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Abstract We investigate the complex geometry of total spaces of reductive principal bundles over com-
pact base spaces and establish a close relation between the Kähler property of the base, momentum maps
for the action of a maximal compact subgroup on the total space, and the Kähler property of special
equivariant compactifications. We provide many examples illustrating that the main result is optimal.
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1. Introduction

Complex-reductive Lie groups G = KC acting holomorphically on Kählerian manifolds
X appear naturally in many questions of complex geometry. Classical examples, one of
which found by Lescure that we recall in § 5 below, show that even if the action is proper
and free with compact quotient manifold B, so that X becomes a G-principal bundle
over B, the Kähler property does in general not descend to B.
In these examples, the induced action of the maximal compact subgroup K of G is

not Hamiltonian with respect to any Kähler form on X, that is, there is no equivariant
momentum map µ : X → k∗ = Lie(K)∗. So, a natural guess might be that the Kähler
property descends for Hamiltonian G-actions. We will see that it follows from the theory
of Kählerian Reduction (see [12, 15, 20] that this is true once, in addition, the zero fibre
µ−1(0) of the momentum map is compact, and conversely the principal G-bundles over
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Momentum maps and the Kähler property for base spaces 219

compact Kähler manifolds always admit Kähler structures such that the K -action admits
a momentum map with compact zero fibre.
The group G is an affine algebraic group in a unique and canonical way. As such, it

admits a (non-unique) equivariant smooth projective completion; that is, there exists a
smooth projective variety G admitting an effective algebraic action of G and containing
a point e ∈ G that has trivial stabilizer in G and open G-orbit G ∼= G•e ⊂ G. Any
principal G-bundle π : X → B admits a fibrewise partial compactification to a G-fibre
bundle π : X → B having the same transition functions as π; using the associated bundle
construction, this can be written as X = X ×GG→ X/G. With this notation, our main
result can now be formulated as follows:

Theorem 1.1. Let G = KC be a complex-reductive Lie group acting holomorphically,
properly and freely on the connected complex manifold X such that Q = X/G is compact.
Then, the following are equivalent:

(a) The quotient Q is Kähler.
(b) There exists a K-invariant Kähler form on X with respect to which there is a

momentum map µ : X → Lie(K)∗ with compact zero fibre µ−1(0) 6= ∅.
(c) The natural compactification of the principal G-bundle π : X → Q to a G-fibre

bundle π : X → Q is a Kähler manifold.

The implication ‘(a) ⇒ (b)’ can be seen as a first instance of a Hamiltonian version of
Mumford’s famous GIT-statement [18, Converse 1.12], which has been vastly generalized
to show that any open subset of a smooth quasi-projective variety admitting a projective
good quotient is actually the set of semistable points with respect to some linearized line
bundle (see [13]).
In § 5, we give several examples showing that Theorem 1.1 is optimal. In particular,

we construct an example of a proper, free action of a complex-reductive group G = KC

on a Kähler manifold X such that the K -action is Hamiltonian (and in fact X admits
an equivariant Kähler compactification on which the K -action is still Hamiltonian) with
compact, non-Kähler quotient B ; in particular, the K -action is Hamiltonian with respect
to some Kähler form on X, but there is no Kähler form on X with K -momentum map
having non-empty compact zero fibre.

Notation

Throughout, we will work over the field C of complex numbers. A variety is a reduced
scheme of finite type over C, that is, not necessarily irreducible. All complex spaces
are assumed to be Hausdorff and second countable, so that smooth complex spaces are
complex manifolds. If G acts holomorphically on a complex manifold X, for any ξ ∈ g =
Lie(G), we will denote the induced (real holomorphic) fundamental vector field on X by
ξX ; that is, for any f ∈ C∞(X), we have

ξX(f)(p) :=
d

dt

∣∣∣∣
t=0

(f (exp(tξ) • p)) .
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If a Lie group K with Lie algebra k := Lie(K) acts on a Kähler manifold (X,ω) preserving
the Kähler form, amomentum map is a K -equivariant map µ : X → k∗ whose components
µξ(·) = µ(·)(ξ) ∈ C∞(X) satisfy the Hamiltonian equations

dµξ = ıξXω.

If the complex structure of X is denoted by J ∈ End(TX), slightly nonstandard, but
useful for our purposes, for any f ∈ C∞(X), we set dc(f) := df ◦J , so that 2i∂∂̄ = −ddc.

2. Momentum maps for K -representations and their projective

compactifications

Let V be a finite-dimensional complex G-representation. Assume that we are given a
K -invariant Hermitian product 〈·, ·〉 on V, making the induced K -representation unitary.
Let χV : V → R>0 be defined by v 7→ 〈v, v〉 and consider the Kähler form −ddcχV on V.
Note that the good quotient πV : V → V//G = Spec

(
C[V ]G

)
exists; it is endowed with a

Kähler structure by Kählerian reduction with respect to the momentum map

µV : V → k∗, v 7→ (ξ 7→ 2〈iξ · v, v〉) = dcχV (ξV )(v).

These, however, are not the right Kähler form and momentum map to consider in our
situation, since they do not globalize to the situation of a G-vector bundle over a non-
trivial base manifold with typical fibre V ; see Example 3.4.
Instead, we are going to compactify the situation. For this, we consider the

G-representation spaceW := V ⊕C, where G acts trivially on C, and embed V regularly
and equivariantly into P(W ) = P(V ⊕ C); explicitly, we consider

θ : V ↪→ P(V ⊕ C), v 7→ [v : 1].

We denote by P(W )ss the Zariski-open subset of points that are semistable with respect
to the linearization of the G-action on P(W ) in W or equivalently the corresponding
linearization in the line bundle OP(W )(1); the associated good quotient will be called
πP(W ) : P(W )ss → P(W )ss//G. While not strictly needed for our subsequent arguments,
the following observation regarding GIT is at least philosophically crucial.

Lemma 2.1. The representation space V is mapped isomorphically to a πP(W )-
saturated subset of P(W )ss via the G-equivariant map θ.

Proof. This is almost tautological: if we choose linear coordinates (i.e., linear forms)
z1, . . . , zdimV , z0 onW = V ⊕C, then z 0 is G-invariant, as the action of G on C is trivial.
This implies that the associated section σ = σz0 ∈ H0

(
P(W ),OP(W )(1)

)
is G-invariant.

Since obviously

θ(V ) = {[w] ∈ P(W ) | σ(w) 6= 0} = P(W )σ,
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every point in θ(V ) is semistable. Moreover, for any τ ∈ H0
(
P(W ),OP(W )(1)

)G
,

the corresponding open subset P(W )τ is πP(W )-saturated; see the proof of [18,
Thm. 1.10]. �

Consequently, we will consider V ⊂ P(V ⊕C), suppressing θ. Using the linear coordinate
z 0 on C introduced in the previous proof, we endow the G-representation W = V ⊕ C
with the Hermitian form 〈·, ·〉 corresponding to

χW (v, z0) := χV (v) + |z0|2.

This in turn yields a Fubini-Study form on P(W ), which is K -invariant and makes the
K -action Hamiltonian with momentum map given by

µξ([w]) =
2〈iξ · w,w〉

〈w,w〉
.

The next observation is a momentum geometry counterpart of Lemma 2.1 and will be
applied fibrewise in the bundle situation considered in § 3 below.

Lemma 2.2. A potential for the restriction of the Fubini-Study Kähler form ω =
ωP(W ) to V ⊂ P(W ) is given by

ω|V = −ddc log(χV + 1) = 2i∂∂̄ log(χV + 1).

The function ρ := log(χV +1) ∈ C∞(V ) is an exhaustion of V, and if ξP(W ) is the vector
field on P(W ) induced by the K-action, then

V 3 v 7→ dcρ(ξP(W ))([v : 1]) = µξ([v : 1])

defines a momentum map for the K-action on V with respect to ω|V .

Proof. The first part is well known, the exhaustion property is clear and the last part
follows by direct computation that uses the obvious equality

ξW (v, 1) = (ξV (v), 0)

together with the fact that (being a G-equivariant isomorphism) θ−1 transforms the
fundamental vector field ξP(W ) into ξV . �

Remark 2.3. In the following, we will only need that ρ is an exhaustive K -invariant
potential for a Kähler form on V. The fact that dcρ then yields a momentum map for
the K -action can be seen as follows: since ρ and hence dcρ is K -invariant, we have
LξX

(dcρ) = 0, and therefore Cartan’s formula yields

d
(
ıξX (dcρ)

)
= −ıξX

(
ddc(ρ)

)
= ıξXω,

so that indeed ıξX (dcρ) is the ξ-component of a momentum map with respect to ω, whose
equivariance is easy to check as well.

https://doi.org/10.1017/S0013091523000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000123


222 D. Greb and C. Miebach

3. Kähler forms on holomorphic principal bundles and vector bundles

Given a G-principal bundle π : X → Q over a compact Kählerian manifold Q = X/G,
we will be looking for special Kähler structures on X. For this, the following construction
will be useful.

Remark 3.1. As G is an affine algebraic G-variety (with algebraic action given by
left-multiplication), it admits a closed (algebraic) embedding ψ : G ↪→ V into the vector
space associated with a certain finite-dimensional G-representation ϕ : G→ GLC(V ), see
for example [4, Prop. 2.2.5]. That is, there is a closed G-orbit G • v in V with Gv = {e},
and in particular, ϕ is injective. We may assume that V has a K -invariant Hermitian
form h, so that ϕ|K : K ↪→ SU(h). The associated vector bundle V := X ×G V has
a natural holomorphic G-action (preserving each fibre), as well as a Hermitian metric
that is induced by h and therefore invariant by the associated K -action. Slightly abusing
notation, we will call the bundle metric h as well. Writing X = X×GG, we may produce
a closed G-equivariant holomorphic embedding

of X into V over Q = X/G.

Let now (B,ω) be a compact Kähler manifold, and let π : V → B be a holomorphic
vector bundle.

Remark 3.2. Setting W := V ⊕C, it can be deduced from [3, Théorème Principal II]
that the total space of P(W) → B is Kähler. In fact, there is a rather explicit way
of constructing Kähler forms on projectivizations of vector bundles, for example, see
[21, Prop. 3.18]. As we will see in more detail below, one uses the fact that there exists
a (1, 1)-form ωW on P(W) whose restriction to every fibre P(Wx) is the Fubini-Study
form of this fibre associated with a bundle metric on W, namely (up to some positive
constant) the Chern form of OP(W)(1). Then one obtains a Kähler form on P(W) by
adding a sufficiently large multiple of the pull-back of ω to P(W). Since the holomorphic
vector bundle V embeds as an open subset into P(V⊕C), we see that V and hence X ⊂ V
both inherit corresponding Kähler forms by restriction.

We will now analyse the construction of the Kähler form on V ⊂ P(V ⊕ C) in more
detail, with the aim of pointing out the specific features relevant to momentum map
geometry.

Lemma 3.3. Let π : V → B be a holomorphic vector bundle of rank n over a com-
pact Kähler manifold (B,ω) on which the compact Lie group K acts holomorphically via
fibre-preserving vector bundle automorphisms. Set k := Lie(K). Let h be a K-invariant
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Hermitian metric on V, with associated length function

χh : V → R>0, v 7→ h(v, v).

Then, for all positive real numbers c� 0, the (1, 1)-form

ωV = 2i∂∂̄ log(χh + 1) + c · π∗(ω)

has the following properties:

(1) ωV is Kähler,
(2) the K-action on V admits a momentum map µ : V → k∗ with respect to ωV ,
(3) every point x ∈ B has an open neighbourhood U such that on π−1(U) we may write

ω = 2i∂∂̄ρ for some function ρ ∈ C∞(π−1(U))K that has the following properties:
(a) ρ is an exhaustion when restricted to Vy for all y ∈ U ,
(b) for all ξ ∈ k and for all v ∈ π−1(U), we have

µξ(v) = dcρ(ξV(v)) = dρ(JξV(v)), (3.1)

where as usual J ∈ End(TV) denotes the (almost) complex structure of the
complex manifold V and ξV is the vector field on V associated with ξ via the
K-action.

Proof. We consider W = V ⊕ C the direct sum of V with the trivial line bundle,
and its projectivization P(W) = (W \ zW)/C∗, which contains P(V) as a co-dimension
one sub-bundle with (open) complement isomorphic to V. Endow W with the Hermitian
metric

hW(v ⊕ z) := χh(v) + |z|2.

Using the section of OP(W)(1) corresponding to the divisor P(V) ⊂ P(W), one com-

putes that the relative Fubini-Study form ωW
FS , that is, the curvature form of the natural

Hermitian metric in OP(W)(1) induced by h, when restricted to V = P(W) \ P(V), is
given by

c · ωW
FS |V = 2i∂∂̄ log(χh + 1) = −ddc log(χh + 1) for some c ∈ R>0;

see for example [6, Chap. V, § 15.C; p. 282], but notice the different convention regarding
projectivizations of vector bundles. Restricting to any fibre Vy, y ∈ B, we recover the
Kähler form associated with the Hermitian scalar product hy discussed in Lemma 2.2.
Using compactness of B, Part (1) is now proven with the argument of [21, p. 78].
The statements made in Parts (2) and (3) will be proven simultaneously. Let {Uk}k∈I be

a finite open covering of B so that ω|Uk
is given by a potential ϕk ; that is, ω|Uk

= −ddcϕk.
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224 D. Greb and C. Miebach

It is clear that ωV |π−1(Uk)
has K -invariant potential

ρk := log(χh + 1)|π−1(Uk)
+ c · π∗(ϕk). (3.2)

On any of the open sets π−1(Uk), a corresponding momentum map for the K -action is

given by µξ
k := ιξV d

cρk, cf. Remark 2.3. Setting η := log(χh + 1) in order to shorten

notation, still on π−1(Uk), we compute

ιξV d
c
(
η + c · π∗ϕk

)
= ιξV d

cη + c · ιξV d
cπ∗ϕk

= ιξV d
cη + c · ιξVπ

∗dcϕk (3.3)

= ιξV d
cη.

Here, we used the fact that ξV is tangential to the fibres of π, whereas the forms
π∗dcϕk vanish in fibre direction. Consequently, the maps µk on π−1(Uk) glue together
to a well-defined momentum map µV : V → k∗ with respect to ωV ; as the computa-
tion Equation (3.3) shows, it is given by the map formally associated with the (in general
only fibrewise strictly plurisubharmonic) function η = log(χh+1) defined on the whole of
V. This shows the statements made in Part (2). The properties listed in Part (3) then fol-
low from the definition of ρk , see Equation (3.2), and the fibrewise properties established
in Lemma 2.2. �

The following example explains the choice of the potential log(χh +1) and the remark
at the end of the first paragraph of § 2.

Example 3.4. The total space of the line bundle O(1) over P1 can be explicitly
realized as P2 \ {[0 : 0 : 1]} with bundle projection π ([z0 : z1 : z2]) = [z0 : z1]. Let us
consider the bundle metric on O(1) with associated length function

χh ([z0 : z1 : z2]) =
|z2|2

|z0|2 + |z1|2
.

An explicit computation shows that there does not exist any c> 0 such that i∂∂χh +
c · π∗ωFS is positive. Namely, in the affine coordinates (z,w) on P2 \ {[0 : 0 : 1]} ∩ {z0 6=
0} ∼= C2 \ {0}, the Hermitian form of i∂∂χh + c · π∗ωFS is given by

1

(|z|2 + |w|2)3

(
|z|2

(
1 + c|w|2

)
− |w|2 + c|w|4

(
2− c

(
|z|2 + |w|2

))
zw(

2− c
(
|z|2 + |w|2

))
zw

(
1 + c|z|2

)
|w|2 − |z|2 + c|z|4

)
,

which is never positive definite.

4. Proof of Theorem 1.1

Before we start the proof proper, we observe that in case that G is not connected with
identity component G◦, the quotient Q◦ := X/G◦ is a finite topological covering of X/G
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and therefore also compact. Moreover, for l ∈ {a, b, c}, statement (l) of Theorem 1.1 holds
if and only if the corresponding statement (l◦) holds for the action of G◦, the maximal
compact group K◦ := K ∩G◦ of G◦, the equivariant compactification G◦ ⊂ G, and the
quotient Q◦. For this observation, the main point to notice is that G = G ×G◦ G◦, and
hence

X = X ×G G = X ×G G×G◦ G◦ ∼= X ×G◦ G◦.

We therefore assume for the remainder of the proof that G = G◦ is connected.

4.1. Implication ‘(b) ⇒ (a)’

We quickly summarize the fundamental results in the Kählerian version of the theory
of Symplectic Reduction: Let G = KC be a complex-reductive group and let X be
a holomorphic G-manifold. Let ω be a K -invariant Kähler form on X such that the
K -action on X is Hamiltonian with equivariant momentum map µ : X → k∗. If the zero
fibre µ−1(0) is non-empty, then the set

Xss(µ) :=
{
x ∈ X | G • x ∩ µ−1(0) 6= ∅

}
of semistable points is a non-empty open G-invariant of X admitting an analytic Hilbert
quotient q : Xss(µ) → Xss(µ)//G; that is, q is a surjective G-invariant, (locally) Stein
map to a complex space Xss(µ)//G fulfilling

q∗(OXss(µ))
G = OXss(µ)//G.

In particular, q is universal with respect to G-invariant holomorpic maps from Xss(µ)
to complex spaces. Moreover, every fibre of q contains a unique G-orbit that is closed in
Xss(µ); this orbit is the only one in π−1(0) that intersects µ−1(0), and the intersection is
a uniquely determined K -orbit. With more work, one can show that Xss(µ)//G is home-
omorphic to the symplectic reduction µ−1(0)/K and via this homeomorphism inherits a
Kähler structure induced by ω, see [15, 16, 20] and the detailed survey [14].
Suppose from now on that in addition to the assumptions made above the G-action

on X is free and proper. In this situation, since all G-orbits are closed in X, we have

Xss(µ) = G · µ−1(0),

and hence Xss(µ)//G = Xss(µ)/G = q(Xss(µ)) is an open subset of X/G that is homeo-
morphic to µ−1(0)/K and possesses a Kähler form, whose construction is much easier in
this simple case; for example, see [17, Thm. 3.1] and cf. [12, Thm. 3.5] or [14, Prop. 2.4.6].
Under the assumption made in (b), the non-empty subset q(Xss(µ)) ' µ−1(0)/K is not
only open but also compact. It therefore coincides with X/G = Q, which is hence Kähler.

4.2. Implication ‘(a) ⇒ (b)’

Choose a G-equivariant closed holomorphic embedding Ψ: X ↪→ V into the total space
of a holomorphic G-vector bundle over Q, as constructed in Remark 3.1, and let h be a
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corresponding K -invariant Hermitian metric on V. Next, we apply Lemma 3.3 to obtain
a constant c� 0 such that

ω = 2i∂∂̄ log(χh + 1) + c · π∗(ω)

is a Kähler form with properties (2) and (3) stated in the Lemma. We will show that the
restriction of ω to the closed submanifold X ⊂ V, which we continue to denote by ω, has
the properties claimed in Theorem 1.1(b).
First, we notice that the K -action on X is Hamiltonian with respect to ω, with momen-

tum map being given by the restriction of the momentum map from V to X, which we
continue to denote by µ. Now, let q ∈ Q be any point, let x ∈ X a point in the fibre
over q, and let U and ρ be as in part (3) of Lemma 3.3. Then, by (3.a) the restriction of
ρ to Xq = G • x ⊂ Vq continues to be a strictly plurisubharmonic exhaustion function.
Therefore, ρ|Xq has a minimum and in particular a critical value, say at x0 ∈ G • x.
As JξV(x0) = JξXq (x0) = JξG • x0

(x0) is obviously tangent to the (complex) orbit
G • x0 = G • x, Formula (3.1) together with the fact that x 0 is critical implies that

µξ(x0) = dρ(JξV(x0)) = dρ(JξXq (x0)) = 0 for all ξ ∈ k,

so that x0 ∈ µ−1(0). In other words, every fibre of π : X → Q intersects µ−1(0), so that

π|µ−1(0) : µ
−1(0) → Q

is a K -principal bundle over the compact manifold Q. In particular, µ−1(0) ⊂ X is
compact.

4.3. Implication ‘(a) ⇒ (c)’

As a normal projective G-variety for the connected group G, the completion G admits
a G-equivariant embedding into the projectivization P(W ) of a finite-dimensional com-
plex G-representation W ; see [4, Prop. 5.2.1, Prop. 3.2.6]. Using the associated bundle
construction, this leads to a closed holomorphic embedding

into the projectivization of the holomorphic vector bundle W = X ×G W over Q. By
assumption, Q is compact Kähler, so Remark 3.2 yields the claim.

4.4. Implication ‘(c) ⇒ (a)’

Since π : X → Q is a fibre bundle with compact Kählerian total space (and connected
fibres), the claim follows from [3, Prop. II.2].

This concludes the proof of Theorem 1.1.
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5. Examples

The following example shows that even the ‘Kähler’ statement of the implication (a) =⇒
(b) of Theorem 1.1 does not hold for non-compact Q.

Example 5.1. The homogeneous fibration

SL(2,C)/ ( 1 Z
0 1 ) → SL(2,C)/ ( 1 C

0 1 )

is a C∗-principal bundle over the non-compact Kähler base C2 \ {0}. Owing to
[2, Theorem 3.1], however, the total space SL(2,C)/ ( 1 Z

0 1 ) is not Kähler.

A slight modification of Example 5.1 yields an example showing that an analogue of
Lemma 3.3 does not hold if we replace the vector bundle π : V → X by an arbitrary
holomorphic fibre bundle having Stein fibres, even though these kind of fibres also admit
strictly plurisubharmonic exhaustion functions similar to (the logarithm of) the norm
square function used in the proof of Lemma 3.3.

Example 5.2. Let B be the Borel subgroup of G = SL(2,C) consisting of upper
triangular matrices and let Γ = ( 1 Z

0 1 ). One verifies directly that B/Γ is biholomorphic to
(C∗)2 and therefore a Stein manifold. Consequently, the homogeneous fibration G/Γ →
G/B is a holomorphic fibre bundle over the compact Kähler manifold P1 with typical
fibre (C∗)2 such that the total space G/Γ is not Kähler, again by [2, Theorem 3.1]. Note
that this bundle is not principal, as Γ is not normal in B.

Next, we give an example (originally due to Lescure) which explains that even for
KC-actions on Kählerian manifolds X, further conditions are needed to ensure that the
quotient X/G is Kähler.

Example 5.3. Let us consider the Hopf surface Y = (C2 \ {0})/Z with respect to the
Z-action given by m • v = 2mv. Let p : C2\{0} → Y be the universal covering. The group
G = GL(2,C) acts transitively on Y, and a direct calculation shows that the isotropy
group of y0 := p(1, 0) ∈ Y is

Gy0
=

{(
2m b

0 a

)
; m ∈ Z, b ∈ C, a ∈ C∗

}
.

Let us consider the closed subgroups

H :=

{(
2m b

0 1

)
; m ∈ Z, b ∈ C

}
and T :=

{(
1 0

0 a

)
; a ∈ C∗

}

of Gy0
. One verifies directly that T ∼= C∗ normalizes H and thus that Gy0

= TH ∼= TnH.
Hence, we have the holomorphic C∗-principal bundle X := G/H → Y = G/(HT ).
We claim that X is a Kähler manifold. For this, let S := SL(2,C) and note that

(1) S ∩H = ( 1 C
0 1 ) is an algebraic subgroup of S, as well as that
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(2) SH =
{
2m/2g; m ∈ Z, g ∈ S

}
is a closed subgroup of G. (In fact, G/(SH) is an

elliptic curve.)

Now we can apply [9, Theorem 5.1] to deduce that X is Kähler.
However, there is no momentum map for the S 1-action on X = G/H with respect to

any S 1-invariant Kähler form: Indeed, since the subgroupH has infinitely many connected
components and is therefore not algebraic, the action of U(2) on X is not Hamiltonian,
see [9, Theorem 4.11]. Since U(2) = SU(2)S1, this implies that X is not a Hamiltonian
S 1-manifold, either.

In Example 5.3 above, while X is Kähler, the action of a maximal compact group K is
not Hamiltonian with respect to any Kähler form. Therefore, one might wonder whether
the existence of a momentum map for the K -action is actually sufficient to conclude
that the base of a Kählerian principal bundle is Kähler. Candidates of counterexamples
to this statement can be obtained by the Cox construction, which realizes toric varieties
associated with simplicial fans and without torus factors as geometric quotients of certain
domains in CN by a linear action of a complex torus T, see [5, Theorem 5.1.11]. The
following concrete example, which is in some sense minimal, consists of a smooth complete
non-projective toric threefold for which Cox’ geometric quotient is a T -principal bundle.

Example 5.4. Let Σ be the simplicial fan from [8, Example 2]. It is shown that the
associated toric threefold XΣ is smooth, complete, and non-projective, hence non-Kähler
by Moishezon’s Theorem, [10, Chap. VII, Thm. 6.23]. Since

∣∣Σ(1)∣∣ = 8 and XΣ is smooth,
we have

Cl(XΣ) = Pic(XΣ) ∼= Z|Σ(1)|−dimX(Σ) = Z5,

see [5, Theorem 4.1.3 and Proposition 4.2.6]. Moreover, since XΣ has no torus factors,
the relevant group is T = HomZ(Z5,C∗) ∼= (C∗)5, see [5, Lemma 5.1.1]. Consequently,
an application of [5, Theorem 5.1.11] implies that there exists a geometric T -quotient
π : C8 \ Z(Σ) → XΣ where T acts linearly on C8. In particular, there is a momentum
map for the action of any compact real form of T on C8 \ Z(Σ), described explicitly in
§ 2 above.
Using again the fact that XΣ is smooth, we may apply [1, Proposition 2.1.4.6] to

see that T acts freely on C8 \ Z(Σ). Since the orbit space
(
C8 \ Z(Σ)

)
/T ∼= XΣ is

Hausdorff and since the holomorphic slice theorem for Hamiltonian actions, for exam-
ple see [14, Thm. 4.1.], yields local slices for the T -action, it follows that T acts properly
on C8 \ Z(Σ), see [19, Theorem 1.2.9] ; that is, π is indeed a T -principal bundle.

Remark 5.5. As in § 2 above, Example 5.4 can be equivariantly compactified C8 ↪→
P8 = P(C8 ⊕ C) to a Hamiltonian action of K = (S1)5 on P8, say with momentum
map µ. Now, given any point p in the open subset C8 \ Z(Σ), we may actually shift the
momentum map by a constant ξ ∈ k∗ to define a new momentum map µ̂ with p ∈ µ̂−1(0).
The corresponding set of semistable points is Zariski-open in P8; hence, its intersection
with C8 \ Z(Σ) yields a Zariski-open subset U ⊂ (C8 \ Z(Σ))/T ∼= XΣ admitting a
Kähler form ωU . As all quotient maps are in fact meromorphic, XΣ is bimeromorphic to
the compact Kähler space µ̂−1(0)/K on which ωU extends to an honest Kähler structure
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by Kählerian reduction; cf. [7]. That is, the Kählerian reduction theory explains in a
precise way how XΣ is in Fujiki’s class C (and not Kähler).

Remark 5.6. With respect to item (c) of Theorem 1.1, Example 5.4 shows that
(for connected G) it is not enough to assume

(1) some compactification X̂ of X to be Kähler, and

(2) the action map G×X → X to extend to a meromorphic map G× X̂ 99K X̂

in order for X/G to be Kähler. While under these two assumptions, there will always be a

momentum map µ̂ : X̂ → k∗ for the K -action, see for example, the discussion of classical
results regarding this connection in [11, Rem. 2.2], as in the example the intersection of

the compact subset µ̂−1(0) with the open subset X ⊂ X̂ might always be non-compact
(or empty).
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