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Abstract

We consider Gaussian approximation in a variant of the classical Johnson–Mehl birth–
growth model with random growth speed. Seeds appear randomly in Rd at random times
and start growing instantaneously in all directions with a random speed. The locations,
birth times, and growth speeds of the seeds are given by a Poisson process. Under
suitable conditions on the random growth speed, the time distribution, and a weight
function h : Rd × [0,∞) → [0,∞), we prove a Gaussian convergence of the sum of the
weights at the exposed points, which are those seeds in the model that are not covered
at the time of their birth. Such models have previously been considered, albeit with
fixed growth speed. Moreover, using recent results on stabilization regions, we provide
non-asymptotic bounds on the distance between the normalized sum of weights and a
standard Gaussian random variable in the Wasserstein and Kolmogorov metrics.
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1. Introduction

In the spatial Johnson–Mehl growth model, seeds arrive at random times ti, i ∈N, at random
locations xi, i ∈N, in Rd, according to a Poisson process (xi, ti)i∈N on Rd ×R+, where R+ :=
[0,∞). Once a seed is born at time t, it begins to form a cell by growing radially in all directions
at a constant speed v ≥ 0, so that by time t′ it occupies the ball of radius v(t′ − t). The parts
of the space claimed by the seeds form the so-called Johnson–Mehl tessellation; see [7] and
[16]. This is a generalization of the classical Voronoi tessellation, which is obtained if all births
occur simultaneously at time zero.
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CLT for a birth–growth model with Poisson arrivals 1005

The study of such birth–growth processes started with the work of Kolmogorov [11] to
model crystal growth in two dimensions. Since then, this model has seen applications in various
contexts, such as phase transition kinetics, polymers, ecological systems, and DNA replica-
tions, to name a few; see [4, 7, 16] and references therein. A central limit theorem for the
Johnson–Mehl model with inhomogeneous arrivals of the seeds was obtained in [5].

Variants of the classical spatial birth–growth model can be found, sometimes as a particular
case of other models, in many papers. Among them, we mention [2] and [17], where the birth–
growth model appears as a particular case of a random sequential packing model, and [20],
which studied a variant of the model with non-uniform deterministic growth patterns. The
main tools rely on the concept of stabilization by considering regions where the appearance of
new seeds influences the functional of interest.

In this paper, we consider a generalization of the Johnson–Mehl model by introducing ran-
dom growth speeds for the seeds. This gives rise to many interesting features in the model,
most importantly, long-range interactions if the speed can take arbitrarily large values with
positive probability. Therefore, the model with random speed is no longer stabilizing in the
classical sense of [13] and [18], since distant points may influence the growth pattern if their
speeds are sufficiently high. It should be noted that, even in the constant-speed setting, we
substantially improve and extend limit theorems obtained in [5].

We consider a birth–growth model, determined by a Poisson process η in X := Rd ×R+ ×
R+ with intensity measureμ := λ⊗ θ ⊗ ν, where λ is the Lebesgue measure on Rd, θ is a non-
null locally finite measure on R+, and ν is a probability distribution on R+ with ν({0})< 1.
Each point x of this point process η has three components (x, tx, vx), where vx ∈R+ denotes the
random speed of a seed born at location x ∈Rd and whose growth commences at time tx ∈R+.
In a given point configuration, a point x := (x, tx, vx) is said to be exposed if there is no other
point (y, ty, vy) in the configuration with ty < tx and ‖x − y‖ ≤ vy(tx − ty), where ‖ · ‖ denotes
the Euclidean norm. Notice that the event that a point (x, tx, vx) ∈ η is exposed depends only
on the point configuration in the region

Lx,tx := {
(y, ty, vy) ∈X : ‖x − y‖ ≤ vy(tx − ty)

}
. (1.1)

Namely, x is exposed if and only if η has no points (apart from x) in Lx,tx .
The growth frontier of the model can be defined as the random field

min
(x,tx,vx)∈η

(
tx + 1

vx
‖y − x‖

)
, y ∈Rd. (1.2)

This is an example of an extremal shot-noise process; see [10]. Its value at a point y ∈Rd cor-
responds to a seed from η whose growth region covers y first. It should be noted here that this
covering seed need not be an exposed one. In other words, because of random speeds, it may
happen that the cell grown from a non-exposed seed shades a subsequent seed which would
be exposed otherwise. This excludes possible applications of our model with random growth
speed to crystallisation, where a more natural model would be to not allow a non-exposed seed
to affect any future seeds. But this creates a causal chain of influences that seems quite difficult
to study with the currently known methods of stabilization for Gaussian approximation.

Nonetheless, models such as ours are natural in telecommunication applications, with the
speed playing the role of the weight or strength of a particular transmission node, where the
growth frontier defined above can be used as a variant of the additive signal-to-interference
model from [1, Chapter 5]. Furthermore, similar models can be applied in the ecological or
epidemiological context, where a non-visible event influences appearances of others. Suppose
we have a barren land and a drone/machine is planting seeds from a mixture of plant species
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1006 C. BHATTACHARJEE ET AL.

at random times and random locations for reforestation. Each seed, after falling on the ground,
starts growing a bush around it at a random speed depending on its species. If a new seed falls
on a part of the ground that is already covered in bushes, it is still allowed to form its own bush;
i.e., there is no exclusion. Now the number of exposed points in our model above translates
to the number of seeds that start a bush on a then barren piece of land, rather than starting on
a piece of ground already covered in bushes. This, in some sense, can explain the efficiency
of the reforestation process, i.e., what fraction of the seeds were planted on barren land, in
contrast to being planted on already existing bushes.

Given a measurable weight function h : Rd ×R+ →R+, the main object of interest in this
paper is the sum of h over the space–time coordinates (x, tx) of the exposed points in η. These
can be defined as those points (y, ty) where the growth frontier defined at (1.2) has a local
minimum (see Section 2 for a precise definition). Our aim is to provide sufficient conditions for
Gaussian convergence of such sums. A standard approach for proving Gaussian convergence
for such statistics relies on stabilization theory [2, 8, 17, 20]. While in the stabilization literature
one commonly assumes that the so-called stabilization region is a ball around a given reference
point, the region Lx,tx is unbounded and it seems that it is not expressible as a ball around x in
some different metric. Moreover, our stabilization region is set to be empty if x is not exposed.

The main challenge when working with random unbounded speeds of growth is that there
are possibly very long-range interactions between seeds. This makes the use of balls as stabi-
lization regions vastly suboptimal and necessitates the use of regions of a more general shape.
In particular, we only assume that the random growth speed in our model has finite moment
of order 7d (see the assumption (C) in Section 2), and this allows for some power-tailed
distributions for the speed.

The recent work [3] introduced a new notion of region-stabilization which allows for more
general regions than balls and, building on the seminal work [14], provides bounds on the rate
of Gaussian convergence for certain sums of region-stabilizing score functions. We will utilize
this to derive bounds on the Wasserstein and Kolmogorov distances, defined below, between
a suitably normalized sum of weights and the standard Gaussian distribution. For real-valued
random variables X and Y , the Wasserstein distance between their distributions is given by

dW(X, Y) := sup
f ∈Lip1

|E f (X) −E f (Y)|,

where Lip1 denotes the class of all Lipschitz functions f : R→R with Lipschitz constant at
most one. The Kolmogorov distance between the distributions is given by

dK(X, Y) := sup
t∈R

|P{X ≤ t} − P{Y ≤ t}|.

The rest of the paper is organized as follows. In Section 2, we describe the model and state
our main results. In Section 3, we prove a result providing necessary upper and lower bounds
for the variance of our statistic of interest. Section 4 presents the proofs of our quantitative
bounds.

2. Model and main results

Recall that we work in the space X := Rd ×R+ ×R+, d ∈N, with the Borel σ -algebra.
The points from X are written as x := (x, tx, vx), so that x designates a seed born in position x
at time tx, which then grows radially in all directions with speed vx. For x ∈X, the set

Gx = Gx,tx,vx := {
(y, ty) ∈Rd ×R+ : ty ≥ tx, ‖y − x‖ ≤ vx(ty − tx)

}
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CLT for a birth–growth model with Poisson arrivals 1007

is the growth region of the seed x. Denote by N the family of σ -finite counting measures M on
X equipped with the smallest σ -algebra N such that the maps M �→M(A) are measurable for
all Borel A. We write x ∈M if M({x}) ≥ 1. For M ∈ N, a point x ∈M is said to be exposed
in M if it does not belong to the growth region of any other point y ∈M, y �= x. Note that the
property of being exposed is not influenced by the speed component of x.

The influence set Lx = Lx,tx , x ∈X, defined at (1.1), is exactly the set of points that were
born before time tx and which at time tx occupy a region that covers the location x, thereby
shading it. Note that y ∈ Lx if and only if x ∈ Gy. Clearly, a point x ∈M is exposed in M if
and only if M(Lx \ {x}) = 0. We write (y, ty, vy)  (x, tx) or y  x if y ∈ Lx,tx (recall that the
speed component of x is irrelevant in such a relation), and so x is not an exposed point with
respect to δy, where δy denotes the Dirac measure at y.

For M ∈ N and x ∈M, define

Hx(M) ≡ Hx,tx (M) := 1{x is exposed in M} = 1M(Lx,tx \{x})=0.

A generic way to construct an additive functional on the exposed points is to consider the
sum of weights of these points, where each exposed point x contributes a weight h(x) for
some measurable h : X→R+. In the following we consider weight functions h(x) which are
products of two measurable functions h1 : Rd →R+ and h2 : R+ →R+ of the locations and
birth times, respectively, of the exposed points. In particular, we let h1(x) = 1W (x) = 1{x ∈ W}
for a window W ⊂Rd, and h2(t) = 1{t ≤ a} for a ∈ (0,∞). Then

F(M) :=
∫
X

h1(x)h2(tx)Hx(M)M(dx) =
∑

x∈M
1x∈W1tx≤aHx(M) (2.1)

is the number of exposed points from M located in W and born before time a. Note here that
when we add a new point y = (y, ty, vy) ∈Rd ×R+ ×R+ to a configuration M ∈ N not con-
taining it, the change in the value of F is not a function of only y and some local neighborhood
of it, but rather depends on points in the configuration that might be very far away. Indeed, for
y /∈M we have

F(M+ δy) − F(M) = 1y∈W1ty≤aHy(M+ δy) −
∑

x∈M
1x∈W1tx≤a1x∈L(y,ty) ;

that is, F may increase by one when y is exposed in M+ δy, while simultaneously, any point
x ∈M which was previously exposed in M may not be so anymore after the addition of y, if it
happens to fall in the influence set L(y,ty) of y. This necessitates the use of region-stabilization.

Recall that η is a Poisson process in X with intensity measure μ, being the product of
the Lebesgue measure λ on Rd, a non-null locally finite measure θ on R+, and a probability
measure ν on R+ with ν({0})< 1. Note that η is a simple random counting measure. The main
goal of this paper is to find sufficient conditions for a Gaussian convergence of F ≡ F(η) as
defined at (2.1). The functional F(η) is a region-stabilizing functional, in the sense of [3], and
can be represented as F(η) =∑

x∈η ξ (x, η), where the score function ξ is given by

ξ (x,M) := 1x∈W1tx≤aHx(M), x ∈M, (2.2)

with the region of stabilization being Lx,tx when x is an exposed point (see Section 4 for
more details). As a convention, let ξ (x,M) = 0 if M= 0 or if x /∈M. Theorem 2.1 in [3]
yields ready-to-use bounds on the Wasserstein and Kolmogorov distances between F, suitably
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normalized, and a standard Gaussian random variable N upon validating Equation (2.1) and
the conditions (A1) and (A2) therein. We consistently follow the notation of [3].

Now we are ready to state our main results. First, we list the necessary assumptions on our
model. In the sequel, we drop the λ in Lebesgue integrals and simply write dx instead of λ(dx).
Our assumptions are as follows:

(A) The window W is compact convex with non-empty interior.

(B) For all x> 0, ∫ ∞

0
e−x	(t) θ (dt)<∞,

where

	(t) := ωd

∫ t

0
(t − s)dθ (ds) (2.3)

and ωd is the volume of the d-dimensional unit Euclidean ball.

(C) The moment of ν of order 7d is finite, i.e., ν7d <∞, where

νu :=
∫ ∞

0
vuν(dv), u ≥ 0.

Note that the function 	(t) given at (2.3) is, up to a constant, the measure of the influence
set of any point x ∈X with time component tx = t (the measure of the influence set does not
depend on the location and speed components of x). Indeed, the μ-content of Lx,tx is given by

μ(Lx,tx ) =
∫ ∞

0

∫ tx

0

∫
Rd

1y∈Bvy(tx−ty)(x) dy θ (dty)ν(dvy)

=
∫ ∞

0
ν(dvy)

∫ tx

0
ωdvd

y (tx − ty)dθ (dty) = νd	(tx),

where Br(x) denotes the closed d-dimensional Euclidean ball of radius r centered at x ∈Rd. In
particular, if θ is the Lebesgue measure on R+, then 	(t) =ωd td+1/(d + 1).

The following theorem is our first main result. We denote by (Vj(W))0≤j≤d the intrinsic
volumes of W (see [19, Section 4.1]), and let

V(W) := max
0≤j≤d

Vj(W). (2.4)

Theorem 2.1. Let η be a Poisson process on X with intensity measure μ as above, such that
the assumptions (A)–(C) hold. Then, for F := F(η) as in (2.1) with a ∈ (0,∞),

dW

(
F −EF√

Var F
,N

)
≤ C

[√
V(W)

Var F
+ V(W)

(Var F)3/2

]

and

dK

(
F −EF√

Var F
,N

)
≤ C

[√
V(W)

Var F
+ V(W)

(Var F)3/2
+ V(W)5/4 + V(W)3/2

(Var F)2

]
for a constant C ∈ (0,∞) which depends on a, d, the first 7d moments of ν, and θ .
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To derive a quantitative central limit theorem from Theorem 2.1, a lower bound on the
variance is needed. The following proposition provides general lower and upper bounds on the
variance, which are then specialized for measures on R+ given by

θ (dt) := tτdt, τ ∈ (−1,∞). (2.5)

In the following, t1 ∧ t2 denotes min{t1, t2} for t1, t2 ∈R. For a ∈ (0,∞) and τ >−1, define
the function

la,τ (x) := γ

(
τ + 1

d + τ + 1
, ad+τ+1x

)
x−(τ+1)/(d+τ+1), x> 0, (2.6)

where γ (p, z) := ∫ z
0 tp−1e−tdt is the lower incomplete gamma function.

Proposition 2.1. Let the assumptions (A)–(C) be in force. For a Poisson process η with
intensity measure μ as above and F := F(η) as in (2.1),

Var(F)

λ(W)
≥
[ ∫ a

0
w(t)θ (dt) − 2ωdνd

∫ a

0

∫ t

0
(t − s)dw(s)w(t)θ (ds)θ (dt)

]
(2.7)

and

Var(F)

λ(W)
≤
[

2
∫ a

0
w(t)1/2θ (dt)

+ω2
dν2d

∫
[0,a]2

∫ t1∧t2

0
(t1 − s)d(t2 − s)dw(t1)1/2w(t2)1/2θ (ds)θ2(d(t1, t2))

]
, (2.8)

where
w(t) := e−νd	(t) =E

[
H0,t(η)

]
. (2.9)

If θ is given by (2.5), then

C1(d − 1 − τ )<C′
1 ≤ Var(F)

λ(W)la,τ (νd)
≤ C2(1 + ν2dν

−2
d ) (2.10)

for constants C1,C1
′,C2 depending on the dimension d and τ , and C1,C2 > 0.

We remark here that the lower bound in (2.10) is useful only when τ ≤ d − 1. We believe
that a positive lower bound still exists when τ > d − 1, even though our arguments in general
do not apply for such τ .

In the case of a deterministic speed v, Proposition 2.1 provides an explicit condition on θ
ensuring that the variance scales like the volume of the observation window in the classical
Johnson–Mehl growth model. The problem of finding such a condition, explicitly formulated
in [6, p. 754], arose in [5], where asymptotic normality for the number of exposed seeds in a
region, as the volume of the region approaches infinity, is obtained under the assumption that
the variance scales properly. This was by then only shown numerically for the case when θ
is the Lebesgue measure and d = 1, 2, 3, 4. Subsequent papers [17, 20] derived the variance
scaling for θ being the Lebesgue measure and some generalizations of it, but in a slightly
different formulation of the model, in which seeds that do not appear in the observation window
are automatically rejected and cannot influence the growth pattern in the region W.
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It should be noted that it might also be possible to use [12, Theorem 1.2] to obtain a quan-
titative central limit theorem and variance asymptotics for statistics of the exposed points in
a domain W which is the union of unit cubes around a subset of points in Zd. For this, one
would need to check Assumption 1.1 from the cited paper, which ensures non-degeneracy
of the variance, and a moment condition in the form of Equation (1.10) therein. It seems
to us that checking Assumption 1.1 may be a challenging task and would involve further
assumptions on the model, such as the one we also need in our Proposition 2.1. Controls
on the long-range interactions would also be necessary to check [12, Equation (1.10)]. Thus,
while this might indeed yield results similar to ours, the goal of the present work is to
highlight the application of region-stabilization in this context, which in general is of a dif-
ferent nature from the methods in [12]. For example, the approach in [12] does not apply for
Pareto-minimal points in a hypercube considered in [3], since there is no polynomial decay
in long-range interactions, while region-stabilization yields optimal rates for the Gaussian
convergence.

The bounds in Theorem 2.1 can be specified under two different scenarios. When con-
sidering a sequence of weight functions, under suitable conditions Theorem 2.1 provides a
quantitative central limit theorem for the corresponding functionals (Fn)n∈N. Keeping all other
quantities fixed with respect to n, consider the sequence of non-negative location-weight func-
tions on Rd given by h1,n = 1n1/dW for a fixed convex body W ⊂Rd satisfying (A). In view of
Proposition 2.1, this provides the following quantitative central limit theorem.

Theorem 2.2. Let the assumptions (A)–(C) be in force. For n ∈N and η as in Theorem 2.1, let
Fn := Fn(η), where Fn is defined as in (2.1) with a independent of n and h1 = h1,n = 1n1/dW.
Assume that θ and ν satisfy∫ a

0
w(t)θ (dt) − 2ωdνd

∫ a

0

∫ t

0
(t − s)dw(s)w(t)θ (ds)θ (dt)> 0 , (2.11)

where w(t) is given at (2.9). Then there exists a constant C ∈ (0,∞), depending on a, d, the
first 7d moments of ν, θ , and W, such that

max

{
dW

(
Fn −EFn√

Var Fn
,N

)
, dK

(
Fn −EFn√

Var Fn
,N

)}
≤ Cn−1/2

for all n ∈N. In particular, (2.11) is satisfied for θ given at (2.5) with τ ∈ (−1, d − 1].
Furthermore, the bound on the Kolmogorov distance is of optimal order; i.e., when (2.11)

holds, there exists a constant 0<C′ ≤ C depending only on a, d, the first 2d moments of ν, θ ,
and W, such that

dK

(
Fn −EFn√

Var Fn
,N

)
≥ C′n−1/2.

When (2.11) is satisfied, Theorem 2.2 yields a central limit theorem for the number of
exposed seeds born before time a ∈ (0,∞), with rate of convergence of order n−1/2. This
extends the central limit theorem for the number of exposed seeds from [5] in several direc-
tions: the model is generalized to random growth speeds, there is no constraint of any kind on
the shape of the window W except convexity, and a logarithmic factor is removed from the rate
of convergence.

In a different scenario, if θ has a power-law density (2.5) with τ ∈ (−1, d − 1], it is possible
to explicitly specify the dependence of the bound in Theorem 2.1 on the moments of ν, as
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stated in the following result. Note that for the above choice of θ , the assumption (B) is trivially
satisfied. Define

Vν(W) :=
d∑

i=0

Vd−i(W)νd+i,

which is the sum of the intrinsic volumes of W weighted by the moments of the speed.

Theorem 2.3. Let the assumptions (A) and (C) be in force. For θ given at (2.5) with τ ∈ (−1,
d − 1], consider F = F(η), where η is as in Theorem 2.1 and F is defined as in (2.1) with
a ∈ (0,∞). Then there exists a constant C ∈ (0,∞), depending only on d and τ , such that

dW

(
F −EF√

Var F
,N

)

≤ C(1 + ad)
(

1 + ν7dν
−7
d

)2
[
ν

− 1
2

(
τ+1

d+τ+1 +1
)

d

√
Vν(W)

la,τ (νd)λ(W)
+ ν

− τ+1
d+τ+1 −1

d Vν(W)

la,τ (νd)3/2λ(W)3/2

]
,

and

dK

(
F −EF√

Var F
,N

)
≤ C(1 + ad)3/2

(
1 + ν7dν

−7
d

)2
[
ν

− 1
2

(
τ+1

d+τ+1 +1
)

d

√
Vν(W)

la,τ (νd)λ(W)

+ ν
− τ+1

d+τ+1 −1
d Vν(W)

la,τ (νd)3/2λ(W)3/2
+ ν

− 5
4

(
τ+1

d+τ+1 +1
)

d Vν(W)5/4 + ν
− 3

2

(
τ+1

d+τ+1 +1
)

d Vν(W)3/2

la,τ (νd)2λ(W)2

]
,

where la,τ is defined at (2.6).

Note that our results for the number of exposed points can also be interpreted as quantitative
central limit theorems for the number of local minima of the growth frontier, which is of
independent interest. As an application of Theorem 2.3, we consider the case when the intensity
of the underlying point process grows to infinity. The quantitative central limit theorem for this
case is contained in the following result.

Corollary 2.1. Let the assumptions (A) and (C) be in force. Consider F(ηs) defined at (2.1)
with a ∈ (0,∞), evaluated at the Poisson process ηs with intensity sλ⊗ θ ⊗ ν for s ≥ 1 and θ
given at (2.5) with τ ∈ (−1, d − 1]. Then there exists a finite constant C ∈ (0,∞) depending
only on W, d, a, τ , νd, and ν7d, such that, for all s ≥ 1,

max

{
dW

(
F(ηs) −EF(ηs)√

Var F(ηs)
,N

)
, dK

(
F(ηs) −EF(ηs)√

Var F(ηs)
,N

)}
≤ Cs− d

2(d+τ+1) .

Furthermore, the bound on the Kolmogorov distance is of optimal order.

3. Variance estimation

In this section, we estimate the mean and variance of the statistic F, thus providing a proof
of Proposition 2.1. Recall the weight function h(x) := h1(x)h2(tx), where h1(x) = 1{x ∈ W} and
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h2(t) = 1{t ≤ a}. Notice that by the Mecke formula, the mean of F is given by

EF(η) =
∫
X

h(x)EHx(η+ δx)μ(dx)

=
∫
Rd

h1(x)dx
∫ ∞

0
h2(t)w(t)θ (dt) = λ(W)

∫ a

0
w(t)θ (dt),

where w(t) is defined at (2.9). In many instances, we will use the simple inequality

2ab ≤ a2 + b2, a, b ∈R+. (3.1)

Also notice that for x ∈Rd,∫
Rd
λ
(
Br1 (0) ∩ Br2 (x)

)
dx =

∫
Rd

1y∈Br1 (0)

∫
Rd

1y∈Br2 (x)dxdy =ω2
drd

1rd
2 . (3.2)

The multivariate Mecke formula (see, e.g., [15, Theorem 4.4]) yields that

Var(F) =
∫
X

h(x)2EHx(η+ δx)μ(dx) −
( ∫

X

h(x)EHx(η+ δx)μ(dx)
)2

+
∫

D
h(x)h(y)E

[
Hx(η+ δy + δx)Hy(η+ δx + δy)

]
μ2(d(x, y)),

where the double integration is over the region D ⊂X where the points x and y are
incomparable (x � y and y � x), i.e.,

D := {
(x, y) : ‖x − y‖>max{vx(ty − tx), vy(tx − ty)}}.

It is possible to get rid of one of the Dirac measures in the inner integral, since on D the points
are incomparable. Thus, using the translation-invariance of EHx(η), we have

Var(F) = λ(W)
∫ a

0
w(t)θ (dt) − I0 + I1, (3.3)

where

I0 := 2
∫
X2

1yxh1(x)h1(y)h2(tx)h2(ty)w(tx)w(ty)μ2(d(x, y)),

and

I1 :=
∫

D
h1(x)h1(y)h2(tx)h2(ty)

[
E
[
Hx(η+ δx)Hy(η+ δy)

]− w(tx)w(ty)
]
μ2(d(x, y)).

Finally, we will use the following simple inequality for the incomplete gamma function:

min{1, bx}γ (x, y) ≤ γ (x, by) ≤ max{1, bx}γ (x, y), (3.4)

which holds for all x ∈R+ and b, y> 0.

Proof of Proposition 2.1. First, notice that the term I1 in (3.3) is non-negative, since

E[Hx(η)Hy(η)] = e−μ(Lx∪Ly) ≥ e−μ(Lx)e−μ(Ly) = w(tx)w(ty).
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Furthermore, (3.1) yields that

I0 ≤
∫
X

h1(x)2h2(tx)w(tx)

[∫
X

1yxh2(ty)w(ty)μ(dy)

]
μ(dx)

+
∫
X

h1(y)2h2(ty)w(ty)

[∫
X

1yxh2(tx)w(tx)μ(dx)

]
μ(dy).

Since y  x is equivalent to ‖y − x‖ ≤ vy(tx − ty), the first summand on the right-hand side
above can be simplified as∫

X

h1(x)2h2(tx)w(tx)

[∫
X

1yxh2(ty)w(ty)μ(dy)

]
μ(dx)

=
∫
Rd

∫ ∞

0
h1(x)2h2(tx)w(tx)θ (dtx)dx

∫ ∞

0

∫ tx

0
ωdvd

y (tx − ty)dh2(ty)w(ty)θ (dty)ν(dvy)

=ωdνdλ(W)
∫ a

0

∫ t

0
(t − s)dw(s)w(t)θ (ds)θ (dt).

The second summand in the bound on I0, upon interchanging integrals for the second step,
turns into∫

X

h1(y)2h2(ty)w(ty)

[∫
X

1yxh2(tx)w(tx)μ(dx)

]
μ(dy)

=
∫
Rd

∫ ∞

0
h1(y)2h2(ty)w(ty)θ (dty)dy

∫ ∞

0

∫ ∞

ty
ωdvd

y (tx − ty)dh2(tx)w(tx)θ (dtx)ν(dvy)

=ωdνdλ(W)
∫ a

0

∫ t

0
(t − s)dw(s)w(t)θ (ds)θ (dt).

Combining, by (3.3) we obtain (2.7).
To prove (2.8), note that by the Poincaré inequality (see [15, Section 18.3]),

Var(F) ≤
∫
X

E
(
F(η+ δx) − F(η)

)2
μ(dx).

Observe that η is simple, and for x /∈ η,

F(η+ δx) − F(η) = h(x)Hx(η+ δx) −
∑
y∈η

h(y)Hy(η)1y�x .

The inequality

−
∑
y∈η

h(x)h(y)Hx(η+ δx)Hy(η)1y�x ≤ 0

in the first step and the Mecke formula in the second step yield that∫
X

E
∣∣F(η+ δx) − F(η)

∣∣2μ(dx)

≤
∫
X

E
[
h(x)2Hx(η+ δx)

]
μ(dx) +

∫
X

E

[ ∑
y,z∈η

1y�x1z�xh(y)h(z)Hy(η)Hz(η)
]
μ(dx)

=
∫
X

h(x)2w(tx)μ(dx) +
∫
X2

1y�xh(y)2w(ty)μ2(d(x, y))

+
∫
X

∫
Dx

h(y)h(z)e−μ(Ly∪Lz)μ2(d(y, z))μ(dx), (3.5)
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where

Dx := {
(y, z) ∈X2 : y � x, z � x, y �� z, z �� y

}
.

Using that xe−x/2 ≤ 1 for x ∈R+, observe that∫
X2

1y�xh(y)2w(ty)μ2(d(x, y)) =
∫
X

h(y)2w(ty)μ(Ly)μ(dy)

≤
∫
X

h(y)2w(ty)1/2μ(dy). (3.6)

Next, using that μ(Ly ∪ Lz) ≥ (μ(Ly) +μ(Lz))/2 and that Dx ⊆ {y, z � x} for the first inequal-
ity, and (3.1) for the second one, we have∫

X

∫
Dx

h(y)h(z)e−μ(Ly∪Lz)μ2(d(y, z))μ(dx)

≤
∫
X

∫
X2

1y,z�xh(y)h(z)w(ty)1/2w(tz)
1/2μ2(d(y, z))μ(dx)

≤
∫

[0,a]2
w(ty)1/2w(tz)

1/2
∫
R2d

h1(z)2
(∫

X

1xy,zμ(dx)

)
d(y, z)θ2(d(ty, tz)). (3.7)

By (3.2), ∫
Rd

∫
X

1xy,zμ(dx)dy

=
∫ ty∧tz

0

∫ ∞

0
ν(dvx)θ (dtx)

∫
Rd
λ
(
Bvx(ty−tx)(y) ∩ Bvx(tz−tx)(z)

)
dy

=ω2
dν2d

∫ ty∧tz

0
(ty − tx)d(tz − tx)dθ (dtx).

Plugging in (3.7), we obtain∫
X

∫
Dx

h(y)h(z)e−μ(Ly∪Lz)μ2(d(y, z))μ(dx)

≤ω2
dν2dλ(W)

∫
[0,a]2

∫ t1∧t2

0
(t1 − s)d(t2 − s)dw(t1)1/2w(t2)1/2θ (ds)θ2(d(t1, t2)).

This in combination with (3.5) and (3.6) proves (2.8).
Now we move on to prove (2.10). We first confirm the lower bound. Fix τ ∈ (−1, d − 1], as

otherwise the bound is trivial, and a ∈ (0,∞). Then

	(t) =ωd

∫ t

0
(t − s)dsτds =ωdtd+τ+1B(d + 1, τ + 1) = Bωdtd+τ+1,

where B := B(d + 1, τ + 1) is a value of the beta function. Hence, we have w(t) =
exp{−Bωdνdtd+τ+1}. Plugging in, we obtain

Var(F)

λ(W)
≥
∫ a

0
e−Bωdνdtd+τ+1

θ (dt)

− 2ωdνd

∫ a

0

∫ t

0
(t − s)de−Bωdνd(sd+τ+1+td+τ+1)θ (ds)θ (dt)

=
(

1

Bωdνd

) τ+1
d+τ+1

[ ∫ b

0
e−td+τ+1

tτdt − 2

B

∫ b

0

∫ t

0
(t − s)de−(sd+τ+1+td+τ+1)tτ sτdsdt

]
, (3.8)
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where b := a(Bωdνd)1/(d+τ+1). Writing s = tu for some u ∈ [0, 1], we have

2

B

∫ b

0

∫ t

0
(t − s)de−(sd+τ+1+td+τ+1)tτ sτdsdt

≤ 2

B

∫ b

0
td+2τ+1

∫ 1

0
(1 − u)duτ e−td+τ+1(ud+τ+1+1)dudt< 2

∫ b

0
td+2τ+1e−td+τ+1

dt.

By substituting td+τ+1 = z, it is easy to check that for any ρ >−1,∫ b

0
e−td+τ+1

tρdt = 1

d + τ + 1
γ

(
ρ + 1

d + τ + 1
, bd+τ+1

)
,

where γ is the lower incomplete gamma function. In particular, using that xγ (x, y)> γ (x +
1, y) for x, y> 0, we have∫ b

0
e−td+τ+1

td+2τ+1dt = 1

d + τ + 1
γ

(
1 + τ + 1

d + τ + 1
, bd+τ+1

)
<

τ + 1

(d + τ + 1)2
γ

(
τ + 1

d + τ + 1
, bd+τ+1

)
.

Thus, since τ ∈ (−1, d − 1],

∫ b

0
e−td+τ+1

tτdt − 2

B

∫ b

0

∫ t

0
(t − s)de−(sd+τ+1+td+τ+1)tτ sτdsdt

> γ

(
τ + 1

d + τ + 1
, bd+τ+1

)
1

d + τ + 1

[
1 − 2(τ + 1)

d + τ + 1

]
≥ 0.

By (3.8) and (3.4), we obtain the lower bound in (2.10).
For the upper bound in (2.10), for θ as in (2.5), arguing as above we have

∫ a

0
w(t)1/2θ (dt) =

∫ a

0
e−Bωdνdtd+τ+1/2θ (dt) = (2/Bωdνd)

τ+1
d+τ+1

d + τ + 1
γ

(
τ + 1

d + τ + 1
, bd+τ+1

)
.

Finally, substituting s′ = (Bωdνd)
1

d+τ+1 s and similarly for t1 and t2, it is straightforward to see
that

ν2d

∫
[0,a)2

∫ t1∧t1

0
(t1 − s)d(t2 − s)dw(t1)1/2w(t2)1/2θ (ds)θ2(d(t1, t2))

≤ Cν2dν
−2
d ν

− τ+1
d+τ+1

d

(∫
R+

td+τ e−td+τ+1/4dt

)2 ∫ b

0
s′τ e−s′d+τ+1

/2ds′

≤ C′ν2dν
−2
d ν

− τ+1
d+τ+1

d γ

(
τ + 1

d + τ + 1
,

bd+τ+1

2

)
for some constants C,C′ depending only on d and τ . The upper bound in (2.10) now follows
from (2.8) upon using the above computation and (3.4). �
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4. Proofs of the theorems

In this section, we derive our main results using [3, Theorem 2.1]. While we do not restate
this theorem here, referring the reader to [3, Section 2], it is important to note that the Poisson
process considered in [3, Theorem 2.1] has the intensity measure sQ obtained by scaling a
fixed measure Q on X with s. Nonetheless, the main result is non-asymptotic, and while in the
current paper we consider a Poisson process with fixed intensity measure μ (without a scaling
parameter), we can still use [3, Theorem 2.1] with s = 1 and the measure Q replaced by μ.
While still following the notation from [3], we drop the subscript s for ease of notation.

Recall that for M ∈ N, the score function ξ (x,M) is defined at (2.2). It is straightforward to
check that if ξ (x,M1) = ξ (x,M2) for some M1,M2 ∈ N with 0 �=M1 ≤M2 (meaning that
M2 −M1 is a nonnegative measure) and x ∈M1, then ξ (x,M1) = ξ (x,M) for all M ∈ N
such that M1 ≤M≤M2, so that [3, Equation (2.1)] holds. Next we check the assumptions
(A1) and (A2) in [3].

For M ∈ N and x ∈M, define the stabilization region

R(x,M) :=
{

Lx,tx if x is exposed in M,

∅ otherwise.

Notice that
{M ∈ N : y ∈ R(x,M+ δx)} ∈ N for all x, y ∈X,

and that
P {y ∈ R(x, η+ δx)} = 1yxe−μ(Lx,tx ) = 1yxw(tx)

and
P{{y, z} ⊆ R(x, η+ δx)} = 1yx1zxe−μ(Lx,tx ) = 1yx1zxw(tx)

are measurable functions of (x, y) ∈X2 and (x, y, z) ∈X3 respectively, with w(t) defined at
(2.9). It is not hard to see that R is monotonically decreasing in the second argument, and
that for all M ∈ N and x ∈M, M(R(x,M)) ≥ 1 implies that x is exposed, so that (M+
δy)(R(x,M+ δy)) ≥ 1 for all y �∈ R(x,M). Moreover, the function R satisfies

ξ
(
x,M)= ξ

(
x,MR(x,M)

)
, M ∈ N, x ∈M ,

where MR(x,M) denotes the restriction of the measure M to the region R(x,M). It is important
to note here that this holds even when x is not exposed in M, since in this case, the left-
hand side is 0 where the right-hand side is 0 by our convention that ξ (x, 0) = 0. Hence, the
assumptions (A1.1)–(A1.4) in [3] are satisfied. Furthermore, notice that for any p ∈ (0, 1], for
all M ∈ N with M(X) ≤ 7, we have

E

[
ξ (x, η+ δx +M)4+p

]
≤ 1x∈W1tx≤aw(tx),

confirming the condition (A2) in [3] with Mp(x) := 1{x ∈ W, tx ≤ a}. For definiteness, we take
p = 1 and define

M̃(x) := max{M1(x)2,M1(x)4} = 1x∈W1tx≤a.

Finally, define

r(x, y) :=
{
νd	(tx) if y  x,

∞ if y � x,
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so that
P {y ∈ R(x, η+ δx)} = 1yxw(tx) = e−r(x,y), x, y ∈X,

which corresponds to [3, Equation (2.4)]. Now that we have checked all the necessary con-
ditions, we can invoke [3, Theorem 2.1]. Let ζ := p

40+10p = 1/50, and define functions of
y ∈X by

g(y) :=
∫
X

e−ζ r(x,y) μ(dx), (4.1)

h(y) :=
∫
X

1x∈W1tx≤ae−ζ r(x,y) μ(dx), (4.2)

G(y) := 1y∈W1tx≤a + max{h(y)4/9, h(y)8/9}(1 + g(y)4). (4.3)

For x, y ∈X, let

q(x, y) :=
∫
X

P

{
{x, y} ⊆ R

(
z, η+ δz

)}
μ(dz) =

∫
xz,yz

w(tz)μ(dz). (4.4)

For α > 0, let
fα(y) := f (1)

α (y) + f (2)
α (y) + f (3)

α (y), y ∈X,

where, for y ∈X,

f (1)
α (y) :=

∫
X

G(x)e−αr(x,y) μ(dx) =
∫

yx
G(x)w(tx)αμ(dx),

f (2)
α (y) :=

∫
X

G(x)e−αr(y,x) μ(dx) = w(ty)α
∫

xy
G(x)μ(dx),

f (3)
α (y) :=

∫
X

G(x)q(x, y)α μ(dx). (4.5)

Finally, let
κ(x) := P {ξ (x, η+ δx) �= 0} = 1x∈W1tx≤aw(tx), x ∈X.

For an integrable function f : X→R, denote μf := ∫
X

f (x)μ(dx). With β := p
32+4p = 1/36,

[3, Theorem 2.1] yields that F = F(η) as in (2.1) satisfies

dW

(
F −EF√

Var F
,N

)
≤ C

[√
μf 2
β

Var F
+ μ((κ + g)2βG)

(Var F)3/2

]
(4.6)

and

dK

(
F −EF√

Var F
,N

)
≤ C

[√
μf 2
β +√

μf2β

Var F
+
√
μ((κ + g)2βG)

Var F

+ μ((κ + g)2βG)

(Var F)3/2
+ (μ((κ + g)2βG))5/4 + (μ((κ + g)2βG))3/2

(Var F)2

]
, (4.7)
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where N is a standard normal random variable and C ∈ (0,∞) is a constant.
In the rest of this section, we estimate the summands on the right-hand side of the above

two bounds to obtain our main results. While the bounds above are admittedly quite difficult
to interpret, they essentially involve integrals of functions which are products involving an
exponential part and a polynomial part. Because of the faster decay of the exponential part, the
integrals grow at a rate that is at most some small enough power of the variance of F, and this
yields the presumably optimal rates of convergence in Theorem 2.2. We start with a simple
lemma.

Lemma 4.1. For all x ∈R+ and y> 0,

Q(x, y) :=
∫ ∞

0
tx e−y	(t) θ (dt) =

∫ ∞

0
tx w(t)y/νd θ (dt)<∞. (4.8)

Proof. Assume that θ ([0, c])> 0 for some c ∈ (0,∞), since otherwise the result holds
trivially. Notice that ∫ 2c

0
tx e−y	(t)θ (dt) ≤ (2c)x

∫ ∞

0
e−y	(t)θ (dt)<∞

by the assumption (B). Hence, it suffices to show the finiteness of the integral over [2c,∞).
The inequality wx/de−w/2 ≤ C for some finite constant C> 0 yields that∫ ∞

2c
tx e−y	(t)θ (dt) ≤ C

yx/d

∫ ∞

2c

tx

	(t)x/d
e−y	(t)/2θ (dt).

For t ≥ 2c,

	(t) =
∫ t

0
(t − s)dθ (ds) ≥

∫ t/2

0
(t − s)dθ (ds) ≥ (t/2)dθ ([0, t/2]) ≥ 2−dtdθ ([0, c]).

Thus, ∫ ∞

2c
tx e−y	(t)θ (dt) ≤ C2x

(yθ ([0, c]))x/d

∫ ∞

2c
e−y	(t)/2θ (dt)<∞

by the assumption (B), yielding the result. �
To compute the bounds in (4.6) and (4.7), we need to bound μf2β and μf 2

β , with β = 1/36.

Nonetheless, we provide bounds on μfα and μf 2
α for any α > 0. By Jensen’s inequality, it

suffices to bound μf (i)
α and μ(f (i)

α )2 for i = 1, 2, 3. This is the objective of the following three
lemmas.

For g defined at (4.1),

g(y) =
∫
X

1yxw(tx)ζμ(dx) =
∫ ∞

ty

∫
Rd

1x∈Bvy(tx−ty)(y)w(tx)ζ dxθ (dtx)

=ωdvd
y

∫ ∞

ty
(tx − ty)dw(tx)ζ θ (dtx) ≤ωdvd

y

∫ ∞

0
tdx w(tx)ζ θ (dtx) =ωdQ(d, ζ νd) vd

y ,
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where Q is defined at (4.8). Similarly, for h as in (4.2) with a ∈ (0,∞), we have

h(y) =
∫
X

1yxw(tx)ζ1x∈W1tx≤aμ(dx)

= 1ty≤a

∫ a

ty

(∫
Rd

1x∈Bvy(tx−ty)(y)1x∈W dx

)
w(tx)ζ θ (dtx)

≤ 1y∈W+Bvy(a−ty)(0)

∫ ∞

ty

∫
Rd

1x∈Bvy(tx−ty)(y)w(tx)ζ dxθ (dtx)

≤ 1y∈W+Bvy(a−ty)(0)

∫ ∞

ty
ωdvd

y tdx w(tx)ζ θ (dtx)

≤ 1y∈W+Bvya(0)ωdQ(d, ζ νd) vd
y .

Therefore, the function G defined at (4.3) for a ∈ (0,∞) is bounded by

G(y) ≤ 1y∈W + 1y∈W+Bvya(0)(1 +ωdQ(d, ζ νd) vd
y )(1 +ω4

dQ(d, ζ νd)4 v4d
y )

≤ 6ω5
d1y∈W+Bvya(0)p(vy) , (4.9)

with

p(vy) := 1 + Q(d, ζ νd)5v5d
y .

Define

Mu :=
∫ ∞

0
vup(v)ν(dv), u ∈R+.

In particular,

M0 :=
∫ ∞

0
p(v)ν(dv) = 1 + Q(d, ζ νd)5ν5d,

and

M := M0 + Md =
∫ ∞

0
(1 + vd)p(v)ν(dv) = 1 + νd + Q(d, ζ νd)5(ν5d + ν6d).

Recall V(W) defined at (2.4), and let ω= max0≤j≤d ωj. The Steiner formula (see [19,
Section 4.1]) yields that∫

R+
λ(W + Bvxa(0))p(vx)ν(dvx) =

d∑
i=0

∫
R+
ωiv

i
xaiVd−i(W) p(vx)ν(dvx)

≤ω(1 + ad)
d∑

i=0

Vd−i(W)Mi (4.10)

≤ cd(1 + ad)M V(W), (4.11)

with cd = (d + 1)ω, where in the final step we have used the simple inequality va
x ≤ 1 + vb

x
for any 0 ≤ a ≤ b<∞. We will use this fact many times in the sequel without mentioning it
explicitly.
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We will also often use the fact that for an increasing function f of the speed v, since p is
also increasing, by positive association, we have∫

R+
f (v)p(v)ν(dv) ≥ M0

∫
R+

f (v)ν(dv).

Lemma 4.2. For a ∈ (0,∞), α > 0, and f (1)
α defined at (4.5),∫

X

f (1)
α (y)μ(dy) ≤ C1 V(W) and

∫
X

f (1)
α (y)2μ(dy) ≤ C2 V(W),

where

C1 := C(1 + ad)M
Q(0, ανd/2)

α
,

C2 := C(1 + ad) M0Mν2dQ(d, ανd/2)2Q(0, ανd),

for a constant C ∈ (0,∞) depending only on d.

Proof. Using (4.9), we can write∫
X

f (1)
α (y)μ(dy) =

∫
X

∫
yx

G(x)w(tx)αμ(dx)μ(dy)

≤ 6ω5
dνd

∫
X

	(tx)1x∈W+Bvxa(0)p(vx)w(tx)αμ(dx) =: 6ω5
dνd I1,

whence, using (4.11) and the fact that xe−x/2 ≤ 1 for x ∈R+, we obtain

I1: =
∫
R

2+
λ(W + Bvxa(0))p(vx)	(tx)w(tx)αθ (dtx)ν(dvx)

≤ cd(1 + ad)M V(W)
∫
R+
	(tx)w(tx)αθ (dtx)

≤ cd(1 + ad)M
Q(0, ανd/2)

ανd
V(W),

proving the first assertion.

For the second assertion, first, by (3.2), for any t1, t2 ∈R+ we have∫
Rd
μ(L0,t1 ∩ Lx,t2 )dx =

∫ t1∧t2

0
θ (ds)

∫ ∞

0
ν(dv)

∫
Rd
λ(Bv(t1−s)(0) ∩ Bv(t2−s)(x))dx

=ω2
d

∫ ∞

0
v2dν(dv)

∫ t1∧t2

0
(t1 − s)d(t2 − s)dθ (ds)

=ω2
dν2d

∫ t1∧t2

0
(t1 − s)d(t2 − s)dθ (ds) =: �(t1, t2), (4.12)

which is symmetric in t1 and t2. Thus, changing the order of the integrals in the second step
and using (4.9) for the final step, we get
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∫
X

f (1)
α (y)2μ(dy) =

∫
X

∫
yx1

∫
yx2

G(x1)w(tx1 )αG(x2)w(tx2 )αμ(dx1)μ(dx2)μ(dy)

=
∫
X

∫
X

(∫
yx1,yx2

μ(dy)

)
G(x1)G(x2)

(
w(tx1 )w(tx2 )

)α
μ(dx1)μ(dx2)

=
∫
X

∫
X

μ(Lx1,tx1
∩ Lx2,tx2

)G(x1)G(x2)
(
w(tx1 )w(tx2 )

)α
μ(dx1)μ(dx2)

≤ 36ω10
d M0I2, (4.13)

where

I2 :=
∫
R

3+

(∫
Rd

(∫
Rd
μ(L0,tx1

∩ Lx2−x1,tx2
)dx2

)
1x1∈W+Bvx1 a(0)dx1

)
× p(vx1 )

(
w(tx1 )w(tx2 )

)α
θ2(d(tx1, tx2 )ν(dvx1 ).

By (4.11) and (4.12), we have

I2 =
∫
R

3+
�(tx1, tx2 )λ(W + Bvx1 a(0))p(vx1 )

(
w(tx1 )w(tx2 )

)α
θ2(d(tx1, tx2 )ν(dvx1 )

≤ cd(1 + ad)M V(W)
∫
R

2+
�(tx1, tx2 )

(
w(tx1 )w(tx2 )

)α
θ2(d(tx1, tx2 )).

Using that w is a decreasing function, the result now follows from (4.13) and (4.12) by noticing
that ∫

R
2+
�(tx1, tx2 )

(
w(tx1 )w(tx2 )

)α
θ2(d(tx1, tx2 ))

=ω2
dν2d

∫
R

2+

∫ tx1∧tx2

0
(tx1 − s)d(tx2 − s)d(w(tx1 )w(tx2 )

)α
θ (ds)θ2(d(tx1, tx2 ))

=ω2
dν2d

∫ ∞

0

(∫ ∞

s
(t − s)dw(t)αθ (dt)

)2

θ (ds)

≤ω2
dν2d

∫ ∞

0

(∫ ∞

0
tdw(t)α/2θ (dt)

)2

w(s)αθ (ds) =ω2
dν2dQ(d, ανd/2)2Q(0, ανd).

�
Arguing as in (4.11), we also have∫

R+
λ(W + Bvxa(0))vd

x p(vx)ν(dvx) ≤ω(1 + ad)
d∑

i=0

Vd−i(W)Md+i (4.14)

≤ cd(1 + ad)M′ V(W), (4.15)

with

M′ :=
∫ ∞

0
(1 + vd)vdp(v)ν(dv) = νd + ν2d + Q(d, ζ νd)5(ν6d + ν7d).

Note that by positive association, we have νdM ≤ M′.
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Lemma 4.3. For a ∈ (0,∞), α > 0, and f (2)
α defined at (4.5),∫

X

f (2)
α (y)μ(dy) ≤ C1 V(W) and

∫
X

f (2)
α (y)2μ(dy) ≤ C2 V(W)

for

C1 := C(1 + ad)M′ Q(0, ανd/2)Q(d, ανd/2) ,

C2 := C(1 + ad) MdM′ Q(0, ανd/3)2Q(2d, ανd/3),

for a constant C ∈ (0,∞) depending only on d.

Proof. By the definition of f (2)
α , (4.9), and (4.15), we obtain∫

X

f (2)
α (y)μ(dy)

≤ 6ω5
d

∫
X

(∫
xy

w(ty)αμ(dy)

)
1x∈W+Bvxa(0)p(vx)μ(dx)

= 6ω6
d

∫ ∞

0

∫ ∞

tx
w(ty)α(ty − tx)d

∫ ∞

0
λ(W + Bvxa(0))vd

x p(vx)ν(dvx)θ (dty)θ (dtx)

≤ 6ω6
dcd(1 + ad)M′ V(W)

∫ ∞

0
w(tx)α/2θ (dtx)

∫ ∞

0
tdy w(ty)α/2θ (dty)

≤ 6ω6
dcd(1 + ad)M′ Q(0, ανd/2)Q(d, ανd/2) V(W),

where in the penultimate step we have used that w is decreasing. This proves the first assertion.

For the second assertion, using (4.9), we have∫
X

f (2)
α (y)2μ(dy) =

∫
X

w(ty)2α
(∫

x1y
G(x1)μ(dx1)

∫
x2y

G(x2)μ(dx2)

)
μ(dy)

=
∫
X

∫
X

(∫
x1y,x2y

w(ty)2αμ(dy)

)
G(x1)G(x2)μ(dx1)μ(dx2)

≤ 36ω10
d

∫
X

∫
X

p(vx1 )p(vx2 )

× 1x1∈W+Bvx1 a(0)

(∫
x1y,x2y

w(ty)2αμ(dy)

)
μ(dx1)μ(dx2). (4.16)

For fixed x1, tx2 , and vx2 , we have∫
Rd

∫
x1y,x2y

w(ty)2αμ(dy)dx2

=
∫ ∞

tx1∨tx2

w(ty)2α
(∫

Rd
λ
(
Bvx1 (ty−tx1 )(0) ∩ Bvx2 (ty−tx2 )(x)

)
dx

)
θ (dty)

=ω2
dvd

x1
vd

x2

∫ ∞

tx1∨tx2

(ty − tx1 )d(ty − tx2 )dw(ty)2αθ (dty) .
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Arguing similarly as for μ(f (2)
α ) above, we obtain from (4.16) and (4.15) that∫

X

f (2)
α (y)2μ(dy) ≤ 36ω12

d Md

∫ ∞

0
λ
(
W + Bvx1 a(0)

)
vd

x1
p(vx1 )ν(dvx1 )

×
∫
R

2+

(∫ ∞

tx1∨tx2

(ty − tx1 )d(ty − tx2 )dw(ty)αθ (dty)

)
θ2(d(tx1, tx2 ))

≤ 36ω12
d cd(1 + ad) MdM′V(W)

∫ ∞

0
w(tx1 )α/3θ (dtx1 )

×
∫ ∞

0
w(tx2 )α/3θ (dtx2 )

∫ ∞

0
t2d
y w(ty)α/3θ (dty)

≤ 36ω12
d cd(1 + ad) MdM′ Q(0, ανd/3)2Q(2d, ανd/3) V(W). �

Before proceeding to bound the integrals of f (3), notice that, since θ is a non-null measure,

M′
α = M′

α(νd) :=
∫ ∞

0
td−1e− ανd

3 	(t)dt =
∫ ∞

0
td−1e− αωdνd

3

∫ t
0 (t−s)dθ(ds)dt

≤
∫ ∞

0
td−1e− αωdνd

3

∫ t/2
0 (t/2)dθ(ds)dt =

∫ ∞

0
td−1e− αωdνd

3 θ([0,t/2))(t/2)d
dt<∞ . (4.17)

Lemma 4.4. For a ∈ (0,∞), α ∈ (0, 1], and f (3)
α defined at (4.5),∫

X

f (3)
α (y)μ(dy) ≤ C1 V(W) and

∫
X

f (3)
α (y)2μ(dy) ≤ C2 V(W),

where

C1 := C (1 + ad)M′Q(0, ανd/3)2
[
M′
α + Q(2d, ανd/3)νd

]
,

C2 := C (1 + ad)MdM′(1 + ν2dν
−2
d )Q(0, ανd/3)3

×
(

M′
α

2 + M′
αQ(2d, ανd/3)νd + Q(2d, ανd/3)2ν2d

)
,

for a constant C ∈ (0,∞) depending only on d.

Proof. Note that x, y  z implies

|x − y| ≤ |x − z| + |y − z| ≤ tz(vx + vy).

For q defined at (4.4), we have

q(x, y) ≤ e−νd	(r0)
∫ ∞

r0

λ
(
Bvx(tz−tx)(0) ∩ Bvy(tz−ty)(y − x)

)
e−νd(	(tz)−	(r0))θ (dtz) ,

where

r0 = r0(x, y) := |x − y|
vx + vy

∨ tx ∨ ty .

Therefore,

q(x, y)α ≤ e−ανd	(r0)

×
(

1 +
∫ ∞

r0

λ
(
Bvx(tz−tx)(0) ∩ Bvy(tz−ty)(y − x)

)
e−νd(	(tz)−	(r0))θ (dtz)

)
≤ e−ανd	(r0) +

∫ ∞

r0

λ
(
Bvx(tz−tx)(0) ∩ Bvy(tz−ty)(y − x)

)
e−ανd	(tz)θ (dtz) . (4.18)
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Then, with f (3)
α defined at (4.5),∫

X

f (3)
α (y)μ(y) ≤

∫
X2

G(x)e−ανd	(r0)μ2(d(x, y))

+
∫
X2

G(x)
∫ ∞

r0

λ
(
Bvx(tz−tx)(0) ∩ Bvy(tz−ty)(y − x)

)
e−ανd	(tz)θ (dtz)μ

2(d(x, y)). (4.19)

Since 	 is increasing,

exp{−ανd	(r0(x, y))} ≤ exp

{
−ανd

3

[
	

( |x − y|
vx + vy

)
+	(tx) +	(ty)

]}
, (4.20)

and, by a change of variable and passing to polar coordinates, we obtain∫
Rd

e
− ανd

3 	
( |x|

vx+vy

)
dx ≤ dωd(vx + vy)d

∫ ∞

0
ρd−1e− ανd

3 	(ρ)dρ = dωd(vx + vy)dM′
α . (4.21)

Thus, using (4.9), (4.20), and (4.21), we can bound the first summand on the right-hand side
of (4.19) as∫

X2
G(x)e−ανd	(r0)μ2(d(x, y)) ≤ 6ω5

d

∫ ∞

0
e− ανd

3 	(tx)dtx

∫ ∞

0
e− ανd

3 	(ty)dty

×
∫
Rd

1x∈W+Bvxa(0)dx
∫∫

R
2+×Rd

p(vx)e
− ανd

3 	
( |x−y|

vx+vy

)
dy ν2(d(vx, vy))

≤ 6ω6
ddQ(0, ανd/3)2M′

α

∫
R

2+
λ
(
W + Bvxa(0)

)
p(vx)(vx + vy)dν2(d(vx, vy))

≤ 2d+3ω6
ddcd(1 + ad)M′M′

αQ(0, ανd/3)2 V(W) ,

where for the final step we have used Jensen’s inequality, (4.11) and (4.15), and the fact that
νdM ≤ M′. Arguing similarly for the second summand in (4.19), using (4.9) and the fact that
r0 ≥ tx ∨ ty in the first step, (3.2) in the second step, and (4.15) in the final step, we obtain∫

X2
G(x)

∫ ∞

r0

λ
(
Bvx(tz−tx)(0) ∩ Bvy(tz−ty)(y − x)

)
e−ανd	(tz)θ (dtz)μ

2(d(x, y))

≤ 6ω5
d

∫
R

2+

∫
R

2+
λ
(
W + Bvxa(0)

)
p(vx)

∫ ∞

tx∨ty
w(tz)

α

×
(∫

Rd
λ
(
Bvx(tz−tx)(0) ∩ Bvy(tz−ty)(y)

)
dy

)
θ (dtz)θ

2(d(tx, ty)) ν2(d(vx, vy))

≤ 6ω7
d

∫
R

2+
λ
(
W + Bvxa(0)

)
p(vx)vd

x vd
y ν

2(d(vx, vy))

×
∫
R

3+
t2d
z w(tz)

α/3w(tx)α/3w(ty)α/3θ3(d(tz, tx, ty))

≤ 6ω7
dcd (1 + ad) Q(0, ανd/3)2Q(2d, ανd/3)νdM′ V(W).

This concludes the proof of the first assertion.
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Next, we prove the second assertion. For ease of notation, we drop obvious subscripts and
write y = (y, s, v), x1 = (x1, t1, u1), and x2 = (x2, t2, u2). Using (4.18), write∫

X

f (3)
α (y)2μ(y) =

∫
X3

G(x1)G(x2)q(x1, y)αq(x2, y)αμ3(d(x1, x2, y))

≤
∫
X3

G(x1)G(x2)(I1 + 2I2 + I3)μ3(d(x1, x2, y)) , (4.22)

with

I1 = I1(x1, x2, y) := exp
{

− ανd
[
	(r0(x1, y)) +	(r0(x2, y))

]}
,

I2 = I2(x1, x2, y) := e−ανd	(r0(x1,y))

×
∫ ∞

s∨t2
λ(Bu2(r−t2)(0) ∩ Bv(r−s)(y − x2))e−ανd	(r)θ (dr),

I3 = I3(x1, x2, y) :=
∫ ∞

s∨t2
λ
(
Bu2(r−t2)(0) ∩ Bv(r−s)(y − x2)

)
e−ανd	(r)θ (dr)

×
∫ ∞

s∨t1
λ
(
Bu1(ρ−t1)(0) ∩ Bv(ρ−s)(y − x1)

)
e−ανd	(ρ)θ (dρ) .

By (4.21),∫∫
R2d

exp
{

− ανd

3

[
	

( |y|
u1 + v

)
+	

( |x − y|
u2 + v

)] }
dxdy

≤
∫
Rd

exp
{

− ανd

3
	

( |y|
u1 + v

) }
dy
∫
Rd

exp
{

− ανd

3
	

( |x|
u2 + v

) }
dx

≤ d2ω2
d(u1 + v)d(u2 + v)dM′

α
2.

Hence, using (4.9) and (4.20) for the first step, we have∫
X3

G(x1)G(x2)I1(x1, x2, y) μ3(d(x1, x2, y))

≤ 36ω10
d

∫
Rd

1x1∈W+Bu1a(0)dx1

∫
R

3+
e− ανd

3 [	(t1)+	(t2)+2	(s)]θ3(d(t1, t2, s))

×
∫∫

R
3+×(Rd)2

p(u1)p(u2)e
− ανd

3

[
	
( |x1−y|

u1+v

)
+	

( |x2−y|
u2+v

)]
dy dx2 ν

3(d(u1, u2, v))

≤ 36ω12
d d2 M

′2
α Q(0, ανd/3)3

×
∫
R

3+
λ
(
W + Bu1a(0)

)
(u1 + v)d(u2 + v)dp(u1)p(u2)ν3(d(u1, u2, v))

≤ c1 M
′2
α Q(0, ανd/3)3(1 + ad)(1 + ν2dν

−2
d )MdM′ V(W)

for some constant c1 ∈ (0,∞) depending only on d. Here we have used the monotonicity of Q
with respect to its second argument in the penultimate step, and in the final step we have used
Jensen’s inequality and (4.15) along with the fact that∫

R
2+

(1 + ν−1
d vd)(ud

2 + vd)p(u2)ν2(d(u2, v)) ≤ C(1 + ν−2
d ν2d)Md

for some constant C ∈ (0,∞) depending only on d.
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Next we bound the second summand in (4.22). Using (3.2) in the second step, the
monotonicity of 	 and (4.20) in the third step, and (4.21) in the final step, we have∫∫

R2d
I2(x1, x2, y)dx2dy

=
∫
Rd

e−ανd	(r0(x1,y))dy
∫ ∞

s∨t2

∫
Rd
λ
(
Bu2(r−t2)(0) ∩ Bv(r−s)(y − x2)

)
dx2 e−ανd	(r)θ (dr)

=ω2
dud

2vd
∫
Rd

e−ανd	(r0(x1,y))dy
∫ ∞

s∨t2
(r − t2)d(r − s)d e−ανd	(r)θ (dr)

≤ω2
dud

2vd exp
{
−ανd

3
[	(t1) +	(t2) + 2	(s)]

}
×
∫ ∞

0
r2d e−ανd	(r)/3θ (dr)

∫
Rd

exp
{

− ανd

3
	

( |x1 − y|
u1 + v

) }
dy

= dω3
d M′

αQ(2d, ανd/3)ud
2vd(u1 + v)d exp

{
−ανd

3
[	(t1) +	(t2) + 2	(s)]

}
.

Therefore, arguing similarly as before, we obtain∫
X3

G(x1)G(x2)I2(x1, x2, y) μ3(d(x1, x2, y))

≤ 36ω10
d

∫
Rd

1x1∈W+Bu1a(0)dx1

∫∫
R

6+
p(u1)p(u2)

×
(∫∫

R2d
I2(x1, x2, y)dx2 dy

)
θ3(d(t1, t2, s))ν3(d(u1, u2, v))

≤ 36ω13
d d M′

αQ(2d, ανd/3)
∫
R

3+
e− ανd

3 [	(t1)+	(t2)+2	(s)]θ3(d(t1, t2, s))

×
∫
R

3+
λ
(
W + Bu1a(0)

)
ud

2vd(u1 + v)dp(u1)p(u2)ν3(d(u1, u2, v))

≤ c2 M′
αQ(2d, ανd/3)Q(0, ανd/3)3(1 + ad)(1 + ν2dν

−2
d )νdMdM′ V(W)

for some constant c2 ∈ (0,∞) depending only on d, where for the final step we have used∫
R

2+
(1 + ν−1

d vd)ud
2vdp(u2)ν2(d(u2, v)) ≤ C′(1 + ν−2

d ν2d)νdMd

for some constant C′ ∈ (0,∞) depending only on d.
Finally, we bound the third summand in (4.22). Arguing as above,∫∫

R2d
I3(x1, x2, y) dx2 dy

=
∫ ∞

s∨t1

(∫
Rd
λ
(
Bu1(ρ−t1)(0) ∩ Bv(ρ−s)(y − x1)

)
dy

)
e−ανd	(ρ)θ (dρ)

×
∫ ∞

s∨t2

(∫
Rd
λ
(
Bu2(r−t2)(0) ∩ Bv(r−s)(y − x2)

)
dx2

)
e−ανd	(r)θ (dr)

=ω4
dud

1ud
2v2d

∫ ∞

s∨t1
(ρ − t1)d(ρ − s)de−ανd	(ρ)θ (dρ)

∫ ∞

s∨t2
(r − t1)d(r − s)de−ανd	(r)θ (dr)
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≤ω4
dud

1ud
2v2d

(∫ ∞

0
r2d e−ανd	(r)/3θ (dr)

)2

exp
{

− α

3
νd
[
	(t1) +	(t2) + 2	(s)

]}
≤ω4

d Q(2d, ανd/3)2ud
1ud

2v2d exp
{

− α

3
νd
[
	(t1) +	(t2) + 2	(s)

]}
.

Thus, ∫
X3

G(x1)G(x2)I3(x1, x2, y) μ3(d(x1, x2, y))

≤ 36ω10
d

∫
Rd

1x1∈W+Bu1a(0)dx1

∫∫
R

6+
p(u1)p(u2)

×
(∫∫

R2d
I3(x1, x2, y)dx2 dy

)
θ3(d(t1, t2, s))ν3(d(u1, u2, v))

≤ 36ω14
d Q(2d, ανd/3)2

∫
R

3+
λ
(
W + Bu1a(0)

)
p(u1)p(u2)ud

1ud
2v2dν3(d(u1, u2, v))

×
∫
R

3+
e− ανd

3 [	(t1)+	(t2)+2	(s)]θ3(d(t1, t2, s))

≤ c3 Q(2d, ανd/3)2Q(0, ανd/3)3(1 + ad)ν2dMdM′ V(W) ,

for some constant c3 ∈ (0,∞) depending only on d. Combining the bounds for the summands
on the right-hand side of (4.22) yields the desired conclusion. �

To compute the bounds in (4.6) and (4.7), we now only need to bound μ((κ + g)2βG).

Lemma 4.5. For a ∈ (0,∞) and α ∈ (0, 1],

μ((κ + g)αG) ≤ C1 V(W) ,

where

C1 := C (1 + ad)Q(0, αζνd/2)[M + (M + M′)Q(d, ζ νd/2)α]

for a constant C ∈ (0,∞) depending only on d.

Proof. Define the function

ψ(t) :=
∫ ∞

t
(s − t)de−ζνd	(s)θ (ds) ,

so that g(x) =ωdvd
xψ(tx). By subadditivity, it suffices to separately bound∫

X

κα(x)G(x)μ(dx) and
∫
X

g(x)αG(x)μ(dx) .

By (4.9) and (4.11),∫
X

κα(x)G(x)μ(dx) ≤ 6ω5
d

∫
X

1x∈W+Bvxa(0)p(vx)e−ανd	(tx) dx θ (dtx) ν(dvx)

≤ 6ω5
dcd(1 + ad)Q(0, αζνd/2)M V(W) .
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For the second integral, using (4.15) write∫
g(x)αG(x)μ(dx) ≤ 6ω5+α

d

∫ ∞

0

∫ ∞

0
ψ(tx)αλ(W + Bvxa(0))vαd

x p(vx)ν(dvx)θ (dtx)

≤ 6ω6
dcd(1 + ad)(M + M′) V(W)

∫ ∞

0
ψ(tx)αθ (dtx).

Note that ∫ ∞

0
ψ(t)αθ (dt) =

∫ ∞

0

(∫ ∞

t
(s − t)de−ζνd	(s)θ (ds)

)α
θ (dt)

≤
∫ ∞

0
e−αζνd	(t)/2θ (dt)

(∫ ∞

0
sde−ζνd	(s)/2θ (ds)

)α
= Q(0, αζνd/2)Q(d, ζ νd/2)α ,

where we have used the monotonicity of 	 in the second step. Combining this with the above
bounds yields the result. �

Proofs of Theorems 2.1 and 2.2. Theorem 2.1 follows from (4.6) and (4.7) upon using
Lemmas 4.2, 4.3, 4.4, and 4.5 and including the factors involving the moments of the speed in
the constants.

The upper bound in Theorem 2.2 follows by combining Theorem 2.1 and Proposition 2.1,
upon noting that V(n1/dW) ≤ nV(W) for n ∈N.

The optimality of the bound in Theorem 2.2 in the Kolmogorov distance follows by a gen-
eral argument employed in the proof of [9, Theorem 1.1, Equation (1.6)], which shows that
the Kolmogorov distance between any integer-valued random variable, suitably normalized,
and a standard normal random variable is always lower-bounded by a universal constant times
the inverse of the standard deviation; see [9, Section 6] for further details. The variance upper
bound in (2.10) now yields the result. �

Proof of Theorem 2.3. Let θ be as given at (2.5). Then, as in the proof of Proposition 2.1,

	(t) = Bωdtd+τ+1,

where B := B(d + 1, τ + 1). By (4.8), for x ∈R+ and y> 0,

Q(x, y) =
∫ ∞

0
tx+τ e−yωdB td+τ+1

dt = (yωdB)−
x+τ+1
d+τ+1

d + τ + 1
�

(
x + τ + 1

d + τ + 1

)
= C1y− x+τ+1

d+τ+1 (4.23)

for some constant C1 ∈ (0,∞) depending only on x, τ , and d. Then, using the inequality
νδν7d−δ ≤ ν7d for any δ ∈ [0, 7d], we have that for any u ∈ [0, 2d],

Mu =
∫
R+

vup(v)ν(dv) = νu + Q(d, ζ νd)5ν5d+u

≤ C2νu(1 + ν5d+uν
−1
u ν−5

d ) ≤ C2νu
(
1 + ν7dν

−7
d

)
for C2 ∈ (0,∞) depending only on τ and d, where in the last step we have used positive
association and the Cauchy–Schwartz inequality to obtain

ν7dν
−7
d ≥ ν5d+uν

−1
u ν−5

d ν2d−uνuν
−2
d ≥ ν5d+uν

−1
u ν−5

d .
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In particular,

M0 ≤ C2
(
1 + ν7dν

−7
d

)
and M ≤ C2(1 + νd)

(
1 + ν7dν

−7
d

)
.

Similarly, by (4.17),

M′
α := 1

d + τ + 1
�

(
d

d + τ + 1

)
(αBωdνd/3)−

d
d+τ+1 = C3ν

− d
d+τ+1

d

for some constant C3 ∈ (0,∞) depending only on α, τ , and d. Also, by (4.23), for b> 0,

Q(x, by) = b− x+τ+1
d+τ+1 Q(x, y).

Recall the parameters p = 1, β = 1/36, and ζ = 1/50. We will need a slightly refined version of
Lemmas 4.2–4.4 that uses (4.10) and (4.14) instead of (4.11) and (4.15), respectively. Arguing
exactly as in Lemmas 4.2–4.4, this yields∫

X

f (1)
α (y)μ(dy) ≤ C(1 + ad)

Q(0, ανd/2)

α

d∑
i=0

Vd−i(W)Mi,

∫
X

f (2)
α (y)μ(dy) ≤ C(1 + ad) Q(0, ανd/2)Q(d, ανd/2)

d∑
i=0

Vd−i(W)Md+i,

∫
X

f (3)
α (y)μ(dy) ≤ C(1 + ad)Q(0, ανd/3)2

[
M′
α + Q(2d, ανd/3)νd

] d∑
i=0

Vd−i(W)Md+i,

μ((κ + g)αG) ≤ C(1 + ad)Q(0, αζνd/2)

×
[

d∑
i=0

Vd−i(W)Mi + Q(d, ζ νd/2)α
d∑

i=0

Vd−i(W)Mαd+i

]
,

and∫
X

f (1)
α (y)2μ(dy) ≤ C(1 + ad) M0ν2dQ(d, ανd/2)2Q(0, ανd)

d∑
i=0

Vd−i(W)Mi,

∫
X

f (2)
α (y)2μ(dy) ≤ C(1 + ad) Md Q(0, ανd/3)2Q(2d, ανd/3)

d∑
i=0

Vd−i(W)Md+i,∫
X

f (3)
α (y)2μ(dy) ≤ C(1 + ad)Md(1 + ν2dν

−2
d )Q(0, ανd/3)3

×
(

M′
α

2 + M′
αQ(2d, ανd/3)νd + Q(2d, ανd/3)2ν2d

) d∑
i=0

Vd−i(W)Md+i,

where C ∈ (0,∞) is a constant depending only on d.
These modified bounds in combination with the above estimates, along with the fact that

νi ≤ ν−1
d νd+i, yield that there exists a constant C depending only on d and τ such that for

i ∈ {1, 2, 3},∫
X

f (i)
2β (y)μ(dy) ≤ C(1 + ad)ν

− τ+1
d+τ+1 −1

d

(
1 + ν7dν

−7
d

) d∑
i=0

Vd−i(W)νd+i. (4.24)
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Also, note that by Hölder’s inequality and positive association, for i = 0, . . . , d, we have

ν−α
d ναd+i ≤ ν−α

d ν1−α
i ναd+i ≤ ν−1

d νd+i.

Combining this with the estimates above yields that there exists a constant C depending only
on d and τ such that

μ((κ + g)2βG) ≤ C(1 + ad)ν
− τ+1

d+τ+1 −1
d

(
1 + ν7dν

−7
d

) d∑
i=0

Vd−i(W)νd+i. (4.25)

Arguing similarly, we also obtain that there exists a constant C depending only on d and τ such
that ∫

X

f (1)
β (y)2μ(dy) ≤ C(1 + ad) ν

− τ+1
d+τ+1 −3

d ν2d
(
1 + ν7dν

−7
d

)2 d∑
i=0

Vd−i(W)νd+i ,

∫
X

f (2)
β (y)2μ(dy) ≤ C(1 + ad) ν

− τ+1
d+τ+1 −1

d

(
1 + ν7dν

−7
d

)2 d∑
i=0

Vd−i(W)νd+i ,

∫
X

f (3)
β (y)2μ(dy) ≤ C(1 + ad) ν

− τ+1
d+τ+1 −1

d

(
1 + ν7dν

−7
d

)4 d∑
i=0

Vd−i(W)νd+i.

Thus, there exists a constant C depending only on d and τ such that for i ∈ {1, 2, 3},∫
X

f (i)
β (y)2μ(dy) ≤ C(1 + ad) ν

− τ+1
d+τ+1 −1

d

(
1 + ν7dν

−7
d

)4 d∑
i=0

Vd−i(W)νd+i. (4.26)

Plugging (4.24), (4.25), and (4.26) into (4.6) and (4.7) and using Proposition 2.1 to lower-
bound the variance yields the desired bounds. �

Proof of Corollary 2.1. Define the Poisson process η(s) with intensity measure μ(s) :=
λ⊗ θ ⊗ ν(s), where ν(s)(A) := ν(s−1/dA) for all Borel sets A. It is straightforward to see
that the set of locations of exposed points of ηs has the same distribution as that of those
of η(s), multiplied by s−1/d, i.e., the set {x : x ∈ ηs is exposed} coincides in distribution with
{s−1/dx : x ∈ η(s) isexposed}. Hence, the functional F(ηs) has the same distribution as Fs(η(s)),
where Fs is defined as in (2.1) for the weight function

h(x) = h1,s(x)h2(tx) = 1x∈Ws1tx<a ,

with Ws := s1/dW. It is easy to check that for k ∈N, the kth moment of ν(s) is given by ν(s)
k =

sk/dνk and λ(Ws) = sλ(W). We also have

Vν(s) (Ws) =
d∑

k=0

Vd−i(s
1/dW)ν(s)

d+i =
d∑

k=0

s
d−i

d Vd−i(W)s
d+i

d νd+i = s2Vν(W).

Finally, noticing that

la,τ (ν(s)
d ) = γ

(
τ + 1

d + τ + 1
, ad+τ+1sνd

)
(sνd)−

τ+1
d+τ+1

≥ γ
(

τ + 1

d + τ + 1
, ad+τ+1νd

)
(sνd)−

τ+1
d+τ+1
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for s ≥ 1, we deduce the result directly from Theorem 2.3. The optimality of the Kolmogorov
bound follows from arguing as in the proof of Theorem 2.2. �
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