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Third generation advanced high-strength steels (AHSS) consist of alloying contents below 17 wt% and 
multi-phase microstructures of austenite, ferrite and martensite to respectively balance cost and tensile 
properties [1]. The types of third generation steels capable of achieving these desired properties are 
medium-Mn steels, lightweight steels and quenched-and-partitioned TRIP steels [2]. Medium-Mn steels 
generally exhibit a fully deformed martensitic (a′) microstructure after hot and cold rolling. Intercritical 
annealing between Ac1 and Ac3 temperatures (the a+g phase field) and above the a′ recrystallization 
temperature produces austenite (g) and ferrite (a), which are typically ultrafine-grained (UFG) in size. 
The intercritical annealing temperature determines composition and thus the austenite stacking fault 
energy (SFE). The SFE is important for controlling transformation- and twinning-induced plasticity 
(TRIP/TWIP) effects that further enhance the mechanical properties of steels by increasing the strain-
hardening rate, even in ultrafine-grained austenite [3]. Recent work on a Fe-7Mn-0.1C-0.5Si (wt%) steel 
by Kwiatkowski da Silva et al. showed that austenite reversion sequentially depends on the co-
segregation of C and Mn to dislocations and grain boundaries, the formation of face-centered-cubic 
(FCC) M23C6 transition carbides, and growth of the carbides controlled by C diffusion and local 
equilibrium at the interface, culminating in the nucleation of UFG FCC austenite [4]. The present study 
uses scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (STEM-EDS) 
performed using a 200 kV FEI Tecnai Osiris equipped with a quad Super-X detector and atom probe 
tomography (APT) using a CAMECA LEAP 5000 XS in laser-pulse mode (70 K and 15% evaporation 
rate) to measure UFG phase compositions in a medium-Mn steel. 
 
Intercritical annealing of a cold-rolled Fe-12Mn-3Al-0.05C (wt%) steel was performed at 585 °C. For 
this temperature, Thermo-Calc® simulations predict a RT austenite volume fraction of 44%, a RT 
austenitic SFE of 21 mJ/m2, a RT austenite composition of Fe-20.8Mn-2.1Al-0.11C (wt%) and a RT 
ferrite composition of Fe-4.9Mn-3.7Al-0.001C (wt%). Samples were annealed for 0.5, 8 and 48 h at 
585°C. Electron backscatter diffraction (EBSD) measurements (viewed in the normal direction) 
respectively yielded an austenite volume fraction of 35% after 8 h at 585°C. Samples annealed for 8 h 
(see Figure 1) revealed UFG austenite with compositions of ~21 wt% Mn, (thus matching equilibrium 
Thermo-Calc predictions). 3D APT offers improved spatial resolution for measurements of composition 
profiles across UFG austenite-ferrite boundaries (see Figure 2). APT results are consistent with STEM-
EDS, but also reveal C-rich and C-poor boundaries. 3D FIB-EBSD measurements are underway and will 
be coupled with crystal plasticity finite-element modeling to investigate the effects of microstructure 
morphology on strain partitioning in this multi-phase medium-Mn TWIP-TRIP steel [5]. 
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Figure 1. (a) BF-TEM image of a FIB lift-out from Fe-12Mn-3Al-0.05C (wt%) steel (cold-rolled and 
annealed 8 h at 585°C), viewed in the rolling direction (RD). (b) STEM-EDS hypermap of Mn content 
in wt%. (c) BF-TEM image shows a near edge-on boundary between UFG austenite (g) and UFG ferrite 
(a). Hypermaps of the marked area are provided: (d) 0-95 wt% Fe, (e) 0-40 wt% Mn and (f) 0-5.2 wt% 
Al, as well as (g) a linescan across the g-a boundary. 

 
Figure 2. APT reconstruction of 150,000,000 ions measured from a FIB-prepared needle of Fe-12Mn-
3Al-0.05C (wt%) steel (cold-rolled and annealed for 8 h at 585°C). The quantitative maps of (a) Mn and 
(b) C in at.% measure the composition across the entire width of UFG austenite (g). (c) Image showing 
Mn and Al ions and position of the cylinder used to measure (d) a profile across the g-a boundary. 
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