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Scanning transmission electron microscopy (STEM) has emerged as a powerful tool over the last decade 

for probing the atomic structures of complex materials with picometer precision. This has unlocked the 

gateway towards exploring functional properties such as ferroelectricity, ferroelasticity, and chemical 

phenomena on the atomic scale. The well-established approach1-8 to quantitively analyze such images 

involve finding atom positions or atomic columns corresponding to A-site and B-site cations and account 

for atomic displacements to retrieve information about order parameter fields such as polarization. 

Polarization maps retrieved utilizing the traditional approach for a [100]psuedocubic BiFeO3 (BFO) film on 

SrTiO3 (STO) substrate is shown in Figure 1. 

However, this process of parameterization of all atoms and consequently mapping of polarization fields 

is highly labor intensive. The ad-hoc Gaussian fitting to position the atomic column center and mis-tilts 

in measurements also lead to systematic errors in the polarization values.Hence, an alternate approach 

becomes crucial to not only bypass these shortcomings but also facilitate rapid transformation of STEM 

images for paving the pathway to develop physics-informed analyses and automated experiments. 

In this work, we have proposed an alternate approach of utilizing deep convolution neural networks 

(DCNNs) for direct polarization mapping from STEM data. The network is trained on the labeled part of 

the image (i.e., for human labelling), and the trained network is subsequently applied to other images. This 

framework shows how to extract polarization maps without atom-finding and also compare the results 

with that performed using the traditional approach. All the networks are constructed using subimages 

(parts of original images cropped for a specific window size) generated using atom finding and non-atom 

finding methods. These are the local features for the DCNNs and the corresponding polarization values 

become the target set. We have streamlined the workflow with a number of STEM images with various 

Samarium (Sm) dopant concentrations in BFO, such that the explored feature space encompasses both 

ferroelectric and weakly-ferroelectric systems. 

Figure 2 (I) shows the key steps outlining the DCNN analysis and (II - III) are the representative subimages 

utilized to build the models. The ground truth along with predictions using non-centered subimages and 

errors of polarization maps for 0% Sm-doped rhombohedral BFO, 7% and 10% Sm-doped monoclinic 

BFO are shown in Figure 2 (a-i), respectively. Further analysis investigating noise-window size sensitivity 

cross training on one composition of ferroelectric system and applying to another, feature maps carrying 

information about encoded features and layer by layer visualizations have also been integrated in the study. 

In addition, to gain insight into the possible origins of the observed behaviors, including asymmetric 

polarization distributions and cross-training, we have simulated ADF-STEM images for several tilt values 

off from the zone axis. These simulations quantify the A-site versus B-site cation shifts in the ferroelectric 

systems which would result in an apparent change of polarization. 
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In summary, we have developed a framework for the analysis of atomically resolved STEM image data 

of ferroelectric materials to extract local polarization based on sub-image analysis. We demonstrate that 

the application of DCNN-based regression on sub-images centered on a given sub-lattice yields values 

similar to direct column position analysis.Hence, this study reveals the tremendous potential of the DCNN 

for the analysis of high-resolution STEM imaging and spectral data and highlights the associated 

limitations. 
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Figure 1. Polarization mapping via atomic position parametrization. a) HAADF-STEM image of a 

[100]psuedocubic BFO film on STO substrate with gaussian fits corresponding to inset region. Polar 

displacement, P, defined as the vector between central Fe position and average Bi position (blue cross). P 

distribution map (b) corresponding to HAADF-STEM image in (a) with highlighted principal features and 

domain walls. Color legend maximum radius corresponds to 50pm. Distribution of P uncertainty is 

displayed in (c). Scalebar is 5 nm. 
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Figure 2. (I) High-level schematic showing the DCNN-STEM framework. Representative subimages 

generated with (II) and without (III) atom finding approaches are shown for comparison. Polarization 

maps (using without atom finding method) representing the ground truth (top row), prediction (middle 

row), and differences between them (bottom row) are shown for 0% (a-c), 7% (d-f) and 10% (g-i) Sm-

doped BFO, respectively. Predictions obtained using three different networks as trained on 2/3 of the full 

stack of sub-images (for every concentration) and tested on the rest. Vertical line in plots refer to the train-

test splits. 
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