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Three-dimensional steady-state Arnold–Beltrami–Childress (ABC) flow has a chaotic
Lagrangian structure, and also satisfies the Navier–Stokes (NS) equations with an external
force per unit mass. It is well known that, although trajectories of a chaotic system
have sensitive dependence on initial conditions, i.e. the famous ‘butterfly effect’, their
statistical properties are often insensitive to small disturbances. This kind of chaos (such
as governed by the Lorenz equations) is called normal-chaos. However, a new concept, i.e.
ultra-chaos, has been reported recently, whose statistics are unstable to tiny disturbances.
Thus, ultra-chaos represents higher disorder than normal chaos. In this paper, we illustrate
that ultra-chaos widely exists in Lagrangian trajectories of fluid particles in steady-state
ABC flow. Moreover, solving the NS equation when Re = 50 with the ABC flow plus
a very small disturbance as the initial condition, it is found that trajectories of nearly
all fluid particles become ultra-chaotic when the transition from laminar to turbulence
occurs. These numerical experiments and facts highly suggest that ultra-chaos should
have a relationship with turbulence. This paper identifies differences between ultra-chaos
and sensitivity of statistics to parameters. Possible relationships between ultra-chaos
and the Poincaré section, ultra-chaos and ergodicity/non-ergodicity, etc., are discussed.
The concept of ultra-chaos opens a new perspective of chaos, the Poincaré section,
ergodicity/non-ergodicity, turbulence and their inter-relationships.

Key words: chaos

1. Introduction

The Arnold–Beltrami–Childress (ABC) flow

uABC(x, y, z) = [A sin(z) + C cos( y)]ex + [B sin(x) + A cos(z)]ey

+ [C sin( y) + B cos(x)]ez (1.1)
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describes a kind of stationary flow of incompressible fluid with periodic boundary
conditions, where uABC is the velocity vector field, A, B and C are arbitrary constants, x, y
and z are Cartesian coordinates, ex, ey and ez are the direction vectors of the Cartesian
coordinate system, respectively. The ABC flow was first discovered by Arnold (1965)
as a class of steady-state solutions of the Euler equations or the Navier–Stokes (NS)
equations with external force per unit mass, and since then the Lagrangian chaotic property
(Dombre et al. 1986; Galloway & Frisch 1986, 1987) and the so-called Beltrami property,
i.e. substantial helicity uABC × (∇ × uABC) = 0, of this kind of flow have aroused wide
interest in nonlinear dynamics, hydrodynamics and magnetohydrodynamics.

The property of exponential deviation of a fluid particle (i.e. Lagrangian chaos) in the
above-mentioned ABC flow is typical of chaotic dynamical systems (Dombre et al. 1986;
Blazevski & Haller 2014; Didov & Uleysky 2018a,b) and essential for the development
of turbulent flows (Dombre et al. 1986; Galloway & Frisch 1987; Podvigina & Pouquet
1994). This feature, in conjunction with substantial helicity, is essential for fast dynamo
action (i.e. fast generation of magnetic field in conducting fluids) (Moffatt & Proctor 1985;
Galloway & Frisch 1986; Finn & Ott 1988) and for the origin of magnetic field of large
astrophysical objects (Childress 1970).

For a chaotic dynamical system (Li & Yorke 1975; Parker & Chua 1989; Lorenz 1993;
Peter 1998; Sprott 2010; Van Gorder 2013; Lee, Borthwick & Taylor 2014; Gao et al. 2018),
sensitivity dependence on initial conditions (SDIC) of a trajectory was first discovered by
Poincaré (1890) and then rediscovered by Lorenz (1963) who proposed the popular name
‘butterfly effect’. In essence, the SDIC reveals the trajectory instability of chaos. Moreover,
Lorenz (1989, 2006) further discovered that the trajectories of chaotic dynamical systems
have sensitive dependence not only on initial conditions (SDIC) but also on numerical
algorithms (SDNA), because numerical noise, arising from truncation error and round-off
error, is unavoidable for all numerical algorithms. All of these phenomena are based on
the exponential increase of noise (or small disturbances), especially for the long-duration
numerical simulation of a chaotic dynamical system (Ruelle & Takens 1971; Li et al.
2020). Naturally, the non-replicability/unreliability of chaotic trajectories has certainly led
to heated debate about the credibility of numerical simulations of chaotic systems, with
Teixeira, Reynolds & Judd (2007) reaching the pessimistic conclusion that ‘for chaotic
systems, numerical convergence cannot be guaranteed forever’.

In order to gain a reproducible/reliable numerical simulation of chaos, Liao (2009)
proposed a numerical strategy, namely ‘clean numerical simulation’ (CNS) (Liao 2013,
2014, 2017), to greatly reduce the background numerical noise arising from truncation
and round-off errors over a sufficiently long interval of time for statistical properties to
be evaluated. In the frame of the CNS (Liao 2009, 2013, 2014, 2017; Liao & Wang 2014;
Hu & Liao 2020; Qin & Liao 2020), spatial and temporal truncation errors are reduced
to a required tiny level by means of a fine enough spatial discretization (such as the
spatial Fourier expansion) and a high enough order of Taylor expansion in the temporal
dimension, respectively. In particular, by using a large enough number of significant
digits to represent all physical and numerical variables/parameters in multiple-precision
floating-point arithmetic (Oyanarte 1990), the round-off error can be reduced to below
a required tiny level. Furthermore, an additional simulation with even smaller level
of background numerical noise is performed so as to determine the so-called ‘critical
predictable time’ Tc by comparing such two simulations, so that their numerical noise
(caused by truncation and round-off errors) can be negligible, i.e. several orders of
magnitude smaller than the ‘true’ physical solution, and thus the computer-generated
trajectory of chaos is reproducible/reliable within the whole spatial domain throughout the
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time interval t ∈ [0, Tc]. In this way, the CNS can provide reproducible/reliable trajectories
of chaotic dynamical systems in an interval of time [0, Tc] that is long enough for the
statistics to be evaluated properly.

The CNS provides a useful tool by which to obtain reproducible/reliable simulations of
chaotic trajectory over a prescribed long time duration. To date, CNS has been successfully
applied to solve many chaotic dynamical systems, such as the Lorenz equations (Liao
2009; Liao & Wang 2014), two-dimensional turbulent Rayleigh–Bénard convection (Lin,
Wang & Liao 2017), chaotic motion of a disk in free fall (Xu et al. 2021), and certain
spatiotemporal chaotic systems such as the complex Ginzburg–Landau equation (Hu &
Liao 2020), the damped driven sine-Gordon equation (Qin & Liao 2020) and so on.
Using CNS, more than 2000 new families of periodic orbits of Newton’s (Newton 1687)
three-body problem have been discovered (Li & Liao 2017; Li, Jing & Liao 2018; Li &
Liao 2019), which were also reported twice in New Scientist (Crane 2017; Whyte 2018). It
should be noted that only three families of periodic orbits of the three-body problem had
been reported in the 300 years after Newton first posed the problem. Recently, comparing
the CNS results (as benchmark solutions) with those given by the direct numerical
simulation, Qin & Liao (2022) provided rigorous evidence that numerical noise acting
as tiny artificial stochastic disturbances has both quantitative and qualitative influences on
sustained turbulence. The foregoing illustrates the novelty, great potential and validity of
CNS for chaotic dynamic systems.

Obviously, the numerical simulation of chaotic trajectory given by CNS can be
considered as benchmark solution by which to investigate the influence of numerical
noise on chaos. Using CNS, it has been found that, for certain chaotic dynamical systems,
such as the Lorenz equations (Lorenz 1963), which has one positive Lyapunov exponent,
and the so-called hyperchaotic Rossler system (Stankevich, Kazakov & Gonchenko
2020), which has two positive Lyapunov exponents, their statistics always remain the
same under small disturbances, i.e. stable, although their trajectories are rather sensitive
to small disturbances, i.e. unstable. The behaviour of such systems can be classified
as normal-chaos (Liao & Qin 2022). However, the statistical properties (such as the
probability density function) of some other forms of chaos are extremely sensitive to tiny
noise/disturbances (Liao & Qin 2022), i.e. unstable, which is called ultra-chaos (Liao &
Qin 2022; Yang, Qin & Liao 2023).

Why do we need such a new classification and such a new concept of ultra-chaos
mentioned above? It is well known that numerical noise, say, truncation and round-off
error, is unavoidable in numerical simulations. Thus, due to the famous butterfly effect
(Lorenz 1963), numerical noise of computer-generated simulations of a chaotic system
exponentially enlarges so that numerical simulations quickly become a mixture of the
‘true’ physical solution s and the ‘false’ numerical noise ε, which are mostly at the same
order. Any statistics, which are calculated using such kind of mixture, are based on a
hypothesis that the statistics are stable to numerical noise. In other words, the statistics
based on this kind of mixture (i.e. s + ε) are the same as those based on the ‘true’ physical
solution (i.e. s), say,

〈s + ε〉 = 〈s〉 (1.2)

must hold, where 〈〉 is a statistical operator. Here, the numerical noise ε is in fact equivalent
to a kind of small disturbance. Unfortunately, there exists no theoretical proof of this
hypothesis, even though it is widely utilized in many publications. Is the hypothesis (1.2)
always true for all chaotic systems? The answer is unfortunately negative, according to
Liao & Qin (2022), who proposed the new concept ‘ultra-chaos’ and classify chaos into
normal-chaos and ultra-chaos, as listed in table 1 for the stability of trajectory and statistics
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Type of dynamic systems Trajectory Statistics

Non-chaos Stable Stable
Normal-chaos Unstable Stable
Ultra-chaos Unstable Unstable

Table 1. Stability of trajectory and statistics of different types of dynamic systems.

of different types of dynamic systems. Such a classification of chaos is clear and easy to
implement in practice. Several examples of ultra-chaos have been found in different types
of chaotic systems (Liao & Qin 2022; Yang et al. 2023) and even in a Rayleigh–Bénard
turbulent flow (Qin & Liao 2022).

In this paper, we use the unstable ABC flow (in the Lagrangian viewpoint) as an
example to illustrate that ultra-chaos indeed widely exists and is in a higher disorder
than a normal-chaos. Besides, we point out the essential differences between ultra-chaos
and high sensitivity of statistics on certain parameters, and discuss possible relationships
between ultra-chaos and ergodicity/non-ergodicity, the Poincaré section, etc. Moreover,
we numerically solve the NS equation using the ABC flow plus a small disturbance as the
initial condition so as to investigate the property of Lagrangian chaos of trajectories. Our
results strongly suggest that turbulence should have a close relationship with ultra-chaotic
trajectories, although the detailed mechanism is not yet fully understood, and thus warrants
further study.

2. Ultra-chaos in the ABC flows

Let x(t), y(t) and z(t) represent the location coordinates of a fluid particle, and ẋ(t), ẏ(t)
and ż(t) denote their temporal derivatives. Thus, in the Lagrangian sense, the motion of a
fluid particle in ABC flow (1.1) is governed by⎧⎨

⎩
ẋ(t) = A sin[z(t)] + C cos[y(t)],
ẏ(t) = B sin[x(t)] + A cos[z(t)],
ż(t) = C sin[y(t)] + B cos[x(t)],

(2.1)

with the initial condition
(x(0), y(0), z(0)) = r0, (2.2)

where r0 denotes a starting point of the fluid particle. Equation (2.1) describes a typical
conservative (i.e. volume-preserving) dynamical system. Without loss of generality, let
us consider the case of A = 1 and different values of B and C. It should be emphasized
here that, by means of CNS, we invariably obtain a reproducible/reliable trajectory of the
chaotic motion of a fluid particle of the ABC flow over a sufficiently long interval of
time. To investigate the influence of small disturbance on trajectory of the fluid particle
in ABC flow (1.1) starting from r0 = (x(0), y(0), z(0)), we compare the trajectories of
two close fluid particles of the ABC flow, starting from the initial positions r0 and r′

0 =
r0 + (0, 0, 1) × δ, respectively, where δ = |r0 − r′

0| is a tiny constant. Note that δ = 0
when r0 = r′

0, corresponding to non-disturbance.
For example, without loss of generality, let us consider the motion of a fluid particle of

the ABC flow (in the Lagrangian sense) starting from the point r0 = (0, 0, 0) in the case
for A = 1 and different values of B and C. In order to investigate its chaotic property, we
compare the trajectory with that starting from a very close one r′

0 = r0 + (0, 0, 1) × δ,
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Figure 1. Influence of tiny disturbances on the phase plot x–z and the probability density function (p.d.f.) of a
normal-chaotic motion of a fluid particle in ABC flow. The curves are based on CNS results in t ∈ [0, 10 000]
of a normal-chaotic fluid particle, governed by ABC flow (2.1) with (2.2) for A = 1, B = 0.7 and C = 0.42
(with the maximum Lyapunov exponent λmax = 0.01), from the starting point r′

0 = (0, 0, 0) + (0, 0, 1) × δ

when δ = 0 (red), δ = 10−5 (black) and δ = 10−10 (blue), respectively. (a) Phase plot (x, z) when δ = 0;
(b) phase plot (x, z) when δ = 10−5; (c) phase plot (x, z) when δ = 10−10; (d) p.d.f.s of z(t).

where we choose either δ = 10−5 or 10−10. In each case, the chaotic simulation remains
reproducible over the long interval t ∈ [0, 10 000] by means of a parallel algorithm of
the CNS using the 200th-order Taylor expansion with the time step �t = 0.01 and
representing all data in 500-digit multiple-precision floating-point arithmetic, whose
replicability/reliability is guaranteed via another CNS result with even smaller background
numerical noise, given by the 205th-order Taylor expansion (with the same time step) and
520-digit multiple-precision floating-point arithmetic.

When A = 1, B = 0.7 and C = 0.42, a fluid particle starting from r0 = (0, 0, 0)

(corresponding to δ = 0) experiences chaotic motion (with the maximum Lyapunov
exponent λmax = 0.01) in a restricted spatial domain, as shown in figure 1(a) for its phase
plot (x, z) (considering the linear increase of value of y). For δ = 10−5 and δ = 10−10,
although the chaotic trajectories of the two fluid particles, separately starting from the
points r′

0 very close to r0 = (0, 0, 0), are rather sensitive to the starting point, their phase
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Figure 2. Influence of tiny disturbances on the phase plot x–z and the p.d.f. of an ultra-chaotic motion of a
fluid particle in ABC flow. The curves are based on CNS results in t ∈ [0, 10 000] of an ultra-chaotic fluid
particle, governed by ABC flow (2.1) with (2.2) for A = 1.0, B = 0.7 and C = 0.43 (with the maximum
Lyapunov exponent λmax = 0.06) from the starting point r′

0 = (0, 0, 0) + (0, 0, 1) × δ when δ = 0 (red),
δ = 10−5 (black), and δ = 10−10 (blue), respectively. (a) Phase plots (x, z); (b) p.d.f.s of the normalized results
z′(t).

plots and statistical properties such as the p.d.f. are almost the same as those given by
the chaotic trajectory starting from r0 = (0, 0, 0) that corresponds to δ = 0, as shown in
figures 1(b), 1(c) and 1(d), respectively. Note that here we show the p.d.f.s (as well as other
statistics) only of the z-coordinate values due to the similar properties of their x-coordinate
counterparts. Therefore, for A = 1, B = 0.7 and C = 0.42, the motion of the fluid particle
starting from r0 = (0, 0, 0) is a normal-chaos, since its statistical properties such as the
p.d.f. of z(t) are stable, i.e. not sensitive, to a very small disturbance of the starting point.

However, for a small change in C, i.e. �C = 0.01, such that A = 1, B = 0.7 and C =
0.43, the chaotic motion (with the maximum Lyapunov exponent λmax = 0.06) of the fluid
particle of the ABC flow starting from r0 = (0, 0, 0) becomes quite different from that
for A = 1, B = 0.7 and C = 0.42: the fluid particle moves farther and farther away from
r0 and besides its phase plot (x, z) becomes very sensitive to the small disturbance of the
starting position, as shown in figure 2(a). These are quite different from the results in
the case of A = 1, B = 0.7 and C = 0.42. Since the ABC flow is periodic, we normalize
the values of z(t) to [−π, π), i.e.

z′(t) = z(t) + 2πnz, (2.3)

where nz is an integer, and −π ≤ z′ < +π. Note that, as illustrated in figure 2(b),
tiny disturbances in starting position can lead to huge deviations in the p.d.f.s of the
normalized chaotic simulations z′(t) in t ∈ [0, 10 000]. In other words, for A = 1, B = 0.7
and C = 0.43 in the ABC flow (2.1), even statistical properties of the chaotic motion of
the fluid particle starting from r0 = (0, 0, 0) are very sensitive to the initial position, and
thus the corresponding motion of the particle is a kind of ultra-chaos. Obviously, this kind
of ultra-chaos is at a higher level of disorder than that of the normal-chaos, as shown in
figures 1 and 2. This example illustrates that ultra-chaos indeed exists in the ABC flow.

Let us further investigate some other statistics such as the variance σ 2, the kurtosis γ2
and the ACF to demonstrate the higher disorder of the ultra-chaos than the normal-chaos
mentioned above, as shown in table 2 for the normal-chaos and table 3 for the ultra-chaos.
Obviously, the statistics of the normal-chaos for C = 0.42 (see table 2) are stable to
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δ σ 2 γ2

0 1.2 1.8
10−5 1.1 1.8
10−10 1.2 1.8

Table 2. Influence of tiny disturbances (i.e. δ) on variance σ 2 and kurtosis γ2 of the statistic results of
z(t) of the corresponding normal-chaotic trajectory of fluid particle in ABC flow for A = 1, B = 0.7 and
C = 0.42. These results are obtained by solving the chaotic dynamic system (2.1) with (2.2) in t ∈ [0, 10 000] by
means of the CNS, from the starting point r′

0 = (0, 0, 0) + (0, 0, 1) × δ when δ = 0, δ = 10−5 and δ = 10−10,
respectively.

δ σ 2 γ2

0 2.9 1.9
10−5 2.5 2.1
10−10 3.4 1.6

Table 3. Influence of tiny disturbances (i.e. δ) on variance σ 2 and kurtosis γ2 of the statistic results of z(t) of
the corresponding ultra-chaotic trajectory of fluid particle in ABC flow for A = 1, B = 0.7 and C = 0.43. These
results are obtained by solving the chaotic dynamic system (2.1) with (2.2) in t ∈ [0, 10 000] by means of the
CNS, from the starting point r′

0 = (0, 0, 0) + (0, 0, 1) × δ when δ = 0, δ = 10−5 and δ = 10−10, respectively.
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Figure 3. Influence of tiny disturbances on the autocorrelation function (ACF) of z(t) of normal-chaotic or
ultra-chaotic motion of a fluid particle in ABC flow. The ACFs are based on CNS results in t ∈ [0, 10 000] of
a normal-chaotic or an ultra-chaotic fluid particle in ABC flow (2.1) with (2.2) for A = 1, B = 0.7 and either
C = 0.42 or C = 0.43 from the starting point r′

0 = (0, 0, 0) + (0, 0, 1) × δ when δ = 0 (red), δ = 10−5 (black)
and δ = 10−10 (blue), respectively. (a) Variation in ACF with τ of normal-chaotic particle when C = 0.42, and
(b) variation in ACF with τ of ultra-chaotic particle when C = 0.43, where τ denotes the lag.

small disturbances. Conversely, the statistics of ultra-chaos for C = 0.43 (see table 3) are
sensitive to tiny disturbances and thus unstable. In addition, the ACF of the ultra-chaos is
also sensitive to small disturbances, compared with that of the normal-chaos, as shown in
figure 3.
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Figure 4. Influence of tiny disturbances on the x–z phase plot of ensemble-averaged trajectory of a
normal-chaotic (C = 0.42) or an ultra-chaotic (C = 0.43) fluid particle in ABC flow (2.1) for A = 1 and
B = 0.7. They are based on CNS results in t ∈ [0, 10 000] from the starting point r0 = (0, 0, 0) + (0, 0, 1) × δi,

1 ≤ i ≤ 1000, with σd =
√

〈δ2
i 〉 = 10−5 (black) and σd = 10−10 (blue), respectively. (a) The x–z phase-plot of

the normal-chaotic fluid particle when C = 0.42 with σd = 10−5; (b) the x–z phase-plot of the normal-chaotic
fluid particle with σd = 10−10; (c) the x–z phase-plot of the ultra-chaotic fluid particle when C = 0.43 with
either σd = 10−5 or 10−10.

Furthermore, let us consider the ensemble average of chaotic trajectories of a
fluid particle starting from the point r′

0 = r0 + (0, 0, 1) × δi with 1000 different tiny
disturbances δi (i = 1, 2, 3, . . . , 1000), which are given by the Gaussian random number

generator with a standard deviation σd =
√

〈δ2
i 〉 and a zero mean, i.e. μd = 〈δi〉 = 0, where

〈 〉 denotes the average operator. For A = 1, B = 0.7 and C = 0.42 and r0 = (0, 0, 0),
corresponding to the normal-chaotic motions of a fluid particle, the ensemble averages
of the phase plots x–z, which are given, respectively, either by σd = 10−5 or σd = 10−10,
are almost the same, as shown in figures 4(a) and 4(b). On the contrary, for A = 1, B = 0.7
and C = 0.43, the ensemble averages of the phase plots x–z (of the ultra-chaotic motions of
a fluid particle), which are given by either σd = 10−5 or σd = 10−10, are totally different,
as shown in figure 4(c). Furthermore, the p.d.f. of the ensemble-averaged trajectory of
the ultra-chaotic fluid particle starting from r′

0 is also very sensitive to the standard
deviation σd of the starting position, which is completely different from that given by the
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Figure 5. Influence of tiny disturbances on the p.d.f. of ensemble-averaged trajectory of a normal-chaotic
(C = 0.42) or an ultra-chaotic (C = 0.43) fluid particle in ABC flow (2.1) with (2.2) for A = 1 and B = 0.7.
The p.d.f.s of the ensemble-averaged trajectories are based on the CNS results in t ∈ [0, 10 000] from the

starting point r0 = (0, 0, 0) + (0, 0, 1) × δi, 1 ≤ i ≤ 1000, with σd =
√

〈δ2
i 〉 = 10−5 (black) and σd = 10−10

(blue), respectively. (a) The p.d.f.s of z(t) of the normal-chaotic fluid particle when C = 0.42; (b) the p.d.f.s of
the normalized results z′(t) of the ultra-chaotic fluid particle when C = 0.43.

normal-chaotic fluid particle, as illustrated in figure 5. These results indicate that, unlike
a normal-chaos, even ensemble-averaged quantities and their corresponding p.d.f.s for an
ultra-chaos in ABC flow are unstable, i.e. rather sensitive to tiny disturbances. Indeed, the
ultra-chaotic motion is at a higher level of disorder than that of a normal-chaos in ABC
flow.

It should be emphasized that the main characteristic of ultra-chaos is that some statistics
such as p.d.f. are extremely sensitive to tiny disturbances (Liao & Qin 2022). Thus,
in this paper we analyse the influence of tiny disturbances in starting position on the
chaotic motions of fluid particles in ABC flow. According to the results mentioned above,
other statistical properties (such as variance, kurtosis, ACF, ensemble-averaged trajectory
and ensemble-averaged trajectory’s p.d.f.) of ultra-chaos in the ABC flow are also very
sensitive to tiny disturbances in the starting position. On the contrary, these statistics,
given by CNS results of a normal-chaotic fluid particle in the ABC flow, are not sensitive
to tiny disturbances. This indicates that the statistics of a normal-chaos are stable.

For A = 1 and varying the values of B and C, we find that non-chaos, normal-chaos and
ultra-chaos all exist in the fluid particle trajectory starting from r0 = (0, 0, 0), as shown in
figure 6. For a non-chaotic motion, the fluid particle trajectory is stable to tiny disturbances
in the starting position. For a normal-chaotic motion, although the trajectory is rather
sensitive to tiny disturbances in the starting position, i.e. unstable, the phase plot and
the statistical properties are stable to the tiny disturbances. However, for an ultra-chaotic
motion, even the statistical properties are unstable, say, sensitive to tiny disturbances in
the starting position. As we can see in figure 6, for A = 1 and B = 0.7, a small change
between C = 0.42 and C = 0.43 triggers the transition from normal-chaotic motion to
ultra-chaotic motion, which is the reason why we present the cases in figures 1 and 2. Note
that for the normal-chaotic motion, the fluid particle starting from r0 = (0, 0, 0) always
moves in a restricted spatial domain (such that its position is in a restricted domain of
the phase plot x–z as shown in figure 1). However, for an ultra-chaotic motion, the fluid
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0.2
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Non-chaos
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Normal-chaos

Ultra-chaos

B

C

Figure 6. Classification of trajectories of fluid particles in ABC flow (2.1) starting from r0 = (0, 0, 0) for
different values of B and C when A = 1: grey domain, non-chaos; blue domain, normal-chaos; red domain,
ultra-chaos.

particle starting from r0 = (0, 0, 0) progressively departs from its starting point, further
illustrating that ultra-chaotic motion in ABC flow has higher disorder than normal-chaotic
motion, although the velocity field of the ABC flow as a whole is inherently periodic and
steady-state.

On the other hand, keeping A = 1, B = 0.7 and C = 0.43 and using various positions of
the starting point r0 = (x(0), y(0), z(0)) in ABC flow, where −π ≤ x(0), y(0), z(0) ≤ +π,
it is found in a similar way that both normal-chaos and ultra-chaos (for the motions
of fluid particles starting from different r0) widely exist, and these two states of chaos
coexist simultaneously in the ABC flow, as shown in figure 7. The statistical values of
their maximum Lyapunov exponents λmax are given in table 4. Statistically speaking, the
maximum Lyapunov exponents λmax of the ultra-chaotic motions of fluid particles in ABC
flow are approximately two orders of magnitude larger than those of the normal-chaos.

Note that, when z(0) of the starting point r0 = (x(0), y(0), z(0)) increases from 0 to
π/2, there exists a kind of structure constituted by the starting positions (x(0), y(0)) of
fluid particles with normal-chaotic motion (corresponding to blue points) and ultra-chaotic
motion (red points), which undergoes continuous deformation, as shown in figure 7.
Although normal-chaotic motion is qualitatively different from ultra-chaotic motion so
that it is not difficult for us to obtain the general structure in figure 7, we still require
a criterion by which to quantitatively determine the boundary of the structure. Let f (z′)
denote the p.d.f. of a normalized result z′ ∈ [−π, +π) given by a chaotic motion of fluid
particle, and f ∗(z′) the p.d.f. of another one with a tiny disturbance to the starting position.
A criterion based on the following relative error:

∫ +π

−π

| f (z′) − f ∗(z′) | dz′

∫ +π

−π

f (z′) dz′
=

∫ +π

−π

| f (z′) − f ∗(z′) | dz′ ≤ γ (2.4)
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Figure 7. Chaotic states of trajectories of the fluid particles starting from different points r0 =
(x(0), y(0), z(0)) in ABC flow (2.1) for A = 1, B = 0.7 and C = 0.43. Here (a) z(0) = 0; (b) z(0) = π/8;
(c) z(0) = π/4; (d) z(0) = 3π/8; (e) z(0) = 7π/16; ( f ) z(0) = π/2. Blue points, normal-chaos; red points,
ultra-chaos.

Normal-chaos Ultra-chaos

Maximum value of λmax 1.3 × 10−2 8.7 × 10−2

Minimum value of λmax 8.5 × 10−5 4.3 × 10−2

Mean of λmax 9.7 × 10−4 6.9 × 10−2

Standard deviation of λmax 7.5 × 10−4 1.0 × 10−2

Table 4. Statistical values of maximum Lyapunov exponents λmax of the normal-chaotic and ultra-chaotic
trajectories of fluid particles in the ABC flow, gained by solving the chaotic dynamic system ABC flow
(2.1) in t ∈ [0, 10 000] for A = 1, B = 0.7 and C = 0.43 by means of CNS, using various starting points
r0 = (x(0), y(0), z(0)) of the fluid particles, where −π ≤ x(0), y(0), z(0) ≤ +π.

is usually adopted to determine the boundary between normal-chaos and ultra-chaos, as
shown in figure 7. According to our experience, γ = 5 % is often suitable to distinguish
between a normal-chaotic motion and an ultra-chaotic motion. Figure 7 illustrates that the
normal-chaotic and ultra-chaotic states coexist at the same time, which is reasonable in a
volume-preserving ABC flow that has different types of chaotic trajectories for the motions
of fluid particles (Dombre et al. 1986), which will be discussed later in detail.

Let α(x(0), y(0), z(0)) = 0 or 1 denote either a normal-chaotic motion or an
ultra-chaotic motion of a fluid particle starting from r0 = (x(0), y(0), z(0)), respectively.

960 A15-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.190


S. Qin and S. Liao

Then, according to our computations, for −π ≤ x(0) ≤ +π, there exist the symmetries

α(x(0), y(0), z(0)) = α(−x(0), y(0), π − z(0)), (2.5)

where y(0) ∈ [−π, +π], z(0) ∈ [π/2, π];

α(x(0), y(0), z(0)) = α(x(0), π − y(0), −z(0)), (2.6)

where y(0) ∈ [0, π], z(0) ∈ [−π, 0]; and

α(x(0), y(0), z(0)) = α(x(0), −π − y(0), −z(0)), (2.7)

where y(0) ∈ [−π, 0], z(0) ∈ [−π, 0], respectively.
Considering the fact that the normal-chaotic and ultra-chaotic states coexist

simultaneously as shown in figure 7, without loss of generality, we choose two starting
points r0,n = (0, −0.1, 0) and r0,u = (−0.1, 0.1, 0) of fluid particles in ABC flow to
illustrate a normal-chaotic motion (left) and an ultra-chaotic motion (right) via a movie
(see the supplementary movie available at https://doi.org/10.1017/jfm.2023.190) in the
case of A = 1, B = 0.7, C = 0.43 within t ∈ [0, 5000]. As shown in the left part of the
movie (corresponding to a normal-chaos), the fluid particle starting from r0,n always
moves in a restricted spatial domain and the corresponding trajectory resembles weak
chaos. On the contrary, the fluid particle starting from r0,u departs the starting point far
away and even its position normalized by periodic condition appears to be in disorder,
as shown in the right part of the movie (corresponding to ultra-chaos). All of these
clearly illustrate that an ultra-chaotic motion in the ABC flow is completely different
from a normal-chaotic motion: an ultra-chaos has indeed a much higher disorder than
a normal-chaos.

Let β denote the ratio of the number of the starting fluid particles with ultra-chaotic
motion to the total number of particles in −π ≤ x, y, z ≤ +π. In theory

β = 1
(2π)3

∫ +π

−π

∫ +π

−π

∫ +π

−π

α(x, y, z) dx dy dz, (2.8)

with either α = 0 for a normal-chaos or α = 1 for an ultra-chaos, respectively. In practice,
we use the Monte-Carlo method to estimate the ratio

β ≈ Nultra

Nall
, (2.9)

where Nall denotes the total number of the randomly selected starting fluid particles

r0 ∈ Ω = {(x, y, z) : −π ≤ x, y, z ≤ +π} (2.10)

and Nultra is the number of starting fluid particles with ultra-chaotic motion. Obviously,
the larger Nall, the more accurate the result of β given by the Monte-Carlo method. For
A = 1, B = 0.7, 0 ≤ C ≤ 0.43 and Nall = 8000, it is found that the ratio β is dependent
upon the value of C, as shown in table 5. Notably, when C ≤ 0.1, it is found that there
exists a power-law relationship between β and C, say,

β ≈ C0.4, (2.11)

as illustrated in figure 8. Thus, when the parameter C decreases, the value of Nultra, i.e. the
number of the starting fluid particles with ultra-chaotic motion, decreases until Nultra = 0
when C = 0. This is reasonable since the ABC flow for C = 0 is stable and thus chaotic
motion of fluid particles does not exist at all in C = 0.
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A kind of Lagrangian chaotic property of the ABC flow

C Nultra/Nall

0.43 49 %
0.2 47 %
0.1 43 %
0.01 20 %
0.001 6 %
0.0001 2 %
0 0 %

Table 5. Values of the parameter C versus Nultra/Nall, where Nultra denotes the number of starting points
corresponding to an ultra-chaotic trajectory of fluid particle in the ABC flow and Nall denotes the total
number of equidistant starting points. The results are obtained by solving the chaotic dynamical system (2.1)
in t ∈ [0, 10 000] for A = 1.0, B = 0.7 and 0 ≤ C ≤ 0.43 by means of CNS, using various starting points
r0 = (x(0), y(0), z(0)) of the fluid particles, where −π ≤ x(0), y(0), z(0) ≤ +π.

C

N
ul

tr
a/

N
al

l

10–4 10–3 10–2 10–1
10–2

10–1

100

Computed results

Nultra/Nall = C0.4

Figure 8. The ratio of the number of the starting fluid particles with ultra-chaotic motion to the total number
of particles versus the value of C of ABC flow for A = 1, B = 0.7 and C ≤ 0.1.

2.1. Difference between ultra-chaos and sensitivity of statistics to parameters
It is well known that a chaotic trajectory is unstable, i.e. sensitive to small disturbances.
For normal-chaos, a trajectory is unstable but its statistics are stable to small disturbances.
However, for ultra-chaos, even its statistics are unstable, i.e. sensitive to very small
disturbances. The stability of different types of dynamic system is listed in table 1.
Obviously, as illustrated by many examples (Liao & Qin 2022; Yang et al. 2023),
ultra-chaos involves higher disorder than normal-chaos.

It should be emphasized that, unlike sensitivity to parameters, the concept of ultra-chaos
focuses on the stability of statistics of a dynamic system, while all physical parameters are
fixed, to small disturbances that can be very tiny. Certain dynamic systems exhibit high
sensitivity in statistics to physical parameters (Broer, Simó & Vitolo 2002; Ashwin et al.
2012; Lucarini & Bódai 2019; Śliwiak, Chandramoorthy & Wang 2021), which, however,
is essentially different from ultra-chaos, i.e. instability of statistics to small disturbances.
For example, Broer et al. (2002) investigated bifurcations and strange attractors in the
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Lorenz-84 climate model with seasonal forcing,

ẋ = −ax − y2 − z2 + aF (1 + ε cos ωt) , (2.12)

ẏ = −y + xy − bxz + G (1 + ε cos ωt) , (2.13)

ż = −z + bxy + xz, (2.14)

where ω = 2π/T and a, b, T, F, G, ε are physical parameters. Without loss of generality,
Broer et al. (2002) considered the cases of a = 1/4, b = 4, T = 73 with varying F ∈
[0, 12], G ∈ [0, 9] and ε ∈ [0, 0.5], and found that there exist Hopf bifurcations and some
high sensitivity of statistics to parameters F, G and ε. However, we found that all statistic
results given by the above-mentioned Lorenz-84 climate model with seasonal forcing
are stable to small disturbances, in that they are either non-chaotic or normal-chaotic.
In other words, even when high sensitivity of statistics to physical parameters exists, the
corresponding dynamic system is stable and thus is not an ultra-chaos! In fact, like the
famous three-dimensional Lorenz equation (with one positive Lyaponov exponent) and
the four-dimensional Rössler system (with two positive Lyaponov exponents) (Liao & Qin
2022), the above-mentioned Lorenz-84 climate model has normal-chaotic trajectories at
most. This is a good example to illustrate the essential difference between ultra-chaos and
high sensitivity of statistics to physical parameters: they are quite different things!

For an ultra-chaotic system, its statistics are unstable to any types of disturbances.
For example, in the case of A = 1, B = 0.7 and C = 0.43, the trajectory starting from
(0, 0, 0) is still ultra-chaotic even if there is no disturbance to the starting point but a small
environmental disturbance, governed by

⎧⎨
⎩

ẋ(t) = A sin[z(t)] + C cos[y(t)],
ẏ(t) = B sin[x(t)] + A cos[z(t)],
ż(t) = C sin[y(t)] + B cos[x(t)] + ε(t),

(2.15)

with the initial condition

(x(0), y(0), z(0)) = r0, (2.16)

where ε(t) is a normally random noise with a small standard deviation (at the order of
magnitude 10−10), and r0 is the starting point, respectively. We found that, even for the
fixed values of A = 1, B = 0.7, C = 0.43 and the exact starting position r0 = (0, 0, 0),
the statistics of the corresponding trajectory are unstable, i.e. rather sensitive to the
normally random noise ε(t). In this case, the trajectory is ultra-chaotic, but there exists
no sensitivity of statistics to parameters, because the starting position and all physical
parameters have exactly the same values. This further indicates the essential differences
between ultra-chaos and sensitivity of statistics to parameters.

2.2. Possible relationship between ultra-chaos and Poincaré section
Following Dombre et al. (1986), we obtain the Poincaré section of the ABC flow (2.1)
for A = 1, B = 0.7 and C = 0.43, as shown in figure 9. Here, we applied CNS to obtain
the trajectories (x(t), y(t), z(t)) of fluid particles in t ∈ [0, 10 000], starting from several
selected points (listed in table 6). For each trajectory, we have a point (x′, y′) when
z′(t) = 2nπ for an arbitrary integer n, corresponding to a point (x∗, y∗) in the square
domain

x∗ ∈ [−π, +π), y∗ ∈ [−π, +π), (2.17a,b)
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y′

z′ = 0

x′
Figure 9. Poincaré section at z′ = 0 for several normalized trajectories (x′(t), y′(t), z′(t)) in t ∈ [0, 10 000] of
fluid particles starting from different points r0 = (x(0), y(0), z(0)) (as listed in table 6) obtained by means of
CNS for ABC flow (2.1) in the case of A = 1, B = 0.7 and C = 0.43.

Starting point x(0) y(0)

No. 1 0 0
No. 2 −0.1 0
No. 3 −0.2 0
No. 4 −0.3 0
No. 5 −0.4 0
No. 6 −0.5 0
No. 7 −0.6 0
No. 8 −0.7 0
No. 9 −0.8 0
No. 10 −0.9 0
No. 11 −1.0 0
No. 12 −1.5 0
No. 13 0.5 0
No. 14 1.0 0
No. 15 1.5 1.5
No. 16 1.6 1.6
No. 17 −1.8 −1.5
No. 18 −2.1 −1.5
No. 19 −2.3 −1.5
No. 20 −0.8 1.5
No. 21 −1 1.5
No. 22 −1.3 1.5

Table 6. Positions r0 = (x(0), y(0), 0) of the starting particles, chosen for the Poincaré section shown in
figure 9.

by means of the periodic condition in x′ and y′ directions, say,

x′ = x∗ + 2mπ, y′ = y∗ + 2kπ, (2.18a,b)
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where m and k are integers. The set of all these points (x∗, y∗) gives the Poincaré section of
the ABC flow (2.1), as shown in figure 9. For details, please refer to Dombre et al. (1986).

As shown in figure 9, there exist elliptic islands (or Kolmogorov–Arnold–Moser (KAM)
tori) and a chaotic sea in the Poincaré section. By convention, it is widely believed that
points in an elliptic island correspond to quasiperiodic orbits or weakly chaotic orbits,
but points in a chaotic sea correspond to strongly chaotic orbits, respectively (Kuznetsov
& Zaslavsky 2000; Skokos 2001; Lukes-Gerakopoulos, Voglis & Efthymiopoulos 2008).
Interestingly, the Poincaré section (as shown in figure 9) is rather similar to figure 7(a).
So, it is reasonable for particles starting from the elliptic islands (or KAM tori) to
represent a kind of normal-chaotic property, because their maximum Lyapunov exponents
8.5 × 10−5 ≤ λmax ≤ 1.3 × 10−2 (listed in table 4) indeed correspond to a weak chaos.
This numerical fact reveals the following relationship: the normal-chaotic (starting) points
(at z = 0) of the ABC flow correspond to the elliptic islands (or KAM tori) in the Poincaré
section, but the ultra-chaotic ones invariably correspond to the chaotic sea. According to
our computations, this kind of relationship is true for almost all fluid particles in the ABC
flow. Besides, this numerical experiment also supports our conclusion that an ultra-chaos is
a higher disorder than a normal-chaos. Thus, the classification of chaos into normal-chaos
and ultra-chaos provides a new explanation of elliptic islands (or KAM tori) and chaotic
sea in Poincaré section of a dynamic system.

Note that Poincaré section has a close relationship with KAM theory that is valid
for an integrable Hamiltonian system only. However, the classification of chaos into
ultra-chaos and normal-chaos is generally valid for all dynamic systems, even if they
are not Hamiltonian, or not integrable. Therefore, this classification has a more general
meaning, given that ultra-chaos reveals higher disorder than normal-chaos. An example of
such higher disorder related to statistical sensitivity to small disturbances has been recently
reported: small disturbances can lead to large-scale deviations of simulations of a turbulent
flow not only in spatiotemporal trajectories but also in statistics, even leading to different
types of flow (Qin & Liao 2022).

2.3. Possible relationship between ultra-chaos and ergodicity/non-ergodicity
According to our numerical experiments mentioned above, statistics are stable for a
normal-chaotic motion of fluid particles in the ABC flow, but unstable for an ultra-chaotic
motion of fluid particles in the same ABC flow. However, it is an open question whether or
not a normal-chaos should correspond to ergodicity and an ultra-chaos to non-ergodicity,
because it is rather difficult in practice to prove ergodicity or non-ergodicity of a dynamic
system.

According to Birkhoff (1931) and von Neumann (1932), time averages can be set equal
to phase averages, provided the system is ergodic, i.e. metrically transitive (Moore 2015).
However, it is difficult to prove conclusively that a system is metrically transitive. In
fact, Birkhoff (1931) and von Neumann (1932) did not actually solve the problem of
equating time averages and phase averages but instead reduced it to an equally difficult
problem of proving metric transitivity, as pointed out by Moore (2015). For example, in
the case of A = 1, B = 0.7 and C = 0.43, our computations clearly indicate that a fluid
particle starting from r0,n = (0, −0.1, 0) has a normal-chaotic trajectory, but another fluid
particle starting from r0,u = (−0.1, 0.1, 0) has an ultra-chaotic trajectory, as shown in
the movie. How can we prove that, under the same velocity field uABC of the ABC flow,
the trajectory of the former particle is metrically transitive (i.e. ergodic) but the latter is
not (i.e. non-ergodic)? From a practical viewpoint, it is much easier for us to conclude

960 A15-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.190


A kind of Lagrangian chaotic property of the ABC flow

that the former trajectory is normal-chaotic whereas the latter trajectory is ultra-chaotic
by investigating the stability of its statistical properties via time average (or ensemble
average) than to prove (or disprove) its metric transitivity for ergodicity, since either time
or ensemble averaging is quite easy. Therefore, from a practical point of view, ultra-chaos
is a more useful concept than non-ergodicity!

It would be very convenient if one could theoretically prove (or disprove) that every
ergodic system corresponds to a normal-chaos and every non-ergodic system to an
ultra-chaos, respectively. If so, the classification of normal-chaos and ultra-chaos might
provide us with a simple and practical way to reveal ergodic properties of various
types of dynamic systems, given that it is much easier to check stability of statistics
through spatio-temporal average (or ensemble average) than to prove (or disprove) metric
transitivity.

3. Possible relationship between ultra-chaos and turbulence

The velocity uABC of the ABC flow (1.1) was first discovered by Arnold (1965) as a class
of steady-state solutions of the Euler equations, and, moreover, with external force per unit
mass, it also satisfies the NS momentum and continuity equations

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

�u + f , (3.1)

∇ · u = 0, (3.2)

where t ≥ 0 denotes the time, ∇ is the Hamilton operator, Δ is the Laplace operator, Re is
the Reynolds number, p denotes the pressure and

f = uABC

Re
(3.3)

is the given external force per unit mass, with the periodic boundary conditions at x = ±π,
y = ±π, and z = ±π.

Many papers (Dombre et al. 1986; Mezić 2002; Podvigina, Ashwin & Hawker 2006)
have been published in this field. For example, Podvigina et al. (2006) analysed the
bifurcation of the ABC flow and reported the supercritical Hopf bifurcation and route
to chaos through tori doubling. Without loss of generality, let us consider here the
ABC flow in the case of A = 1, B = 0.7 and 0 ≤ C ≤ 0.43. Unlike other researchers
(Dombre et al. 1986; Mezić 2002; Podvigina et al. 2006), here we mainly focus on the
ultra-chaotic motion of fluid particles. As reported by Podvigina & Pouquet (1994), the
Reynolds number Re = 50 corresponds to a turbulent flow if the initial velocity field uABC
experiences small disturbances of the order of magnitude 10−3. This kind of turbulent
flow is solved numerically in t ∈ [0, 500]: the spatial domain [−π, +π)3 is discretized by
a uniform mesh with 1283 points for the spatial Fourier expansion, where the maximum
grid spacing is less than the minimum Kolmogorov scale (Pope 2001), and the 3/2 rule
for dealiasing (Pope 2001) is used, with the time step �t = 10−3.

First, let us use the unstable ABC flow for A = 1.0, B = 0.7 and C = 0.43 as the initial
condition of the NS equations (3.1) and (3.2) (with the external force per unit mass f =
uABC/Re as mentioned above), under small disturbances of initial velocity at the order of
magnitude 10−3. It is found that, the flow is initially rather similar to the ABC flow at times
that are too short for the tiny velocity disturbances to transfer to the macrolevel; in this
situation, approximately 49 % starting fluid particles are ultra-chaotic, according to table 5.
The transition from laminar flow to turbulence occurs approximately at t ≈ 50.0 = Ttran,
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Figure 10. (a) Total kinetic energy; (b–f ) modulus |ω| of instantaneous vorticity field at t = 30, t = 50, t = 60,
t = 100, or t = 300, respectively, governed by the NS equations (3.1) and (3.2) with Re = 50 using the ABC
flow (1.1) (for A = 1, B = 0.7 and C = 0.43) under a small disturbance at the order of magnitude 10−3 as the
initial solution.

as shown in figure 10, where Ttran denotes the time of the transition occurrence. Given
the velocity field u of (3.1) and (3.2), we can investigate the chaotic property of trajectory
(i.e. whether it is ultra-chaotic or normal-chaotic) of a fluid particle starting from r0 in a
similar way as mentioned in § 2. When t = 50, we randomly choose 10 000 starting fluid
particles in −π ≤ x, y, z < +π and find that all trajectories of the fluid particles starting
from them are ultra-chaotic. This numerical experiment strongly suggests that a necessary
condition of turbulence is that almost all fluid particles should move along ultra-chaotic
trajectories.

Similarly, let us consider the stable ABC flow in the case of A = 1, B = 0.7 and C = 0.
Using the ABC flow uABC subject to small disturbances at the order of magnitude 10−3

as the initial condition, we numerically solve the NS and continuity equations (3.1) and
(3.2) in the time interval t ∈ [0, 2000] and investigate the chaotic property of trajectories
of the 10 000 randomly chosen fluid particles. It is found that, when C = 0, transition from
the laminar flow to turbulence never occurs, and, moreover, there exists no ultra-chaotic
motion for all of these fluid particles throughout t ∈ [0, 2000]. This further confirms our
suggestions that ultra-chaotic trajectories of fluid particles should have some relationships
with turbulence.

In addition, let us further consider the ABC flows for A = 1, B = 0.7 and different
values of C, and for each case we use the Monte-Carlo method to randomly choose 10 000
starting points in −π ≤ x, y, z < +π. It is found that the transition time Ttran when the
flow alters from laminar flow to turbulence increases as C decreases from 0.1 to 0.0001,
as shown in table 7. We found that, when 0 < C ≤ 0.1, there exists a linear relationship

Ttran ≈ −10 log10(C) + 40, (3.4)
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C Ttran

0.1 50.5
0.01 59.5
0.001 70.0
0.0001 80.0
0.0 —

Table 7. Transition occurrence time Ttran for different values of C, gained by numerically solving the NS
equations (3.1) and (3.2) using the ABC flow (1.1) (for A = 1, B = 0.7 and 0 ≤ C ≤ 0.1) as the initial condition
plus a small disturbance of velocity field at the order of magnitude 10−3.

80

75

70

65

60

55

50
10–4 10–3 10–2

C
10–1

Ttran = –10 log10(C) + 40

T tr
an

Computed results

Figure 11. Relationship between C and Ttran obtained for ABC flow with A = 1, B = 0.7 and 0 < C ≤ 0.1
subject to the ABC flow (1.1) plus a small disturbance at order of magnitude 10−3 as the initial condition
used when solving the NS and continuity equations (3.1) and (3.2), where Ttran denotes the time of transition
occurrence.

as illustrated in figure 11, indicating that Ttran → +∞ as C → 0. Hence, indeed the
transition from laminar flow to turbulence should never occur when C = 0, which agrees
with our numerical simulation in the case of C = 0 mentioned above. In all cases of A = 1,
B = 0.7 and 0 < C ≤ 0.43 under consideration, it is found that all trajectories of the
fluid particles starting from the randomly chosen 10 000 fluid particles are ultra-chaotic
after the flow becomes fully turbulent. Besides, the smaller the number of ultra-chaotic
particles at the beginning (corresponding to an unstable ABC flow with a smaller value
of C), the longer the transition time of Ttran. In other words, more time is needed for all
fluid particles to become ultra-chaotic at t = Ttran. The foregoing again suggests that a
necessary condition of the occurrence of transition from laminar flow to turbulence is that
nearly all fluid particles should move along ultra-chaotic trajectories.

Here, regarding the ultra-chaotic motion as a new property of fluid particle, we simply
report some results of numerical experiments governed by (3.1) and (3.2) subject to
periodic boundary conditions. Frankly speaking, it is not yet understood why almost all
fluid particles should move along ultra-chaotic trajectories when the flow becomes fully
turbulent: What happens to the trajectory property of fluid particles when the transition

960 A15-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.190


S. Qin and S. Liao

from laminar flow to turbulence occurs, and so on? We firmly believe that the concept of
ultra-chaos could enable us to gain new insight into viscous flows. We intend to pursue
this in future work.

It should be emphasized that the transition from laminar flow to turbulence is a key
problem in fluid mechanics. Hopefully, ultra-chaos as a new concept could provide us a
completely new viewpoint to investigate and understand the mechanism of the transition
to turbulence.

4. Concluding remarks and discussions

Due to the butterfly effect (Lorenz 1963), numerical noise (due to truncation error and
round-off error) enlarges exponentially so that a computer-generated simulation of chaotic
systems quickly becomes a mixture of a ‘true’ physical solution s and a ‘false’ numerical
noise ε, which are mostly at the same order of magnitude. In practice, statistics of chaotic
systems are usually calculated using such a mixture, i.e. s + ε, because there is no way to
separate out the ‘true’ physical solution s. In fact, the statistics is based on the hypothesis

〈s + ε〉 = 〈s〉, (4.1)

where 〈〉 is a statistical operator. Here, the numerical noise ε is in fact equivalent to a
kind of small disturbances. Unfortunately, there exists no theoretical proof that the above
hypothesis is always true in general.

By means of CNS (Liao 2009, 2013, 2014, 2017), one can gain reliable/convergent
numerical simulations of chaotic systems over a long enough interval of time (Liao &
Wang 2014; Li & Liao 2017; Lin et al. 2017; Hu & Liao 2020; Qin & Liao 2020; Liao &
Qin 2022; Qin & Liao 2022; Yang et al. 2023), during which the ‘false’ numerical noise ε

is much smaller than the ‘true’ physical solution s, say, |ε| � |s|, thus the influence of the
numerical noise ε is negligible compared with the ‘true’ physical solution s. Hence, CNS
can provide us, for the first time, with a nearly ‘clean’ computer-generated simulation of
chaos in an interval of time long enough for statistics, which can be used as a benchmark
solution since it is very close to the ‘true’ physical solution s. Therefore, CNS provides
us with a useful tool by which to study accurately the influence of numerical noise on
statistics of different types of chaotic systems (Hu & Liao 2020; Qin & Liao 2020; Liao &
Qin 2022; Qin & Liao 2022; Yang et al. 2023).

Using CNS, it has been observed that the hypothesis 〈s + ε〉 = 〈s〉 holds for many
chaotic systems, whose statistics are stable to small disturbances. However, it has
been found that statistics of some chaotic systems are indeed rather sensitive to small
disturbances including artificial numerical noise (Hu & Liao 2020; Qin & Liao 2020,
2022; Yang et al. 2023), say, 〈s + ε〉 /=〈s〉. Liao & Qin (2022) termed the former
‘normal-chaos’ and the latter ‘ultra-chaos’, respectively. The stability of trajectory and
statistics of different types of dynamic systems is listed in table 1, which clearly indicates
that an ultra-chaos is a higher disorder than a normal-chaos.

It is well known that the steady-state ABC flow, which satisfies the steady NS equations
with a proper external force, has chaotic properties from a Lagrangian viewpoint.
Naturally, it is worth investigating whether ultra-chaos exists in ABC flow, whether
relationships hold between ultra-chaos and turbulence, and so on. In this paper, we
illustrate that trajectories of many fluid particles in the steady-state ABC flow (1.1) are
ultra-chaotic, in that their statistical properties are rather sensitive to tiny disturbances.
Obviously, this kind of ultra-chaotic motion of fluid particles represents a higher disorder
than normal-chaotic ones. We found that these two kinds of totally different chaos coexist
widely and simultaneously in the steady-state ABC flow.
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Besides, we discuss the difference between ultra-chaos and the high sensitivity of
statistics to parameters, and also the relationships between ultra-chaos and Poincaré
section, ultra-chaos and ergodicity, and so on. Unlike the high sensitivity of statistics to
parameters, ultra-chaos focuses on the stability of statistics to very small disturbances.
We have illustrated that certain model equations (such as the Lorenz-84 climate model
with seasonal forcing) exhibit high sensitivity of statistics to parameters, even though
all the statistics remain stable so that all the simulations involve either non-chaos or
normal-chaos.

Furthermore, we discuss the possible relationship between the Poincaré section and
normal/ultra-chaos. It is found that the normal-chaotic (starting) points (at z = 0) of
the ABC flow correspond to elliptic islands (or KAM tori), but the ultra-chaotic ones
correspond to the chaotic sea of the Poincaré section. It should be emphasized that,
considering the fact that the Poincaré section has a close relationship with the KAM theory
that is usually suitable for an integrable Hamiltonian system only, the new classification
of chaos into ultra-chaos and normal-chaos is more general because of its validity for all
dynamic systems, even if they are not Hamiltonian, and/or not integrable. Therefore, this
new classification should have more general meaning.

In addition, we discuss possible relationships between ultra-chaos and non-ergodicity.
According to Birkhoff (1931) and von Neumann (1932), time averages can be set equal to
phase averages, provided the system is ergodic (i.e. metrically transitive) (Moore 2015).
However, it is very difficult to seriously prove that a system is metrically transitive. It is an
open question whether or not a normal-chaos corresponds to ergodicity and an ultra-chaos
corresponds to non-ergodicity, respectively. Hopefully the classification of chaos into
normal-chaos and ultra-chaos could provide us a simple and practical way to investigate
ergodic property of various types of dynamic systems.

In order to study the possible relationships between ultra-chaos and turbulence, we
numerically solve the NS and continuity equations (3.1) and (3.2) when Re = 50 using
the ABC flow (for A = 1, B = 0.7 and various values of C) plus a small disturbance as
the initial condition. It is found that the trajectories of nearly all fluid particles become
ultra-chaotic after the transition from laminar to turbulent flow occurs. Our numerical facts
strongly suggest that turbulence is likely to be related to ultra-chaotic trajectories of fluid
particles, although the detailed mechanisms are presently unknown. Considering that the
chaotic property of the ABC flow is essential for the development of turbulence (Dombre
et al. 1986; Galloway & Frisch 1987; Podvigina & Pouquet 1994), we anticipate that the
concept of ultra-chaos (Liao & Qin 2022) could lead to a better understanding of fluid
chaos, Poincaré section, ergodicity/non-ergodicity, turbulence and their inter-relationships.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.190.
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