealised-capacitor’ value affected by the finite aspect ratio?

3 Asymptotic regions

As ε → 0, it is convenient to distinguish between three ‘asymptotic regions’. The ‘outer region’
corresponds to x and y being O(1). The ‘gap region’ corresponds to x ∈ (−1, 1) being O(1) but
y = O(ε). The ‘edge region’, at O(ε) distances from the edge (1, 0), is where both x − 1 and y are
O(ε). (By symmetry, another such region is formed about (−1, 0).) To represent the conceptual
decomposition of the problem domain into these region, we define the stretched coordinates

X = x − 1

ε
, (3.2a)

Y = y

ε
. (3.2b)

The different regions then correspond to the manner by which the limit ε → 0 is attained. In the
outer region, x and y are held fixed as ε → 0; in the gap region, x and Y are held fixed (with
x ∈ (−1, 1)); in the edge region, X and Y are held fixed.

4 Leading-order electric potential

We now derive the leading-order approximations to the electric potentials in the three respective
regions, noting that the far-field condition (2.3) applies only in the outer region. In the leading-
order gap region problem, the ends are removed to infinity. Laplace’s equation (4.10) becomes

∂2ϕ

∂Y 2
+ ε2 ∂2ϕ

∂x2
= 0. (4.1)
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FIGURE 4. Outer region.

A solution that satisfies the boundary conditions (see Figure 3) is

ϕ ∼ Y ; (4.2)

this, of course, is the dimensionless version of (2.8). It may appear that (4.2) is only a leading-
order solution; recalling, however, the form of the eigenfunctions of Laplace’s equation in the
gap geometry, it is evident that the asymptotic correction to (4.2) is exponentially small [9].

In the outer region, at leading order, one has the discontinuous Dirichlet condition at y = 0
(see Figure 4):

ϕ =
⎧⎨
⎩

0 |x| > 1 ,

1 |x| < 1 .
(4.3)

Recalling that a polar angle is a solution of Laplace’s equation (4.10), we claim that

ϕ ∼ 1

π
(θ+ − θ−), (4.4)

wherein the polar angles θ± are indicated in Figure 4. Indeed, it is readily seen that (4.4) satisfies
both (2.3) and (4.3). Expressing the angles in terms of the xy coordinates, we alternatively have

ϕ ∼ 1

π

(
arctan

y

x − 1
− arctan

y

x + 1

)
, (4.5)

where it is hereafter understood that the arctangent is between 0 and π .

4.1 Edge region

The only region where the calculation of ϕ requires some effort is the edge. Defining Z = X + iY ,
it is here convenient to employ a conformal mapping Z = f (ζ ) from the complex ζ -plane to the
upper-half complex Z-plane. In particular, the degenerate polygon geometry of the edge suggests
the use of a Schwarz–Christoffel mapping [5] from the upper-half ζ -plane (see Figure 5). Upon
setting the critical points of the transformation in the manner described in Figure 5, the mapping
f must satisfy

f ′(ζ ) = M
ζ + 1

ζ
. (4.6)

Integration thus yields

f (ζ ) = M(ζ + log ζ ) + N , (4.7)

where the principal branch of the logarithm is taken.
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FIGURE 5. Mapping to the edge region.

The coefficient M is determined by the requirement that the semi-width of the capacitor in the
XY -plane is unity. In terms of f , this requirement reads

lim
ρ↘0

[ f (−ρ) − f (ρ)] = i. (4.8)

Making use of (4.7), we then obtain M = 1/π . To determine N , we impose the condition f (−1) =
i (see Figure 5), which gives N = 1/π . We conclude that

f (ζ ) = ζ + log ζ + 1

π
. (4.9)

In what follows, we write ζ = ξ + iη. Since Laplace’s equation is conformally invariant [5],
we need to solve

∂2ϕ

∂ξ 2
+ ∂2ϕ

∂η2
= 0 for η > 0. (4.10)

As Dirichlet conditions are also conformally invariant [5], the following applies at η = 0:

ϕ =
{

1 ξ < 0 ,

0 ξ > 0 .
(4.11)

The solution of (4.10)–(4.11) is simply

ϕ = φ

π
, (4.12)

wherein

φ = arctan
η

ξ
(4.13)

is the polar angle in the ξη-plane (see Figure 5).
Note that the real and imaginary parts of (4.7), respectively, give

X = ξ + ln |ξ | + 1

π
, (4.14a)

Y = η + φ

π
. (4.14b)
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When reaching out to the outer region, ξ and η become large (see Figure 5). Relations (4.14)
then give

X ∼ ξ

π
, (4.15a)

Y ∼ η

π
, (4.15b)

where the relative error is algebraically small (i.e. smaller than some positive power of |ζ |−1). At
leading order, we then obtain from (4.13) φ ∼ arctan(Y/X ). Reverting to the unscaled coordinates
using (3.2b) and substituting into (4.12) give

ϕ ∼ 1

π
arctan

y

x − 1
. (4.16)

Thus, asymptotic matching with the outer potential (4.5) is trivially satisfied. Similarly, when
approaching the gap region, ξ and η are small (see Figure 5), so relations (4.14) become

X ∼ ln |ξ | + 1

π
, (4.17a)

Y ∼ φ

π
, (4.17b)

with an algebraically small relative error. From (4.12) and (4.17b), we find that ϕ ∼ Y , so that
asymptotic matching with the gap solution (4.2) is, too, trivially satisfied.

4.2 Edge region: an alternative mapping

Instead of the Schwarz–Christoffel transformation (4.9), we can employ the transformation [31]

f (ζ ) = ζ + 1

π
(eπζ + 1), (4.18)

which maps the strip |η| ≤ 1 to the entire Z-plane. The manner by which it maps the edge region
is described in Figure 6. Notably, the ξ -axis is mapped onto the X -axis.

We accordingly need again to solve Laplace’s equation (4.10), but now with conditions (4.11)
replaced by

ϕ = ±1 at η = ±1. (4.19)
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The solution is simply (cf. (4.12))

ϕ = η. (4.20)

Note that the real and imaginary parts of (4.18), respectively, give

X = ξ + 1

π
(eπξ cos πη + 1), (4.21a)

Y = η + eπξ sin πη

π
. (4.21b)

When reaching out to the outer region, ξ → ∞ (see Figure 6), relations (4.21) yield

X ∼ eπξ cos πη

π
, (4.22a)

Y ∼ eπξ sin πη

π
, (4.22b)

where the relative error is exponentially small. At leading order, we then obtain

η ∼ 1

π
arctan

Y

X
. (4.23)

Reverting to the unscaled coordinates using (3.2b) and substituting into (4.20) again refurnish
(4.16). Thus, asymptotic matching with the outer potential (4.5) is trivially satisfied. Similarly,
when approaching the gap region ξ → −∞ (see Figure 6) whence relations (4.21) become

X ∼ ξ + 1

π
, (4.24a)

Y ∼ η, (4.24b)

again with an exponentially small relative error. From (4.20) and (4.24b), we find that ϕ ∼ Y , so
that asymptotic matching with the gap solution (4.2) is, too, trivially satisfied.

5 Evaluating the capacitance integral

Consider now the integral (2.7). Roughly speaking, the gap solution (4.2) applies for x < 1,
while the outer solution (4.5) applies for x > 1. A naive attempt to evaluate (2.7) using these
solutions would result in a logarithmically divergent outer contribution. A similar obstacle was
encountered by both Landau and Lifshitz [21] and Binns and Lawrenson [3].

The systematic evaluation of (2.7) makes use of two ingredients. The first is the edge solution
(4.12), which applies in the vicinity of x = 1. The second is the use of a cutoff-like parameter
δ, which naturally disappears in the final evaluation of (2.7). Since that parameter is otherwise
arbitrary, we choose it at will. Thus, following Hinch [12], we choose it to satisfy the asymptotic
condition

ε � δ � 1. (5.1)

For example, it may be taken as εα for any 0 < α < 1.
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Using that parameter, we split the capacitance integral (2.7) as follows:

c =
(∫ 1−δ

0
+

∫ 1+δ

1−δ

+
∫ ∞

1+δ

)
∂ϕ

∂y

∣∣∣∣
y=0

dx. (5.2)

The three integrals appearing in (5.2), associated with the contributions of the gap, edge and
outer regions, are, respectively, denoted by cg, ce and co. Upon using the natural coordinates in
each asymptotic region, we find that the gap contribution is

cg = 1

ε

∫ 1−δ

0

∂ϕ

∂Y

∣∣∣∣
Y=0

dx, (5.3)

the edge contribution is

ce =
∫ δ/ε

−δ/ε

∂ϕ

∂Y

∣∣∣∣
Y=0

dX , (5.4)

and the outer contribution is

co =
∫ ∞

1+δ

∂ϕ

∂y

∣∣∣∣
y=0

dx. (5.5)

In general, each of these contribution depends both upon ε and δ; their sum, however, cannot
depend upon the arbitrary parameter δ, which does not appear in the problem formulation.

The evaluation of the gap and outer contributions is straightforward. Thus, substitution of the
gap potential (4.2) into (5.3) gives

cg = 1

ε
− δ

ε
(5.6)

with an exponentially small error. In the outer region, we find from (4.5) that

∂ϕ

∂y

∣∣∣∣
y=0

= 2

π (x2 − 1)
. (5.7)

Substitution into (5.5) gives

co ∼ 1

π
ln

2

δ
, (5.8)

where the error is algebraically small (i.e. smaller than some positive power of ε). The latter
expression clearly exhibits the logarithmic divergence of the outer contribution.

In calculating the edge contribution (5.4), we note that both (4.9) and (4.18) map the ξ -axis to
the X -axis. Thus, regardless of which one is employ, we have

dX = f ′(ξ ) dξ at η = 0. (5.9)

Moreover, making use of the manner by which normal derivatives transform under conformal
mappings [5], we note that

∂ϕ

∂Y

∣∣∣∣
Y=0

= ∂ϕ/∂η

|f ′(ξ )|
∣∣∣∣
η=0

. (5.10)
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We therefore find that (5.4) becomes

ce =
∫ f −1(δ/ε)

f −1(−δ/ε)

∂ϕ

∂η

∣∣∣∣
η=0

dξ . (5.11)

If we employ the Schwarz–Christoffel transformation (4.9), we have, using (4.12),

∂ϕ

∂η

∣∣∣∣
η=0

= 1

πξ
. (5.12)

The numbers Z = ±δ/ε are, respectively, associated with points D and E in Figure 5. Their
preimages, f −1(±δ/ε), are associated with points D′ and E′. These preimages have positive real
part and zero imaginary part. Substitution of (5.12) into (5.11) accordingly gives

ce = 1

π
ln

f −1(δ/ε)

f −1(−δ/ε)
. (5.13)

All that remains is to evaluate the preimages f −1(±δ/ε). Since δ/ε � 1 (recall (5.1)), it is readily
seen from (4.9) that

f −1(δ/ε) ∼ πδ

ε
, (5.14)

with a relative error which is algebraically small. Similarly, we find that

ln f −1(−δ/ε) ∼ −πδ

ε
− 1, (5.15)

with an algebraically small error. Substitution of (5.14)–(5.15) into (5.13) provides the requisite
edge contribution:

ce ∼ 1

π
ln

πδ

ε
+ δ

ε
+ 1

π
, (5.16)

with an algebraically small error.
As an alternative, we may employ the mapping (4.18). We then note that (5.9)–(5.10) still hold

at η = 0. The edge contribution (5.4) is then still given by (5.11). Here, however, substitution of
(4.20) yields (cf. (5.13))

ce = f −1(δ/ε) − f −1(−δ/ε). (5.17)

The numbers Z = ±δ/ε are now, respectively, associated with points N and P in Figure 6. Their
preimages, f −1(±δ/ε), are associated with points N ′ and P′. All that remains is to evaluate these
preimages. Since δ/ε � 1 (recall (5.1)), it is readily seen from (4.18) that

f −1(−δ/ε) ∼ − δ

ε
− 1

π
(5.18)

with a relative error which is algebraically small. In this approximation, the term eπζ in (4.18) is
exponentially small. On the other hand, when seeking f −1(δ/ε), which is presumably large and
negative, it is evident that this term dominates both ζ and the constant term, suggesting that

f −1(δ/ε) ∼ 1

π
ln

πδ

ε
. (5.19)

https://doi.org/10.1017/S0956792520000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000108


Edge corrections for parallel-plate capacitors 237

Inspection reveals that the leading-order correction to (5.19) is o(1). By substitution of (5.18)–
(5.19) into (5.17), we obtain (5.16).

Adding up the respective contributions to (5.2), namely (5.6), (5.8) and (5.16), we find that the
dependence upon δ disappears, as it should, giving

c ∼ 1

ε
+ 1

π

(
ln

2π

ε
+ 1

)
, (5.20)

with an algebraically small error. This indeed coincides with the Bromwich–Love approximation
(1.2). Thomson’s approximation (1.1) misses an O(1) term.

6 Electric force

Having calculated the electric potential in the three asymptotic regions, we can exploit the results
to calculate the attractive electrostatic force (per unit length) between the two plates. Normalised
by ε0V 2/l, the force on the upper plate is

F =
∮ (

∇ϕ∇ϕ − 1

2
|∇ϕ|2 I

)
· n̂ ds, (6.1)

where the notation of (2.5) is used and I denotes the idemfactor. Upon deforming the contour and
making use of conditions (2.3)–(2.4), we represent the attractive force F = −êy · F as an integral
over the x-axis, namely

F = 1

2

∫ ∞

−∞

(
∂ϕ

∂y

)2

y=0

dx, (6.2)

or, upon making use of the symmetry about x = 0,

F =
∫ ∞

0

(
∂ϕ

∂y

)2

y=0

dx. (6.3)

The idealised approximation (2.8) gives the familiar expression [27, Section 3.7]

F ≈ 1

ε2
. (6.4)

Our goal is the leading-order correction to (6.4).
Making use of the cutoff parameter δ, we decompose F as

F =
(∫ 1−δ

0
+

∫ 1+δ

1−δ

+
∫ ∞

1+δ

) (
∂ϕ

∂y

)2

y=0

dx. (6.5)

The three integrals appearing in the above, respectively, associated with the contributions of the
gap, edge and outer regions, are, respectively, denoted by Fg, Fe and Fo. Upon using the natural
coordinates in each asymptotic region, we find that the gap contribution is

Fg = 1

ε2

∫ 1−δ

0

(
∂ϕ

∂Y

)2

Y=0

dx, (6.6)

the edge contribution is

Fe = 1

ε

∫ δ/ε

−δ/ε

(
∂ϕ

∂Y

)2

Y=0

dX , (6.7)
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and the outer contribution is

Fo =
∫ ∞

1+δ

(
∂ϕ

∂y

)2

y=0

dx. (6.8)

The evaluation of the gap and outer contributions is straightforward. Thus, substitution of the
gap potential (4.2) into (6.6) gives

Fg = 1

ε2
− δ

ε2
, (6.9)

with an exponentially small error. In the outer region, substitution of (5.7) into (6.8) gives

Fo ∼ 1

π2δ
, (6.10)

where the error is algebraically small.
In calculating the edge contribution (6.7), we make use of (5.9)–(5.10) to obtain

Fe = 1

ε

∫ f −1(δ/ε)

f −1(−δ/ε)

1

f ′(ξ )

(
∂ϕ

∂η

)2

η=0

dξ . (6.11)

Substituting (4.9) and (5.12) gives

Fe = 1

πε

[
ln

f −1(δ/ε)

f −1(δ/ε) + 1
− ln

f −1(−δ/ε)

f −1(−δ/ε) + 1

]
. (6.12)

While approximation (5.15) is sufficient for our needs, we need a refinement of (5.14). It is not
difficult to see from (4.9) that

f −1(δ/ε) ∼ πδ

ε
−

(
ln

πδ

ε
+ 1

)
, (6.13)

with a relative error which is algebraically small. Substitution into (6.12) provides the requisite
edge contribution:

Fe ∼ − 1

π2δ
+ δ

ε2
+ 1

πε
, (6.14)

with an algebraically small error.
Alternatively, we could use (4.18) and (4.20) instead of the Schwarz–Christoffel transforma-

tion (4.9). Substitution into (6.14) then gives, instead of (6.12),

Fe = 1

πε

[
ξ − ln(1 + eπξ )

π

]f −1(δ/ε)

f −1(−δ/ε)

. (6.15)

Making use of (5.18)–(5.19), we retrieve (6.14).
Adding up the respective contributions to (6.5), namely (6.9), (6.10) and (6.14), we find that

the dependence upon δ disappears, giving

F ∼ 1

ε2
+ 1

πε
, (6.16)

with an algebraically small error. The ratio of the above approximation to the idealised capacitor
formula (6.4) is 1 + ε/π .
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An indirect derivation of (6.16), based upon the principle of virtual work and the capacitance
approximation (5.20), is presented in the Appendix.

7 Concluding remarks

Making use of matched asymptotic expansions, we have analysed the electrostatics of a parallel-
plate capacitor in the limit of small separation. Our analysis has reconfirmed the result of
Bromwich [4] and others, thus showing that the Thomson’s approximation for capacitance edge
correction misses a term. We have additionally calculated the electrostatic attraction between the
plates. Measurement of that force has been used for the determination of ε0, the permittivity of
free space [11, 32]. The refined approximation (6.16) for the dependence of the force upon the
separation between the plates may yield a more accurate determination.

There is some resemblance between the present analysis and that of Jeffrey [17], where a
two-sphere capacitor was considered. There are two main technical differences between the two
problems. The first is obvious: in Jeffrey’s analysis, there are two distinct asymptotic regions,
namely, the gap and outer regions; in the present problem, one needs to distinguish between
three regions.

The second difference has to do with asymptotic corrections. In both Ref. [17] and the present
analysis, the parameter ε appears only in the gap region, due to the non-uniform manner by
which the x and y coordinates are stretched (see (4.1)). In Ref. [17], where the gap is analysed
using a lubrication approximation, the presence of the small parameter in the differential equation
naturally leads to higher order corrections. This is not the case here, where the gap solution (4.2)
satisfies the exact equation (4.1), and the error is exponentially small. Since the errors associated
with the leading-order solutions in the outer and edge regions are not exponentially small, higher
order corrections emerge in these regions as a consequence of higher order asymptotic matching
[28]. In the present contribution, where we sought the leading-order correction to the idealised
capacitor approximations, no need arises for the calculation of such higher order terms.
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Appendix A Derivation of (6.16) using the principle of virtual work

Going back to dimensional notation, the energy (per unit length) of the capacitor is

U = Q2

2C
. (A1)
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By considering a virtual displacement, with the plates conceptually disconnected from any volt-
age source. With the plate separation 2h undergoing an infinitesimal change 2dh, the external
force required to hold the plates in place is

1

2

d

dh

(
Q2

2C

)
. (A2)

This is then also the expression for the electric force (per unit length), where a positive sign
corresponds to an attractive electric force. (This is a natural generalisation of expression (6.3),
which provides the force on the upper plate.) Since the charge Q is unaffected by the above
virtual displacement, it follows that [27]

the electric force (per unit length) = − Q2

4C2

dC

dh
, (A3)

or, using (2.1),

the electric force (per unit length) = −V 2 dC

dh
. (A4)

Now, the dimensional version of (5.20) is

C ≈ ε0

[
l

h
+ 1

π

(
ln

2π l

h
+ 1

)]
, (A5)

so the corresponding approximation to the force is

the electric force (per unit length) ≈ ε0V 2

l

(
l2

h2
+ l

πh

)
. (A6)

The associated dimensionless force coincides with (6.16).
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