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PERFECT PYRAMIDS

RALPH HEINER BUCHHOLZ

This paper discusses rational edged tetrahedra, in 3, 4 and n dimensions, with
rational volume. The main results are (i) a proof of the existence of infinitely many
tetrahedra with rational edge-lengths, face-areas and volume and (ii) a proof that
there exist dimensions for which all regular hypertetrahedra with rational edge-
lengths have rational hypervolume.

1. INTRODUCTION

Define a perfect pyramid to be a tetrahedron with integer edge-lengths, face areas
and volume. This definition can be extended to higher and lower dimensions. For
example in one dimension any line segment of integer length is a perfect 1-pyramid. In
two dimensions any triangle with integer edges and area, such as the (3, 4, 5) triangle,
is obviously a perfect 2-pyramid. Hero's formula for the area, A, of a triangle in terms
of the edge-lengths is

a + b + c
A = yjs(s — a)(s — b)(s — c) where s =

which can be rewritten matrix form as follows:

( 4 A ) J = [a2b2c2]

• - 1 1

1 - 1
1 1

r
l

- l

a2"

b2

c2

The complete integer solution of this diophantine equation [2] was first found by Euler.
Carmichael's parametric version [1] is

o = n(m2 + k2)

b = m(n2 + k2)

c — (m + n)(mn — fc2)

A = kmn(m + n) (rnn — A:2)

which produces one member of each similarity class of Heron triangles for any integers
TO, n and k such that gcd(m, n, fc) = 1, mn > k2 > (rn2n)/(2m + n) and m ^ n ^ 1.
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354 R.H. Buchholz [2]

2. VOLUME OF A TETRAHEDRON

Suppose one were to ask for the analogous formula for the volume of a tetrahedron.
Consider the tetrahedron in Figure 1. Position the axes so that the coordinates of
the four vertices are given by A : (xA) VA> 0), B : (0, 0, 0), C : (a, 0, 0) and D :
(XD, VD, ZD)-

Figure 1

Note that the coordinates of A can be expressed via the cosine rule and area formula
as

a2 + c2 - 9 2Ao6c

x A = ^ and yA = •
2a a

The volume of the tetrahedron is

V = -zDAahc.
o

Since the base, Aaj,c, can be expressed in terms of the edge lengths via Heron's
formula one need only express the height, ZD, in terms of the edge lengths. The
coordinates of vertex D can be obtained by intersecting three spheres with centres at
A, B and C having radii d, e and / respectively. The surfaces of these three spheres
are

(x-xA)2+(y-yA)2+z2=d2

and their mutual intersection occurs at (x, y, z) = (zr>, J/D, ± Z D ) . Thus

a2 + e2 - f2

2a

+ e2 - d2 - 2xDxA

xD =

VD =

z2
D = e2 - x2

D - y2
D.
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[3] Perfect pyramids 355

Substituting the expressions for XA , I/A, *D and y& into the last equation one obtains

a _ 1 6 2 A 2
e / A

2
f c e - [(e2 - f2 - a2) (a2 + b2 - c2) + 2a2(b2 + f2 - d2)]2

64A2
fcca

2

Finally, recalling that 9V2 = z2
DA2

abc, this leads to

(24aV)2 = 162A2
e/A

2
fcc - [(e2 - f2 - a2) (a2 + b2 - c2) + 2a2 (b2 +f2- d2)}2.

Expanding this gives

(12F)2 = (a2 + d2) (-a2d2 + 62e2 + c2/2) + (b2 + e2) (a2d2 - b2e2 + c2p)
+ (c2 + /2)(a2d2 + &V - c2p) - a2b2c2 - a2e2f2 - b2#p - c2#e2.

So the volume of a tetrahedron is given by (12F)2 = XXMX where X = [a2b2c2d2e2p]t

and
X -d2 d2 d2 +b2 0 0 0 -

! - c2 - e 2 e2 0 0 0

P f2 -a2 -P 0 0 0
0 0 0 - a 2 a2 a 2 - 6 2

M =

0
0

0
0

b2 - c2 -b2 b2

c2 - a2 -c2

3. INTEGER VOLUME TETRAHEDRA

Using these equations one can search for tetrahedra with integer volumes or even
perfect pyramids. Recall that triangles can be categorised into equilateral, isosceles and
scalene. Similarly, by equating various numbers of edges a tetrahedron becomes more
symmetric and the corresponding problem becomes (one hopes) a httle easier to solve.
One parameter tetrahedron #such that V G N example

(i) a = b = c — d= e = f

Two parameter tetrahedra
(i)

(ii)

(iii)

(iv)

(v)

a = b = c—d=e, f

a = b = c = d, e = f

a = c — d = f, b = e

a — b — c, d— e = f

Three parameter tetrahedra
(i) a = b = c=d,e, f

(ii) a = c — d = f, b, e

(iii) a = b = c, d = e, f

0

0
0

oo

0
0

oo
7

= (9, 12)

(a, b, e) = (7, 4, 6)
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356 R.H. Buchholz [4]

(iv) a — f = d, b = c, e ? ?
(v) a = f = d,b = e,c finite ? (a, b, c) = (11, 15, 16)
(vi) a = d, b = e, c = / oo (a, b, c) = (21, 20, 11)

(vii) a — e, b = f,c=d ? ?
(viii) a = b,c,d=e = f oo (a, c, d) = (12, 8, 9)
(ix) a = d, b = f, c = e oo (a, b, c) = (12, 7, 11)

• l ( i ) . Substi tuting the equalities a — b = c = d=e = f into the expression for
the volume of a te t rahedron leads to

(127) 2 = 2a6,

v/2a3

V =
12

Clearly if a £ N then V £ N . Hence there are no solutions in this case.

• 2(i). Substitution gives

W i t h o u t loss of generality let gcd(a, / ) = 1 and a, f,V G N ; then there exists an

integer , p say, such t ha t

3a2 - f = P
2

P
2 + / 2 = 3 a 2

p2 + f = 0(mod 3).

This implies that 3 | p and 3 | / and hence 3 | a, which contradicts the assumption of

relative primality. Thus no perfect pyramids of this form exist.

• 2(ii). Substitution gives

Without loss of generality, let gcd(a, e) = 1 and a, e, V 6 N; then there exists an
integer, p say, such that

6aV-(a2+e2)2=p2,

p2 + (a 2 +e 2 ) 2 =0(mod3).

This implies that 3 | p and 3 | (a2 -f e2); hence 3 | a and 3 | e, clearly a contradiction
again, leading to no perfect pyramids of this form.
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[5] Perfect pyramids 357

• 2(iii). This time
(12V)2 =b*(4a2-2b2).

If gcd(a, b) = 1 and a, b, V € N, then there exists an integer, p say, such that

4 a 2 - 2 6 2 = p 2 .

Clearly p must be even, so letting p = IP gives

2o 2 -6 2 = 2P2,

which means that 6 is even. Hence b = 2B say leads to

o 2 - P 2 =2B2.

Now a and P must have the same parity so let

a = Q + S

P = Q-S

to give 2QS = B2.

As before B is even so B — 2D, say, leads to

QS = 2D2.

Without loss of generality let Q = 2R where gcd(iZ, 5) = 1 so that

RS = D2,

which has solutions of the form (R, S, D) — (r2, a2, ra) for some integers r and a.

Thus back substitution gives an infinite family of integer sided tetrahedra with rational
volume namely

a = 2r2 + a2

b = Ara

• 2(iv). Substitution gives (12V)2 = a4 (3d2 - a2) which is the same form as 2(i)

and so no solutions exist.

• 2(v). Substitution gives

(12F)2 = (a2 + 62)(3a262 - a4 - 64).
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If gcd(o, b) = 1 and a, b, V E N then there exist integers, m and n say, such that

a2 + b2 = m2 and 3a262 - a4 - 64 = n2.

The only solutions to the latter (an elliptic curve of rank 0) occur when a2 = b2 which
makes the former equation insoluble in integers.

• 3(i). Substitution gives (12V f = a2(/2(2a2 + e2 - f2) - (a2 - e2)2) . It is
unknown whether or not this has solutions but none exist in the range e, / ^ 2a,
where a < 100.

• 3(ii). Substitution gives (12F)2 = 62e2(4a2 - (b2 + e2)) .
If gcd(a, 6, e) = 1 and a, b, e, V (E N then there exists an integer, n say, such

that
4a2 _ (ft* + e2) = n \

Rearranging leads to
6 2 +e 2 + n 2 = 4 a 2 .

This means that b, e and n must be even numbers so letting 6 = 2B, e = 2E, n = 2N
leads to

D 2 I c2 I _2 2
ts -\- h + n = a .

Now gcd(a, b, e) = 1 implies that a must be odd. Any number with all its prime
divisors equivalent to one modulo 4 has a representation as a sum of two squares.
Furthermore it turns out that only numbers of the form 4s(8m + 7) can be represented
as a sum of four squares (and no fewer). But a2 = 7(mod 8) is impossible and a is
odd and hence a2 never takes the form 4s(8m+ 7). So finally the above equation is
soluble for all integers, o, in the following set.

A = {a : a is odd and 3 at least one prime p such that p\a implies p = 3(mod 4)}.
For example a = 3, 7, 9, 11, 15, . . . provide the solutions

l2 + 22 + 2 2 = 3 2 ,

22 + 32 + 6 2 = 7 2 ,

l 2 + 4 2 + 8 2 = 9 2 ,

2 2 + 6 2 + 9 2 = l l 2 ,

22 + 5 2 +14 2 =15 2 .

Since the set {p : p is prime, p = l(mod 4)} is infinite so is the set {a = 3p :
p is prime, p = l(mod 4)} which is a subset of the set A. Thus |A| = oo and there is
an infinite number of solutions to the last equation. Note that from the second example
one obtains (o, 6, e) = (7, 4, 6) which has a volume of 24.
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[7] Perfect pyramids 359

• 3(iii). Substitution gives (12V)2 = a 2 f l 6 A 2
d / - a?fA which has no known

solutions for a ^ 2d, / < 3d, d < 100.

• 3(iv). Substitution gives (12V)2 = 62e2(3a2 - e2) - a2(a2 - b2)2 which has no

known solutions for 6 ̂  2a, e ^ 2a, a ^ 100.

• 3(v). Substitution gives (12V)2 = ft4 (3a2 - 262 + c2) - a2 (a2 - c2)2 which has

the solutions (a, 6, c) = (11, 15, 16), (12, 10, 15), (16, 10, 15), (20, 26, 39) for 6 ̂  2a,

c < 3a, a ^ 2 0 .

• 3(vi). Substitution gives

(12V)2 = 2(a2 + b2 - c2) (a2 + c2 - 62) (b2 + c2 - a2)

which has four known solutions for a ^ 156, b ̂  a, c ^ a. These are

(a, 6, c) = (21, 20, 11), (72, 65, 33), (100, 91, 69), (100, 99, 21).

It will be shown in the next section that each of these generates an infinite set of

solutions.

• 3(vii). Substitution gives

(12V)2 = 5a262c2 - a462 - &V - c V

which has no solutions for a ^ 100, 6 ̂  a, c ^ a.

• 3(viii). Substitution gives

(12V) 2 =c 2 (4a 2 d 2 - c 2 d 2 - a 4 )

which has one solution for a < 2d, c ^ 2d, d ^ 10, namely (a, c, d) = (12, 8, 9). From

this one can generate an infinite set of solutions.

Let a = (4/3)d to give

Q2 = 320d2 - 92c2;

hence Q2 + K2 = 5D2

where K = 9c, D — 8d, Q = (108V)/(cd). This equation has a parametric solution:

K = p2 - 10pq + 5q2

D =p2 -2pq + 5q2.
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Whence a set of integer volume pyramids is given by

ga = 12(p2 - 2pq + 5q2)

gc = 8(p2 - lOpq + 5q2)

gd = 9(p2-2pq + 5q2)

and g is the gcd of the three right hand sides.
• 3(ix). Substitution gives (12V)2 = a2(l6A2

6c — a4) which has three solutions
for a < 2c, 6 < 3c, c < 35, namely (a, 6, c) = (12, 7, 11), (28, 15, 27), (36, 19, 35)
from which an infinite set of solutions can be obtained. Rewriting the area using Heron's
formula gives

(12V)2 = 2a262 + 262c2 + 2a2c2 - 2a4 - 64 - c4,

(12V)2 = 2a2(62 + c2 - a2) - (6 - c)2(6 + c)2.

So let (c - b)/a = (11 - 7)/(12) = 1/3 or a = 3(c - 6) and Q = (12V)/(c - b) to give

18(i2 + c2 - 9(6 - c ) 2 ) - (6 + c)2 =Q2,

3226c - 1 4 5 6 2 - 145c2 =Q2,

(636 - 39c)2 - 34(116 - 7c)2 = Q2.

Letting B = 636 - 39c and C - 116 - 7c leads to the equation

Q2 + 34C2 = B2

which has the solution

Q=p2-Mq2

C = 2pq

B=p2+34q2.

Substituting this parametrisation into the appropriate equations above and solving for
a, b and c leads to

ga = 12p2 - 144pg + 408g2

gc = 7p2 - 78pq + 238g2

gd = Up2 - 126pq + 374g2

where g is the gcd of the three right hand sides.
• 3(x). Substitution gives (12V)2 = 5a262d2 - o264 - ctd2 - b2d* which has no

solutions for a < 3d, b^2d, d ^ 100.
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[9] Perfect pyramids 361

4. PERFECT PYRAMIDS

Having thus far found many different (though by no means all) sets of tetrahedra
with integer volume one can return to the problem of searching for perfect pyramids.

A brute force search is very slow to uncover any — in fact the tetrahedron

(a, 6, c, d, e, f) = (117, 80, 53, 52, 51, 84)

is the only perfect pyramid with (a, 6, c, d, e, f) ^ 156. The volume is 18144 while
the face areas are Aabc = 1800, Ao e / = 1890, Abdf = 2016, Acde = 1170.

Next, one can consider the restrictions to one, two and three parameter tetrahedra.
Since no one-parameter tetrahedron can have integer volume there can be no perfect
pyramids of this form.

Similarly, for two-parameter tetrahedra one need only consider case (iii). Here each
face is a triangle with sides (a, a, 6) = (2r2 + a2, 2r2 + a2, 4rs) . Thus the length, h,
of the altitude to the side b is given by Pythagoras' theorem as

h2=a2- (6/2)2

h2 = (2r2 + a2)2 - (2ra)2

h2 = 4r4 + a'

which has no solutions in positive integers.
A more profitable search can be made by considering the three-parameter tetrahe-

dra. For cases (i) and (iii) the bases are equilateral triangles which cannot have integer
area. This immediately precludes the possibility of perfect pyramids of this form.

However, consider case (vi). If the base (a, 6, c) is a Heron triangle then all four
face areas are integral (since they are all identical). Using Carmichael's parametrisation
for Heron triangles one can quickly discover the five pyramids of Table 1. Note that the
third example here has been discovered previously [4] as a solution to problem D22 in
Guy's Unsolved Problems in Number Theory [3].

Table 1 - Perfect Pyramids of form (a, b, c, a, b, c)

m
21
39
39
58
77

n
20
34
35
33
68

k
15
26
25
30
44

a
888
2873
203
1804
2431

b
875
2748
195
1479
2296

c
533
1825
148
1183
2175

V
37608480
1355172000
611520

214582368
1403038560
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THEOREM 1. There exists an infinite number of perfect pyramids with edges of
the form (a, 6, c, a, b, c).

PROOF: First recall that the volume of a tetrahedron in this case is given by

(1) (12F)2 = 2(a2 fb2- c2) (a2 + c2 - b2) (b2 + c2 - a2).

Now replacing a, b and c via CarmichaeFs parametrisation first gives

a2 + b2 - c2 = 2mn[k2{m + n)2 - (mn - Jfe2)2],

a2 + c2 - b2 = 2n(m + n) (mn - k2) (m2 - k2),

b2+c2-a2 = 2m(m + n)(mn - k2) (n2 - k2),

and hence one obtains

(12V)2 - [4mn(m + n)(mn - Jfe2)]2[Jfe2(m + n)2 - (mn - k2)2](m2 - k2)(n2 - k2).

So there exists an integer, v say, such that

v2 = [k2(m + n)2 - (mn-k2)2](m2-k2)(n2 - k2).

Now dividing through by A;8 and setting Z = v/k*, x = m/k, y — n/k leads to

Z2 = (x + y - xy + l)(x + y + xy - l)(x - l)(x + l){y - l){y + 1).

Notice that this is a quartic in x and y and it has rational solutions corresponding to
the perfect pyramids in Table 1, one of which is (x, y, Z) - (7/5, 4/3, 56/25). The
aim now is to show that this solution generates an infinite number of solutions by
transforming the equation to an elliptic curve of rank ^ 1.

Let y = 4/3 and Z = z/9 to give

(2) z2 = 7{-x + 7)(7x + l)(x - l)(x + 1)

which has a rational point (xj, Zx) = (7/5, 504/25). Before transforming this it is first
useful to obtain a second rational point on the quartic curve by a method analogous to
the tangent-chord process.

Note that the parabola zp = apx
2 + bpx + cp where ap = (-13057)/(22 • 3* • 7),

bp = (40705)/(2 • 34 • 5) , cp = (-12607)/(22 • 34) meets the quartic curve (2) at the
point (xi, zj) — (7/5, 504/25) such that z'p = z' and z'p' = z". Hence intersecting
this quadratic with equation (2) leads to another quartic equation, g(x) say, which
has, by its construction, a root of multiplicity 3 at x = 7/5 and a second root which
corresponds to a second rational point on equation (2); see Figure 2.
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Thus equating coefficients of powers of x in

g(x) = z2-z2
p=(x- 7/5)\P2x - Q2) = 0

leads to P2 = ( - 5 3 • 677 • 4993) / (2 4 • 38 • 72) , Q2 = ( - 5 3 • 3348577)/(24 • 38 • 7) and

so the second rational point on (2) is (x2, z2) where

Q2 _ (7 • 3348577) (23 • 33 • 5 • 7 • 13 • 23 • 89 • 587 • 3167)
X2 = ~P~2

 = (677 • 4993) ' *2 = (6772 • 49932)

Figure 2

Transform the quartic curve (2) so that the leading term becomes a positive rational
square by setting x — (7X + 1)/(5X) and z = W/(52X2) . Hence equation (2) becomes

(3) W2 = 7(28X - 1).

Notice that the rational point at (zi, z\) = (7/5, 504/25) has been transformed to
X — oo which is why the second rational point was required. Now equation (3) can be
transformed into a monic quartic equation lacking the cubic term by setting

w-256
X =

2 s - 3 s - 7 '
W = w

2s - 3 4 - 7 "

Hence

or

(4)

w2 = (« - 310)(u - 60)(u - 130)(u + 500)

w2 = u4 - 6 • 30550«2 + 4 • 7733000« - 1209000000.
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Applying Mordell's transformation, namely, 2u = (t + q)/(s — p) and w — 2s —

u2 +p where p = 30550, q = -7733000 and r = -12090 00000 leads to the elliptic
curve

(5) t2 = As3 - g2a + 9i

where g2 = 3p2 + r = 1590907500 and g3 = q2 + pr - ps = -56480523 75000. Now
since four divides the right hand side of equation (5) we conclude that t must be even,
so letting t = IT leads to

T2 = ss - 397726875s - 2 • 5s • 5648052375

that is

(6) T2 = (s + 17850)(s + 3675)(a - 21525).

The rational point (x2, z2) on equation (2) can be transformed into a rational point on
equation (6), namely (sj , T{) where

_ 52-13 4168340 08069 d T _ 7 86883 21296 56073 20059 09000
31 ~ 26 • I I 2 • 192 • 372 a n l ~ (26 • II2 • 192 • 372)2 '

Since si and T\ are not integers then by a theorem of Lutz and Nagel (see [5], p.211),
the point (si, T\) must have infinite order. Thus equation (6) has an infinite number
of rational solutions which, in turn, implies that equation (2) has an infinite number of
rational solutions.

The final hurdle is the transformation of the triangle inequalities since only solu-
tions satisfying mn > k2 > (m2n)/(2m +n) and m ^ n ^ 1 lead to valid perfect
pyramids in equation (1). Now

3
mn > k2 => xy>\ => x > -

4
4

m > n =̂  x > y => x > -

- m2n . x2y 1
* > H => ! > o =*• - o < x < 2 -

2m + n 2x + y 2

So the rational points (x, z) on equation (2) which correspond to perfect pyramids are
those for which 4/3 < x < 2 and (7\/17.3l)/9 < z < 15\/ l7. (In particular the second
rational point, {x2, z2), found above, does not lie in this range and so does not produce
a new perfect pyramid.) Continuing the transformation of the triangle inequalities
leads ultimately to the corresponding inequality s > 46027 + 4900^17 • 31 > 127963
for rational points on the elliptic curve (6). Since equation (6) has an infinite number of
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rational points (s, T) satisfying a > r for any constant r , one concludes that equation
(1) has an infinite number of solutions corresponding to perfect pyramids. D

Notice that this also provides an infinite number of solutions for case 3(vi) in

Section 3.

Searches for perfect pyramids of the form 3(v), (viii) and (ix) have so far failed to
turn up any examples.

5. INTEGER VOLUME SIMPLEX

For a four dimensional tetrahedron, often called a simplex, (see Figure 3) one can
use a similar technique to express the hypervolume, V, in terms of the edge lengths.

A

First note that

VABCDE = TVA.BCD">E

where IUE is the perpendicular height of the point E above the tetrahedron (ABCD).
The volume of the base can be expressed in terms of the edge lengths using the ex-
pression in Section 2. So preceeding as before one need only find WE in terms of the
edge lengths. Intersecting the four hyperspheres with centres at A, B, C, D and radii
c, / , i, b respectively one obtains the hypervolume of a simplex, namely,

(96V)2 = X%MX

(p Q\
where X = [a2b2c2cPe2 f2g2h2i2j2]*, M — I I and

\R S)

P =

-d* - 16A3
d/ 2d3(/3 + gJ) - 2 ( i V + i3j3) 2>3 (t3 + / 3 )

2(a*d* + gihi) -a* - ^oh

2fc2(gJ+t») 2(6Je2 + fcsi3) -b* - ^M ( )

}3+P) -2(o3/3+t3fc3) 2»3(fc3+i3) 2(c3a3+i3i3) -c* - 16A3
CJ.
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Q =

R-

0 0 0 0
0 -4<Pe* 0 0 0
0 0 - 4 e 2 a 2 0 0
0 0 0 -4a*6J 0
0 0 0 0 4&2c2

- 4 J V 0 0 0 0
0 -4f3h3 0 0 0
0 0 - 4 j 2 t 2 0 0
0 0 0 -4&2i2 0
0 0 0 0 - 4 t 2 j 2

s =
• -a* - j 4 - 16AVfl 2d2 (a2 + ft2) 2ff

2 (a2 + c2) 2{gihi + d2a2) - 2 c 2 f c 2

- 2 < i J t 2 -b* - f* -16Alfh 2e2(ft2+c2) 2fc2 (i2 + i 2 ) 2(A2i*+e242)

2( t 2 i 2 + a2c7) -2e2y2 - c 4 - g* - 16A2
ffj 2o2 (c2 + </2) 2t2 (c2 + e2)

2j3(d2+a?) 2 ( j 2 / 2 + i2<i2) - 2 a 2 / 2 - d 4 - h* - 16A2
hj. 262 (d2 + e2)

2c2 (e2 + a2) 2 / 2 (e2 + 62) 2(/2
f f

2 + c2e2) -2i2ff2 - e 4 - i* -

Using this one readily discovers that the simplex with edge-lengths given by

(a, 6, c, d, e, f, g, h, i, j) = (3, 1, 2, 1, 3, 2, 3, 2, 3, 2)

has a rational hypervolume of 21/96. Thus seeding each edge up by a factor of 32 leads
to a simplex with an integer hypervolume of 229376.

Since any simplex has 10 edges, 10 faces, 5 volumes and 1 hypervolume, the
occurrence of a perfect 4-pyramid, which requires all these quantities to be integral, is
probably a rarity at best.

6. REGULAR N-SIMPLEX

Define an n-simplex to be the n dimensional analogue of a tetrahedron, that is,
n-\-1 vertices connected by n(n + l)/2 edges such that no set of m vertices (and corre-
sponding edges) can be embedded in an m — 2 dimensional subspace. Some associated
quantities of an n-simplex are

Vn: hypervolume of a regular n-simplex with edge length a;
Rn: circumhypersphere radius of a regular n-simplex with edge length a;
rn: inhypersphere radius of a regular n-simplex with edge length a;
hn: distance from any vertex to circumcentre of the opposite regular (n — 1)-

simplex.
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The recurrence relations relating these quantities are

J2
n-i = a

n

v -
n

— l ' n

Since Vi = hi = 1 and iZi = r\ = 1 / 2 , one can use induction to prove that the explicit
equations for the quantities Vn, Rn, rn, hn of an n-dimensional simplex are given by

V - —
n!
o /n + 1

•^n = ~~S
n

>/5V» + i'
a

rn = —

THEOREM 2 . Any regular, rational-edged, n-simplex has rational hypervolume

if and only if n takes the form Ad(d + 1) or 2& — 1.

PROOF: If n = 2m then

a2ms/2m
(2m)\2m

which is rational (for rational a) whenever 2m + 1 — d2 say. Since d must be odd let

d - 2D + 1 so that n = 4D(D + 1) gives

(22? + l

So for n = 1, 7, 17, 31, 49, . . . dimensional spaces any rational edged n-simplex has

rational hypervolume.

If n - 2m + 1 then
a2m+1y/^r+T

2 m + 1 ~ (2m + l ) !2m

which is rational (for rational a) whenever m + 1 = d2 say. Thus n = 2J2 — 1 leads to

2di~l

So for n — 8, 24, 48, 80, . . . dimensional spaces any rational edged n-simplex has ra-
tional hypervolume. D
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