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Abstract

We consider decay properties including the decay parameter, invariant measures, invariant
vectors, and quasistationary distributions of a Markovian bulk-arriving queue that stops
immediately after hitting the zero state. Investigating such behavior is crucial in realizing
the busy period and some other related properties of Markovian bulk-arriving queues. The
exact value of the decay parameter λC is obtained and expressed explicitly. The invariant
measures, invariant vectors, and quasistationary distributions are then presented. We
show that there exists a family of invariant measures indexed by λ ∈ [0, λC ]. We then
show that, under some conditions, there exists a family of quasistationary distributions,
also indexed by λ ∈ [0, λC ]. The generating functions of these invariant measures and
quasistationary distributions are presented. We further show that a stopped Markovian
bulk-arriving queue is always λC -transient and some deep properties are revealed. The
clear geometric interpretation of the decay parameter is explained. A few examples are
then provided to illustrate the results obtained in this paper.
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1. Introduction

Markovian queues are the most basic yet possibly the most important branch of applied
probability. On the one hand, they interweave the general theory of queueing models, while, on
the other hand, they interweave the general theory and applications of continuous-time Markov
chains, and have become a very successful and fruitful research field. Good references, among
many others, are [2] [17], [24], and [27] for the former and [1], [10], [32], and [38], for the latter.
See also [8] and [9], which contain new information about continuous-time Markov chains.
Within this queueing framework, the bulk-arriving queues occupy a major niche and play an
important role both in the theory and applications of Markovian queueing models, and have
attracted considerable attention, mainly owing to their extensive applications in many practical
situations experienced in science and technology such as in industrial assembly lines, road traffic
flow, arrival of aircraft passengers, etc. An excellent reference for bulk queues is [4]. This field
has close theoretical links with the versatile Markovian point process addressed in Neuts [29],
in which many types of bulk-arrival processes were examined. In addition, Neuts [30] provided
many interesting bulk-arriving models together with useful methods and techniques for their
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analysis. For further discussions on Markovian bulk-arriving queues, see [13], [25], [26], [31],
and [37].

Markovian queueing models with state-independent and state-dependent input/output have
also attracted considerable research interest. For example, Parthasarthy and Krishna [33]
allowed arbitrary input when the queue was empty. Chen and Renshaw [5], [6] introduced
the possibility of removing the entire workload. Another new concept in queueing theory is the
so-called negative arrivals. It seems that Gelenbe [15] and Gelenbe et al. [16] first introduced
this particularly interesting concept, whilst other related papers include [3], [18], [19], and [20].

Because of this extensive interest, many deep properties regarding Markovian bulk-arriving
queues, such as recurrence and positive recurrence criteria, the queueing length and the busy
period distributions, and the long-run behavior under the positive-recurrent scenario have been
revealed. See the references mentioned above.

However, it seems that there exists an important question which has not been extensively
addressed. That is, what is the long-run behavior, at least in some sense, if the Markovian
queue concerned is transient? Another closely related but perhaps more important question
is, what does the long-run behavior look like for the busy period for both the transient and
recurrent Markovian bulk queues? Apparently, a deep understanding of such conditional long-
run behavior would be extremely helpful in analyzing and designing complex queueing systems.

In fact, with the development of the general theory and applications of continuous-time
Markov chains, there has been a long history of investigating several closely linked and very
important concepts regarding the conditional long-run behavior, i.e. the important concepts
of decay parameter, invariant measures, and quasistationary distributions. The idea of using
quasistationary distributions can be traced back at least to the early work of Yaglom [43], who
considered the long-run behavior, in a sense which will be explained later, of the subcritical
Galton–Watson process. The other important concept, the decay parameter, was developed
by Kingman in the early 1960s. Beginning with the pioneering and remarkable work of
Kingman [23] and Vere-Jones [42], this extremely useful theory has flourished owing to much
important research, including the significant contributions made by [12], [14], [21], [22], [28],
[34], [35], [36], [39], [40], [41], and many others.

Roughly speaking, invariant measures and quasistationary distributions can be used to model
the long-term behavior of many stochastic systems in a variety of diverse contexts in which the
systems will stop moving, but appear to be stationary, in some sense, over any reasonable time
scale. For example, in the so-called stopped Markovian queue, which will be the main topic of
this paper, the queueing system may be empty at some time epoch, and then the busy period
ends. Thus, it is important and interesting to find the long-term behavior of such queueing
systems under the condition that the queueing system has not hit the zero state yet. Other
examples can be found in chemical reaction kinetics, population models, etc.

The important point is that Kingman [23] showed that, for an irreducible class C of any
continuous-time Markov chain, there exists a number λC ≥ 0, called the decay parameter of
the corresponding process, such that, for all i, j ∈ C,

1

t
log pij (t) → −λC as t → +∞,

from which we may clearly see that the decay parameter represents some kind of convergent
rate regarding the long-run behavior. The other way to characterize this important quantity is
as follows. Let

µij = inf

{
λ ≥ 0 :

∫ ∞

0
eλtpij (t) dt = ∞

}
= sup

{
λ ≥ 0 :

∫ ∞

0
eλtpij (t) dt < ∞

}
.
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Then, by the irreducibility argument, it is fairly easy to show that µij does not depend on
i, j ∈ C. Denote this common value of µij by µ. It is straightforward to show that the
common abscissa of convergence of these integrals is just the decay parameter, i.e.

λC = µ.

The decay parameter and the quasistationary distributions are closely linked to the so-
called µ-subinvariant/invariant measures and µ-subinvariant/invariant vectors. An elementary
but detailed discussion of this theory, including the basic definitions involved, can be found
in Chapter 5 of [1]. For convenience, we now repeat the definition of the quasistationary
distribution.

Definition 1.1. Suppose that (pij (t); i, j ∈ E) is a transition function of a continuous-time
Markov chain defined on the state space E. Assume that C is a communicating class of E and
that (mi; i ∈ C) is a probability distribution over C. Let

pj (t) =
∑
i∈C

mipij (t) for j ∈ C and t ≥ 0.

If
pj (t)∑
i∈C pi(t)

= mj , j ∈ C, t > 0,

then (mi; i ∈ C) is called a quasistationary distribution for (pij (t); i, j ∈ E).

The deep relationships between the decay parameter, the invariant measures, and the quasi-
stationary distributions have been revealed in the important works of Nair and Pollett [28] and
Van Doorn [41].

The main aim of this paper is to extensively and comprehensively investigate the decay
properties of a Markovian bulk-arriving queue which stops after hitting the zero state. This
model is usually called the stopped Markovian bulk-arriving queue (or the stopped MX/M/1
queue). Investigating such properties is crucial in realizing the behavior of the busy period of
the corresponding queueing systems. It will also be the key step in investigating the conditional
long-run behavior under the transient scenario of the Markovian bulk-arriving queues with
or without state-dependent input/output. The generator matrix, i.e. the so-called q-matrix
Q = (qij ; i, j ∈ Z+), where Z+ stands for the nonnegative integers {0, 1, 2, . . . }, of such
queueing models is given as follows:

qij =
{

bj−i+1 if i ≥ 1, j ≥ i − 1,

0 otherwise,
(1.1)

where
bj ≥ 0, j �= 1, 0 <

∑
j �=1

bj ≤ −b1 < ∞. (1.2)

In order to avoid discussing some trivial cases, we shall assume throughout this paper
that b0 > 0 and

∑∞
j=2 bj > 0. An immediate consequence of these assumptions is that

C = {1, 2, . . . } is an irreducible class for Q as well as for the corresponding Q-process. The
latter is formally defined as follows.

Definition 1.2. Let Q = (qij ; i, j ∈ Z+) be the generator matrix defined in (1.1)–(1.2). The
corresponding transition function P (t) = (pij (t); i, j ∈ Z+) is called the stopped Markovian
bulk-arriving queueing process (or stopped MX/M/1 queueing process).
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Note that we have defined the Q-process as the corresponding transition function P (t) rather
than the process itself. In fact, for convenience, we shall freely use this term to denote either
of them in this paper. This is, of course, commonly accepted and will not cause any confusion.
Since our generator matrix Q is bounded, then, by the general theory of continuous-time
Markov chains, we know that there exists only one Q-process which is the Feller minimal one.
Also note that we have slightly generalized the definition of the generator matrix of a stopped
MX/M/1 queue by allowing

∑
j �=1 bj ≤ −b1. Let

d = −b1 −
∑
j �=1

bj

be the deficit. Then d ≥ 0 and d = 0 if and only if Q is conservative. The reason in giving
this slightly general definition is twofold. Firstly, in our later proof we need to consider the
nonconservative case. Secondly, and more importantly, this definition provides us with an
opportunity to consider more general models, for example, the so-called MX/M/1 queue with
removing working loads. See, for example, [5] and [6].

Since 0 is an absorbing state and C = {1, 2, . . . } is an irreducible and transient class for this
model, we know thatpij (t) → 0 as t → ∞ for all i, j ∈ C. Hence, this process does not possess
any limiting distribution in the normal sense. Therefore, we turn our attention to the decay
parameter and the related properties, particularly the invariant measures and quasistationary
distributions of this stopped MX/M/1 queue.

It should be noted that, for the special case of the stopped M/M/1 queue, the decay parameter
and the corresponding invariant measures have been obtained; see, for example, [1]. As to the
general stopped MX/M/1 queue, Daley [11] discussed the discrete-time version, i.e. the jump
chain of the stopped MX/M/1 queue under the further condition that

∞∑
k=1

kbk+1 < b0. (1.3)

In particular, under condition (1.3), Daley [11] obtained the decay parameter of the jump chain,
denoted by RC , say, and proved that this jump chain is RC-transient. The generating function
of the quasistationary distribution of this discrete-time jump chain has also been given in [11]
under condition (1.3).

Different from Daley [11], in this paper we shall not confine ourselves to condition (1.3).
Indeed, all the situations, even including the subtle case in which

∑∞
k=1 kbk+1 = +∞, shall

be discussed in this paper. Many important decay properties which have not been discussed
in [11] shall also be revealed. Such properties include, for example, the particularly interesting
and important problem of invariant measures and the uniqueness and construction of invariant
measures and quasistationary distributions. Also, the main methods used in this paper are
substantially different from those used in [11]. Interestingly, our methods are not only applicable
to our current more complex and abundant continuous scenario, but are also of methodological
significance in their applications to much more general models. For example, our methods
are perfectly applicable to the more general MX/M/1 queues with state-dependent control and
even to the more general Markovian queueing models. We shall discuss such applications in
subsequent papers.

The structure of this paper is as follows. In Section 2 we concentrate on studying the decay
parameter for the stopped MX/M/1 queueing process. The exact value of the decay parameter
for all cases will be revealed. It shall be shown that this value can be obtained fairly easily
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and, also, has a clear geometric interpretation. In Section 3 we show that the stopped MX/M/1
queueing process is always λC-transient, again, for all cases. Some elegant expressions, which
in turn reveal some further deep properties of the stopped MX/M/1 queue, are obtained regarding
λC-transiency. The closed linked λ-subinvariant vectors and λ-invariant vectors for λ ∈ [0, λC]
are also presented in this section. The invariant measures and quasistationary distributions are
fully discussed in Section 4. We show that there exists a family of λ-invariant measures and
quasistationary distributions, indexed by λ ∈ (0, λC] except for the (trivial) critical case in
which λC = 0. The explicit expressions for the generating functions of this family of λ-
invariant measures and quasistationary distributions are established. We shall see that these
expressions take very simple forms. Finally, in Section 5 several examples are provided to
illustrate the results obtained in the previous sections.

2. Decay parameter

In order to find the decay parameter λC and to study the invariant measures, invariant
vectors, and quasistationary distributions for the stopped MX/M/1 queue, we define B(s) to be
the generating function of the given sequence {bk; k ≥ 0}, i.e.

B(s) =
∞∑

k=0

bks
k.

Since B(s) is a power series, we know that it possesses a convergence radius of

ρ = 1

lim supn→∞ n
√

bn

.

Clearly, ρ ≥ 1. By looking back at (1.2) we see that if ρ is finite then, although B(ρ) = +∞
is likely, it is impossible that B(ρ) = −∞. A similar property holds for B ′(ρ). Now, let
ρ0 = sup{s > 0 : B(s) ≤ 0}.

The following simple lemma summarizes some useful properties of the generating func-
tion B(s).

Lemma 2.1. The generating function B(s) is convex in [0, ρ) and has either one or two positive
roots. More specifically, the following cases hold.

(i) If ρ = +∞ then B(s) = 0 has exactly two positive zeros, q
S

and q
L

, say, satisfying
0 < q

S
≤ q

L
< ρ such that B(s) > 0 for s ∈ [0, q

S
) ∪ (q

L
, ρ) and B(s) < 0 for

s ∈ (q
S
, q

L
). For this case, we have ρ0 = q

L
, B(ρ0) = 0, and 0 < B ′(ρ0) ≤ +∞, and

there exists a point s0 with q
S

< s0 < q
L

such that B ′(s0) = 0. Moreover, q
S

= q
L

= 1
if and only if d = 0 and b0 = ∑∞

j=2(j − 1)bj , and q
S

< 1 = q
L

if and only if d = 0
and b0 <

∑∞
j=2(j − 1)bj ≤ +∞.

(ii) If ρ < +∞ and 0 ≤ B(ρ) ≤ +∞ then all the same conclusions hold as in (i).

(iii) If ρ < +∞, B(ρ) < 0, and 0 ≤ B ′(ρ) ≤ +∞, then B(s) = 0 has exactly one positive
root q

S
≤ 1 such that B(s) > 0 for s ∈ [0, q

S
) and B(s) < 0 for s ∈ (q

S
, ρ]. For

this case, we have ρ0 = ρ and there exists a point s0 satisfying q
S

< s0 ≤ ρ0 = ρ

such that B ′(s0) = 0 and B ′(s) < 0 for s ∈ [0, s0) and B ′(s) > 0 for s ∈ (s0, ρ0].
Moreover, s0 = ρ0 if and only if B ′(ρ) = 0, while q

S
= 1 if and only if d = 0 and

b0 ≥ ∑∞
j=2(j − 1)bj .
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(iv) Finally, if ρ < +∞, B(ρ) < 0, and B ′(ρ) < 0, then B(s) = 0 has exactly one positive
root q

S
≤ 1 such that B(s) > 0 for s ∈ (0, q

S
) and B(s) < 0 for s ∈ (q

S
, ρ]. For this

case, we have ρ0 = ρ and B ′(s) attains its maximum value at ρ0 in [0, ρ].
Furthermore, for cases (i)–(iii), we have B(ρ0) − ρ0B

′(ρ0) < 0, while, for case (iv), either
B(ρ0) − ρ0B

′(ρ0) < 0 or B(ρ0) − ρ0B
′(ρ0) ≥ 0 may occur.

Proof. Note that we have B ′′(s) > 0 for all s ∈ (0, ρ), which is due to (1.2). Thus, B ′(s) and
B(s) are strictly increasing and convex function on s ∈ (0, ρ), respectively. All the conclusions
then easily follow.

Remark 2.1. By Lemma 2.1 we see that both ρ0 and B(ρ0) are finite. In fact, we have
ρ0 ∈ [1, +∞) and −∞ < B(ρ0) ≤ 0. Also, there are only two possibilities for ρ0: either
ρ0 = q

L
or ρ0 = ρ < +∞.

Note that, for cases (i)–(iii) of Lemma 2.1, there exists a tangent line of B(s) which passes
through the origin. Even for case (iv) of Lemma 2.1, this may still be true (though not always).
We shall prove that, for nearly all the cases (the exact meaning of this will be clear later), the
decay parameter is simply the absolute value of the gradient of this tangent line.

Now define

λ∗ = sup{λ ∈ R : B(s) + λs = 0 has a root in [0, ρ0]}, (2.1)

where R denotes the set of real numbers. Since B(0) = b0 > 0 ≥ B(1), it is easily seen that
λ∗ can also be expressed as

λ∗ = sup{λ ≥ 0 : B(s) + λs = 0 has a root in [0, ρ0]}
= sup{λ ≥ 0 : B(s) + λs = 0 has a root in [q

S
, ρ0]}. (2.2)

Indeed, for all s ∈ [0, q
S
) and λ ≥ 0, by Lemma 2.1 we have B(s) + λs ≥ B(s) > 0 and,

thus, B(s) + λs = 0 has no root in [0, q
S
).

Later we shall prove that the supreme in (2.1) (or (2.2)) is attainable and, more importantly,
that it is just the decay parameter for our model. Hence, it is very informative and useful to
give further characteristics of this important quantity, including its geometric meaning. For this
purpose, we define

λ̄ = max

{
−B(s)

s
; s ∈ [q

S
, ρ0]

}
.

Since −B(s)/s is a continuous function on the closed interval [q
S
, ρ0] (except the trivial case

in which q
S

= ρ0), we know that λ̄ is finite.
In determining the decay parameter the test function

g(s) = B(s) − sB ′(s) (2.3)

plays an extremely important role. For this reason, we summarize its simple yet important
properties as follows. First note that, as a power series, g(s) has the same convergence radius
ρ as B(s).

Lemma 2.2. The test function g(s) is a strictly decreasing function on [0, ρ) and, thus, has
either no positive zero or exactly one positive zero, denoted by s∗, say. Moreover, the former
happens if and only if ρ < +∞ and b0 >

∑∞
j=2(j − 1)bjρ

j (i.e. ρ < +∞ and g(ρ) > 0)
and, for this former case, we have g(s) > 0 for all s ∈ [0, ρ], while, for the latter case, we
have g(s) > 0 for all s ∈ [0, s∗) and g(s) < 0 for all s ∈ (s∗, ρ).
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Proof. The strictly decreasing property follows directly from the fact that, for all s > 0, we
have g′(s) = −sB ′′(s) < 0. Now all the conclusions easily follow from this strictly decreasing
property together with the simple facts that

g(s) = b0 −
∞∑

j=2

(j − 1)bj s
j and g(0) = b0 > 0.

Note that g(s) is also actually strictly concave on [0, ρ), but this property will not be used
in this paper. The above positive zero, s∗ of g(s) (if any), plays a key role in considering the
decay properties of the stopped MX/M/1 queue as the following lemma and some other later
conclusions show.

Lemma 2.3. We have λ∗ = λ̄ and thus λ∗ < ∞, and the supreme in (2.1) (or (2.2)) is attainable.
In particular, the equation B(s) + λ∗s = 0 has a unique root s∗ ∈ [q

S
, ρ0], where q

S
is given

in Lemma 2.1. Moreover, the following cases hold.

(i) If B ′(ρ0) > B(ρ0)/ρ0 then λ∗ = −B(s∗)/s∗ = −B ′(s∗), where q
S

≤ s∗ < ρ0. For this
case, we have λ∗ > −B ′(ρ0).

(ii) If B ′(ρ0) = B(ρ0)/ρ0 then λ∗ = −B(s∗)/s∗ = −B ′(s∗), where s∗ = ρ0; thus, λ∗ =
−B ′(ρ0).

(iii) If B ′(ρ0) < B(ρ0)/ρ0 then λ∗ = −B(s∗)/s∗ < −B ′(s∗), where s∗ = ρ0 = ρ; thus,
λ∗ < −B ′(ρ0).

Proof. By Lemma 2.1 we see that λ∗ in (2.1) or (2.2) is well defined and that λ∗ ≥ 0 since
B(s) = 0 has a root q

S
∈ [0, ρ0]. Now, our aim is to prove that λ∗ is attainable. Firstly, if

B(1) = B ′(1) = 0 then q
S

= ρ0 = 1 and, thus, it is trivial to see that all the conclusions hold
since λ∗ = λ̄ = 0 by definition. For all other cases, [q

S
, ρ0] is a closed interval and, thus, by

noting that B(s)/s is a nonpositive, continuous function of s ∈ [q
S
, ρ0], we see that there exists

an s0 ∈ [q
S
, ρ0] such that λ̄ = −B(s0)/s0 < +∞ and λ̄ > 0.

We now claim that λ̄ = λ∗. Firstly, it is clear that λ̄ ≤ λ∗. Indeed, by the definition of λ̄

we know that the equation B(s) + λ̄s = 0 has a root s0 ∈ [q
S
, ρ0] and, thus, the inequality

follows by noting (2.1). In order to prove the converse, we assume that λ̄ < λ∗. It follows that
there exists a µ ∈ (λ̄, λ∗). Since µ < λ∗, we know that the equation B(s) + µs = 0 has a root
sµ ∈ [q

S
, ρ0], i.e. µ = −B(sµ)/sµ. Hence, µ ≤ λ̄, since λ̄ is the maximum of −B(s)/s on

[q
S
, ρ0], which contradicts λ̄ < µ. Therefore, for all cases, we have λ∗ = λ̄. Thus, the first

part is proved.
To prove the latter part, let f (s) = −B(s)/s for s ∈ (0, ρ0]. Considering f (s) < 0 for

s ∈ [0, q
S
], we know that λ∗ = max{f (s); s ∈ [0, ρ0]}. Now note that f ′(s) = g(s)/s2, where

g(s) is defined in (2.3); thus, f ′(s) shares the same zero and signs as g(s). In particular, f ′(s)
has at most one positive zero. Moreover, if f ′(s) does have a positive zero, which then must be
the same s∗ as in Lemma 2.2 , then f (s) must attain its maximum on [0, ρ) at s∗. Indeed, since
f ′(s) and g(s) have the same sign, then, by Lemma 2.2, f (s) is strictly increasing on [0, s∗)
and strictly decreasing on (s∗, ρ). Therefore, if B ′(ρ0) > B(ρ0)/ρ0, i.e. g(ρ0) < 0, then there
exists an s∗ satisfying q

S
< s∗ < ρ0 such that g(s∗) = f ′(s∗) = 0. That is, the function f (s)

attains its maximum at s∗ and, hence, λ∗ = −B(s∗)/s∗ = −B ′(s∗), where the latter equality
holds because of g(s∗) = 0. It then follows from g(ρ0) < 0 that λ∗ > −B(ρ0)/ρ0 > −B ′(ρ0)

and, thus, (i) is proved.
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Similarly, we may prove (ii) and (iii). The difference is that in both (ii) and (iii) the function
f (s) attains its maximum λ∗ at ρ0 rather than in (0, ρ0). Moreover, it is easily seen that in case
(iii) we must have ρ0 = ρ since, for this case, ρ0 = q

L
is impossible; see Lemma 2.1.

Remark 2.2. (i) Lemma 2.3 shows that the quantity λ∗ has clear geometric interpretation.
Indeed, considering that the slope of the tangent line, which passes through the origin, of the
curve y = B(x) is just B(x)/x, we see that, for both cases (i) and (ii) of Lemma 2.3, y = −λ∗x
is just the tangent line of the curve y = B(x). More intuitively, consider that a family of
lines y = −λx, indexed by the parameter λ ≥ 0, rotates anticlockwise around the origin.
Then λ∗ is just the value of λ when the rotating lines y = −λx (λ > 0) first hit the curve
y = B(x) (x > 0). Hence, for cases (i) and (ii) of Lemma 2.3, the line y = −λ∗x is just the
tangent line of y = B(x), while, for case (iii) of Lemma 2.3, though not the tangent line, the
line y = −λ∗x and the curve y = B(x) intersect at the point (ρ0, B(ρ0)).

(ii) Although in both cases (ii) and (iii) of Lemma 2.3 the function f (s) = −B(s)/s attains its
maximum value λ∗ at ρ0, they are actually quite different in geometric interpretation. Indeed,
for Lemma 2.3(ii), we have f ′(ρ0) = 0 and, thus, y = −λ∗x is the tangent line of the curve
y = B(x), while, for Lemma 2.3(iii), we have f ′(s) > 0 for all s ∈ [0, ρ0] and, thus, y = −λ∗x
is not the tangent line of the curve y = B(x).

(iii) Note that the same notation s∗ is used in both Lemmas 2.2 and 2.3. This is reasonable.
Indeed, as can be seen from the proof of Lemma 2.3, the root s∗ given in Lemma 2.3 is the
same s∗ as the positive 0 of g(s) given in Lemma 2.2 when g(s) does have a positive zero. For
the case in which g(s) does not possess a positive zero, the s∗ defined in Lemma 2.3 is just
ρ0 = ρ. It is also clear that case (iii) of Lemma 2.3 can only happen when both ρ < ∞ and
b0 >

∑∞
j=2(j − 1)bjρ

j hold. In particular, if Q is conservative then this can only happen
when both ρ < ∞ and B ′(1) < 0 hold.

Lemma 2.4. Let (pij (t); i, j ∈ Z+) be a stopped MX/M/1 queueing process with generator
matrix Q as defined in (1.1)–(1.2). Then λC ≥ λ∗.

Proof. In order to prove that λC ≥ λ∗, by Remark (3) of [1, p. 175], we only need to show
that there exists a λ∗-subinvariant vector for the minimal transition function (pij (t); i, j ∈ Z+)

on C, or, equivalently, that there exists a λ∗-subinvariant vector for Q on C (see [1, Proposition
5.4.1]). In other words, we only need to show that there exist (xj ; j ≥ 1) such that 0 < xj <

+∞ for all j ≥ 1 and
∞∑

j=1

qij xj ≤ −λ∗xi, i ≥ 1. (2.4)

However, in Lemma 2.3 we have proved that the equation B(s) + λ∗s = 0 has a unique root
s∗ ∈ [q

S
, ρ0], i.e. B(s∗) + λ∗s∗ = 0. That is,

∞∑
j=0

bj s
j∗ = −λ∗s∗.

Now let xj = s
j∗ (j ≥ 1). Then 0 < xj < +∞ (j ≥ 1) and it is easily seen that (xj ; j ≥ 1)

satisfies (2.4). Indeed, for i = 1, (2.4) is just

∞∑
j=1

q1j xj =
∞∑

j=1

bj s
j∗ = B(s∗) − b0 = −λ∗s∗ − b0 < −λ∗s∗ = −λ∗x1,
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while, for i ≥ 2, (2.4) is just

∞∑
j=1

qij xj =
∞∑

j=i−1

bj−i+1s
j∗ = si−1∗ B(s∗) = −λ∗si∗ = −λ∗xi.

Thus, (2.4) holds, which completes the proof.

We are now ready to prove the main result of this section. That is, we shall prove that λ∗ is
exactly the decay parameter λC , where, again, C = {1, 2, . . . } is an irreducible class. We shall
prove this basic conclusion in two theorems, dealing with two different cases. We first consider
the case in which λ∗ ≥ −B ′(ρ0). Note that, by Lemma 2.3, this covers cases (i) and (ii) of
Lemma 2.3.

Theorem 2.1. For the stopped MX/M/1 queueing process with generator matrix Q as given in
(1.1)–(1.2), if λ∗ ≥ −B ′(ρ0) then λC = λ∗, where C = {1, 2, . . . }.

Proof. By Lemma 2.4 we only need to show that λC ≤ λ∗. We first consider a very special
case in which d = 0 and b0 = ∑∞

j=2(j − 1)bj , and, thus, B(1) = B ′(1) = 0. For this case,
the corresponding transition function (pij (t); i, j ∈ Z+) is honest and q

S
= 1 and λ∗ = 0.

Suppose that λC > λ∗ = 0. Then, for anyλ ∈ (0, λC),∫ ∞

0
eλtpi1(t) dt < ∞ for all i ≥ 1.

However, by the forward equation we know that p′
i0(t) = b0pi1(t) and, thus,∫ ∞

0
eλtp′

i0(t) dt < ∞.

Since λ > 0, by using the inequality eλt ≥ 1 + λt we obtain∫ ∞

0
tp′

i0(t) dt < ∞,

i.e. Ei[τ0] < +∞, where τ0 is the absorbing time to 0 and Ei is the mathematical expectation
under the condition that the process starts at state i. This contradicts, say, Theorem 2.2 of [6].
Therefore, for this special case, we have λC = λ∗ = 0.

We now remove the condition that B(1) = B ′(1) = 0. Since λ∗ ≥ −B ′(ρ0), by Lemma 2.3
and Remark 2.2(i), we know that the equation B(s) + λ∗s = 0 has a root s∗ ∈ [qs, ρ0] and that
y = −λ∗s is the tangent line of the curve y = B(s). Now, by Lemma 2.3 we also know that
the tangency point is just (s∗, B(s∗)) and, hence, λ∗ = −B ′(s∗). Define Q̃ = (q̃ij ; i, j ∈ Z+)

as

q̃ij =
{

b̃j−i+1 if i ≥ 1, j ≥ i − 1,

0 otherwise,

where b̃k = bks∗k(k �= 1) and b̃1 = b1s∗+λ∗s∗. It is obvious that Q̃ is a conservative generator
matrix of some stopped MX/M/1 queue. Let (p̃ij (t); i, j ∈ Z+) be the unique Q̃-function, and
let B̃(s) denote the generating function of {b̃k; k ≥ 0}, i.e.

B̃(s) =
∞∑

k=0

b̃ks
k, |s| ≤ 1.

https://doi.org/10.1239/aap/1208358888 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358888


104 J. LI AND A. CHEN

It is easy to see that B̃(s) = B(s∗s) + λ∗s∗s and B̃(1) = B̃ ′(1) = 0. Hence, by the just
proven result we know that the decay parameter of (p̃ij (t); i, j ∈ Z+) for C is λ̃C = 0. On the
other hand, by Kingman’s lemma (see, for example, [1, Theorem 5.2.7 and Proposition 5.4.1]),
we know that there exists a λC-subinvariant measure for Q on C, i.e. there exists a measure
(mi; i ≥ 1) such that 0 < mi < ∞ (i ≥ 1) and

j+1∑
i=1

mibj−i+1 ≤ −λCmj , j ≥ 1. (2.5)

Multiplying both sides of (2.5) by s∗j yields

j+1∑
i=1

(mis∗i−1)(bj−i+1s∗j−i+1) ≤ −(λCs∗)(mj s∗j−1), j ≥ 1.

Adding λ∗mjs∗j to both sides of the above inequality and using the definition of {b̃k; k ≥ 0},
immediately yields

j+1∑
i=1

m̃i b̃j−i+1 ≤ −(λC − λ∗)s∗m̃j , j ≥ 1,

where m̃i = mis∗i−1(i ≥ 1). Therefore, (m̃i; i ≥ 1) is a (λC − λ∗)s∗-subinvariant measure
for Q̃ (or, equivalently, for (p̃ij (t); i, j ∈ Z+)) on C. Now, by a well-known result (see
[1, Remarks, p. 175]), we must have (λC − λ∗)s∗ ≤ λ̃C = 0. Hence, λC ≤ λ∗ and, therefore,
λC = λ∗.

Theorem 2.2, below, shows that even if λ∗ < −B ′(ρ0), the same conclusion still holds.

Theorem 2.2. Let (pij (t); i, j ∈ Z+) be a stopped MX/M/1 queueing process with generator
matrix Q as defined in (1.1)–(1.2). Then λC = λ∗.

Proof. By Theorem 2.1 we only need to consider the case in which β =: B ′(ρ0) + λ∗ <

0. Let (φij (λ); i, j ∈ Z+) be the corresponding Q-resolvent, i.e. the Laplace transform of
(pij (t); i, j ∈ Z+). Now, let N0 = inf{k ≥ 2; bk > 0} and, for any n ≥ N0, let

q
(n)
ij =

{
b

(n)
j−i+1 if i ≥ 1, j ≥ i,

0 otherwise,

where

b
(n)
k =

{
bk if k ≤ n,

0 if k > n.

It is obvious that Q(n) = (q
(n)
ij ; i, j ∈ Z+) is a nonconservative generator matrix as in

(1.1)–(1.2) and that C is still an irreducible class for each Q(n), n ≥ N0. Let (npij (t); i, j ∈
Z+) and (nφij (λ); i, j ∈ Z+) be the Feller minimal Q(n)-function and the Feller minimal
Q(n)-resolvent, respectively. Let

Bn(s) =
∞∑

k=0

b
(n)
k sk,

λ∗
n = sup{λ ≥ 0 : Bn(s) + λs = 0 has a root in [0, ρ

(n)
0 ]},
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where ρ
(n)
0 = sup{s > 0 : Bn(s) ≤ 0}. It is clear that the generating function Bn(s) is well

defined on [0, ∞), i.e. the convergence radius ρ(n) for Bn(s) is infinite. It follows that
λ∗

n ≥ −B ′
n(ρ

(n)
0 ). Therefore, we may apply Theorem 2.1 to obtain the conclusion that the decay

parameter of (npij (t); i, j ∈ Z+) for C is λ
(n)
C = λ∗

n. We now prove that λ∗
n ↓ λ∗(n ↑ ∞),

where λ∗ is given in (2.2) with respect to the original generator matrix Q. Indeed, by the
definition of Bn(s), n ≥ N0, it is clear that

Bn(s) ≤ Bn+1(s), B ′
n(s) ≤ B ′

n+1(s), for all s ≥ 0, n ≥ N0, (2.6)

and that
Bn(s) ≤ B(s), B ′

n(s) ≤ B ′(s), for all 0 ≤ s < ρ, n ≥ N0. (2.7)

In other words, the curve y = Bn+1(s) is above the curve y = Bn(s) for s ≥ 0. Since
λ∗

n and λ∗
n+1 are the absolute values of the slopes of the tangent lines, passing through the

origin, of the curves y = Bn(s) and y = Bn+1(s), respectively, it follows from (2.6) and
(2.7) that we must have λ∗

n ≥ λ∗
n+1(n ≥ N0), i.e. {λ∗

n; n ≥ N0} is nonincreasing with respect
to n, and it is also clear that λ∗

n ≥ λ∗(n ≥ N0). Let λ̄ = limn→∞ λ∗
n. Then λ̄ ≥ λ∗.

We now claim that λ̄ = λ∗. Suppose that λ̄ > λ∗, then choose λ̃ ∈ (λ∗, λ̄ ∧ (λ∗ − β)).
Since, for each n ≥ N0, Bn(s) + λ̃s is strictly convex in [0, ∞), there exists a unique s̃n such
that Bn(s̃n) + λ̃s̃n = inf{Bn(s) + λ̃s : s ∈ [0, ∞)}. It can be easily seen that {s̃n; n ≥ N0} is
nonincreasing with respect to n. Indeed, since the function Bn(s) + λ̃s attains its minimum
value at s̃n and B ′

n(s) + λ̃ is differentiable at s = s̃n, we must have B ′
n(s̃n) = −λ̃. However,

by (2.6), B ′
n+1(s̃n) ≥ B ′

n(s̃n) = −λ̃ and, furthermore, for all s ≥ s̃n, B ′
n+1(s) + λ̃ ≥ 0 (since

B ′
n+1(s) is an increasing function of s ∈ [0, ∞)). Therefore, the function Bn+1(s) + λ̃s is

increasing on [s̃n, ∞) and, thus, it can only attain its minimum value before s̃n, i.e. s̃n+1 ≤ s̃n
for all n ≥ N0. For the same reason (see (2.7)), we have

B ′
n(s) + λ̃ ≤ B ′(s) + λ̃ for all s ∈ [0, ρ), n ≥ N0,

and, in particular,
B ′

n(ρ0) + λ̃ ≤ B ′(ρ0) + λ̃ = β + λ̃ − λ∗ < 0.

But, B ′
n(s̃n) + λ̃ = 0 and B ′

n(s) + λ̃ is increasing with respect to s and, therefore, s̃n > ρ0(n ≥
N0).

Since λ̃ < λ̄, we may claim that

Bn(s̃n) + λ̃s̃n < 0 < B(ρ0) + λ̃ρ0. (2.8)

Indeed, since λ̃ > λ∗, the equation B(s)+λ̃s = 0 would have no root in [0, ρ0] and, thus, would
keep positive on [0, ρ0], which yields the right-hand side inequality of (2.8). As to the left-hand
side inequality of (2.8), just note that λ∗

n is the largest value of λ such that Bn(s) + λs = 0 has
a root in [0, ρ

(n)
0 ]. On the other hand, note that λ̃ < λ̄ ≤ λ∗

n, we know that Bn(s) + λ̃s = 0 has
a root in [0, ρ

(n)
0 ] and, thus, the minimum value of Bn(s) + λ̃s, which is Bn(s̃n) + λ̃s̃n, must be

negative. This yields the inequality on the left-hand side of (2.8).
By the definition of Bn(s) we see that the left-hand side inequality of (2.8) can be written as

∑
k �=1

b
(n)
k s̃k

n + λ̃s̃n < −b1s̃n. (2.9)
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Note that s̃n ↓ s̃∞, say, as n tends to ∞, and, thus, by (2.9) we have

lim sup
n→∞

∑
k �=1

b
(n)
k s̃k

n + λ̃s̃∞ ≤ −b1s̃∞. (2.10)

Now considering that the left-hand side of (2.10) is a nonnegative series and that, for each fixed
k �= 1, we have

lim
n→∞ b

(n)
k s̃k

n = bks̃
k∞,

then using Fatou’s lemma, (2.10) becomes∑
k �=1

bks̃
k∞ + λ̃s̃∞ ≤ −b1s̃∞,

which leads to
B(s̃∞) ≤ −λ̃s̃∞ < 0. (2.11)

However, ρ0 = sup{s > 0 : B(s) ≤ 0} and, thus, (2.11) implies that s̃∞ ≤ ρ0. But, for all
n ≥ N0, we have s̃n > ρ0 and, thus, s̃∞ ≥ ρ0. Therefore, s̃∞ = ρ0. Now, by (2.8) and (2.11),

B(ρ0) + λ̃ρ0 ≤ 0 < B(ρ0) + λ̃ρ0,

which is a contradiction. This proves that λ̄ = λ∗.
On the other hand, it is well known that the Q-resolvent (φij (λ); i, j ∈ Z+) is the minimal

nonnegative solution of the Kolmogorov backward equation,

φij (λ) = δij

λ + qi

+
∑
k �=i

qik

λ + qi

φkj (λ), i ≥ 0,

and that the Q(n)-resolvent (nφij (λ); i, j ∈ Z+) is the minimal nonnegative solution of the
Kolmogorov backward equation,

nφij (λ) = δij

λ + q
(n)
i

+
∑
k �=i

q
(n)
ik

λ + q
(n)
i

nφkj (λ), i ≥ 0,

and that all of them can be obtained by using the well-known iteration scheme. Now note that
q

(n)
i = qn (n ≥ N0) and q

(n)
ik ↑ qik (n ↑ ∞) for all i �= k. It is easily seen, by considering their

iteration schemes, that nφij (λ) ↑ φij (λ) as n ↑ ∞ and, thus, for their corresponding transition
functions, we also have npij (t) ↑ pij (t) as n ↑ ∞.

Now if λC > λ∗ then, for any µ ∈ (λ∗, λC), we have∫ ∞

0
eµtp11(t) dt < +∞

and, thus, ∫ ∞

0
eµt

np11(t) dt < +∞ for all n ≥ N0.

It follows from the above proof that µ ≤ λ∗
n (n ≥ N0). Hence, µ ≤ λ∗, which contradicts

µ ∈ (λ∗, λC). Therefore, λC = λ∗. The proof is complete.
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By combining Theorem 2.2 and Lemma 2.3, we obtain the following effective way to obtain
the exact value of the decay parameter λC .

Corollary 2.1. Let ρ0 be determined as in Remark 2.1, and let g(s) be as given in (2.3).

(i) If g(ρ0) ≥ 0 then ρ0 = ρ and λC = −B(ρ)/ρ.

(ii) If g(ρ0) < 0 (thus, g(s) = 0 has a unique root s∗ ∈ [0, ρ0)) then λC = −B ′(s∗) and,
hence, s∗ and λC satisfy the equations

B(s∗) − s∗B ′(s∗) = 0,

λC = −B ′(s∗).
(2.12)

In other words, s∗ and λC are the unique solution of the following equations regarding
the unknowns s and λ:

B(s) − sB ′(s) = 0,

λ = −B ′(s).
(2.13)

Proof. This is a direct consequence of Theorem 2.2 and Lemma 2.3. Also, the uniqueness
of the solution of (2.13) can be easily proved.

In applying Corollary 2.1 we need to check the sign of g(ρ0), which may not always be
convenient. This is because ρ0 may equal the largest root q

L
of B(s) = 0; see Lemma 2.1.

But, it may not always be easy to find q
L

. Fortunately, this difficulty can be avoided. In
fact, we actually do not need to find q

L
. Indeed, as shown in Lemma 2.1, for cases (i)–(iii)

of Lemma 2.1, we automatically have g(ρ0) < 0 and, thus, only in case (iv) of Lemma 2.1
do we need to check whether this condition holds, as Corollary 2.2, below, shows. The basic
feature of Corollary 2.2 is that all the conditions are imposed to the easily obtained quality ρ

rather than ρ0. Recall that ρ is the convergence radius of B(s). In Corollary 2.2, we shall only
be concerned with the conservative case, since this is the most important case. Also, for the
nonconservative case, similar statements can be easily given.

Corollary 2.2. Let Q be a conservative generator matrix as defined in (1.1)–(1.2), and let
B(s) be the generating function of the sequence {bk; k ≥ 0}, with convergence radius ρ.

(i) If B ′(1) < 0 and ρ = 1 or if B ′(1) = 0, then λC = 0 and s∗ = 1.

(ii) If B ′(1) > 0 (including B ′(1) = +∞) then 0 < s∗ < 1 and λC > 0. Moreover, s∗ and
λC can be determined by solving either (2.12) or (2.13) directly.

(iii) If B ′(1) < 0 and ρ > 1 (including ρ = +∞) then s∗ > 1 and λC > 0. Moreover, if
ρ < +∞, B ′(ρ) < 0, and B(ρ) > ρB ′(ρ), then s∗ = ρ and λC = −B(ρ)/ρ, while
if any one of the above conditions fails, then s∗ and λC can be determined by solving
either (2.12) or (2.13) directly.

Proof. This is a direct consequence of Lemma 2.1 and Corollary 2.1.

Remark 2.3. Corollary 2.2 tells us that only for the case in which B ′(1) < 0 and ρ > 1 do
we need to check whether the condition B(ρ) > ρB ′(ρ) is satisfied or not. Furthermore, for
Corollary 2.2(iii), even if ρ = +∞ or even if ρ < +∞ with B(ρ) ≥ 0 or B ′(ρ) ≥ 0, then we
may immediately claim that λC and s∗ can be determined by solving (2.12) or (2.13) directly.
Furthermore, note that even for the worst case we still may not have to calculate the exact values
of B(ρ) and B ′(ρ), since what we only need to know is whether B(ρ) > ρB ′(ρ) or not. In
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Section 5 we shall use several examples to show how easily Corollary 2.2 can be applied to
find the decay parameter of the corresponding models.

Corollary 2.3, below, on the other hand, shows that our basic result regarding the decay
parameter has a very clear geometric interpretation.

Corollary 2.3. Let (pij (t); i, j ∈ Z+) be the stopped MX/M/1 queueing process with generator
matrix Q as defined in (1.1)–(1.2).

(i) If −B(ρ0)/ρ0 < max{−B(s)/s : s ∈ [q
S
, ρ0]} then y = −λCx is the tangent line of the

curve y = B(x).

(ii) If −B(ρ0)/ρ0 = max{−B(s)/s : s ∈ [q
S
, ρ0]} then λC = −B(ρ0)/ρ0.

Finally, we point out that, as a direct corollary, we may also obtain the decay parameter
RC of the corresponding jump Markov chain {Xn; n ≥ 0}. To this end, let C = {1, 2, . . . },
then it is easy to see that C is also an irreducible class of the jump chain, which possesses the
decay parameter RC . Also, let f (s) = s + B(s)/b and let m = f ′(1) = 1 + B ′(1)/b, where
b = −b1 > 0. Obviously, m < 1 if and only if B ′(1) < 0. Furthermore, let s∗ be the unique
positive root (if any) of sB ′(s) − B(s) = 0 or, equivalently, let s∗ be the unique positive root
(if any) of sf ′(s) − f (s) = 0. Then we have the following conclusion.

Corollary 2.4. Suppose that Q = (qij ; i, j ∈ Z+) is a conservative generator matrix as
defined in (1.1)–(1.2) satisfying b0 > 0 and

∑∞
j=2 bj > 0. Then C = {1, 2, . . . } is an

irreducible class of the jump chain {Xn; n ≥ 0}.
(i) If m = 1 or if m < 1 and ρ = 1, then RC = 1 and s∗ = 1.

(ii) If m > 1 (including m = +∞) then 0 < s∗ < 1 and RC = s∗/f (s∗).

(iii) If m < 1 and ρ > 1 (including ρ = +∞) then s∗ > 1. Moreover, if ρ < +∞, f ′(ρ) < 1,
and f (ρ) > ρf ′(ρ), then s∗ = ρ and RC = ρ/f (ρ), while if any one of the above
conditions fails then RC = s∗/f (s∗).

Proof. By a well-known result of [39] regarding the relationship between the decay param-
eters of a continuous-time Markov chain and its jump chain, we know that

RC =
(

1 − λC

b

)−1

.

Now, applying Cororollary 2.2 together with some easy algebra, we immediately yield all the
conclusions.

Note that Corollary 2.4(iii) coincides with the basic result obtained in [11]. In fact, Daley [11]
only considered the case in which m < 1.

3. Invariant vectors and the transiency property

From now on, we shall assume that the q-matrix Q is conservative. After obtaining the
exact value of the decay parameter λC in the previous section, we are now interested in
realizing whether the stopped MX/M/1 queue process is λC-transient or not. We are also
interested in some other related properties, particularly the closely linked concept of invariant
vectors. However, the answer to the former question is a direct consequence of Lemma 2.4 and
Theorem 2.2. Indeed, we have the following conclusion.
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Theorem 3.1. The stopped MX/M/1 queue is always λC-transient.

Proof. By Theorem 2.2 we know that λC = λ∗, where λ∗ is given in (2.1), which implies,
by Lemma 2.4, that the λ∗-subinvariant vector given there is just a λC-subinvariant vector for Q

on C. However, this λC-subinvariant vector is not λC-invariant and, thus, by [39] we conclude
that the stopped MX/M/1 queue is λC-transient.

Remark 3.1. In [39] the conclusion is in terms of invariant measures. However, it is easily
seen that the conclusion holds well if the invariant measures are replaced by invariant vectors.

The disadvantage of Theorem 3.1 is that it does not provide sufficient information regarding
the transiency property and, thus, is not particularly interesting. Fortunately, we can do much
better than Theorem 3.1 by giving further interesting and very useful expressions.

To achieve this aim, we need to carry out some preparatory work. First note that, by the
results obtained in the previous section, we know that there exists an s∗ ∈ [q

S
, ρ0] such that

λC = −B(s∗)/s∗. In particular, for cases (ii) and (iii) of Corollary 2.2, we have λC > 0 and,
for any λ ∈ (0, λC], the equation B(s) + λs = 0 has either one root or two roots in (0, ρ] (of
course, if ρ = +∞ then this semiclosed interval should be read as (0, ∞)), since B(s) + λs is
a convex function of s ∈ [0, ρ]. In particular, for any λ ∈ (0, λC], the equation B(s) + λs = 0
possesses a smallest positive root. From now on, we shall always use sλ to denote this smallest
positive root and, hence, if λ = λC then sλ = s∗. Moreover, by Lemma 2.3 of [6], for any
λ ∈ (−∞, 0), the equation B(s) + λs = 0 has exactly one root, denoted also by sλ, on [0, 1].
Lemma 3.1, below, reveals further properties of this function which will be useful in our future
analysis. Note that we may view sλ as a function of λ ∈ (−∞, λC]. For convenience, we shall
freely interchange the notation sλ and S(λ) in the following. Also, for notational convenience,
we shall simply use limλ→λC

to denote limλ→λC
− .

Lemma 3.1. The smallest positive root S(λ) of the equation B(s) + λs = 0, viewed as a
function of λ ∈ (−∞, λC], possesses the following properties.

(i) S(λ) ∈ C∞(−∞, λC).

(ii) S(λ) is a strictly increasing and continuous function of λ ∈ [0, λC].
(iii) S(λ) → 0 as λ → −∞ and S(λ) → s∗ as λ → λC .

(iv) If B ′(1) < 0 and ρ > 1 then S(0) = 1 and, for λ ∈ (−∞, 0), we have 0 < S(λ) < 1 and,
for λ ∈ (0, λ), we have 1 < S(λ) < s∗. Whereas if B ′(1) > 0 (including B ′(1) = +∞)
then S(0) = q < 1 and, for λ ∈ (−∞, 0), we have 0 < S(λ) < q and, for λ ∈ (0, λC),
we have q < S(λ) < s∗ < 1.

(v) If B ′(1) = 0 or if B ′(1) < 0 and ρ = 1, then λC = 0 and s∗ = 1; thus, S(0) = S(λC)

= 1 and, for λ ∈ (−∞, 0), we have 0 < S(λ) < 1.

(vi) limλ→λC
S′(λ) = s2∗/(B(s∗) − s∗B ′(s∗)) .

(vii)

lim
λ→λC

S′′(λ) = s3∗
(B(s∗) − s∗B ′(s∗))2

(
2 + s2∗B ′′(s∗)

B(s∗) − s∗B ′(s∗)

)
.

Proof. Note that S(λ) can be viewed as the x-coordinate of the intersection point of the curve
y = B(x) and the line y = −λx; thus, properties (ii) and (iii) immediately follow since the
former curve is convex for x ≥ 0. Properties (iv) and (v) can be easily proven and, in fact, have
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been mentioned before. Now, S(λ) is the smallest positive root of the equation λ = −B(s)/s

and so λ, as a function of s ∈ (0, ρ), belongs to C∞, since B(s) is a power series. Hence, the
inverse function S(·) also belongs to C∞(−∞, λC), which proves (i).

By considering S(λ) to be the root of B(s) + λs = 0 we have B(S(λ)) + λS(λ) ≡ 0.
Using (i), we may differentiate the above equation with respect to λ to obtain

B ′(S(λ))S′(λ) + S(λ) + λS′(λ) = 0.

Letting λ → λC
−, using (iii) and the fact that λC = −B(s∗)/s∗, immediately yields (vi).

Similarly, applying (i) and differentiating once again for λ ∈ (−∞, λC), we may easily
obtain (vii). The proof is complete.

By the proof of Lemma 3.1 we see that the limits of the higher derivatives of S(λ) as λ → λC

could be similarly obtained.
We are now in the position to claim our conclusion regarding the subinvariant and invariant

vectors of the stopped MX/M/1 queue process.

Theorem 3.2. For any 0 ≤ λ ≤ λC , let sλ be the smallest nonnegative zero of B(s)+λs. Then
the vector y = (yj ; j ∈ C), where yj = s

j
λ (j ≥ 1) is a λ-subinvariant vector for Q as well

as for the Q-function P (t) on C. Similarly, the vector ȳ = (ȳj ; j ∈ C), where ȳj = js
j−1
λ

(j ≥ 1) is a λ-subinvariant vector for Q as well as for P (t) on C and this ȳ = (ȳj ; j ∈ C)

becomes a λ-invariant for Q as well as for P (t) on C if and only if g(ρ0) ≤ 0 and λ = λC .

Proof. The proof of the first assertion is very similar to that given in Lemma 2.4. Hence,
we only need to prove the second assertion.

Suppose that 0 ≤ λ ≤ λC . By combining the fact that λ = −B(sλ)/sλ with the fact that
g(sλ) ≥ 0, where the latter inequality follows from Lemma 2.2 and Lemma 3.1(ii), we obtain
B ′(sλ) ≤ B(sλ)/sλ = −λ. It then follows that, for i = 1,

∞∑
j=1

q1j ȳj =
∞∑

j=1

bj js
j−1
λ = B ′(sλ) ≤ −λ = −λȳ1,

and that, for any i ≥ 2,

∞∑
j=1

qij ȳj =
∞∑

j=i−1

bj−i+1js
j−1
λ

= si−2
λ

( ∞∑
k=1

kbks
k
λ + (i − 1)

∞∑
k=0

bks
k
λ

)

= si−2
λ (B ′(sλ)sλ − B(sλ)) + isi−1

λ

B(sλ)

sλ

≤ isi−1
λ

B(sλ)

sλ

= −λȳi,

which implies that (js
j−1
λ ; j ≥ 1) is a λ-subinvariant vector for Q on C. Moreover, it is easily

seen that both of the above inequalities become equalities if and only if B ′(sλ) = −λ which,
by Lemmas 2.2 and 2.3, is equivalent to g(ρ0) ≤ 0 and λ = λC .
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Finally, noting the facts that (xj ; j ∈ C) is a µ-subinvariant vector for Q on C if and only
if (xj ; j ∈ C) is a µ-subinvariant vector for the minimal Q-function P (t) on C and that, for a
bounded q-matrix Q, (xj ; j ∈ C) is a µ-invariant vector for Q on C if and only if (xj ; j ∈ C)

is a µ-invariant vector for the minimal Q-function P (t) on C, all of the conclusions follow.
The proof is complete.

We point out that if B ′(1) < 0 then the discrete-time version of Theorem 3.2 coincides with
Theorem 4 of [11].

The following conclusion is our main result in this section.

Theorem 3.3. Let (pij (t); i, j ∈ Z+) be the stopped MX/M/1 queueing process with generator
matrix Q as defined in (1.1)–(1.2). Then, for any λ ∈ (−∞, λC] and i ≥ 1,∫ ∞

0
eλtp′

i0(t) dt = si
λ (3.1)

and ∞∑
j=1

(∫ ∞

0
eλtpij (t) dt

)
sj−1 = si

λ − si

B(s) + λs
, |s| < sλ, (3.2)

where sλ is the smallest positive root of B(s) + λs = 0. Moreover,

∫ ∞

0
eλtpij (t) dt = s

i+1−j
λ

(j−1)∧(i−1)∑
k=0

G
(j−k−1)
λ (0)

(j − k − 1)! , j ≥ 1, (3.3)

where G
(k)
λ (0) denotes the kth degree derivative of Gλ(s) = 1 − s/(B(sλs) + λsλs) evaluated

at 0. In particular, the stopped MX/M/1 queue process is always λC-transient.

Proof. Firstly, for any λ < 0, (3.1)–(3.3) directly follow from Equations (2.24), (2.27),
and (2.29) of [6]. We now prove that (3.1)–(3.3) still hold for 0 ≤ λ ≤ λC . Indeed, for given
λ ∈ [0, λC], we have shown in Theorem 3.2 that there exists a λ-subinvariant vector (s

j
λ; j ≥ 1)

for the Q-function (pij (t); i, j ≥ 0) on C. Now, let

p̄ij (t) = eλtpij (t)s
j−i
λ , i, j ≥ 1,

p̄i0(t) = 1 −
∞∑

j=1

p̄ij (t), i ≥ 1,

and
p̄0j (t) = δ0j , j ≥ 0. (3.4)

Then it is easily seen that P̄ (t) = (p̄ij (t); i, j ≥ 0) is an honest transition function defined on
Z+ whose q-matrix Q̄ = (q̄ij ; i, j ≥ 0) is given by

q̄ij =
{

b̄j−i+1 if i ≥ 1, j ≥ i − 1,

0 otherwise,
(3.5)

where b̄j = bj s
j−1
λ (j �= 1) and b̄1 = λ + b1. Obviously, Q̄ is a conservative q-matrix of the
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same type as the stopped MX/M/1 queue in (1.1)–(1.2) and, thus, the structure of its resolvent
is revealed in [6]. In particular, by Equations (2.24), (2.27), and (2.29) of [6], we have, for any
|s| ≤ 1 and µ > 0,

∞∑
j=0

(∫ ∞

0
e−µt p̄ij (t) dt

)
sj = B̄(s)(ū(µ))i − µsi+1

µ(B̄(s) − µs)
, (3.6)

∫ ∞

0
e−µt p̄i0(t) dt = µ−1(ū(µ))i, (3.7)

and

∫ ∞

0
e−µt p̄′

i0(t) dt = (ū(µ))i, (3.8)

where B̄(s) = ∑∞
j=0 b̄j s

j and ū(µ) ∈ (0, 1) is the smallest positive root of B̄(s) − µs = 0.
Now, by substituting (3.4)–(3.5) and (3.7)–(3.8) into (3.6) and using some easy algebra, we

obtain, for any |s| < 1,

∞∑
j=1

(∫ ∞

0
e−µt p̄ij (t) dt

)
sj = s((ū(µ))i − si)

B̄(s) − µs
. (3.9)

By noting that B̄(s) = s−1
λ B(sλs) + λs we obtain B̄ ′(1) = B ′(sλ) + λ and, thus, by the proof

of Theorem 3.2, we know that B̄ ′(1) ≤ 0, which in turn implies that limµ↓0 ū(µ) = 1 (see
properties (iv) and (v) of Lemma 3.1). Now letting µ ↓ 0 in (3.9), noting the just proven result
that limµ↓0 ū(µ) = 1, and using the fact that B̄(s) = s−1

λ B(sλs)+ λs once again, immediately
yields (3.2). Also (3.1) follows directly from (3.8). Hence, we have proved that (3.1) and (3.2)
hold for any λ ∈ (−∞, λC].

Finally, we can rewrite (3.2) as

∞∑
j=1

(∫ ∞

0
eλtpij (t) dt

)
s
j−1
λ sj−1 = si

λ(1 − si)

B(sλs) + λsλs
, |s| < 1. (3.10)

Note that B̃(s) = B(sλs)+λsλs possesses all the properties of B(s), specified in, for example,
Lemma 2.1 of [7], and that we have both B̃(1) = 0 and B̃ ′(1) ≤ 0; thus, by Lemma 2.2 of [7],
the function Gλ(s) = (1 − s)/B̃(s) can be expanded as a Taylor series:

Gλ(s) =
∞∑

k=0

g̃ks
k, |s| < 1,

where g̃k = G
(k)
λ (0)/k!. Substituting the above expression into (3.10) and comparing the

corresponding coefficients of sj immediately yields (3.3). The proof is complete.

4. Invariant measures and quasistationary distributions

We now turn our attention to the quasistationary distribution of the stopped MX/M/1 queue.
We first consider the invariant measures.
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Theorem 4.1. Suppose that the generator matrix Q defined in (1.1)–(1.2) is conservative. Let
(pij (t); i, j ∈ Z+) be the Q-function of the stopped MX/M/1 queueing process, and let λC

be the decay parameter for the Q-function on C. Then, for any λ ∈ [0, λC], the following
statements hold.

(i) There exists a λ-invariant measure (mi; i ∈ C) for Q on C, which is unique up
to constant multiples. Moreover, the generating function of this λ-invariant measure
M(s) = ∑∞

i=1 mis
i−1 takes the simple form

M(s) = m1b0

B(s) + λs
, |s| < sλ, (4.1)

where sλ is the smallest positive root of B(s) + λs = 0 and m1 > 0 is a constant.

(ii) The measure (mi; i ∈ C) is also a λ-invariant measure for (pij (t); t ≥ 0) on C.

(iii) The λ-invariant measure (mi; i ∈ C) is convergent (i.e.
∑

i∈C mi < ∞) if and only if
B ′(1) < 0, ρ > 1 (including ρ = +∞), and 0 < λ ≤ λC , where ρ is the convergence
radius of B(s).

Proof. For λ ∈ [0, λC], let sλ denote the smallest positive root of B(s) + λs = 0. Consider

B̃(s) = B(sλs) + λsλs, |s| ≤ 1.

It is easy to see that B̃(1) = 0 and B̃ ′(1) ≤ 0. By Lemma 2.3 of [7], G(s) = (1 − s)/B̃(s) is
well defined at least in (−1, 1) and can be expanded as a Taylor series:

G(s) =
∞∑

k=0

gks
k, |s| < 1,

where the coefficients gk = G(k)(0)/k! (k ≥ 0) satisfy 0 < gk ≤ g0 = 1/b0 (k ≥ 1).
Therefore,

1

B̃(s)
=

∞∑
n=0

( n∑
k=0

gk

)
sn, |s| < 1.

Choose m1 > 0, and let

mi+1 = m1b0s
−i
λ

i∑
k=0

gk > 0, i ≥ 1. (4.2)

Then, for all |s| < sλ,

M(s) =
∞∑
i=0

mi+1s
i = m1b0

∞∑
i=0

( i∑
k=0

gk

)(
s

sλ

)i

= m1b0

B̃(s/sλ)
= m1b0

B(s) + λs
.

Hence,
B(s)M(s) − m1b0 = −λM(s)s, |s| < sλ,

i.e.
∞∑

j=1

(j+1∑
i=1

mibj−i+1

)
sj = −λM(s)s, |s| < sλ.
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Therefore,
j+1∑
i=1

mibj−i+1 = −λmj , j ≥ 1, (4.3)

which shows that (mi; i ∈ C) is a λ-invariant measure for Q on C.
To prove the uniqueness, let sλ denote the smallest positive root of B(s) + λs = 0 for any

λ ∈ [0, λC]. By the above proof we see that the λ-invariant measure (mi; i ∈ C) for Q on C,
given in (4.2), satisfies (4.3), which can be further rewritten as

mj+1 = −λmj − ∑j
i=1 mibj−i+1

b0
, j ≥ 1. (4.4)

Now, suppose that (m̃i; i ∈ C) is another λ-invariant measure for Q on C, i.e.

j+1∑
i=1

m̃ibj−i+1 = −λm̃j , j ≥ 1,

or, equivalently,

m̃j+1 = −λm̃j − ∑j
i=1 m̃ibj−i+1

b0
, j ≥ 1. (4.5)

Let c = m̃1/m1. Then, by (4.4) and (4.5),

m̃2 = −λm̃1 − m̃1bj−i+1

b0
= −λcm1 − cm1bj−i+1

b0
= cm2.

It follows from (4.4), (4.5), and mathematical induction, that m̃j = cmj for all j ≥ 1.
Therefore, the λ-invariant measure for Q on C is unique up to constant multiples. Hence,
(i) is proved.

Now, since our q-matrix Q is bounded, then a positive measure (mi; i ∈ C) is λ-invariant
for Q on C if and only if (mi; i ∈ C) is λ-invariant for the minimal Q-function P (t) on C.
Hence, (ii) follows directly from (i).

Finally, note that B(s) + λs = 0 has a positive root s∗ > 1 if and only if B ′(1) < 0, ρ > 1,
and 0 < λ ≤ λC . Hence, (iii) follows from (4.1). The proof is complete.

Remark 4.1. Since a λ-invariant measure for pij (t) on C must be a λ-invariant measure for
Q on C, then Theorem 4.1 implies that the λ-invariant measure for pij (t) on C is unique up to
constant multiples. Note that if B ′(1) = 0 or if B ′(1) < 0 with ρ = 1 and thus λC = 0, then
in the statement of Theorem 4.1 and some other similar situations ‘for any λ ∈ [0, λC]’ should
be read as ‘λ = 0’.

Having given the λC-invariant measure on C. We now further consider the quasistationary
distributions for pij (t) on C.

Theorem 4.2. Suppose that the generator matrix Q defined in (1.1)–(1.2) is conservative. Let
(pij (t); i, j ∈ Z+) be the corresponding stopped MX/M/1 queueing process, and let λC be the
decay parameter for the Q-function on C. Then there exists a quasistationary distribution for
pij (t) on C if and only if B ′(1) < 0 and ρ > 1. Moreover, if these conditions hold then there
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exists a one-parameter family of quasistationary distributions {(mi(λ); i ∈ C); λ ∈ (0, λC]}
which can be given by

Mλ(s) = λ

B(s) + λs
, |s| < sλ, (4.6)

where Mλ(s) = ∑∞
i=1 mi(λ)si−1 and sλ is the smallest positive root of B(s) + λs = 0.

Proof. By Proposition 3.1 of [28], a probability distribution (mi; i ∈ C) on C is a quasi-
stationary distribution for pij (t) on C if and only if, for some λ > 0, (mi; i ∈ C) is λ-invariant
for pij (t) on C. Thus, the conclusions follow from Theorem 4.1.

Corollary 4.1, below, shows that the λC-quasistationary distribution has some minimal
properties among the family of quasistationary distributions specified in Theorem 4.2.

Corollary 4.1. Let {(mi(λ); i ∈ C); λ ∈ (0, λC]} be the one-parameter family of quasi-
stationary distributions specified in Theorem 4.2 and let Xλ(λ ∈ (0, λC]) be the corresponding
random variable which obeys the distribution (mi(λ); i ∈ C). Then the λC-quasistationary
distribution (mi(λC); i ∈ C) is the minimal one in the sense that its corresponding random
variable XλC

has the smallest mean value and the smallest variance. Moreover, for any λ ∈
(0, λC],

E[Xλ] =
∞∑
i=1

imi(λ) = −B ′(1)

λ
(4.7)

and

var(Xλ) =
∞∑
i=1

mi(λ)

(
i + B ′(1)

λ

)2

= B ′(1)2

λ2 − B ′′(1) − B ′(1)

λ
. (4.8)

Proof. Both (4.7) and (4.8) are direct consequences of (4.6) and, thus, (4.7) attains its
minimum value at λ = λC . Since λ ≤ λC and (mi(λ); i ∈ C) is a distribution and noting that
the variance is positive, then by (4.8) we have

(B ′′(1) − B ′(1))λC < B ′(1)2.

Finally, it is easy to see that

∂

∂λ
var(Xλ) < 0 for all λ ∈ (0, λC]

and, therefore, var(Xλ) > var(XλC
). The proof is complete.

5. Examples

In this section we present some examples to illustrate the results obtained in the previous
sections.

Example 5.1. Let Q = (qij ; i, j ∈ Z+) be a stopped M/M/1 generator matrix defined as
follows:

qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b if i ≥ 1, j = i + 1,

a if i ≥ 1, j = i − 1,

−(a + b) if i = j ≥ 1,

0 otherwise,
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where a > 0 and b > 0. The corresponding Q-function is denoted by (pij (t); i, j ∈ Z+). For
this example, we have ρ = +∞ and B(s) = a − (a + b)s + bs2 and, thus, by Corollary 2.2,
the decay parameter λC of C = {1, 2, . . . } and s∗ satisfy (2.13), i.e.

a − (a + b − λC)s∗ + bs2∗ = 0, (5.1)

−(a + b) + 2bs∗ = −λC. (5.2)

Solving (5.1) and (5.2) immediately yields

λC = (
√

a − √
b)2, s∗ =

√
a

b
.

For any λ ∈ [0, (
√

a − √
b)2], by Theorem 4.1, a λ-invariant measure (mi(λ); i ∈ C) for

Q (or for pij (t)) on C can be given by

Mλ(s) = m1a

a − (a + b − λ)s + bs2 , |s| <
a + b − λ − √

(a + b − λ)2 − 4ab

2b
, (5.3)

where Mλ(s) = ∑∞
i=1 mi(λ)si−1. In particular, a λC-invariant measure (mi; i ∈ C) for Q (or

for pij (t)) on C is

m1 > 0, mi = i

(√
b

a

)i−1

m1, i > 1.

By Theorem 4.2, there exists a quasistationary distribution for pij (t) on C if and only if a > b.
Under this condition, the one-parameter family of quasistationary distributions {(mi(λ); i ∈
C); λ ∈ (0, (

√
a − √

b)2]} is given by (5.3) with m1 = λ/a. By Corollary 4.1, for any
λ ∈ (0, (

√
a − √

b)2], we have

E[Xλ] =
∞∑
i=1

imi(λ) = a − b

λ
↓ a − b

(
√

a − √
b)2

as λ ↑ (
√

a − √
b)2

and

var(Xλ) = (a − b)2 − λ(a + b)

λ2 ↓ 2
√

ab

(
√

a − √
b)2

as λ ↑ (
√

a − √
b)2.

In particular, one of the quasistationary distributions is

mi = i

(
1 −

√
b

a

)2(√
b

a

)i−1

, i > 1.

Furthermore, for any i, j ≥ 1, we have

∫ ∞

0
exp(λCt)p′

i0(t) dt =
(

a

b

)i/2

and ∫ ∞

0
exp(λCt)pij (t) dt = j ∧ i

a

(
b

a

)(j−i−1)/2

.

The following example is a generalization of Example 5.1.
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Example 5.2. Let Q = (qij ; i, j ∈ Z+) be a stopped MX/M/1 generator matrix defined as
follows:

qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b if i ≥ 1, j = i + k,

a if i ≥ 1, j = i − 1,

−(a + b) if i = j ≥ 1,

0 otherwise,

where a > 0, b > 0, and k ≥ 1. The corresponding Q-function is denoted by (pij (t); i, j ∈
Z+). For this example, we still have ρ = +∞ and B(s) = a − (a + b)s + bsk+1; thus, by
Corollary 2.2, the decay parameter λC of C = {1, 2, . . . } and s∗ satisfy

a − (a + b − λC)s∗ + bsk+1∗ = 0,

−(a + b) + (k + 1)bs∗ = −λC.
(5.4)

Solving (5.4) yields

λC = a + b − (k + 1)b

(
a

kb

)k/(k+1)

, s∗ = k+1

√
a

kb
.

For any λ ∈ [0, λC], by Theorem 4.1, a λ-invariant measure (mi(λ); i ∈ C) for Q (or for
pij (t)) on C can be expressed as

Mλ(s) = m1a

a − (a + b − λ)s + bsk+1 , |s| < sλ, (5.5)

whereMλ(s) = ∑∞
i=1 mi(λ)si−1 and sλ is the smallest positive root ofa−(a+b−λ)s+bsk+1 =

0. By Theorem 4.2, there exists a quasistationary distribution for pij (t) on C if and only
if a > kb. Under this condition, the one-parameter family of quasistationary distributions
{(mi(λ); i ∈ C); λ ∈ (0, λC]} is given by (5.5) with m1 = λ/a. Moreover, for any λ ∈
(0, a + b − (k + 1)b(a/kb)k/(k+1)], by Corollary 4.1 we have

E[Xλ] =
∞∑
i=1

imi(λ) = a − kb

λ
↓ a − kb

a + b − (k + 1)b(a/kb)k/(k+1)
as λ ↑ λC

and

var(Xλ) = (a − kb)2 − λ(a + k2b)

λ2 .

In Examples 5.1 and 5.2 the sequence {bj ; j ≥ 0} is short tailed, i.e. there exist some k ≥ 2
such that bj = 0 (j > k). Therefore, B(s) is convergent on the whole real line (−∞, +∞).
Now we give another example in which the convergence radius of B(s) is finite.

Example 5.3. Let Q = (qij ; i, j ∈ Z+) be a stopped MX/M/1 generator matrix defined as
follows:

qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bθj−i−1

(j − i + 1)(j − i)
if i ≥ 1, j > i,

a if i ≥ 1, j = i − 1,

−
(

a + b

(
1

θ
+ 1 − θ

θ2 ln(1 − θ)

))
if i = j ≥ 1,

0 otherwise,

(5.6)
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where a > 0, b > 0, and θ ∈ (0, 1]. Note that if θ = 1 then, as a convention, we view
(1 − θ) ln(1 − θ) = 0 in (5.6) and some similar expressions below. The corresponding
Q-function is denoted by (pij (t); i, j ∈ Z+). It is easy to see that the convergence radius
of B(s) is 1/θ and, when θ ∈ (0, 1),

B(s) = a −
(

a + b(1 − θ)

θ2 ln(1 − θ)

)
s + b(1 − θs) ln(1 − θs)

θ2 , |s| ≤ 1

θ
.

For this example, there are two different situations. First, if θ < 1 then it is easy to see that

B(s) − B ′(s)s = aθ2 + b(θs + ln(1 − θs))

θ2 = 0

has a unique root s∗ ∈ (0, 1/θ). By Corollary 2.2, the decay parameter λC of C = {1, 2, . . . }
is

λC = −B ′(s∗) = a + b

θ
+ b

(
ln(1 − θs∗)

θ
+ (1 − θ) ln(1 − θ)

θ2

)
.

For any λ ∈ [0, λC], by Theorem 4.1, the λ-invariant measure (mi(λ); i ∈ C) for Q (or for
pij (t)) on C can be given by

Mλ(s) = m1a

B(s) + λs
, |s| < sλ, (5.7)

where Mλ(s) = ∑∞
i=1 mi(λ)si−1 and sλ is the smallest positive root of B(s) + λs = 0. By

Theorem 4.2, there exists a quasistationary distribution for pij (t) on C if and only if

aθ2 + bθ + b ln(1 − θ) > 0.

Under this condition, the one-parameter family of quasistationary distributions {(mi(λ); i ∈
C); λ ∈ (0, λC]} is given by (5.7) with m1 = λ/a.

Secondly, if θ = 1 then

B(s) = a(1 − s) + b(1 − s) ln(1 − s), |s| ≤ 1,

and B ′(1) = +∞. Therefore,

λC = a + b(1 + ln(1 − s∗)),

where s∗ is the unique root of a + b(s + ln(1 − s)) = 0 in (0, 1).
For any λ ∈ [0, λC], by Theorem 4.1, a λ-invariant measure (mi(λ); i ∈ C) for Q (or for

pij (t)) on C can be given by

Mλ(s) = m1a

B(s) + λs
, |s| < sλ,

where Mλ(s) = ∑∞
i=1 mi(λ)si−1 and sλ is the smallest positive root of the equation

a(1 − s) + b(1 − s) ln(1 − s) + λs = 0.

Finally, by Theorem 4.2, there does not exist any quasistationary distribution for pij (t) on C.
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The following example provides an important and interesting case in which the decay
parameter λC cannot be obtained by finding the tangent line of B(s).

Example 5.4. Suppose that a > 0 and β ∈ (0, 1]. Let

b0 = a, b1 = −a − h(β), and bk = βk

(k − 1)k(k + 1)
, k ≥ 2,

where h(β) = ∑∞
k=2 βk/(k − 1)k(k + 1). Using this sequence, we may construct a matrix Q

as in (1.1)-(1.2) and, hence, this Q is the generator matrix of some stopped MX/M/1 queue.
For this queueing model, we have

B(s) = a − (a + h(β))s +
∞∑

k=2

βksk

(k − 1)k(k + 1)
, s ∈

[
0,

1

β

]
,

and, thus, ρ = 1/β < ∞. The corresponding Q-function is denoted by (pij (t); i, j ∈ Z+). It
is easy to obtain

B(s) − B ′(s)s = a −
∞∑

k=2

βksk

k(k + 1)
↓ a − 1

2
as s ↑ 1

β
.

By Corollary 2.1 or Corollary 2.2, it can be seen that if a ≤ 1
2 then we may obtain the decay

parameter by finding the tangent line as

λC = −B ′(s∗),

where s∗ is the unique root of
∑∞

k=2 βksk/k(k + 1) = a. However, if a > 1
2 then we have

B(ρ) − ρB ′(ρ) > 0 and, thus, λC cannot be obtained by finding the tangent line of B(s).
Notwithstanding this, by Corollary 2.1 we may still obtain

λC = −B

(
1

β

)
β.

Finally, for any λ ∈ [0, λC], by Theorem 4.1, a λ-invariant measure (mi(λ); i ∈ C) for Q

(or for pij (t)) on C can be given by

Mλ(s) = m1a

B(s) + λs
, |s| < sλ, (5.8)

where Mλ(s) = ∑∞
i=1 mi(λ)si−1 and sλ is the smallest positive root of B(s) + λs = 0. By

Theorem 4.2, there exists a quasistationary distribution for pij (t) on C if and only if β ∈ (0, 1)

and B ′(1) < 0. Under this condition, the one-parameter family of quasistationary distributions
{(mi(λ); i ∈ C); λ ∈ (0, λC]} is given by (5.8) with m1 = λ/a.

Note that this example also shows that even for the case in which a > 1
2 we may still

determine the sign of B(ρ) − ρB ′(ρ) and then apply Corollary 2.1 or Corollary 2.2 to obtain
λC without evaluating the completed value of B(ρ)−ρB ′(ρ). See Remark 2.3 for the comments
made there.
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