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Abstract
The principle of maximum entropy is a well-known approach to produce a model for data-generating distributions.
In this approach, if partial knowledge about the distribution is available in terms of a set of information constraints,
then the model that maximizes entropy under these constraints is used for the inference. In this paper, we pro-
pose a new three-parameter lifetime distribution using the maximum entropy principle under the constraints on the
mean and a general index. We then present some statistical properties of the new distribution, including hazard rate
function, quantile function, moments, characterization, and stochastic ordering. We use the maximum likelihood
estimation technique to estimate the model parameters. A Monte Carlo study is carried out to evaluate the perfor-
mance of the estimation method. In order to illustrate the usefulness of the proposed model, we fit the model to
three real data sets and compare its relative performance with respect to the beta generalized Weibull family.

1. Introduction

It is known that the approximation of probability distribution is a fundamental problem in statistical
data analysis. The maximum entropy principle proposed by Jaynes [22] gives us a general method
of approximating a probability distribution. It states that the least biased probability distribution that
describes a partially known system is the probability distribution having maximum entropy in the class
of all distributions compatible with the available information. Shannon entropy maximization under
different constraints has been studied bymany researchers. Kapur [24] and Kagan et al. [23] gave a max-
imum entropy characterization for various distributions under moment constraints. Some researchers
obtained the distributions that maximize entropy under the constraints on economic inequality measures
(for example, see [17, 26, 27, 35]).

The modeling and analysis of lifetime data play an important role in a wide variety of scientific
and technological fields such as engineering, medicine, and biological sciences. In the last decades, a
considerable amount of studies were devoted to the introduction of lifetime distributions that provide an
adequate fit to real lifetime data. Many models have been introduced in the literature by extending the
Weibull and exponential distributions (for example, see [8–10, 28, 30, 38]). The modeling of lifetime
distributions using the maximum entropy principle has been of interest to several researchers. Ebrahimi
[16] suggested some maximum entropy lifetime (MEL) models subject to constraints on the growth
and curvature of the hazard function. Asadi et al. [4, 5] developed a maximum entropy procedure using
differential inequality constraints for hazard rate function. Distributions with maximum entropy subject
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to constraints on their L-moments were proposed by Hosking [21]. Asadi et al. [6] introduced two new
maximum entropy methods for change point modeling of lifetime distribution. Recently, Du et al. [15]
proposed a method based on the maximum entropy principle to estimate the hazard rate function.

One of the informative descriptive indices for a random variable X with cumulative distribution
function (c.d.f.) F is

[ =

∫ ∞

0
F̄W (x)dx, W ≥ 1, (1)

where F̄ (x) = 1 − F (x) is called the survival function. [ is widely used for measuring concentration,
statistical heterogeneity, and randomness, so we name it the general index (GI). In the case W = 1, GI
equals the distribution’s mean. In the case W = n, where n is a natural number, GI coincides with the
expected value of the first order statistic X1:n from n independent and identically distributed nonnegative
random variables X1, . . . ,Xn with survival function F̄. There are many applications of order statistics
in statistics and applied probability, especially in reliability theory. The extreme order statistic X1:n
represents the lifetimes of the series systems. Moreover, there are several applications of extreme values
in meteorology (extremes of temperature and pressure), oceanography (waves and tides), aeronautics
(gust loads), and hydrology (floods and droughts). For more details on the order statistics, we refer to
[3] and [13]. GI also is used to gauge Gini index [20] and generalized Gini index [14] as measures
of heterogeneity and inequality. In addition, some measures of uncertainty and randomness such as
cumulative residual Rényi entropy [40] and cumulative residual Tsallis entropy [32] are obtained by GI.
In this paper, we apply the maximum entropy principle under the constraints on the mean and GI to
model lifetime distribution.

This paper is organized as follows. In Section 2, we first review some results on entropy maximiza-
tion under some moment constraints. Then we derive the maximum entropy distribution subject to the
constraints on the mean and GI. Some statistical properties of the obtained distribution and estimation
of its parameters by the method of maximum likelihood are studied in Section 3. Also, we perform a
simulation study to investigate the performance of the maximum likelihood estimators. Three empirical
applications to real data are illustrated in Section 4 to elucidate the potentiality of the proposed model.
Finally, the conclusion is provided in Section 5.

2. New maximum entropy distribution

Suppose that X is a random variable having a continuous c.d.f. F with probability density function
(p.d.f.) f. Entropy, as a classical measure of information, is defined by

H (f ) = −
∫ ∞

−∞
f (x) log f (x)dx,

provided the integral exists. It was originally introduced by Shannon [37]. In the literature, H(f ) is often
referred to as the entropy of X or Shannon’s information about F. We refer the reader to [11] for more
details and references.

The maximum entropy principle is a rational method for determining a consistent probability dis-
tribution. It states that among all possible distributions compatible with a given set of constraints, we
should choose the one that has maximum entropy. The distribution so obtained is called maximum
entropy distribution. Kapur and Kesevan [25] studied the problem of entropy maximization under the
constraints on moments. In other words, by maximizing the Shannon entropy measure subject to the
following moment constraints,∫ ∞

−∞
gj (x)f (x)dx = `j, j = 0, 1, . . . ,m,
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where g0 (x) = 1 and gj (x), j = 1, . . . ,m are moment functions; `0 = 1 and `j, j = 1, . . . ,m are
moment values corresponding to the gj (x) moment function, the p.d.f. of maximum entropy distribution
is obtained as follows:

f (x) = exp ©­«−_0 −
m∑

j=1
_jgj (x)

ª®¬ ,
where exp (_0) =

∫ ∞
−∞ exp

(
−∑m

j=1 _jgj (x)
)
dx and _1, . . . ,_m are the Lagrange multipliers correspond-

ing to parameters of the maximum entropy distribution. Some well-known distributions such as normal,
beta, gamma, exponential, and Weibull can be expressed as maximum entropy distributions, which are
obtained under certain moment constraints. For more information on maximum entropy distributions
under moment constraints, we refer to [25, 41] and references therein.

In this section, we consider the problem of entropy maximization under the constraints on mean
and GI. In other words, we intend to solve the problem: Within the class of distributions supported on
the nonnegative half-line (x ≥ 0), and possessing a given mean and GI, which is the distribution that
maximizes entropy? We answer this question in the next theorem.

Theorem 2.1 The maximum entropy distribution subject to constraints on mean and GI to be ` and [,
respectively, has the survival function

F̄ (x) =
[
1 + U

(
eVx − 1

)]− 1
W−1 , x ≥ 0, (2)

where U and V are positive parameters and depend on ` and [ from the constraints.

Proof. The maximization problem is equivalent to minimize the convex functional∫ ∞

0
f (x) log f (x)dx

subject to the constraints


∫ ∞
0 f (x)dx = 1,∫ ∞
0 xf (x)dx = `,∫ ∞
0 F̄W (x)dx = [.

The corresponding Lagrangian is given by

L(f , ,) =
∫ ∞

0
f (x) log f (x)dx + _1

(∫ ∞

0
f (x)dx − 1

)
+ _2

(∫ ∞

0
xf (x)dx − `

)
+ _3

(∫ ∞

0
F̄W (x)dx − [

)
,

where , = (_1,_2,_3) is the vector of Lagrange multipliers. The first variation of the Lagrangian
L(f , ,) is

X[L(f , ,)] (q) = lim
Y→0

L(f + Yq, ,) − L(f )
Y

,
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where q is an arbitrary test function. By some calculations, we have

X[L(f , ,)] (q) =
∫ ∞

0

[
1 + log f (x) + _1 + _2x + _3

(
W

∫ x

0
F̄W−1(u)du

)]
q(x)dx.

Equating the first variation of the Lagrangian L(f , ,) to zero yields the following equation:

1 + log f (x) + _1 + _2x + W_3

∫ x

0
F̄W−1(u)du = 0. (3)

Differentiating both sides of Eq. (3) yields the differential equation

f ′ (x)
f (x) + _2 + W_3F̄W−1(x) = 0.

Equivalently,

f ′ (x) + _2f (x) + W_3f (x)F̄W−1(x) = 0. (4)

Using the fact that −F̄′ (x) = f (x), we can write Eq. (4) in the following form,

−F̄′′ (x) − _2F̄′ (x) − _3
(
F̄W (x)

) ′
= 0. (5)

Integrating both sides of Eq. (5) leads to the Riccati equation:

F̄′ (x) + _2F̄ (x) + _3F̄W (x) = c,

where c is a constant. Using the fact that F̄ (x) is a survival probability function, we have
limx→∞ F̄ (x) = 0. Consequently, c must be equal to zero. Thus, we arrive at the Bernoulli equation:

F̄′ (x) = c1F̄ (x) + c2F̄W (x), (6)

where c1 and c2 are arbitrary real coefficients. The solution of this equation is the survival function

F̄ (x) =
[
1 + U

(
eVx − 1

)]− 1
W−1 , x ≥ 0, (7)

where U and V are positive-valued parameters. An outline of the derivation of Eq. (7) from the Bernoulli
Eq. (6) is given in the Appendix. Since target and constraints functionals are convex, a global maximum
is attained at the critical point F̄ (x). �

3. Properties of the distribution

3.1. Probability density function and hazard rate

We consider a reparameterization of the model (2) by putting _ = 1/(W − 1) to achieve a parametric
model for lifetime distributionwith a simpler appearance. So, the c.d.f. of the reparameterizedmaximum
entropy model is given by

F (x) = 1 −
[
1 + U(eVx − 1)

]−_ , x > 0, (8)

where the parameters U > 0 and _ > 0 control the shapes of the distribution and V > 0 is the scale param-
eter. We shall refer to the distribution given in (8) as the MEL distribution. If a random variable X has
the MEL distribution, then we write X ∼ MEL(U, V,_).
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Figure 1. Probability density function of MEL distribution for V = 2.

The p.d.f. of the MEL distribution takes the form

f (x) = UV_ eVx [1 + U(eVx − 1)
]−_−1 , x > 0. (9)

The above p.d.f. is asymmetric and skewed. In the range U ≤ 1/(_ + 1), the p.d.f. is unimodal and
attains its global maximum at the value

xmode =
1
V

log
(
1 − U

U_

)
.

In the range U > 1/(_ + 1), the p.d.f. is monotone decreasing and attains its global maximum at the
origin (i.e., xmode = 0). At the parameter value U = 1, the p.d.f. (9) coincides with the p.d.f. of expo-
nential distribution with mean 1/(V_). A schematic illustration of the p.d.f.s of MEL distribution with
different parameters is depicted in Figure 1.

The inverse of the MEL distribution function yields a simple quantile function given by

Q(u) = 1
V

log
{
1
U

[
(1 − u)−

1
_ − 1

]
+ 1

}
, u ∈ (0, 1). (10)

The above function facilitates ready quantile-based statistical modeling [19]. In addition, Q(u) gives a
trivial random variable generation: if U ∼ U(0, 1), then

X =
1
V

log
[
1
U

(
U− 1

_ − 1
)
+ 1

]
(11)

follows MEL distribution with parameters U, V, and _. The median of MEL distribution can be derived
from (10) by setting u= 0.5.

The hazard rate function characterizing the time-dependent nature of the aging process plays a key
role in applied probability [33] and reliability engineering [7, 34]. The hazard rate function of a random

https://doi.org/10.1017/S0269964823000062 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000062


194 A. Khosravi Tanak et al.

Figure 2. Hazard rate function of MEL distribution for V = 2, _ = 0.5.

variable X is defined as

h(x) = f (x)
F̄ (x)

.

Considering the random variable X as a lifetime random variable, the hazard rate h(x) represents the
likelihood that X be observed right after time x, given that it was not observed up to time x. The hazard
rate function corresponding to (9) is

h(x) = UV_ eVx [1 + U(eVx − 1)
]−1 , x > 0. (12)

Clearly, the shape of the hazard rate function of MEL distribution only depends on U. It is decreasing for
U > 1, increasing for U < 1, and constant for U = 1. Plots of the hazard rate function for different values
of the parameter U are given in Figure 2. In the next theorem, we provide a characterization result for
MEL distribution using an affine relation between the hazard rate function and the survival function.

Theorem 3.1 Let X be a random variable with p.d.f. f(x), survival function F̄ (x), and hazard rate
function h(x). Then X ∼ MEL(U, V,_) if and only if the following relation holds:

h(x) = aF̄c (x) + b, (13)

where the transformations between the parameters (a, b, c) and (U, V,_) are given by

a = (U − 1)V_, b = V_, c =
1
_
;

U =
a
b
+ 1, V = bc, _ =

1
c
.
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Proof. If X ∼ MEL(U, V,_), then (13) follows from (8) and (12). Conversely, if (13) holds, then

f (x)
F̄ (x)

= aF̄c (x) + b,

⇐⇒ F̄′ (x) = −aF̄c+1(x) − bF̄ (x). (14)

The solution of the Bernoulli Eq. (14) is given by

F̄ (x) =
[
1 +

(a
b
+ 1

) (
ebcx − 1

)]− 1
c , x ≥ 0.

Therefore, X ∼ MEL(U, V,_). �

3.2. Moments

Some of the most important properties and characteristics of a distribution can be studied using its
moments, such as the kth moment, moment generating function, and basic reliability features such as
mean residual lifetime. Let X ∼ MEL(U, V,_). Using (9), the kth moment of X is given by

`′k = E
(
Xk

)
=

_

VkU_

∫ ∞

1
(log u)k

(
u + 1

U
− 1

)−_−1
du. (15)

The integral in Eq. (15) can be easily computed using most packages. The mean residual life (mrl) is
the expected remaining lifetime, given survival up to time t. For a lifetime variable X, the mrl function
is defined by

m(t) = E (X − t | X ≥ t) = 1
F̄ (t)

∫ ∞

t
F̄ (x)dx,

provided E(X) is finite. If X ∼ MEL(U, V,_), then the mrl function of X can be expressed as

m(t) = 1
VU_

[
1 + U

(
eVt − 1

)]−_ ∫ ∞

eVt
u−1

(
u + 1

U
− 1

)−_
du.

Since increasing (decreasing) the hazard rate implies decreasing (increasing) the mrl [7], the mrl func-
tion of MEL distribution is decreasing for U ≤ 1 and increasing for U > 1.

3.3. Stochastic ordering

For nonnegative continuous random variables, stochastic ordering is a key tool for judging comparative
behavior. There are different types of stochastic orderings, namely, the usual stochastic orders, the hazard
rate order, the mrl order, and the likelihood ratio order. Now, we refer to a basic definition of stochastic
order.

Definition 3.2. Let X and Y be random variables with p.d.f.s fX and fY, respectively. X is smaller than
Y in the likelihood ratio order, denoted by X ≤lr Y, if fX (x)/fY (x) is decreasing in x.

It is well-known that likelihood ratio ordering implies hazard rate ordering which, in turn, implies
usual stochastic and mrl ordering. For more details on stochastic comparisons, the reader is referred
to [36]. The MEL distributions are ordered with respect to the strongest likelihood ratio ordering, as
shown in the following theorem.
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Theorem 3.3 Let X ∼ MEL(U1, V,_1) and Y ∼ MEL(U2, V,_2). If U1 ≥ U2 and _1 ≥ _2, then X ≤lr Y.

Proof. First, note that

d
dx

log
fX (x)
fY (x)

= V eVx
{
(_2 + 1) U2

1 + U2
(
eVx − 1

) − (_1 + 1) U1

1 + U1
(
eVx − 1

) } .
Let U1 ≥ U2 and _1 ≥ _2. Since t(u) = u/(1 + u

(
eVx − 1

)
) is an increasing function, t(U1) ≥ t(U2),

so d
dx log fX (x)

fY (x) ≤ 0. Therefore, the likelihood ratio is decreasing, that is, X ≤lr Y . Consequently, X is
smaller than Y in the hazard rate, usual stochastic, and mrl ordering. �

3.4. Maximum likelihood estimation

In this section, we consider the estimation of the parameters of the MEL distribution by the method
of maximum likelihood. Let x1, . . . , xn be a random sample of size n of the MEL distribution with
unknown parameter vector ) = (U, V,_)T. The log-likelihood function for ) based on the given random
sample is

ℓ()) = n log(UVc) + V

n∑
i=1

xi − (_ + 1)
n∑

i=1
log

[
1 + U

(
eVxi − 1

)]
.

The maximum likelihood estimates (MLEs) of the unknown parameters are obtained by maximizing
ℓ()) with respect to ) . The first partial derivatives of ℓ()) with respect to the parameters are given by

mℓ())
mU

=
n
U
− (_ + 1)

n∑
i=1

eVxi − 1
1 + U

(
eVxi − 1

) ,
mℓ())
mV

=
n
V
+

n∑
i=1

xi − (_ + 1)
n∑

i=1

Uxi eVxi

1 + U
(
eVxi − 1

) ,
mℓ())
m_

=
n
_
−

n∑
i=1

log
[
1 + U

(
eVxi − 1

)]
.

The MLE )̂ = (Û, V̂, _̂)T of ) = (U, V,_)T can be obtained by solving the following equations
simultaneously:

mℓ())
mU

=
mℓ())
mV

=
mℓ())
m_

= 0.

There is no closed-form expression for the MLEs, so nonlinear optimization algorithms such as
Newton–Raphson iterative technique can be applied to solve the equations and obtain the estimate )̂
numerically.

Asymptotic inference for ) can be undertaken based on asymptotic normality of )̂ . Under some
regular conditions which are stated by Cox and Hinkley [12, Chapter 9] and are fulfilled for the
new distribution, the asymptotic distribution of

√
n()̂ − )) is multivariate normal N3

(
0,K−1

)

)
, where

K) = limn→∞ n−1Jn()) is the expected informationmatrix and Jn()) is the observed informationmatrix
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defined by

Jn ()) = −m2ℓ())
m)m)T = −


JUU JUV JU_
JUV JVV JV_
JU_ JV_ J__

 , (16)

whose elements are

JUU = − n
U2 + (_ + 1)

n∑
i=1

(
eVxi − 1

)2[
1 + U

(
eVxi − 1

) ]2 ,
JUV = − (_ + 1)

n∑
i=1

xi eVxi[
1 + U

(
eVxi − 1

) ]2 ,
JU_ = −

n∑
i=1

eVxi − 1
1 + U

(
eVxi − 1

) ,
JVV = − n

V2
− U (_ + 1)

n∑
i=1

xi eVxi + 1 − U[
1 + U

(
eVxi − 1

) ]2 ,
JV_ = −U

n∑
i=1

xi eVxi

1 + U
(
eVxi − 1

) , J__ = − n
_2 .

If K) is replaced by the average sample information matrix evaluated at )̂ , that is, n−1Jn ()̂), then the
asymptotic behavior remains valid. We can use asymptotic normality of )̂ for interval estimation and
hypothesis tests on the model parameters. For example, approximate confidence intervals for U, V, and
_ are given, respectively, by Û ± zg/2ŝe(Û), V̂ ± zg/2ŝe( V̂), and _̂ ± zg/2ŝe(_̂), where ŝe(·) is the square
root of the diagonal element of J−1

n ()̂) corresponding to each parameter and zg/2 is the upper (g/2)th
percentile of the standard normal distribution.

3.5. Simulation study

In this section, we conduct Monte Carlo simulation studies to evaluate the maximum likelihood estima-
tion of the MEL distribution parameters. We consider the no censoring case for simplicity. The results
are obtained from 5,000 Monte Carlo replications from simulations carried out using the software R.
In each replication, a random sample of size n is drawn from the MEL(U, V,_) distribution, and the
parameters are estimated by maximum likelihood method. The MEL random number generation was
performed using (11). The true parameter values used in the data-generating processes are U = 0.01,
V = 0.02, _ = 0.03 and U = 0.3, V = 0.2, _ = 0.1. Tables 1 and 2 list the mean MLEs of the three model
parameters along with the respective bias and mean squared errors (MSEs) for sample sizes n= 50, 100,
200, and 300.

From Tables 1 and 2, it is noted that the magnitude of bias and MSEs tend to zero as n → ∞. Thus,
the maximum likelihood technique can be used effectively for estimating the parameters of the MEL
distribution.

4. Applications

In the following, we present three applications of the proposed three-parameter MEL distribution to real
data. These applications will show the flexibility of the new distribution in modeling lifetime data.

In order to identify the shape of hazard rate function for a lifetime data, we shall consider a useful
graphical tool based on the total time on test (TTT) plot, introduced by Aarset [1]. The TTT plot is
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Table 1. Mean, bias, and MSE of the MLEs based on Monte Carlo simulation for U = 0.01, V = 0.02,
_ = 0.03.
n Parameters Mean Bias MSE

50 U 0.12818 0.11818 0.08640
V 0.01811 −0.00188 0.00008
_ 0.04075 0.01075 0.00061

100 U 0.08791 0.07791 0.05512
V 0.01806 −0.00193 0.00005
_ 0.03845 0.00845 0.00043

200 U 0.04232 0.03232 0.02115
V 0.01880 −0.00120 0.00003
_ 0.03453 0.00453 0.00021

300 U 0.02378 0.01379 0.00760
V 0.01909 −0.00091 0.00002
_ 0.03302 0.00302 0.00013

Table 2. Mean, bias, and MSE of the MLEs based on Monte Carlo simulation for U = 0.3, V = 0.2,
_ = 0.1.
n Parameters Mean Bias MSE

50 U 0.13873 0.12873 0.29745
V 0.23803 0.03803 0.01102
_ 0.10683 0.00683 0.00826

100 U 0.37610 0.07610 0.16856
V 0.29060 0.09060 0.03901
_ 0.09796 −0.00204 0.00518

200 U 0.30011 0.00011 0.02739
V 0.25310 0.05310 0.02003
_ 0.09800 −0.00200 0.00240

300 U 0.29082 −0.00918 0.01555
V 0.23568 0.03568 0.01312
_ 0.09980 −0.00020 0.00174

drawn by plotting T (r/n) =
[ (∑r

i=1 xi:n
)
+ (n − r)xr:n

]
/∑n

i=1 xi:n against r/n, where r = 1, . . . , n and
xi:n (i = 1, . . . , n) are the observed order statistics of the sample. It is a straight diagonal for constant
hazard rates and convex (concave) for decreasing (increasing) hazard rates.

We also consider the beta generalized Weibull (BGW) distribution, introduced by Singla et al.
[38] and its sub-models for the sake of comparison. Beta Generalized Exponential (BGE), Beta
Weibull (BW), Generalized or Exponentiated Weibull (GW or EW), Generalized Rayleigh (GR), Beta
Exponential (BE), Generalized Exponential (GE), Weibull (W), Rayleigh (R), and Exponential (E)
are well-known sub-models of BGW. The BGW family is a rich class of generalized distributions
that has captured considerable attention in modeling lifetime data over the last years (for example,
see [8, 18, 28, 30, 31]). A detailed discussion of the BGW family of distributions is presented in the
Appendix. In order to compare the proposed model with the BGW family, we use the following
goodness-of-fit statistics: -ℓ (the negative maximized log-likelihood), Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and Akaike second-order corrected Information Criterion
(AICc). The best model is the one with the least values of these statistics. In case of small sample size
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Table 3. Time to failure of the turbocharger of one type of engine.

1.6 2.0 2.6 3.0 3.5 3.9 4.5 4.6 4.8 5.0 5.1 5.3 5.4 5.6 5.8
6.0 6.0 6.1 6.3 6.5 6.5 6.7 7.0 7.1 7.3 7.3 7.3 7.7 7.7 7.8
7.9 8.0 8.1 8.3 8.4 8.4 8.5 8.7 8.8 9.0

Table 4. MLEs of the parameters for the models fitted to the failure times data and the values of −ℓ,
AIC, BIC, and AICc.

MLEs

Model a b _ U V −ℓ AIC BIC AICc

5 parameters
BGW 0.011 70.46 0.115 22.021 10.28 77.781 165.561 174.005 167.325
4 parameters
BGE 0.171 91.54 0.224 32.27 1 81.154 170.307 177.062 171.449
BW 0.907 0.380 0.177 1 4.282 82.129 172.258 179.014 173.401
3 parameters
MEL – – 4.387 0.002 0.672 80.880 167.761 172.828 168.428
GW 1 1 0.481 11.93 1.010 90.429 186.859 191.926 187.526
BE 7.701 17.47 0.059 1 1 87.465 180.929 185.995 181.595
2 parameters
GE 1 1 0.449 9.514 1 90.143 184.285 187.663 184.609

or a large number of parameters, AICc is preferred over AIC. In this section, the statistical packages are
used by R 4.1 to obtain numerical results.

4.1. Failure times of turbochargers

The first data set is given by Xu et al. [42] on the time to failure (103 h) of the turbocharger of one type
of engine. Table 3 gives the measurements of the data set. Table 4 lists the MLEs of the parameters and
the values of the goodness-of-fit statistics for the fitted models to the current data set.

From Table 3, we infer that the top two models for the first data set are the new three-parameter
MEL and the five-parameter BGW distributions. However, the former has two fewer parameters to
estimate and is, therefore, easier to use with less risk of overfitting. The TTT plot for failure times data
presented in Figure 3(a) indicates an increasing hazard rate function. From Table 3, note that Û < 1
for the MEL model, which implies that the hazard rate function of this distribution is increasing, which
is in accordance with Figure 3(a). The histogram of the data set with the plots of the estimated p.d.f.s
of all fitted distributions are shown in Figure 3(b). This figure also depicts that the MEL and BGW
distributions produce a better fit to the data set. Figure 3(c) shows the P–P plot for the MEL distribution
and Figure 3(d) displays the empirical c.d.f. and estimated c.d.f. of the MEL distribution. From these
figures, we also conclude that the proposed model is closely fitted to the failure times data.

The estimated variance–covariance matrix J−1
n ()̂) of the MLEs under the MEL(U, V,_) distribution

for the current data are given by

J−1
n (Û, V̂, _̂) =

©­­«
1.35 × 10−7 −4.09 × 10−6 −0.00010
−4.09 × 10−6 0.00100 −0.27173
−0.00010 −0.27173 8.19040

ª®®¬ .
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Figure 3. Failure times data: (a) TTT plot; (b) histogram and p.d.f.s of the fitted models; (c) P–P plot
of MEL model; and (d) empirical c.d.f. and estimated MEL c.d.f.

Table 5. Survival times of COVID-19 patients.

0.054 0.064 0.704 0.816 0.235 0.976 0.865 0.364 0.479
0.568 0.352 0.978 0.787 0.976 0.087 0.548 0.796 0.458
0.087 0.437 0.421 1.978 1.756 2.089 2.643 2.869 3.867
3.890 3.543 3.079 3.646 3.348 4.093 4.092 4.190 4.237
5.028 5.083 6.174 6.743 7.274 7.058 8.273 9.324 10.827
11.282 13.324 14.278 15.287 16.978 17.209 19.092 20.083

Therefore, the approximate 95% confidence intervals for U, V, and _ are, respectively,
[0.0022561, 0.0022567], [0.6527, 0.6921], and [−11.67, 20.44].

4.2. Survival times of COVID-19 patients

The second real data set presented in Table 5 corresponds to the survival times (in days) of 53
COVID-19 patients from January to February 2020 in China [29]. The value of MLEs of the
parameters and the goodness-of-fit statistics for the fitted models to the current data are given in
Table 6.

From this table, we can conclude that the MEL distribution presents the best performance when
compared with the other fitted models to these data. We have Û > 1 for the MEL model in Table 6,
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Table 6. MLEs of the parameters for the models fitted to COVID-19 data and the values of −ℓ, AIC,
BIC, and AICc.

MLEs

Model a b _ U V −ℓ AIC BIC AICc

5 parameters
BGW 0.144 0.100 1.208 6.700 1.127 131.245 272.490 282.341 273.766
4 parameters
BGE 4.783 3.156 0.038 0.207 1 133.100 274.199 282.080 275.032
BW 0.879 0.803 0.270 1 0.853 133.385 274.770 282.651 275.603
3 parameters
MEL – – 0.259 3.628 0.610 132.237 270.475 276.386 270.965
GW 1 1 0.207 0.879 0.854 133.386 272.772 278.683 273.262
BE 0.691 0.960 0.170 1 1 133.420 272.840 278.751 273.330
2 parameters
GE 1 1 0.163 0.692 1 133.420 270.840 274.780 271.080

Figure 4. COVID-19 data: (a) TTT plot; (b) histogram and p.d.f.s of the fitted models; (c) P–P plot of
MEL model; and (d) empirical c.d.f. and estimated MEL c.d.f.

implying that the hazard rate function is decreasing. This fact is also in accordance with Figure 4(a).
We provide the histogram of the data set with the plots of the estimated p.d.f.s in Figure 4(b),
the P–P plot for the new model in Figure 4(c), and the empirical c.d.f. and estimated c.d.f. of
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Table 7. Life of fatigue fracture of Kevlar 373 epoxy.

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671
0.6566 0.6748 0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645
0.8851 0.9113 0.9120 0.9836 1.0483 1.0596 1.0773 1.1733 1.2570
1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 1.4880 1.5728 1.5733
1.7083 1.7263 1.7460 1.7630 1.7746 1.8275 1.8375 1.8503 1.8808
1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.1330
2.2100 2.2460 2.2878 2.3203 2.3470 2.3513 2.4951 2.5260 2.9911
3.0256 3.2678 3.4045 3.4846 3.7433 3.7455 3.9143 4.8073 5.4005
5.4435 5.5295 6.5541 9.0960

Table 8. MLEs of the parameters for the models fitted to the fatigue life data and the values of −ℓ, AIC,
BIC, and AICc.

MLEs

Model a b _ U V −ℓ AIC BIC AICc

5 parameters
BGW 6.131 0.434 1.103 0.190 1.174 122.019 254.039 265.692 254.896
4 parameters
BGE 0.630 1.788 0.445 2.443 1 122.050 252.100 261.423 252.663
BW 1.415 0.744 0.760 1 1.122 122.156 252.313 261.636 252.876
3 parameters
MEL – – 0.300 0.182 2.432 120.403 246.808 253.800 247.141
GW 1 1 0.609 1.443 1.101 122.163 250.327 257.319 250.661
BE 1.680 1.501 0.487 1 1 122.227 250.455 257.447 250.788
2 parameters
GE 1 1 0.703 1.709 1 122.244 248.487 253.149 248.652

the MEL distribution in Figure 4(d). These figures show that the new distribution fits these data
adequately.

The estimated variance–covariance matrix J−1
n ()̂) of the MLEs under the MEL(U, V,_) distribution

for the current data are given by

J−1
n (Û, V̂, _̂) =

©­­«
3.24042 0.10985 −0.08521
0.10985 0.24189 −0.08444
−0.08521 −0.08444 0.03143

ª®®¬ .
Therefore, the approximate 95% confidence intervals for U, V, and _ are, respectively, [−2.72, 9.98],
[0.1362, 1.0844], and [0.1974, 0.3206].

4.3. Life of fatigue fracture of Kevlar 373 epoxy

The third data set reported by Andrews and Herzberg [2] represents the life of fatigue fracture of
Kevlar 373 epoxy that is subjected to constant pressure at the 90 stress level until all have failed. The
measurements of this data set are presented in Table 7.

Table 8 and Figure 5(b) clearly prove the superiority of the newmodel over other competitive models
for the current data. The TTT plot for the fatigue life data displayed in Figure 5(a) indicates increasing
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Figure 5. Fatigue life data: (a) TTT plot; (b) histogram and p.d.f.s of the fitted models; (c) P–P plot of
MEL model; and (d) empirical c.d.f. and estimated MEL c.d.f.

hazard rate function, which is confirmed by Û for the MEL model in Table 8. Figure 5(c) and (d) also
depict that the MEL distribution produces an adequate fit to the third data set.

The estimated variance–covariance matrix J−1
n ()̂) of the MLEs under the MEL(U, V,_) distribution

for the current data are given by

J−1
n (Û, V̂, _̂) =

©­­«
0.00923 −0.06351 0.00692
−0.06351 0.23383 −0.16097
0.00692 −0.16097 0.02502

ª®®¬ .
Thus, the approximate 95% confidence intervals for U, V, and _ are, respectively, [−0.0067, 0.3700],
[0.3520, 4.5121], and [−0.0096, 0.6103].

5. Conclusion

In this paper, we have proposed a new three-parameter distribution, so-called the MEL distribution,
by using the maximum entropy principle subject to the constraints on the mean and a GI. This GI is
widely used formeasuring concentration, variability, and uncertainty. The proposedMELmodel has two
shape parameters and one scale parameter. It includes exponential distribution as a special sub-model.
The MEL p.d.f. can take various forms depending on its shape parameters. The new model can present
both increasing and decreasing hazard rate functions. We have provided some of the mathematical
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properties of the new distribution, including quantiles, moments, mrl, characterization, and stochastic
ordering. The model parameters are estimated using the maximum likelihood approach. The simulation
results show that the method of maximum likelihood performs well in estimating the model parameters.
Finally, three real data sets are analyzed to illustrate the importance and flexibility of the new proposed
distribution in modeling lifetime data. In conclusion, theMEL distribution may provide a flexible mech-
anism for fitting a wide spectrum of positive real-world data sets. We hope the proposed model might
serve as an alternative model to other models available in the literature for modeling real data in areas
such as engineering, survival analysis, economics, and so on.
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Appendix A. Appendix

A.1. Solution of the Bernoulli equation

The substitution y = F̄1−W reduces the Bernoulli Eq. (6) to the linear differential equation

dy
dx

= c1y + c2. (A.1)

By considering the boundary condition y(0) = 1, the solution of differential equation (A.1) is given by

y(x) = c1 + c2
c1

ec1x − c2
c1
.

Putting U =
c1+c2

c1 and V = c1, we arrive at Eq. (7).

A.2. The BGW family

Singla et al. [38] introduced a flexible five-parameter model called BGW distribution by considering
the baseline distribution of beta generalized distribution [39] to be EW. The c.d.f. and p.d.f. of BGW
distribution, respectively, are given by

F (x) = 1
B(a, b)

∫ (
1−e−(_x)V

)U
0

wa−1(1 − w)b−1dw, x > 0
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Figure A1. Sub-models of BGW.

and

f (x) = UV_VxV−1

B(a, b)

(
1 − e−(_x)V

)Ua−1 {
1 −

(
1 − e−(_x)V

)U}b−1
e−(_x)V , x > 0,

where B(a, b) is the beta function, _ > 0 is a scale parameter and a, b,U, V > 0 are shape parameters.
This distribution exhibits increasing, decreasing, bathtub, and upside-down bathtub-shaped failure rate
functions for different parametric combinations. Singla et al. [38] expressed the p.d.f. and c.d.f. of BGW
distribution as mixtures of EW distribution. The BGW distribution unifies many existing distributions
as its sub-models with applications in modeling a wide spectrum of real data sets in reliability and
engineering. The sub-models of BGW distribution are as follows:

1. For V = 1, we get the BGE distribution.
2. If a = b = 1, then BGW distribution reduces to the GW distribution. If in addition V = 2, we obtain

GR distribution.
3. BW distribution arises as a special case of BGW by taking U = 1.
4. Assuming a = b = V = 1, we get GE distribution.
5. With U = V = 1, BE distribution can be obtained.
6. For a = b = U = 1, we obtain the Weibull (W) distribution with parameters _ and V. If in addition

V = 2, the BGW distribution becomes Rayleigh (R) distribution.

The above relationships are also depicted in pictorial form in Figure A1.
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