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Material analysis, especially surface analysis of materials, has been increasingly important. A wide range of
surface analysis techniques is available, involving e.g. ion, electron and photon beams interacting with a
solid target. The techniques are, generally, complementary and provide target information for near surface
depths. Nuclear techniques, which are essentially non-destructive, provide for analysis over a few microns
giving absolute values of concentrations of isotopes and elements. Applications have been given in a variety
of areas such as scientific, technologic, industry, arts and medicine, using low energy MeV ion beams [1-7].
Nuclear reactions make it possible tracing of isotopes with high sensitivities. We use ion-ion reactions and
the energy analysis method. At a suitably chosen energy of the incident ion beam, an energy spectrum is
acquired of ions arising from nuclear events, occurring at successive depths in the target. @y is the laboratory
detection angle and Ogr is the target rotation angle. Such spectra are simulated and compared with
experimental data, giving target composition and concentration profile information [4-7]. Elastic scattering is
a particular and important case. In this context a computer program has been developed, mainly for flat
targets [4-6]. The non-flat target situation arises as an extension.

Successful applications of the method are given using the '*O(p,00)"°N reaction and elastic scattering of
(*He)" ions for three types of samples. Scanning electron microscopy (SEM) is used as a complementary
technique. Experimental details have been given [4]. The samples used for acquisition of charged
particle spectra were: 1) S1 was obtained by high temperature oxidation of austenitic steel in C '*O, gas.
Weight gain measurements had given a 4.2 pm thick oxide. A uniform concentration profile of '*O was
expected. SEM has shown a reasonably flat oxide (Fig. 1). 2) S2, a thick flat sample of sapphire (Al,O3).
Uniform distributions of Al and O were expected in the sapphire substrate. 3) S3, a thick flat sample of
zinc sulphide (ZnS). Uniform distributions of Zn and S were expected in the sample substrate. Spectral
data were obtained from: 1) S1, using the "*O(p,00)"°N reaction at E,=1.78 MeV, an energy slightly
above the resonance energy at 1.766 MeV in the differential cross section, and ®;=165°. 2) S2, using a
(*He)" ion beam at E;=1.5 MeV, ©;=165°. 3) S3, using a (‘He)" beam at E,=3.1MeV, ©;=165".

Published nuclear data, namely for reaction differential cross section and stopping power, were used in the
computer predictions. Good fits to experimental data were obtained. For S1, a uniform concentration profile
of '*0 was found with X;=4.4 um. This value is close to the expectation and higher than the determination
made by the resonance method of analysis using the 1.766 MeV resonance, as the present method presents a
higher depth resolution. Details of the fit are shown in Fig. 2. For S2, uniform concentration profiles were
used with X; parameters of 0.53 and 0.23 um for Al and O, respectively. Details of the fit are shown in Fig.
3. For S3, uniform concentration profiles were used with X; parameters of 2.5 and 1.5 pm for Zn and S,
respectively. Details of the fit are shown in Fig. 4.
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The present work shows that the combined use of nuclear techniques and SEM microscopy is a highly
powerful analytical tool for surface analysis of materials [8].
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Figure 1. SEM image of the oxidized steel sample Figure 2. Computed fit to data of the
(S1). 18O(p,(xo)lsN reaction from the oxidized steel
target, (S1), for E;=1.78 MeV, ©;=165°.
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Figure 3. Computed fit to the elastic scattering data Figure 4. Computed fit to the elastic
from the sapphire target, (S2), for E,=1.5 MeV, scattering data from the ZnS target, (S3), for
_ (6]
O =165". E,=3.1 MeV, ®;=165°.
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