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The paper establishes the local asymptotic normality property for general condition-
ally heteroskedastic time series models of multiplicative form, εt = σt(θ0)ηt, where
the volatility σt(θ0) is a parametric function of {εs,s < t}, and (ηt) is a sequence
of i.i.d. random variables with common density fθ0 . In contrast with earlier results,
the finite dimensional parameter θ0 enters in both the volatility and the density
specifications. To deal with nondifferentiable functions, we introduce a conditional
notion of the familiar quadratic mean differentiability condition which takes into
account parameter variation in both the volatility and the errors density. Our results
are illustrated on two particular models: the APARCH with asymmetric Student-t
distribution, and the Beta-t-GARCH model, and are extended to handle a conditional
mean.

1. INTRODUCTION

Local asymptotic normality (LAN) is a crucial property for comparing the
asymptotic performance of statistical procedures in parametric or semi-parametric
models (parameterized by finite-dimensional and infinite-dimensional nuisance
parameters). For independent and identically distributed (i.i.d.) data, a compre-
hensive account on the LAN theory can be found in the books by van der Vaart
(1998) and Lehmann and Romano (2006). Swensen (1985) established the LAN
property for finite-order AR models with a regression trend. The proof of the
LAN property for ARMA models is due to Kreiss (1987), wheras Koul and

The authors are grateful to two anonymous referees, the Co-editor, and the Editor for insightful comments,
suggestions, and useful criticisms. The authors are grateful to the Agence Nationale de la Recherche (ANR),
which supported this work via the Project MLforRisk (ANR-21-CE26-0007) and to the Labex ECODEC. Address
correspondence to Jean-Michel Zakoïan, CREST, 5 Avenue Henri Le Chatelier, 91120 Palaiseau, France; e-mail:
Jean-Michel.Zakoian@ensae.fr.

© The Author(s), 2022. Published by Cambridge University Press. 1067

https://doi.org/10.1017/S0266466622000093 Published online by Cambridge University Press

https://www.doi.org/10.1017/S0266466622000093
https://orcid.org/0000-0003-1528-8652
https://orcid.org/0000-0002-7344-1849
mailto:Jean-Michel.Zakoian@ensae.fr
https://doi.org/10.1017/S0266466622000093


1068 CHRISTIAN FRANCQ AND JEAN-MICHEL ZAKOIAN

Schick (1996) considered random coefficients AR models. LAN results for a
large class of time series models, in particular models with time-varying location
and scale, were obtained by Drost and Klaassen (1997). The LAN property was
also established for long-memory time series models, see Hallin et al. (1999).

In GARCH models εt = σt(θ0)ηt, where the volatility σt(θ0) belongs to the σ -
field generated by the past of εt and (ηt) is an i.i.d. sequence with density f, the most
popular estimation method for the parameter θ0 is the quasi-maximum likelihood
estimation (QMLE) which uses a criterion based on a Gaussian density for ηt.
For standard GARCH, the asymptotic properties of the QMLE were derived under
mild regularity conditions by Berkes, Horváth, and Kokoszka (2003) and Francq
and Zakoïan (2004). When the distribution of ηt is not normal, the QMLE may not
be efficient (in particular in the minimax sense; see van der Vaart, 1998). Efficient
estimators of (some components of) θ0 can be obtained, when f is unknown, via an
adaptive estimation procedure. This problem was studied, among others, by Linton
(1993), Jeganathan (1995), and Drost and Klaassen (1997) who proved the LAN
property for ARCH models, and Lee and Taniguchi (2005) who considered the
inclusion of a stochastic mean and dealt with initial values in the DGP.

The results established in the aforementioned articles hold under the assumption
that the errors density f is a nuisance parameter. Recent references on GARCH-
type and score-driven volatility models underlined the interest of parametrizing
the errors density. This can be done by letting this density depend on a finite-
dimensional parameter ν, hence f (·) = f (·;ν0), which is independent of the
volatility parameter θ0. The LAN property was established in this context, for
ARMA–GARCH models, by Ling and McAleer (2003). In other formulations, the
density parameter enters directly as a parameter of the volatility dynamics. This is
the case of the score-driven volatility models introduced by Creal, Koopman, and
Lucas (2008) and Harvey and Chakravarty (2008). To the best of our knowledge,
no LAN result exists for handling such volatility models.

The aim of the present contribution is to establish the LAN property under
mild conditions in a fully parametric framework of general GARCH time series
models, where the finite dimensional parameter θ0 enters in both the volatility
and the density specifications. We first consider the case where both the volatility
and the errors density are smooth functions. In the usual setting, it is known that
such smoothness assumptions can be replaced by the concept of quadratic mean
differentiability (QMD; see e.g., van der Vaart, 1998). However, because the lack
of differentiability may concern both the volatility and the density functions, QMD
is not sufficient in our framework and the main challenge is to extend this concept.
We introduce a related concept, called conditional QMD (CQMD), which expands,
around the true parameter value, the conditional density rather than the density of
the observations.

Without the assumption of zero-mean innovations, GARCH models allow for a
time-varying mean, but the conditional mean is proportional to σt(θ0). We will
extend the analysis to cover more general conditional means of returns, with
models of the form yt = mt(θ0)+σt(θ0)ηt. However, the assumptions being more
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demanding and the LAN result more complex, we prefer to start by studying the
pure GARCH model.

The plan of the paper is as follows. In Section 2, we present our assumptions
on the GARCH-type model and provide our main results on the LAN property.
In Section 3, we use the LAN property to derive local asymptotic powers of
tests. Examples are developed in Section 4. For completeness, we also consider in
Section 5 the case where a conditional mean is included in the model. Concluding
remarks are displayed in Section 6. Most proofs can be found in Appendixes A–I.

2. GENERAL GARCH MODEL AND LAN RESULT

We consider a general volatility model εt = σt(θ0)ηt where σt(θ0) = σθ0

(εt−1,εt−2, . . .), the sequence (ηt) is i.i.d.,1 and θ0 belongs to a convex subset
� of R

d. Since we are going to consider local properties of the model around
θ0, we will assume, without loss of generality, that � is bounded. Denote by θ

a generic element of �. Let F t be the sigma-field generated by {ηu,u ≤ t}. Our
assumptions on the model are summarized in

A1(θ0): (εt) satisfies εt = σt(θ0)ηt where ηt has density fθ0 with respect to
a sigma-finite measure μ and, for all θ ∈ � ⊂ R

d, {σt(θ)} is a stationary
sequence with σt(θ) ∈ Ft−1 and σt(θ) > 0.

For τ ∈ R
d, let the sequence of local parameters θn = θ0 + τ/

√
n such that

θn ∈ � for n large enough. We denote by P0 (resp. Pn,τ ) the stationary distribution
of the process (εt) when the parameter is θ0 (resp. θn), i.e., under A1(θ0) (resp.
A1(θn)). Under A1(θn), the process could be denoted (εt,n)t∈Z but it is standard to
avoid this heavy notation. Because the ηt’s are i.i.d. with density fθ , the likelihood
of ε1, . . . ,εn conditional on F0 is

Ln(θ) =
n∏

t=1

1

σt(θ)
fθ (ηt(θ)), ηt(θ) = εt

σt(θ)
.

We will study the conditional log-likelihood ratio

�n(θn,θ0) = log
Ln(θn)

Ln(θ0)
.

Note that σt(θ) generally involves the infinite past of the process (εt) (and thus of
(ηt)) and that no initial conditions are introduced here.2 In many models, both the
density and the volatility are smooth functions. We start by deriving LAN results
in this situation, for which more explicit conditions can be provided.

1A usual assumption is that Eηt = 0 and Eη2
t = 1 but, in this fully parametric framework, we do not require such

moment assumptions.
2A different approach was adopted by Drost, Klaassen, and Werker (1997) who assumed that the DGP includes initial
conditions. On the other hand, Ling and McAleer (2003) considered the likelihood of the observations and an initial
value.
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2.1. LAN Property Under Differentiability

Assume the following regularity conditions.

A2: For all θ ∈ �, y �→ fθ (y) admits continuous second-order derivatives. For all
t ≥ 1, θ �→ σt(θ) admits continuous second-order derivatives. For all y ∈R,
θ �→ fθ (y) admits continuous second-order derivatives.

We also need to introduce the notations

gθ (y) = 1+ y
f ′
θ

fθ
(y), f θ (y) = ∂ log fθ (y)

∂θ
,

gθ (y) = ∂gθ (y)

∂θ
, Fθ (y) = ∂2 log fθ (y)

∂θ∂θ
 ,

where prime denotes derivative with respect to y. Assuming

A3: Eg2
θ0

(ηt) < ∞, E‖f θ0
(ηt)‖2 < ∞ and E‖ ∂ logσt(θ0)

∂θ
‖2 < ∞,

let

J =ιf J −�f
 − f�
 +F, (2.1)

with ιf = Eg2
θ0

(ηt), J = E ∂ logσt(θ0)

∂θ

∂ logσt(θ0)

∂θ
 , � = E ∂ logσt(θ0)

∂θ
, F = Ef θ0

(ηt)f

θ0

(ηt),
and f = Egθ0(ηt)f θ0

(ηt).

Finally, we assume that

A4: there exists a neighborhood V(θ0) of θ0 such that

E sup
θ∈V(θ0)

∥∥ f θ (ηt(θ))
∥∥ < ∞, E sup

θ∈V(θ0)

∥∥ f θ (ηt(θ))
∥∥2

< ∞,

and three pairs of conjugate numbers pi > 1, qi > 1, 1/pi + 1/qi = 1, for i =
1,2,3, such that

E sup
θ∈V(θ0)

|gθ (ηt(θ))| p1 < ∞, E sup
θ∈V(θ0)

∥∥∥∥∂2 logσt(θ)

∂θ∂θ


∥∥∥∥q1

< ∞,

E sup
θ∈V(θ0)

∣∣g′
θ (ηt(θ))ηt(θ)

∣∣ p2 < ∞, E sup
θ∈V(θ0)

∥∥∥∥∂ logσt(θ)

∂θ

∥∥∥∥2q2

< ∞,

and

E sup
θ∈V(θ0)

∥∥gθ (ηt(θ))
∥∥p3 < ∞, E sup

θ∈V(θ0)

∥∥∥∥∂ logσt(θ)

∂θ

∥∥∥∥q3

< ∞.
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Let the central sequence

�n = 1√
n

n∑
t=1

{
f θ0

(ηt)−gθ0(ηt)
∂ logσt(θ0)

∂θ

}
.

Note that the term f θ0
(ηt) vanishes when, as in Drost and Klaassen (1997) and

Drost et al. (1997) or Lee and Taniguchi (2005), the density f of ηt does not depend
on θ . Note also that our central sequence is not measurable with respect to the
observations. For most volatility models the effect of deterministic initial values is
negligible asymptotically. This issue will be considered below.

Our first result is the following.

PROPOSITION 2.1. Let � be a bounded convex subset of Rd such that θ0 ∈ �.
Assume A1(θ0) and A2–A4. When θn = θ0 + τ/

√
n ∈ � for n large enough, we

have the LAN property

�n(θ0 +τ/
√

n,θ0)

= τ
�n − 1

2
τ
Jτ +oP0(1)

d−→ N
(

−1

2
τ
Jτ,τ
Jτ

)
under P0.

Note that in the particular case where the density f is a nuisance parameter (i.e.,
independent of θ0), we retrieve the usual expansion with J = ιf J.

In Proposition 2.1, the asymptotic distribution of the likelihood ratio is obtained
without considering initial values. As in Lee and Taniguchi (2005), we now
introduce a version of the central sequence that takes into account initial values
for {εj,j ≤ 0}. Let for t > 0, σ̃t(θ) = σθ (εt−1,εt−2, . . . ,ε1,ε̃0,ε̃−1, . . . ), where the
ε̃j’s are fixed initial values. Let the observation-measurable version of the central
sequence

�̃n = 1√
n

n∑
t=1

{
f θ0

(η̃t)−gθ0(η̃t)
∂ log σ̃t(θ0)

∂θ

}
, η̃t = η̃t(θ0), η̃t(θ) = εt

σ̃t(θ)
.

For many volatility models, such as those considered in Section 4, the following
assumptions are satisfied. In particular, the moment condition in the next assump-
tion holds true when the volatility is bounded below.

A5: We have Eσ−s
t (θ0) < ∞ for some s > 0. Moreover, there exist K > 0 and

ρ ∈ [0,1) such that

|σt(θ0)− σ̃t(θ0)|+
∥∥∥∥∂σt(θ0)

∂θ
− ∂σ̃t(θ0)

∂θ

∥∥∥∥ ≤ Kρ t a.s.

A6: The functions y �→ f θ0
(y) and y �→ gθ0(y) have (componentwise) bounded

derivatives.

The following result shows that the initial values are generally irrelevant for the
asymptotic distribution of the central sequence.
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PROPOSITION 2.2. The LAN property of Proposition 2.2 remains valid when
�n is replaced by �̃n, under the additional assumptions A5 and A6.

2.2. LAN Property Under CQMD

Assumption A2 is standard and is sufficient for most applications, but it can be
replaced by the following CQMD condition.

A2∗: For all t ∈ Z, there exists a vector st,θ0(y) := sθ0(y,ηt−1,ηt−2, . . .) ∈ R
d

where sθ0 is a measurable function, such that√
σt(θ0)

σt(θ0 +h)
fθ0+h

(
σt(θ0)

σt(θ0 +h)
y

)
=

√
fθ0(y)+ 1

2
h
st,θ0(y)

√
fθ0(y)+ rt,h(y),

(2.2)

with

‖rt,h(·)‖2
L2(μ)

:=
∫

r2
t,h(y)dμ(y) = oP0(‖h‖2) as h → 0.

Note that when f is not parametrized by θ0, it is enough to suppose QMD for
√

f as
in Drost et al. (1997). Note also that under A2–A4, a Taylor expansion and tedious
computations show that (2.2) holds with

st,θ0(y) = ∂

∂h
log

σt(θ0)

σt(θ0 +h)
fθ0+h

(
σt(θ0)

σt(θ0 +h)
y

)∣∣∣∣
h=0

= f θ0
(y)−gθ0(y)

∂ logσt(θ0)

∂θ
. (2.3)

In the sequel we no longer assume A2 but, instead, assume the CQMD condition
A2∗. We have the following lemma.

LEMMA 2.1. Under A1(θ0) and A2∗

E(st,θ0(ηt)|Ft−1) = 0 and Jt := E(st,θ0(ηt)s

t,θ0

(ηt)|Ft−1) exists, a.s. (2.4)

Note that A2∗ entails that

‖rt,h(·)‖L2(μ) ≤ 2+ 1

2
{h
Jth}1/2. (2.5)

Let the assumption

A3∗: The following matrix exists

J := E(st,θ0(ηt)s

t,θ0

(ηt)).

Note that under (2.3), J coincides with the matrix in (2.1). It follows from (2.5)
and A3∗ that for any bounded sequence (hn), we have uniform integrability of the
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sequence (‖rt,hn(·)‖L2(μ))n. Therefore, using Theorem 3.5 of Billingsley (1999),
we have

E
∫

r2
t,h(y)dμ(y) = o(‖h‖2) as h → 0. (2.6)

Our main result is the following.

PROPOSITION 2.3. Proposition 2.1 remains valid when A2–A4 is replaced by
A2∗ and A3∗ and the central sequence is defined by �n = n−1/2 ∑n

t=1 st,θ0(ηt).

Extending Proposition 2.2 by introducing initial values in the central sequence
of Proposition 2.3 seems only possible on a case-by-case basis.

3. TESTING LINEAR HYPOTHESES

In this section, we study how our LAN properties can be used to derive the local
asymptotic powers of tests. Consider testing an assumption of the form H0 : Rθ0 =
r where R is a full row rank p×d matrix and r ∈R

p. Assume that θ0 belongs to the

interior
◦
� of � and that, for an estimator θ̂n of θ0, the following Bahadur expansion

holds

√
n
(
θ̂n − θ0

) = 1√
n

n∑
t=1

� t−1V(ηt)+oP0(1),

where V(·) is a measurable function, V : R �→ R
k for some positive integer k, and

� t−1 is a Ft−1-measurable d × k matrix, (� t) being stationary. We assume the
variables � t and V(ηt) belong to L2, EV(ηt) = 0,var{V(ηt)} = ϒ is nonsingular
and, for any x ∈ R

d, x′� t = 0 a.s. entails x = 0.

When θ̂n = θ̂
ML

n is the maximum likelihood estimator (MLE), the Bahadur
expansion holds under some regularity conditions, and we have

√
n
(̂
θ

ML
n − θ0

)
= 1√

n

n∑
t=1

J−1st,θ0(ηt)+oP0(1). (3.1)

When θ̂n = θ̂
QML

n is the QMLE, the Bahadur expansion also holds under some
regularity conditions, with

√
n
(̂
θ

QML
n − θ0

)
= 1√

n

n∑
t=1

1

2
J−1 ∂ logσt(θ0)

∂θ
(η2

t −1)+oP0(1). (3.2)

It should be noted that initial values may (and generally have to) be introduced
in the definition of the (Q)MLE. However, the log-likelihood ratio remains
throughout defined using the infinite past of the process, that is, without initial
values.
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We wish to test H0 against the sequence of local alternatives Hn : θn = θ0 +
τ/

√
n, τ ∈ R

d, where Rθ0 = r and Rτ �= 0.3

Assuming that the LAN property holds, under the conditions of either Proposi-
tions 2.1 or 2.3, we have, under H0,( √

n
(
R̂θn − r

)
�n(θ0 +τ/

√
n,θ0)

)
=

( 1√
n

∑n
t=1 R� t−1V(ηt)

τ
 1√
n

∑n
t=1 st,θ0(ηt)− 1

2τ
Jτ

)
+oP0(1).

Consequently,( √
n
(
R̂θn − r

)
�n(θ0 +τ/

√
n,θ0)

)
d−→ N

{(
0

− 1
2τ
Jτ

)
,

(
R	R
 cθ0,f (τ )

c

θ0,f

(τ ) τ
Jτ

)}
, under P0,

where 	 = E(� tϒ�

t ), cθ0,f (τ ) = RE[� t−1Et−1{V(ηt)s


t,θ0
(ηt)}]τ .

In the particular case where (2.3) holds, we thus have

cθ0,f (τ ) = RE(� t−1)E{V(ηt)f

θ0

(ηt)}τ −RE

[
� t−1E{gθ0(ηt)V(ηt)}∂ logσt(θ0)

∂θ


]
τ .

Le Cam’s third lemma and the contiguity of the probabilities P0 and Pn,τ (a
consequence of the LAN property) entail that

√
n
(
R̂θn − r

) d−→ N
(
cθ0,f (τ ),R	R
) under Hn. (3.3)

The Wald test, at asymptotic level α ∈ (0,1), is defined by the rejection region
{Wn,f > χ2

p (1 − α)} where χ2
p (1 − α) is the (1 − α)-quantile of the chi-square

distribution with p degrees of freedom and

Wn,f = n
(
R̂θn − r

)
 {R	̂R
}−1
(
R̂θn − r

)
,

where 	̂ is a consistent estimator of 	. Under Hn, in view of (3.3), Wn,f follows
asymptotically a noncentral chi-square distribution with p degrees of freedom and
noncentrality parameter

c

θ0,f

(τ ){R	R
}−1cθ0,f (τ ).

Denoting by �τ the cdf of this distribution, the Wald test has local asymptotic
power (LAP) 1−�τ {χ2

p (1−α)}.

3In other words, under Hn the true parameter value is θn instead of θ0 and the null hypothesis is not satisfied under
Hn (Rθn �= r).
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The following proposition can be used to quantify the local asymptotic effi-
ciency loss of the QMLE with respect to the MLE for testing linear restrictions on
parameters involved in the volatility or/and the density of the innovations.

PROPOSITION 3.1. Assume A1(θ0), either A2–A4 or A2∗ and A3∗, A5 and
A6 and (2.3). For the MLE satisfying (3.1) and the QMLE satisfying (3.2), we have
cθ0,f (τ ) = Rτ .

4. EXAMPLES

In this section, we present two examples of popular GARCH specifications for
which our LAN result can be derived, under more explicit assumptions than in
the general model. The first example deals with a class of nonlinear GARCH
models for which the smoothness assumptions required in Proposition 2.1 are not
satisfied. We will therefore rely on Proposition 2.3. The second example illustrates
a situation where the volatility and density have common parameters.

4.1. Application to APARCH(1,1) Models with Student Errors

The following generalized asymmetric Student-t distribution was proposed by Zhu
and Galbraith (2010)

fθ (y) =

⎧⎪⎪⎨⎪⎪⎩
α
α∗ K(ν1)

[
1+ 1

ν1

( y
2α∗

)2
]− ν1+1

2
, y ≤ 0,

1−α
1−α∗ K(ν2)

[
1+ 1

ν2

(
y

2(1−α∗)

)2
]− ν2+1

2

, y > 0,

(4.1)

where K(ν) = �
(

ν+1
2

)
√

νπ�( ν
2 )

(where �(·) is the Gamma function), α ∈ (0,1) is the

skewness parameter, ν1,ν2 > 0 are respectively the left- and right-tail parameters,
and α∗ is defined as α∗ = αK(ν1)/[αK(ν1) + (1 − α)K(ν2)]. This density is
continuous (in y) and admits a finite variance provided ν1 ∧ ν2 > 2. See Zhu and
Galbraith (2010) for a detailed study of this distribution, including the asymptotic
properties of the ML estimator for i.i.d. observations.

Consider the class of asymmetric power ARCH (APARCH) models introduced
by Ding, Granger and Engle (1993), defined as{

εt = σt(θ0)ηt,

σ δ
t (θ) = ω+α+|εt−1|δ1εt−1>0 +α−|εt−1|δ1εt−1<0 +βσ δ

t−1,
(4.2)

and assume that the density of ηt is given by (4.1) with parameters indexed by 0.
Let

θ = (ω,α+,α−,β,δ,α,ν1,ν2)
′ ∈ � ⊂ [ω,∞)

× [0,∞)2 × [0,1)× (0,∞)× (0,1)× (0,∞)2. (4.3)
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COROLLARY 4.1. (APARCH with asymmetric Student innovation) The LAN
property holds for Model (4.1) and (4.2) if � satisfies (4.3) and

E logaθ0(η1) < 0, where aθ (z) = α+zδ1z>0 +α−|z|δ1z<0 +β.

For this model, despite the lack of differentiability of the density function, the
LAN property holds under the strict stationarity condition. The following example
shows that the strict stationarity condition may not suffice for the LAN property
to hold. A similar situation occurs for ARMA models where the LAN property is
satisfied if the parameter space is chosen in such a way that both the AR and MA
polynomials have no zeros with magnitude less or equal to one (see Kreiss, 1987).
A unit root in the AR part can also be handled (see Ling and McAleer, 2003).

4.2. Application to the Beta-t-GARCH(1,1)

The class of the Beta-t-GARCH was studied by Harvey (2013) and Creal, Koop-
man, and Lucas (2013). Assume that the errors of the GARCH model follow a
Student’s-t distribution with ν degrees of freedom, that is

fθ (y) = 1√
(ν −2)π

�
(

ν+1
2

)
�
(

ν
2

) (
1+ y2

ν −2

)− ν+1
2

, (4.4)

with ν > 2, and assume that

σ 2
t (θ) = ω+βσ 2

t−1(θ)+α
(ν +1)ε2

t−1

(ν −2)+ ε2
t−1/σ

2
t−1(θ)

, (4.5)

where θ = (ω,α,β,ν)′ belongs to the parameter space �, a subset of (ω,∞)2 ×
[0,1)× (2,∞) for some ω > 0. Note that the parameter ν is involved in both the
density and the volatility.

By the Cauchy root test, it can be easily seen that, at θ = θ0, there exists a
stationary and ergodic solution to this model, explicitly given by εt = σtηt with

σ 2
t = σ 2

t (θ0) = ω0

{
1+

∞∑
i=1

aθ0(ηt−1) · · ·aθ0(ηt−i)

}
, aθ (z) = α

(ν +1)z2

ν −2+ z2
+β,

when θ0 is such that

E logaθ0(η1) < 0. (4.6)

The arguments of the proof of Lemma 2.3 in Berkes et al. (2003) entail that under
(4.6) there exists s > 0, such that

E|εt|s < ∞, Eσ s
t < ∞. (4.7)

Assumption A1(θ0) also requires stationarity of the sequence {σt(θ)} together
with σt(θ) ∈ Ft−1 for any value θ of the parameter space. This property requires
additional conditions contrary to the previous example where it was trivially
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satisfied under the condition |β| < 1. Note that σ 2
t (θ) is a solution of a stochastic

recurrence equation (SRE) of the form

σ 2
t (θ) = ϕ(ε2

t−1,σ
2
t−1(θ)), ϕ(ε2,σ 2) = α

(ν +1)ε2

ν −2+ ε2/σ 2
+βσ 2.

According to the SRE theory (Straumann and Mikosch, 2006), the model is
invertible at θ , i.e., σ 2

t (θ) can be written as a measurable function of {εu,u < t}, if

(i) E logsup
σ 2

∣∣∣∣∂ϕ(ε2
t ,σ

2)

∂σ 2

∣∣∣∣ < 0, (ii) E log+ ∣∣ϕ(ε2
t ,σ

2
0 )
∣∣ < ∞

for some σ 2
0 > 0. Condition (ii) is always satisfied and, since σ 2

t ≥ ω/(1 − β)

condition (i) holds if

E log

(
α

(ν +1)ε4
1{

(ν −2)ω/(1−β)+ ε2
1

}2 +β

)
< 0. (4.8)

Note that the constraint (4.8), which depends on θ and θ0, can be tested using
Monte Carlo simulations. We thus have seen that A1(θ0) is satisfied under (4.6)
and (4.8). Assumption A2 holds true without additional conditions. Now, note that

gθ (y) = 1− (ν +1)y2

ν −2+ y2
,

f θ (y) =
(

03
1
2

{
ν

ν−2 +ψ0
(

ν+1
2

)−ψ0
(

ν
2

)− log
(

1+ y2

ν−2

)
− ν+1

ν−2+y2

} )
,

where ψ0(x) = log′ {�(x)} is the digamma function. The first two moment con-
ditions of A3 are thus satisfied. The last condition is implied by Lemma G.1 in
Appendix G.

Now we turn to A4. We have

∂2 log fθ (y)

∂ν2

= 1

4

{ −1

(ν −2)2
+ψ1

(
ν +1

2

)
−ψ1

(ν

2

)
+ y2

(ν −2+ y2)(ν −2)
− y2 −3

(ν −2+ y2)2

}
,

where ψ1 is the trigamma function. Note that this function is bounded. Thus the
first moment condition in A4 is satisfied. The second inequality is also satisfied
using (4.7), the elementary inequality log(1 + y) ≤ K(1 + ys) for y > 0 and the
lower bound for σt(θ). Moreover, the function yg′

θ (y) being bounded, the third
condition is satisfied for any p1. Similarly, the fifth and seventh inequalities hold
for any p2,p3. Thus A4 is satisfied provided, for some r > 0,

E sup
θ∈V(θ0)

∥∥∥∥∂ logσt(θ)

∂θ

∥∥∥∥1+r

< ∞, E sup
θ∈V(θ0)

∥∥∥∥∂2 logσt(θ)

∂θ∂θ


∥∥∥∥1+r

< ∞. (4.9)
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Figure 1. LAPs of the tests of H0 : ν = ν0 based on QML (blue line) and ML (dotted red line), as
functions of τ , for the Beta-t-GARCH.

These moment conditions require an extension of Lemma G.1 which is discussed
in Blasques, Koopman, and Lucas (2014) through the notion of moment preserving
maps. We have shown the following result.

COROLLARY 4.2 (Beta-t-GARCH). The LAN property holds for Models (4.4)
and (4.5) with β0 �= 0 if (4.6), (4.8), and (4.9) are satisfied.

For the sake of illustration we consider testing the assumption H0 : ν = ν0 against
Hn : ν = ν0 + τ/

√
n in Models (4.4) and (4.5) with ω0 = 0.5,α0 = 0.1,β0 = 0.88.

The LAPs of the tests based on the QMLE and MLE are displayed in Figure 1.
By Proposition 3.1, these LAPs only differ by the asymptotic variances 	 of
the estimators, which were numerically obtained from simulations of size n =
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Figure 2. LAPs of the tests of H0 : α = 0.1 based on QML (blue line) and ML (dotted red line), as
functions of τ , for the Beta-t-GARCH with different values of ν (and β0 = 0.88).

100,000. As expected the discrepancy is large for small values of ν0 and reduces
as ν0 increases, with a degeneracy of the two powers at ν = ∞ since the parameter
is no longer identifiable. Next, we consider testing the assumption H0 : α = α0

against Hn : α = α0 + τ/
√

n for the same model. The LAPs of the tests based on
the QMLE and MLE are displayed in Figures 2 (when ν0 varies) and 3 (when
β0 varies). The efficiency loss when going from ML to QML tends to zero as ν0

increases. On the contrary when β0 varies for a given value of ν0, the efficiency
loss is not much affected. Note that the strict stationarity condition (4.6) is satisfied
also for the bottom panels with α0 +β0 > 1. Contrary to the test of ν0, the powers
of the test of α0 do not diminish when ν0 increases (compare the range of values
of τ in Figures 1–3). Surprisingly, the LAP of the test of α0 improves when β0

approaches 1.
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Figure 3. LAPs of the tests of H0 : α = 0.1 based on QML (blue line) and ML (dotted red line), as
functions of τ , for the Beta-t-GARCH with different values of β (and ν0 = 5).

5. INCLUDING A CONDITIONAL MEAN

In this section, we extend our LAN results to the conditional location-scale model

yt = mt(θ0)+ εt(θ0), εt(θ0) = σt(θ0)ηt, (5.1)

under the same assumptions on (ηt) and θ as in the previous sections, with
mt(θ0) ∈ Ft−1 for all θ ∈ �. The conditional log-likelihood ratio has the same
expression as before with

ηt(θ) = εt(θ)

σt(θ)
= yt −mt(θ)

σt(θ)
.

We start by studying the LAN property under differentiability. We introduce the
following assumptions.
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B1(θ0): (yt) satisfies (5.1) where ηt has density fθ0 and, for all θ ∈ � ⊂ R
d,

{mt(θ),σt(θ)} is a stationary sequence with mt(θ),σt(θ) ∈Ft−1 and σt(θ) > 0.
B2: For all t ≥ 1, θ �→ mt(θ) has continuous second-order derivatives and

E‖ 1
σt(θ0)

∂mt(θ0)

∂θ
‖2 < ∞.

B3: We have E‖ f ′
θ0

fθ0
(ηt)‖2 < ∞. Moreover, there exists a neighborhood V(θ0)

of θ0 and four pairs of conjugate numbers pi > 1, qi > 1, 1/pi +1/qi = 1, for
i = 4,5,6,7, such that

E sup
θ∈V(θ0)

∣∣∣∣( f ′
θ

fθ

)′
(ηt(θ))

∣∣∣∣p4

< ∞, E sup
θ∈V(θ0)

∥∥∥∥ 1

σt(θ)

∂mt(θ)

∂θ

∥∥∥∥2q4

< ∞,

E sup
θ∈V(θ0)

∣∣∣∣( f ′
θ

fθ

)
(ηt(θ))

∣∣∣∣p5

< ∞, E sup
θ∈V(θ0)

∥∥∥∥ 1

σt(θ)

∂2mt(θ)

∂θ∂θ


∥∥∥∥q5

< ∞,

E sup
θ∈V(θ0)

∣∣g′
θ (ηt(θ))

∣∣ p6 < ∞, E sup
θ∈V(θ0)

∥∥∥∥ 1

σt(θ)

∂mt(θ)

∂θ

∂ logσt(θ)

∂θ

∥∥∥∥q6

< ∞,

and

E sup
θ∈V(θ0)

∥∥ f ′
θ (ηt(θ))

∥∥p7 < ∞, E sup
θ∈V(θ0)

∥∥∥∥ 1

σt(θ)

∂mt(θ)

∂θ

∥∥∥∥q7

< ∞.

Let Dt = 1
σt

(
∂mt(θ0)

∂θ
 ,
∂σt(θ0)

∂θ

)


and

I =ιf Jσσ −υf (Jmσ +Jσm)+γf Jmm −�σ f
 − f�

σ −h�


m −�mh
 +F, (5.2)

with (recalling some notations) ιf = Eg2
θ0

(ηt), υf = Eg′
θ0

(ηt), γf = E

[(
f ′
θ0

fθ0

)′
(ηt)

]
,

J = EDtD

t =

(
Jmm Jmσ

Jσm Jσσ

)
, � = EDt =

(
�m

�σ

)
, F = Ef θ0

(ηt)f

θ0

(ηt),

h = Ef ′
θ0

(ηt), and f = Egθ0(ηt)f θ0
(ηt).

The central sequence is now given by

�n = 1√
n

n∑
t=1

{
f θ0

(ηt)−gθ0(ηt)
∂ logσt(θ0)

∂θ
− f ′

θ0

fθ0

(ηt)
1

σt(θ0)

∂mt(θ0)

∂θ

}
.

PROPOSITION 5.1. Let � be a bounded convex subset of Rd such that θ0 ∈ �.
Assume B1(θ0), A2–A4 and B2 and B3. When θn = θ0 + τ/

√
n ∈ � for n large

enough, we have the LAN property

�n(θ0 +τ/
√

n,θ0)

= τ
�n − 1

2
τ
Iτ +oP0(1)

d−→ N
(

−1

2
τ
Iτ,τ
Iτ

)
under P0.
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When differentiability does not hold, the previous assumptions can be replaced
by the following conditions.

B2∗: For all t ∈ Z, there exists a vector st,θ0(y) := sθ0(y,ηt−1,ηt−2, . . .) ∈ R
d

where sθ0 is a measurable function, such that√
σt(θ0)

σt(θ0 +h)
fθ0+h

(
mt(θ0)−mt(θ0 +h)

σt(θ0 +h)
+ σt(θ0)

σt(θ0 +h)
y

)
=

√
fθ0(y)+ 1

2
h
st,θ0(y)

√
fθ0(y)+ rt,h(y), ‖rt,h(·)‖2

L2(μ)
= oP0(‖h‖2).

(5.3)

B3∗: The following matrix exists

I := E(st,θ0(ηt)s

t,θ0

(ηt)).

PROPOSITION 5.2. Proposition 5.1 remains valid when A2–A4 and B2 and
B3 are replaced by B2∗ and B3∗ and the central sequence is defined by �n =
n−1/2∑n

t=1 st,θ0(ηt).

6. CONCLUSION

In this paper, we proved the LAN property for general conditional location-scale
models where the parameter of the errors density has common components with
that of the mean and volatility. A typical example where this situation occurs is
the case of some score-driven volatility models. Our assumptions on the volatility
model are rather weak, in particular they are compatible with high persistence
introduced through ARCH(∞) models (see e.g., Robinson and Zaffaroni, 2006;
Royer, 2022). The introduction of the notion of CQMD allows to handle situations
where some regularity assumptions on the volatility and/or the density functions
are in failure. As examples of application of the LAN property, we consider tests of
linear restrictions. Using the LAN property, we are able to quantify the asymptotic
discrepancy in local power between the QML and ML estimators. Interesting
future areas of research are the extension of the framework of this article to more
general score-driven specifications, or to multivariate models.

APPENDIX A. Proof of Proposition 2.1

Note that

∂

∂θ
log

{
1

σt(θ)
fθ (ηt(θ))

}
= −gθ (ηt(θ))

∂ logσt(θ)

∂θ
+ f θ (ηt(θ))
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and

∂2

∂θ∂θ
 log

{
1

σt(θ)
fθ (ηt(θ))

}
=−gθ (ηt(θ))

∂2 logσt(θ)

∂θ∂θ
 − ∂ logσt(θ)

∂θ
g

θ (ηt(θ))

+g′
θ (ηt(θ))ηt(θ)

∂ logσt(θ)

∂θ

∂ logσt(θ)

∂θ


−ηt(θ)f ′
θ (ηt(θ))

∂ logσt(θ)

∂θ
 +Fθ (ηt(θ)),

where f ′
θ
(y) denotes the vector of the derivatives of the elements of f θ (y). Note that yf ′

θ
(y) =

gθ (y). A Taylor expansion of θn �→ �n(θn,θ0) around θ0 thus yields

�n(θn,θ0) = τ
�n − 1

2
τ
Jn(θ∗

n)τ, (A.1)

where θ∗
n is between θ0 and θn, and

Jn(θ) =1

n

n∑
t=1

gθ (ηt(θ))
∂2 logσt(θ)

∂θ∂θ
 − 1

n

n∑
t=1

g′
θ (ηt(θ))ηt(θ)

∂ logσt(θ)

∂θ

∂ logσt(θ)

∂θ


+ 1

n

n∑
t=1

∂ logσt(θ)

∂θ
g

θ (ηt(θ))+ 1

n

n∑
t=1

gθ (ηt(θ))
∂ logσt(θ)

∂θ
 − 1

n

n∑
t=1

Fθ (ηt(θ)) .

Note that under A1(θ0) and A3,
{
(gθ0(ηt)

∂ logσt(θ0)

∂θ
 ,f

θ0

(ηt))

,Ft

}
is a square integrable

martingale difference. By the central limit theorem of Billingsley (1961), we have �n
d−→

N {0,J} under P0 as n → ∞. Moreover, integrations by parts show that

ιf = −Eg′
θ0

(ηt)ηt = −1+
∫

y2
(f ′

θ0
(y))2

fθ0(y)
dy, Egθ0

(ηt) = −f .

For the last equality, we use the fact that ∂
∫

fθ (y)gθ (y)dy/∂θ = 0 because
∫

fθ (y)gθ (y)dy =
0 for all θ . Note also that F = −EFθ0(ηt). The ergodic theorem then entails thatJn(θ0) →J

a.s. as n → ∞.
It remains to establish that, as n → ∞,∥∥Jn(θ∗

n)−Jn(θ0)
∥∥ → 0 in probability. (A.2)

We only give the proof of∥∥∥∥∥∥1

n

n∑
t=1

Fθ∗
n

{
ηt(θ

∗
n)
}− 1

n

n∑
t=1

Fθ0 (ηt)

∥∥∥∥∥∥ → 0 a.s. (A.3)

The other convergences showing (A.2) are obtained similarly. By the ergodic theorem, (A.3)
is obtained by showing that for all ε > 0, there exists a neighborhood V(θ0) of θ0 such that

E sup
θ∈V(θ0)

∥∥ f θ {ηt(θ)}−Fθ0 (ηt)
∥∥ ≤ ε.

By the dominated convergence theorem, A2 and the first moment condition of A4, the left-
hand side of the previous inequality tends to 0 when the neighborhood V(θ0) shrinks to the
singleton {θ0}, and (A.3) follows. The rest of the proof follows by the same arguments. �
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APPENDIX B. Proof of Proposition 2.2

Let f i the ith component of f θ0
and K = supy sup1≤i≤d |f ′

i(y)|. We have, from A5 and A6

∥∥�n − �̃n
∥∥ ≤ 1√

n

n∑
t=1

K |ηt − η̃t|
(

1+
∥∥∥∥∂ log σ̃t(θ0)

∂θ

∥∥∥∥)

+|gθ0(ηt)|
∥∥∥∥ 1

σt(θ0)

∂σt(θ0)

∂θ
− 1

σ̃t(θ0)

∂σ̃t(θ0)

∂θ

∥∥∥∥
≤ 1√

n

∞∑
t=1

Kρt(|ηt|+ |gθ0(ηt))

(
1+ 1

σt(θ0)

∥∥∥∥∂σt(θ0)

∂θ

∥∥∥∥) .

By A3 and the first part of A5, the infinite sum is finite a.s. It follows that
∥∥�n − �̃n

∥∥ =
oP(1). The conclusion follows. �

APPENDIX C. Proof of Lemma 2.1

The proof is adapted from the i.i.d. case (see for instance Lehmann and Romano, 2006,
Lemma 12.2.1). We start by showing the second result. Taking h = hτ where h > 0, we get
from A2∗

‖gh −g‖L2(μ) → 0 when h → 0,

where g(y) = 1
2τ
st,θ0(y)

√
fθ0(y) and

gh(y) = 1

h

{√
σt(θ0)

σt(θ0 +hτ )
fθ0+hτ

(
σt(θ0)

σt(θ0 +hτ )
y

)
−
√

fθ0(y)

}
.

Since ‖gh‖L2(μ) < ∞, it follows that ‖g‖2
L2(μ)

= 1
4τ
Jtτ < ∞.

Now taking, conditionally on Ft−1, the squared L2(μ)-norm of both sides of the equality
(2.2), we obtain

0 = 1

4
h
Jth+

∫
r2
t,h(y)dμ(y)+h
E(st,θ0(ηt)|Ft−1)

+2
∫

rt,h(y)
√

fθ (y)dμ(y)+
∫

h
st,θ0(y)
√

fθ (y)rt,h(y)dμ(y) a.s.

Noting that, by the Cauchy–Schwarz inequality,
∫

rt,h(y)
√

fθ (y)dμ(y) = oP0(‖h‖) and∫
h
st,θ0(y)

√
fθ (y)rt,h(y)dμ(y) = oP0(‖h‖2), and comparing the orders as h → 0, we

deduce the first equality in (2.4) (a well-known result when A2 holds). �

APPENDIX D. Proof of Proposition 2.3

Letting

Wt,n =
√

σt(θ0)

σt(θn)

fθn (ηt(θn))

fθ0 (ηt)
−1,
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and using log(y+1) = y− y2/2+ y2ξ(y) with ξ(y) → 0 as y → 0, we have

�n(θn,θ0) = 2
n∑

t=1

log(Wt,n +1) = 2
n∑

t=1

Wt,n −
n∑

t=1

W2
t,n +2

n∑
t=1

W2
t,nξ(Wt,n).

We will show that

2
n∑

t=1

{
Wt,n −E

(
Wt,n | Ft−1

)} = τ
�n +oP0(1), (D.1)

2
n∑

t=1

E
(
Wt,n | Ft−1

) = −1

4
τ
Jτ +oP0 (1), (D.2)

n∑
t=1

W2
t,n = 1

4
τ
Jτ +oP0(1), (D.3)

n∑
t=1

W2
t,nξ(Wt,n) = oP0(1). (D.4)

Under A1(θ0) and the CQMD condition, it can be seen that (st,θ0(ηt)) is a stationary and
ergodic sequence. The conclusion will follow by noting that

{
st,θ0(ηt),Ft

}
is a square

integrable martingale difference by (2.4) and A3∗.
By A2∗, we have

Wt,n −E
(
Wt,n | Ft−1

) = 1

2
√

n
τ
st,θ0(ηt)+Rt,n,

Rt,n = rt,n−1/2τ (ηt)√
fθ0 (ηt)

−E

(
rt,n−1/2τ (ηt)√

fθ0 (ηt)
| Ft−1

)
.

Noting that (Rt,n) is a stationary martingale difference, we have

Var

⎛⎝ n∑
t=1

Rt,n

⎞⎠ = nVar
(
Rt,n

) ≤ nEE

⎛⎝{
rt,n−1/2τ (ηt)√

fθ0 (ηt)

}2

| Ft−1

⎞⎠
= nE

∫
r2
t,n−1/2τ

(y)dμ(y) = o(1),

where the last equality follows from (2.6). Thus (D.1) follows.
By A2∗ again, we have

n∑
t=1

E
(
Wt,n | Ft−1

) =
n∑

t=1

∫ ⎧⎪⎪⎨⎪⎪⎩
√

σt(θ0)
σt(θn)

fθn

(
σt(θ0)
σt(θn)

y
)

√
fθ0 (y)

−1

⎫⎪⎪⎬⎪⎪⎭ fθ0 (y)dμ(y)

= −1

2

n∑
t=1

∫ {√
σt(θ0)

σt(θn)
fθn

(
σt(θ0)

σt(θn)
y

)
−
√

fθ0 (y)

}2

dμ(y)
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= −1

2

n∑
t=1

∫ {
1

2
√

n
τ
st,θ0(y)

√
fθ0(y)+ rt,τ/

√
n(y)

}2
dμ(y)

= − 1

8n

n∑
t=1

∫ {
τ
st,θ0(y)

}2
fθ0(y)dμ(y)+n oP0(‖τ/

√
n‖2),

and (D.2) follows from the ergodic theorem and A3∗.
We also have

n∑
t=1

W2
t,n = 1

4n

n∑
t=1

(
τ
st,θ0(ηt)

)2 +
n∑

t=1

r2
t,n−1/2τ

(ηt)

fθ0 (ηt)
+ 1√

n

n∑
t=1

τ
st,θ0(ηt)
rt,n−1/2τ (ηt)√

fθ0 (ηt)
.

By the ergodic theorem, the first term of the right-hand side of the equality tends almost
surely to 1

4τ
Jτ . The expectation of the second term is equal to nE
∫

r2
t,n−1/2τ

(y)dμ(y) =
o(1), and thus this positive term tends to zero in probability. The third term also tends to
zero in probability, by the Cauchy–Schwarz inequality and the two previous convergence
results. Therefore, (D.3) is shown.

For all ε > 0, there exists δ > 0 such that |ξ(y)| ≤ ε if |y| ≤ δ. Therefore, we have

n∑
t=1

W2
t,nξ(Wt,n) ≤ ε

n∑
t=1

W2
t,n +

n∑
t=1

W2
t,n1|Wt,n|>δ

≤ ε OP0(1)+ 1

n

n∑
t=1

(
τ
st,θ0(ηt)

)2
1|τ
st,θ0 (ηt)|>n1/2δ +4

n∑
t=1

r2
t,n−1/2τ

(ηt)

fθ0 (ηt)

using (D.3) and the elementary inequality (a+b)21|a+b|>δ ≤ 4a21|a|>δ/2 +4b2. We have
already seen that the last sum is an oP(1). Now, for all M > 0, when n is sufficiently large
we have

1

n

n∑
t=1

(
τ
st,θ0(ηt)

)2
1|τ
st,θ0 (ηt)|>n1/2δ ≤ 1

n

n∑
t=1

(
τ
st,θ0(ηt)

)2
1|τ
st,θ0 (ηt)|>M

and, by the ergodic theorem, A1(θ0) and A3∗, the right-hand side converges almost

surely to E
(
τ
st,θ0(ηt)

)2
1|τ
st,θ0 (ηt)|>M , which is arbitrarily small when M is large. The

conclusion follows. �

APPENDIX E. Proof of Proposition 3.1

For the MLE, by (3.1) we find

cML
θ0,f

(τ ) = Covas

(
RJ−1�n,τ


�n

)
= Rτ,

and for the QMLE, by (3.2),

cQML
θ0,f

(τ ) =Cov

(
1

2
RJ−1(η2

t −1)
∂ logσt(θ0)

∂θ
,τ
f θ0

(ηt)−gθ0(ηt)τ

 ∂ logσt(θ0)

∂θ

)
=1

2
RJ−1�τ
E(η2

t −1)f θ0
(ηt)+ 1

2
E
[
(1−η2

t )gθ0(ηt)
]

Rτ .
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Now we have

E(η2
t −1)st,θ0(ηt) =Eη2

t st,θ0(ηt)

=E
∫

x2 ∂

∂h
log

σt(θ0)

σt(θ0 +h)
fθ0+h

(
σt(θ0)

σt(θ0 +h)
x

)∣∣∣∣
h=0

fθ0(x)dx

=E
∫

x2 ∂

∂h
σt(θ0)

σt(θ0 +h)
fθ0+h

(
σt(θ0)

σt(θ0 +h)
x

)∣∣∣∣
h=0

dx

=E
∂

∂h

∫
x2 σt(θ0)

σt(θ0 +h)
fθ0+h

(
σt(θ0)

σt(θ0 +h)
x

)
dx

∣∣∣∣
h=0

=E
∂

∂h
σ 2

t (θ0 +h)

σ 2
t (θ0)

∫
y2fθ0+h(y)dx

∣∣∣∣∣
h=0

=E
∂

∂h
σ 2

t (θ0 +h)

σ 2
t (θ0)

∣∣∣∣∣
h=0

= E
1

σ 2
t (θ)

∂σ 2
t (θ)

∂θ

∣∣∣∣∣
θ=θ0

= 2�.

Moreover,

E(η2
t −1)st,θ0(ηt) = E(η2

t −1)f θ0
(ηt)−E(η2

t −1)gθ0(ηt)E
∂ logσt(θ0)

∂θ
,

with

E(η2
t −1)gθ0(ηt) =

∫
(x2 −1)

(
1+ x

f ′
θ
(x)

fθ (x)

)
fθ (x)dx = 1+

∫
x3f ′

θ (x)dx = −2.

It follows that

E(η2
t −1)f θ0

(ηt) = 2�+E(η2
t −1)gθ0(ηt)E

∂ logσt(θ0)

∂θ
= 2�−2� = 0.

�

APPENDIX F. Proof of Corollary 4.1

Note that E log+ aθ0(η1) < ∞ because E log+ |ηt| < ∞. It follows that, by the Cauchy rule

σ
δ0
t (θ0) = ω0 +aθ0(ηt−1)σ

δ0
t−1 = ω0

⎛⎝1+
∞∑

i=1

i∏
j=1

aθ0(ηt−j)

⎞⎠ .

Therefore, A1(θ0) reduces to E logaθ0(η1) < 0 and sup� β < 1. For some θ , the function
y �→ fθ (y) is differentiable only once at y = 0. Therefore, A2 is not satisfied and the result
cannot be obtained from Proposition 2.1. We will show the CQMD of Proposition 2.3.

By Lemma 2.1 of Garel and Hallin (1995) (see also Lind and Roussas, 1972) multivariate
QMD is equivalent to partial QMD component by component. Note that a similar property
does not hold for the classical differentiability. Reasoning conditional to Ft−1, establishing
A2* is thus equivalent to showing, for i = 1, . . . ,d,

1

h2

∫ {√
σt(θ0)

σt(θ0 +hei)
fθ0+hei

(
σt(θ0)

σt(θ0 +hei)
y

)
−
√

fθ0(y)− 1

2
he


i st,θ0(y)
√

fθ0(y)

}2

dy = oP(1)
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as h → 0, where ei is the ith element of the canonical basis of Rd and st,θ0(y) ∈ Ft−1. We
will show the result with

st,θ0(y) = f θ0
(y)−gθ0(y)

∂ logσt(θ0)

∂θ
.

By Proposition 2 in Zhu and Galbraith (2010), the information matrix F = Ef θ0
(η1)f


θ0
(η1)

exists and is continuous. Noting that gθ (·) is bounded, ιf = Eg2
θ
(ηt) and f = Egθ0(ηt)f θ0

(ηt)

exist. Moreover, they are continuous at θ0. It follows that

Jt = E
(

st,θ0(ηt)s
t,θ0
(ηt) | Ft−1

)
= ιf

∂ logσt(θ0)

∂θ

∂ logσt(θ0)

∂θ
 − ∂ logσt(θ0)

∂θ
 f
 − f
∂ logσt(θ0)

∂θ
 +F

exists and is continuous at θ0. Given Ft−1, the application h �→ σt(θ0)
σt(θ0+hei)

fθ0+hei(
σt(θ0)

σt(θ0+hei)
y
)

is continuously differentiable, and thus absolutely continuous in a

neighborhood of 0. By Theorem 12.2.1 in Lehmann and Romano (2006) (see also Theorem
1.117 in Liese and Miescke, 2008) the result follows by the fact that e


i Jtei exists and is
continuous. Hamadeh and Zakoïan (2011) showed that ∂ logσt(θ0)/∂θ admits moments of
any order (see their Equation 5.20). It follows that J = EJt exists, which shows A3∗ and
completes the proof. �

APPENDIX G. Complement to the Proof of Corollary 4.2

LEMMA G.1. Under (4.6), when β0 �= 0, the Beta-t-GARCH(1,1) satisfies

E

∥∥∥∥∥∂ logσ 2
t (θ0)

∂θ

∥∥∥∥∥
r

< ∞, for all r > 0.

Proof. Letting at(θ) = aθ (ηt(θ)), for all i ≥ 1 we have

σ 2
t (θ) = ω

⎧⎨⎩1+
i−1∑
k=1

k∏
j=1

at−j(θ)

⎫⎬⎭+σ 2
t−i(θ)

i∏
j=1

at−j(θ).

Therefore,

σ 2
t−i(θ)

σ 2
t (θ)

≤ 1∏i
j=1 at−j(θ)

.

We also have

∂σ 2
t (θ)

∂θ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(ν+1)ε2

t−1

(ν−2)+ ε2
t−1

σ2
t−1(θ)

σ 2
t−1(θ)

αε2
t−1

(ν−2)+ ε2
t−1

σ2
t−1(θ)

− α(ν+1)ε2
t−1{

(ν−2)+ ε2
t−1

σ2
t−1(θ)

}2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+bt−1(θ)

∂σ 2
t−1(θ)

∂θ
,
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with

bt(θ) = β + α(ν +1)ε4
t{

(ν −2)σ 2
t (θ)+ ε2

t

}2
= β + α(ν +1)η4

t (θ){
ν −2+η2

t (θ)
}2

< at(θ) a.s.

In particular, we have

1

σ 2
t (θ)

∂σ 2
t (θ)

∂β
≤

∞∑
i=0

1

at−i−1(θ)

i∏
j=1

bt−j(θ)

at−j(θ)
.

Let at = at(θ0) and bt = bt(θ0). Note that there exist 0 < η < η and ρ < 1 such that

bt

at
≤ ρ1

η2
t ∈[η,η] +1

η2
t �∈[η,η].

Therefore, letting π = P(η2
t ∈ [η,η]) ∈ (0,1), we have

E

(
bt

at

)r
≤ ρrπ +1−π < 1.

Moreover, a−1
t < β−1

0 . Thus ∂ logσ 2
t (θ0)

∂β
admits moments at any order. The other derivatives

can be handled similarly. �

APPENDIX H. Proof of Proposition 5.1

We have

∂

∂θ
log

{
1

σt(θ)
fθ (ηt(θ))

}
= −gθ (ηt(θ))

∂ logσt(θ)

∂θ
− f ′

θ

fθ
{ηt(θ)} 1

σt(θ)

∂mt(θ)

∂θ
+ f θ (ηt(θ)),

and

∂2

∂θ∂θ
 log

{
1

σt(θ)
fθ (ηt(θ))

}
=−gθ (ηt(θ))

∂2 logσt(θ)

∂θ∂θ
 −gθ (ηt(θ))
∂ logσt(θ)

∂θ


+g′
θ (ηt(θ))

{
ηt(θ)

∂ logσt(θ)

∂θ
+ 1

σt(θ)

∂mt(θ)

∂θ

}
∂ logσt(θ)

∂θ


− f ′
θ

fθ
{ηt(θ)} 1

σt(θ)

(
−∂ logσt(θ)

∂θ

∂mt(θ)

∂θ
 + ∂2mt(θ)

∂θ∂θ


)

+
(

f ′
θ

fθ

)′
{ηt(θ)} 1

σt(θ)

{
ηt(θ)

∂ logσt(θ)

∂θ
+ 1

σt(θ)

∂mt(θ)

∂θ

}
∂mt(θ)

∂θ


− ∂

∂θ

{
f ′
θ

fθ

}
{ηt(θ)} 1

σt(θ)

∂mt(θ)

∂θ


−
{
ηt(θ)

∂ logσt(θ)

∂θ
+ 1

σt(θ)

∂mt(θ)

∂θ

}
(f ′

θ )
 (ηt(θ))+Fθ (ηt(θ))
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=−gθ (ηt(θ))
∂2 logσt(θ)

∂θ∂θ
 −gθ (ηt(θ))
∂ logσt(θ)

∂θ
 − ∂ logσt(θ)

∂θ
g

θ (ηt(θ))

+g′
θ (ηt(θ))

{
ηt(θ)

∂ logσt(θ)

∂θ

∂ logσt(θ)

∂θ


+ 1

σt(θ)

(
∂mt(θ)

∂θ

∂ logσt(θ)

∂θ
 + ∂ logσt(θ)

∂θ

∂mt(θ)

∂θ

)}

− f ′
θ

fθ
{ηt(θ)} 1

σt(θ)

(
∂2mt(θ)

∂θ∂θ


)
+
(

f ′
θ

fθ

)′
{ηt(θ)} 1

σ 2
t (θ)

∂mt(θ)

∂θ

∂mt(θ)

∂θ


− 1

σt(θ)

{
f ′
θ (ηt(θ))

∂mt(θ)

∂θ
 + ∂mt(θ)

∂θ
(f ′

θ )
 (ηt(θ))

}
+Fθ (ηt(θ)),

recalling that f ′
θ
(y) denotes the vector of the derivatives of the elements of f θ (y) and that

yf ′
θ
(y) = gθ (y). A Taylor expansion of θn �→ �n(θn,θ0) around θ0 thus yields �n(θn,θ0) =

τ
�n − 1
2τ
In(θ∗

n)τ, where θ∗
n is between θ0 and θn, and

In(θ) =1

n

n∑
t=1

gθ (ηt(θ))
∂2 logσt(θ)

∂θ∂θ
 − 1

n

n∑
t=1

g′
θ (ηt(θ))ηt(θ)

∂ logσt(θ)

∂θ

∂ logσt(θ)

∂θ


+ 1

n

n∑
t=1

∂ logσt(θ)

∂θ
g

θ (ηt(θ))+ 1

n

n∑
t=1

gθ (ηt(θ))
∂ logσt(θ)

∂θ
 − 1

n

n∑
t=1

Fθ (ηt(θ))

− 1

n

n∑
t=1

g′
θ (ηt(θ))

1

σt(θ)

(
∂mt(θ)

∂θ

∂ logσt(θ)

∂θ
 + ∂ logσt(θ)

∂θ

∂mt(θ)

∂θ

)

+ 1

n

n∑
t=1

f ′
θ

fθ
{ηt(θ)} 1

σt(θ)

(
∂2mt(θ)

∂θ∂θ


)
−
(

f ′
θ

fθ

)′
{ηt(θ)} 1

σ 2
t (θ)

∂mt(θ)

∂θ

∂mt(θ)

∂θ


+ 1

σt(θ)

{
f ′
θ (ηt(θ))

∂mt(θ)

∂θ
 + ∂mt(θ)

∂θ
(f ′

θ )
 (ηt(θ))

}
.

Under B1(θ0), A3, B2, and B3,

{
(gθ0(ηt)

∂ logσt(θ0)

∂θ
 ,
f ′
θ0

fθ0
(ηt)

1
σt(θ0)

∂mt(θ0)

∂θ
 ,f

θ0

(ηt))

,Ft

}
is a square integrable martingale difference. By the central limit theorem of Billingsley

(1961) we have �n
d−→ N {0,I} under P0 as n → ∞. The ergodic theorem entails that

In(θ0) →I a.s. as n → ∞. The rest of the proof follows by the arguments given to establish
Proposition 2.1. �

APPENDIX I. Proof of Proposition 5.2

The proof of Lemma 2.1 can be transposed directly when B1(θ0) and B2∗ hold (instead of
A1(θ0) and A2∗). We thus have that

E(st,θ0(ηt)|Ft−1) = 0 and It := E(st,θ0(ηt)s
t,θ0
(ηt)|Ft−1) exists, a.s. (I.1)

The proof of Proposition 2.3 also applies without much difference: defining Wt,n as
before (but with now ηt(θn) = (yt − mt(θn))/σt(θn)), the proof relies on establishing
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(D.1)–(D.4). The proof of (D.1), (D.3), and (D.4) is unchanged, while the proof of (D.2) is
straightforwardly adapted using B2∗ instead of A2∗. The conclusion follows. �
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