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SUMMARY

Meningococcal meningitis is a major public health problem in the African Belt. Despite the

obvious seasonality of epidemics, the factors driving them are still poorly understood. Here, we

provide a first attempt to predict epidemics at the spatio-temporal scale required for in-year

response, using a purely empirical approach. District-level weekly incidence rates for Niger

(1986–2007) were discretized into latent, alert and epidemic states according to pre-specified

epidemiological thresholds. We modelled the probabilities of transition between states,

accounting for seasonality and spatio-temporal dependence. One-week-ahead predictions for

entering the epidemic state were generated with specificity and negative predictive value >99%,

sensitivity and positive predictive value >72%. On the annual scale, we predict the first entry of

a district into the epidemic state with sensitivity 65.0%, positive predictive value 49.0%, and an

average time gained of 4.6 weeks. These results could inform decisions on preparatory actions.

Key words : Infectious disease surveillance, Markov multinomial model, meningitis, spatio-temporal

statistics, sub-Saharan Africa.

INTRODUCTION

Meningococcal meningitis (MM) caused by Neisseria

meningitidis is a major public health problem in

the ‘Meningitis Belt ’, a region in sub-Saharan Africa

extending from Senegal to Ethiopia with an estimated

population of 400 million people [1, 2]. MM is a highly

contagious disease transmitted from person-to-person

through infected respiratory droplets. The mortality

rate in the Belt is about 10%, even with appropriate

treatment, and 10–15% of survivors suffer long-term

neurological sequelae [3]. Asymptomatic carriage is a

notable feature of the disease, with carriage rates

varying between 3% and 30% across countries and

seasons [4]. Incidence rates in the Belt are among

the highest in the world, and show a marked seasonal

increase together with recurring localized epidemics

[5, 6].

Little is known about the underlying process that

drives the observed pattern of the disease. The annual

rise in incidence coincides with the onset of the dry

and dusty season and ends with the arrival of the

rain [1, 2]. It is believed to involve complex inter-

plays among transmission dynamics, re-introduction
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or arrival of new strains, climate forcing [6], and im-

munity [7–9]. Due to the complexity of the epidemio-

logical process and lack of detailed knowledge, no

statistical model has yet been able to describe the

variation in incidence at the spatio-temporal scale re-

quired for in-year response to emerging epidemics,

namely district-level spatial resolution, and weekly

temporal resolution.

These considerations, in addition to the supply

shortage, cost-effectiveness and short-term efficacy of

the currently used polysaccharide vaccine, have necess-

itated a reactive public health strategy [10]. In order to

distinguish an emerging outbreak from an expected

seasonal increase at district level, two epidemiological

thresholds have been introduced. When the alert

threshold is reached, surveillance and epidemic pre-

paredness are enhanced; when the epidemic threshold is

exceeded, a mass vaccination campaign is launched.

Efficacy of the currently used polysaccharide vaccine is

believed to be y3 years [9]. Timely immunization

could prevent an estimated 60% of cases [11].

However, quality and timeliness of the surveillance,

lack of infrastructure, logistic constraints and limited

global vaccine supply often delay implementation.

As a consequence, this strategy has not proved fully

effective. In particular, a reliable method for antici-

pating epidemics by a few weeks would be a material

improvement.

Our objective in this study was to develop a stat-

istical model that will give weekly predictions of

emerging epidemics at district level. We took an em-

pirical approach, using historical time-series of weekly

incidence in Niger to build the model and assess its

ability to predict past epidemics. The model captures

the infectious nature of the disease by allowing inci-

dence to be correlated in both space and time, rather

than by mimicking the underlying transmission

mechanism. Mechanistic models for meningitis epi-

demics have also been developed [12] but to use these

models for prediction would require more detailed

knowledge of the underlying biological, environmen-

tal and social processes involved than is currently

available.

Empirical modelling has been used previously for

infectious diseases to describe times and locations of

individual cases [13], or to fit discrete models to inci-

dence data aggregated to small-area level [14]. In our

study, we used a spatially and temporally discrete

framework, and further categorized incidence into

three states according to the alert and epidemic

thresholds. We adopted a multinomial logistic

Markov chain model [15] to describe the weekly

transitions among states. This categorization of

the incidence data potentially loses information, but

avoids the need for possibly inappropriate distribu-

tional assumptions, and may therefore be more

robust to inaccuracies in the data. As no predictive

model has previously been developed for MM in

the Belt, our approach represents a pragmatic base-

line relative to which predictive performances of

more complex models could be compared in due

course.

METHODS

Data

Within the Belt, Niger has the longest history of MM

weekly reporting, with district-level number of sus-

pected cases being reported through the national en-

hanced surveillance system since 1986. Data are

available up to 2007. We used the 1986 partition of

Niger into 38 districts. Four districts were created in

2002, each as a result of the division of a single dis-

trict : for consistency, data were aggregated into the

1986 partition. Suspected cases were identified by a

standard case definition based on clinical criteria [16].

Census-based estimates of district-level population

denominators were available for 1977, 1988 and 2001;

in other years, denominators were estimated by linear

interpolation.

Model definition

The definitions of the district-level alert and epidemic

thresholds depend primarily on the incidence, with

minor modifications for districts with small popula-

tions or high incidence in neighbouring districts [10].

However, Niger records among the highest incidence

rates every year, and most of its district-level popu-

lation denominators are sufficiently large to allow us

to consider constant alert and epidemic thresholds

of 5 and 10 cases/100 000 population, respectively,

very close approximations to the WHO definitions.

We assume that Yd(t) denotes the incidence rate

(in cases/100 000 population) in district d, week

t (t=1 to 52*21 for the 52 calendar weeks of the

21 years of the study period) and Sd(t) the corre-

sponding state :

Sd(t)=
0 if Yd(t)<5 (latent state)
1 if 5fYd(t)<10 (alert state)
2 if Yd(t)o10 (epidemic state)

8<
:
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We describe transitions between states by a spatial

multinomial Markov model, in which the conditional

probability distributions at any time t are explicit

functions of past outcomes [17]. We allow pdij(t) to

denote the probability that district d switches from

states {Sd(t x1), Sd(t x M)}={i1, iM}=i to state

Sd(t)=j. It should be noted that i is an M-element

vector, whereas j is a scalar. The value of M defines

the temporal order of the Markov model, which we

assumed to be either M=1 or M=2. We modelled

the log-odds of the transition probabilities by multiple

linear regressions whose specification is informed by

exploratory analysis of the data.

Incidence exhibits a strong seasonality (Fig. 1a) and

heterogeneity among districts (Fig. 1b), which may be

related to population density (Fig. 1c). Moreover, the

incidence time-series from different districts show a

distance-related cross-correlation structure (Fig. 1d).

We therefore considered a class of models that include

additive effects for time trends, spatial trends and

spatio-temporal interactions, the latter denoted by

fdij(t) as follows:

log
pdij(t)

pdi0(t)

� �
=aij+bdj+cij cos

2pt

52

� �

+dij sin
2pt

52

� �
+fijfdij(t): j=1, 2:

In this model, bdj are the district-specific intercepts,

i.e. they represent differences between districts with

respect to their likelihood of entering the alert (j=1)

and epidemic (j=2) states. The spatio-temporal in-

teraction terms, fdij(t), represent transmission of in-

fection between neighbouring districts and capture

the spatial structure of the data. We assumed that

dkyd denotes that dk is considered a neighbour of d.

We defined neighbours either as all other districts,

or as only those districts sharing a boundary with

d. Weights wdk,d represent the strength of the influence
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Fig. 1 [colour online]. (a) Time plot of nationally aggregated cases in Niger (log-transformed) over the 1986–2007 period,
(b) mean annual incidence per 100 000 population computed over the 1986–2007 period by district, (c) district-level popu-
lation density, and (d) plot of correlation between district-level time-series of cases against related distance between district
centroids.
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of dk on d. We considered several definitions of wdk,d :

constant, inversely proportional to the number of

neighbours of d, inversely proportional to the distance

between the centroids of d and dk, and proportional to

the population density of dk. For given definitions of

neighbourhood and weights, we defined the spatio-

temporal interaction term as

fdij(t)=
X
d0�d

wd0, d*max {Sd0(tx1), . . . ,Sd0(txN)},

where N is the order of the spatio-temporal interac-

tion effect. We consider that N=1 and N=2.

Model selection: proper scoring rules

The parameters of each model were estimated by

maximum likelihood. Model selection was assessed

through the use of the logarithmic proper scoring rule,

which measures how well-calibrated the modelled

transition probabilities are compared to the observed

transitions [18]. The score for a candidate model is

SR= Sd,t log(pdiv(t)) where the vector i and the scalar

v are the values that materialize for {Sd(tx1),

Sd(txM)} and Sd(t), respectively. We selected the

candidate model that gave the highest value of SR.

Measuring forecasting performance

Given data up to and including time t, the selected

model can be used to derive the predictive prob-

abilities that a district will be in the epidemic state in

week t+k (called k-week forecasting) or in any of

weeks t+1, t+2, …, t+k (called within-k-week fore-

casting). Because our model is a short-memory pro-

cess, forecasts converge towards the equilibrium

distribution with increasing forecast horizon k, irres-

pective of past incidence. We therefore considered

only k=1, 2, 3, 4, 5.

To assess the forecasting performance of the selec-

ted model, we used a form of cross-validation per

meningitis-year, defined as a 12-month period begin-

ning during the wet season [19, 20]. For each menin-

gitis-year m=1 (1986–1987) to 21 (2006–2007), we

re-estimated the model parameters using all the data

excluding meningitis-year m and used this model to

forecast weekly outcomes in meningitis-year m. In

practice, coefficient values for a predictive model

would be updated after each meningitis season, and

used in the following year.

From a public health policy perspective, the most

important prediction is entry into the epidemic state.

We therefore focused on correctly predicting that a

district will be in the epidemic state either in exactly

k weeks, or at any time within k weeks. In either case,

to convert these predictive probabilities into oper-

ational forecasts, we specified a critical probability

c such that, if the predictive probability is greater than

c, we make a positive forecast. The choice of c will

affect the sensitivity (Se), specificity (Sp), positive

predictive value (PPV) and negative predictive value

(NPV) of the forecasting system. It is important to

take all four criteria into account as the overall pro-

portion of epidemic state observations is small, im-

plying that a rule that performs well with respect to

sensitivity and specificity could perform badly with

respect to PPV and NPV. We selected c pragmatically

as the value that minimizes :

(1xSe)2+(1xSp)2+(1xPPV)2+(1xNPV)2: (1)

Although our focus for evaluation is on predicting

entering the epidemic state, including an alert state in

the model provides a better fit to the data and is in

accord with current public health policy, in which

exceedance of the alert threshold triggers a warning

to prepare for possible vaccination in the district

concerned.

Weekly-scale and annual-scale forecasting

performance

We evaluated the models’ forecasting performance on

two different time-scales. For a weekly-scale evalu-

ation, we classified forecasts for each district at each

time t as positive or negative according to whether the

corresponding predictive probability was or was not

greater than c.

For an annual-scale evaluation, we argue as fol-

lows. The important public health decision for each

district in each meningitis-year is whether, and if so

when, to vaccinate ; once a district has been vacci-

nated, there is no scope for further vaccination later in

the same year. Hence, for each district and each

meningitis-year, the relevant considerations are whe-

ther the epidemic threshold was exceeded at some

point during the year, and whether our predictions

were able to forecast an epidemic state in advance,

even if the positive forecast did not predict the exact

week in which the epidemic threshold was exceeded.

We therefore re-defined a single forecast for each

meningitis-year and district as : true positive if the

epidemic state was entered following a positive epi-

demic forecast ; false positive if the epidemic state was
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not entered at any time in the year, but at least one

positive epidemic forecast was made during the year;

true negative if the epidemic state was not entered at

any time and no positive epidemic forecast was made;

false negative if either the epidemic state was entered

before the first positive epidemic forecast, or the epi-

demic state was entered at some point in the year and

no positive epidemic forecast was made at any time.

To optimize the annual-level forecasting perform-

ance, we again chose c to minimize equation (1). In

addition to classifying each forecast as described

above, for each true positive forecast we calculated

the number of weeks gained, i.e. the number of weeks

between the first positive forecast and the subsequent

entry into the epidemic state.

Software implementation

All statistical analyses were performed in the R soft-

ware environment (R Project for Statistical Com-

puting; http://www.r-project.org). Maximum likelihood

estimation used the R function multinom. R code for

prediction is available from the corresponding author.

RESULTS

Model selection

The model giving the highest value of SR is of tem-

poral orderM=2, with neighbours defined as districts

that share a common boundary and spatio-temporal

interaction of order N=1:

fdij(t)=
X
d0�d

Sd0 (tx1):

SR values for competing models are displayed in

Supplementary Table S1. Maximum likelihood esti-

mates and standard errors for parameters for the

selected model are tabulated in Supplementary Tables

S2 and S3. As expected, transitions into the epidemic

state are more likely from the alert state than from the

latent state (Supplementary Table S4). The spatial

term had the highest impact when the state for the

previous 2 weeks was latent (parameters fij in

Supplementary Table S2).

We examined the spatial and temporal disparities in

the model fit by disaggregating the score SR, accord-

ing to district and year. Districts with the highest

incidences recorded the smallest scores, averaged over

years (Supplementary Fig. S1). We found no over-

all link between population density and model

parameters, although some of the highest incidences

were seen in high-density districts close to the

Nigerian border (Supplementary Fig. S1). The 2005

epidemic could have been expected to show a different

seasonality because of the circulation of an unusual

W135 strain of the bacterium [21], but the scores for

this year were not markedly different from those for

other years. Cross-validated predictive probabilities

were generally very close to the corresponding prob-

abilities obtained by fitting the model to the complete

dataset (Fig. 2). The largest differences averaged per

year were observed in 1995 and 1996, which recorded

the largest number of cases (Supplementary Table S5);

the points with the largest differences were recorded in

1996 and 1999 (Supplementary Fig. S2).

Forecasting capabilities and time gained

The 1-week epidemic state forecasts had specificity

99.3%, NPV 99.1%, sensitivity 72.4% and PPV

76.5%.

Results for the k-week and within-k-week-ahead

epidemic forecasts (k=2–5) are given in Table 1.

Specificity and NPV values all remained >97%,

while small overall decreases in sensitivity and PPV

were observed for increasing k values. The within-

k-week predictions are more accurate than the

k-week-ahead predictions. With regard to annual-

scale forecasting, it should be noted that over the 798

district-years covered by our data, 226 were epidemic,

i.e. the epidemic state was entered at least once. The

observed performance characteristics relating to the

1-week-ahead predictions were: sensitivity 65.0%;

specificity 73.2%; NPV 84.1%; PPV 49.0%. In all,

147 epidemic district-years were correctly predicted in

advance, with an average time between the first posi-

tive forecast and the actual exceedance of the epi-

demic threshold of 4.6 weeks. Among the 572 non-

epidemic district-years, 153 were mistakenly predicted

to be epidemic.

DISCUSSION

Model

Multinomial Markov models have been used in a

range of health-related settings for individual-level

outcomes [22, 23]. To our knowledge, this study is the

first that applies multinomial Markov models to cat-

egorized spatio-temporal incidence data. The model

formulation directly reflects current operational
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guidelines, not only with respect to the choice of cat-

egorization, but also by the incorporation of spatial

neighbourhood information in forecasting future

incidence [10]. Codifying incidence as a three-level

categorical variable represents a potential loss of in-

formation, but avoids the need to make possibly in-

correct distributional assumptions. This relatively

simple model provides a first prediction-oriented

model for MM epidemics in the Meningitis Belt. The

results are encouraging, with 1-week-ahead predic-

tions for entering the epidemic state giving specificity

and NPV >99%, and sensitivity and PPV >72%.

Selecting second-order rather than first-order tem-

poral dependence is consistent with the intuitive idea

that the incidence trajectory has greater predictive

value than current incidence alone; while a time-

lagged spatial effect captures the transmission of in-

fection across district boundaries. In view of the

relatively large geographical scale of Niger’s districts,

this stochastic dependence between adjacent districts

might, however, be a proxy for unmeasured large-

scale spatial variation in environmental factors that

affect disease risk, rather than representing a direct

transmission effect between infected and susceptible

Table 1. Sensitivity, specificity, PPV and NPV values

for forecasting an epidemic state using the k-week and

within-k-week-ahead predictions, k=1–5

Sensitivity Specificity PPV NPV

1-week ahead 72.4 99.3 76.5 99.1
2-week ahead 68.4 98.8 65.6 99.0

3-week ahead 65.7 98.5 59.3 98.9
4-week ahead 57.8 98.7 59.0 98.6
5-week ahead 47.5 99.1 63.5 98.3

Within-1-week ahead 72.4 99.3 76.5 99.1
Within-2-week ahead 67.8 99.0 74.4 98.7
Within-3-week ahead 69.2 98.5 68.8 98.5

Within-4-week ahead 64.3 98.5 70.4 98.0
Within-5-week ahead 65.0 97.9 66.1 97.8

PPV, Positive predictive value ; NPV, negative predictive
value.

All values are percentages.
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Fig. 2. Fitted values (y axis) are compared to cross-validated values (x axis) for the probabilities of entering (a) the latent state,

(b) alert, and (c) epidemic state. This figure is given in colour in Supplementary Figure S2.
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individuals. Including more covariates in the model

could further improve the results, although there

would be an attendant risk of overfitting. Other

modelling approaches could also be investigated and

evaluated using the current model as a benchmark.

Population density is thought to play a key role in

the dynamics of the disease process, by directly af-

fecting the risk of infectious-susceptible contacts [24].

We therefore explored several ways of replacing the

district-specific intercept bdj by a modelled population

density effect, but none of these provided as good a fit

as the selected model. A likely explanation is that a

single population density value for a district cannot

capture its uneven population distribution. Other

possible covariates that could explain between-district

heterogeneity, but which were not available to us for

this study, include immunity of the population, his-

tory of vaccination campaigns, knowledge of locally

circulating strains or unmeasured environmental

covariates.

Our model accounts for seasonal forcing by fitting

harmonic terms. These can be viewed as proxies for

climatic factors that are thought to affect suscepti-

bility in the local populations, but they cannot explain

inter-annual variation. Two ways to do so would be to

add to the model climatic variables that might better

capture the changing seasonality of MM over time, or

to fit dynamic versions of the harmonic terms in the

model, whereby the regression coefficients change

smoothly over time [25]. Pluri-annual seasonal com-

ponents have been described in the literature [26], and

could also be included to reflect the dynamics of dif-

ferent MM strains and of natural and vaccine-related

immunity in the population.

We have already acknowledged that minimizing

equation (1) to choose the ‘optimal’ value of c is a

pragmatic strategy. We would argue that the role of a

statistical forecasting model is to provide accurate

predictive probabilities for the various outcomes of

interest. Decisions on what to do in response to this

information need to take account of many other

context-specific considerations, including the relative

monetary and social costs of acting on a false positive

or failing to act on a false negative.

Limitations

Under-reporting can easily occur, as well as over-

reporting due to cases of Streptococcus pneumoniae or

Haemophilus influenzae type B being reported as MM

cases. Nevertheless, MM (especially group A MM) is

unique in its ability to cause large-scale epidemics in

Africa [7], the level of awareness and concern in the

local population is high, and health professionals are

trained to report suspected cases according to a con-

sistent case definition following WHO guidelines.

Any bias in reported incidence is therefore likely to be

approximately constant throughout the country,

and in any case was taken into account when the

recommended intervention thresholds were defined

using data reported according to the same WHO

guidelines.

The epidemiology of MM disease is expected

to change within the next few years following the in-

troduction of a new conjugate A vaccine. This vaccine

promises longer-term protection and a better herd

immunity than is delivered by the current poly-

saccharide vaccine. If the overall risk of MM de-

creases, it might be appropriate to lower the

probability threshold for probabilistic forecasts to

declare a high risk of an outbreak, or to focus on

transition into the alert state, rather than the epidemic

state, as the trigger for intervention.

Finally, our model has been constrained by the

limited spatial resolution of the data. More finely re-

solved spatial information on population distribution

and incidence would be expected to lead to better re-

sults, as epidemics have been observed to occur at

subdistrict level [27]. In principle, the model could

also be adapted to handle changing geography over

time. For example, if a single district is subdivided

during the observation period, subdistrict-level tran-

sition probabilities for the district in question prior to

its subdivision could be calculated by summing the

corresponding subdistrict-level transition prob-

abilities. In practice, a simpler but approximate sol-

ution would be to impute subdistrict-level counts

from the observed district-level counts and check the

sensitivity of the results to different imputations.

CONCLUSIONS

Although the results presented here are encouraging,

model-based forecasts alone should not be used

automatically to launch pre-emptive vaccination

campaigns. Rather, they can and should inform de-

cisions on preparatory actions, such as the predis-

position of material and resources according to the

suspected risk of an outbreak. This could enable more

timely intervention when outbreaks do occur. Models

of this kind could be applied to other diseases in

similar settings, i.e. when knowledge about the disease
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mechanism is limited and individual-level data are not

available. In such situations, the use of a more com-

plex model can lead to parameters being poorly ident-

ified, with consequently poorer predictive performance.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper

visit http://dx.doi.org/10.1017/S0950268812001926.
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