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Abstract. Recognition of an isotropic cosmic near-infrared (NIR) and
mid-infrared (MIR) background involves the removal of the zodiacal fore-
ground (both scattered and reradiated), of the truly diffuse Galactic fore-
ground (dominated by fluorescent bands of polcyclic aromatic hydrocar-
bons), and of resolved and unresolved Galactic point sources. I discuss
model simulations of the near- and mid-infrared point source sky from
which one can assess its particular contribution to the diffuse Galactic
infrared foreground. I will also indicate the transitional stage which char-
acterizes our knowledge of fundamental stellar parameters that are essen-
tial inputs to any such models. Using the latest version of the SKY model
(Wainscoat et al. 1992; Cohen 1993; Cohen 1994; Cohen et al. 1994; Co-
hen 1995; Ruphy et al. 1997), I will demonstrate matches to deep point
source counts for a variety of passbands and galactic latitudes, and will
try to quantify the uncertainties achievable in model predictions of the
integrated surface brightness due to the smearing of all these foreground
point sources.

1. Introduction

I describe modeling efforts to simulate the Galactic point source foreground in
the infrared (IR). After defining the basic issues I will make a brief digression
into absolute IR calibration which bears on all “direct” predictions of integrated
total surface brightness (TSB) by models.

In the search for Cosmic IR Background Radiation (CIBR), one can finesse
the truly diffuse Galactic foreground by careful choice of observing wavelength,
as opposed to tackling the unresolved morass of faint stars. The “SKY” model of
the point source sky will be discussed in order to demonstrate its proven abilities
to match Galactic source counts in a variety of filters, both common (traditional
ground-based) and arbitrary (e.g., space-based in the 2-35 um range). Three
distinct approaches have been applied to the prediction of TSB by groups using
the SKY model. The advantages and disadvantages of these efforts are discussed.
I close by quantifying the probable absolute uncertainties in predicting TSB with
SKY and establish its TSB-predictive credentials in an application to mid-IR
data.
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2. The Problem & the Issues

The fundamental problem is that measurements of sky brightness contain strong
interplanetary and Galactic foregrounds, namely the zodiacal scattered (near-
IR) and thermally emitted (mid-IR) radiation, that swamp any CIBR. Indeed,
the ultimate limit to the precision with which CIBR can be recognized and
quantified is often the uncertainty in the zodiacal modeling (see Ozernoy, this
Symposium).

Any direct prediction by models of the light of the many unresolved stars
and other point sources that also overlie the CIBR must address the issue of
a self-consistent absolute IR calibration. It is crucial that the same absolute
calibration applies both to the modeling and to the measurements.

Over the past decade, my colleagues and I have established a common cali-
bration context for IR astronomy (see Cohen et al. 1999 and references therein).
This framework unifies ground-based, airborne, and spaceborne photometry and
spectroscopy; provides self-consistent, traceable products; has achieved absolute
and relative validations from space; has been related to an international ref-
erence source; supported NASA’s Kuiper Airborne Observatory, and currently
supports US DoD airplanes. The calibration of a number of satellites is based
on our standards, e.g., COBE/DIRBE, IRTS (the Japanese Infrared Telescope
in Space), ISO, MSX, and SIRTF. More than 100 filters are covered including
2MASS and DENIS.

3. The Diffuse Galactic Foreground

The spatial structure of the diffuse Galactic foreground is now known, e.g., from
MSX images: filaments abound, and are brightest close to the plane. The spec-
tral character of the diffuse Galactic foreground is also known in the NIR and
MIR from the Arome experiment (Giard 1989; Ristorcelli et al. 1994) and from
the IRTS “NIRS” (1.3-4.0 um) and “MIRS” (4.6-11.6 um) spectrometers (On-
aka et al. 1996; Chan et al. 1998; Matsumoto, this Symposium). The PAH
bands at 3.3, 6.2, 7.7, 8.7, and 11.3 um are prominent. At higher Galactic lati-
tudes the same spatio-spectral structures exist but are often too faint to define
in the NIR/MIR. Consequently, the ideal location to seek CIBR is, unsurpris-
ingly, at high Galactic latitude where the “cirrus” brightness is minimized and
one can seek guidance from the IRAS and DIRBE 100 pum maps.

Current knowledge of the wavelengths of the foreground Galactic PAH emis-
sion bands and associated features implies that one could successfully bypass
these by careful choice of the filters utilized in the search for the CIBR. This
would avoid the introduction of further uncertainties by the necessity to remove
a PAH band’s contribution in some bandpass by scaling with respect to far-IR
maps (e.g., for the DIRBE 3.5 pm band, Arendt et al. 1998; Wright & Reese
2000).

Finally, one must attempt to remove the unresolved point source foreground
by a physically realistic model, for arbitrary filters, with self-consistent absolute
calibration, using the same model from the FUV to MIR because work is carried
out on this foreground across the spectrum.

https://doi.org/10.1017/5S0074180900225862 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900225862

The Diffuse NIR & MIR Galactic Foreground 37

4. “SKY”: Validations of Source Counts

SKY (Wainscoat et al. 1992; Cohen 1993; Cohen 1994; Cohen et al. 1994; Cohen
1995; Ruphy et al. 1997) is wavelength-flexible because it has an embedded
spectral library. Its geometry (disk, bulge, arms, spurs, Gould Belt, molecular
ring, and halo) is realistic. It has a rich sky containing 87 different categories
of stellar, and nonstellar, point sources. SKY is designed to output differential
or cumulative source counts, colors, and integrated TSB, and the 5th version
(SKY5) contains the identical absolute calibration framework to that described
by Cohen et al. (1999).

4.1. Star Counts in Traditional Filters

A variety of validations and tests of SKY have been published. I focus here on
two aspects critical to the CIBR: to how faint a magnitude has SKY been tested,
and is it truly wavelength-flexible so that it can be meaningfully applied to arbi-
trary space-based passbands such as those of DIRBE, ISOCAM, ISOPHOT and
eventually NGST? To address these issues I will mix more challenging experi-
ments at low Galactic latitudes with validations at high latitudes, where only
halo and disk contribute, and which are the most appropriate places to seek
CIBR.

Hammersley et al. (1999) have exhaustively tested the 4th version of SKY
in hundreds of regions near the Galactic plane in K, based upon source counts
taken from the Two Micron Galactic Survey by Garzén et al. (1993). Any devi-
ations found between predicted and observed counts have been used to hone the
next version of SKY. To provide further constraints on stellar populations, the
Tenerife group have also made extensive V RI observations along cuts through
the plane at many longitudes. As an example of what can be learned about
the combination of stellar populations and extinction, Fig. 1 presents a pair of
VI counts at [=6.8°, b=—13.7°, showing the fidelity of SKY to V ~ 18.5 and
I ~ 17.5 in this direction.

The most vital places to validate any point source model that is to be
used to remove Galactic foreground are the Galactic poles. At the NGP and
SGP only the halo and disk are significant contributors to the observed counts.
In such work it is important to sample at least hundreds of square arcmin to
minimize Poisson uncertainties. Fig. 2 illustrates H-band counts at the NGP by
Hammersley (1998), stopping at the approximate magnitude at which galaxies
begin to influence the source counts significantly, and using the current standard
SKY5 model (i.e., with the Sun displaced 15 pc N of the plane and with halo:disk
normalization 0.5 of that used by SKY1 (Wainscoat et al. 1992)). Using the
identical model, we can offer validations to magnitudes as faint as K=17 at
the SGP (Fig. 3) from the dissertation work of Meadows (1994) at the AAO,
using H — K color and source profiles to eliminate contamination of these star
counts by external galaxies. Note that the excellent match of predicted and
observed counts can be traced to within 1.5 mag of the crossover point between
halo and disk. A more recent example, for 1 deg® at the NEP, is the work of
Kuemmel & Wagner (2000), compared with the same SKY5 in Fig. 4. Again
there is satisfactory agreement between SKY’s predictions and observations to
K ~17.5™.
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Figure 1. A matched pair of SKY5 predictions in V' and I from the
Tenerife VRI survey around the Galactic plane. Lines: solid, total
predicted counts; dotted, disk; long dashes, spiral arms; short dash-
dot, molecular ring; short dashes, bulge; long dash-dot, halo
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Figure 2. H-band star counts at the NGP by Hammersley (1998).
Lines as in Fig. 1
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Figure 3. Deep AAO K-band star counts at the SGP by Meadows
(1994). Lines as in Fig. 1
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Figure4. Deep K-band star counts at the NEP by Kuemmel & Wag-
ner (2000). Lines as in Fig. 1

To demonstrate the wavelength flexibility of SKY5 I offer Figs. 5 and 6,
each representing space-based MIR source counts near the Galactic plane. Fig. 5
illustrates the use of SKY5 to test the MSX Point Source catalog version 1.2
(Egan et al. 1999) for processing artifacts and for Malmquist bias in the faintest
magnitude bins. Note the contribution from spiral arms at bright magnitudes
where the total counts appear to turn up, as predicted. Fig. 6 shows ISOCAM
star counts in two fields in or near the plane, comparing SKY5 predictions in
two filters: LW7 (9.6 pm) and LW3 (14.3 pum), from Burgdorf et al. (2000).

4.2. Application to the Contamination of Galaxy Counts

Given its fidelity of predicted counts, it is no surprise that a significant industry
has grown up around SKY, using it to correct galaxy counts for contamination
by faint stars (Saracco et al. 1997; Minezaki et al. 1998; Hall, Green, & Cohen
1998; Vaisanen et al. (2000) & this Symposium). Fig. 7 illustrates the usage
of SKY5 as a predictor of faint star counts, after validation of its performance
on accredited stellar images to the faintest K magnitude at which the combined
ESO-K’ survey is complete in its point source counts.

5. TSB Predictions Using SKY
Given SKY5’s proven capability to predict accurate source counts it is no surprise

that it has been applied to the prediction of the TSB associated with such counts.
Wright & Reese (2000), Gorjian, Wright, & Chary (2000), and Arendt et al.
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Figure 5. Off-plane star counts from the MSX 8.3-um band. Lines
as in Fig. 1
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Figure 6. Star counts in two ISOCAM fields in the plane modeled
with SKY5 for CAM LW7 and LW3 filters. Lines as in Fig. 1
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survey using SKY5

(1998) all used SKY1 to simulate unresolved faint point sources. Matsumoto
(this Symposium) also describes the application of the model to this problem
but, in this case, used SKY5. There is good reason why one should use SKY5, the
current version, as opposed to the dated SKY1. Our knowledge of fundamental
stellar parameters such as absolute magnitudes and space densities is now in
transition, as we digest the legacy of Hipparcos. SKY5 incorporates this new
information. One can quantify the degree of improvement implicit in SKY5.
Wright & Reese (2000) chose to test their own “SKY” against the average of
counts from six high and intermediate latitude 2MASS fields. Fig. 8 readily
shows the 11% overprediction of star counts for 6 < K < 12 that these authors
were obliged to correct for. But SK'Y5 shows no such bias (the formal match is
1+3% for the identical counts and magnitude range) anywhere in the extended
range K=4-15.

Of course, in all such applications of a model, one never simply adopts the
total sky brightness equivalent to simulated counts over the full range of interest.
There are so few bright sources that slight fluctuations in real star fields, as
compared with modeled counts, lead to substantial differences in TSB because
such sources contribute so much to the TSB. One should assess the TSB from
the real sources, brighter than the threshold of a survey’s 100% completeness,
and extend only to the fainter sources using a model.

Direct comparisons of this nature were made by Arendt et al. (1998) using
the difference (DIRBE-minus-SKY1). However, these authors found that their
sky was “mottled” by fluctuations after subtraction of SKY1’s counts, leading to
an extra source of noise that limited their ability to seek the CIBR. Two indirect
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ant by Wright & Reese (2000: long dashed line) for high latitude
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methods have also been applied. An analysis of such fluctuations is described by
Matsumoto (this Symposium). Wright & Reese (2000) construct a large number
of Monte-Carlo simulations of the histogram of SKY pixel values of TSB and
compare the mean histogram with that from DIRBE. By this technique, the
offset between observed and simulated histogram peaks provides a detection
and estimate of the CIBR.

6. Quantifying the Uncertainties in Predicted TSB

To quantify what one might expect from SKY5 in the accuracy of prediction of
TSB, I consider a concrete example, namely, the sensitivity of SKY5’s predicted
TSB in DIRBE Band 3 (3.5 um) at the NGP for magnitudes >3.19 (DIRBE’s
100% completeness level for 3.5 um point sources). The solar displacement above
the plane, zg, is close to 15 pc. If we consider the resulting TSBs at 5 and 25
pc N of the plane this should generously bracket reality. These values of zg
lead to uncertainties +3.5% in TSB. Similarly, we probably know the halo:disk
population ratio in SKY5 (close to 0.5 of the value in SKY1: Wainscoat et al.
1992). But suppose it to be 2x larger (TSB +4.1%) or smaller (TSB —5.9%).
One might then consider as most critical the space density of the faintest and
most numerous stars of the disk and halo — SKY’s “MLATEV?” stars. If it were
twice as large or half as large this would imply changes in TSB of +3.5%. The
radial scale length in models is generally taken to be around 3.5 kpc, though
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Figure 9. Predicted and observed complete 4.6-11.6 um IRTS/MIRS
spectra of stellar T'SB near the Galactic bulge

values as small as 2.5 kpc are often found in analyses of surface brightness maps
at 2 pum, and 4.5 kpc can result from optical TSB maps. The changes in TSB
in our test case would then be —4.0% (2.5 kpc) and +2.3% (4.5 kpc) compared
with SKY5’s 3.5 kpc. Another element that enters the overall error budget
is the uncertainty in the absolute conversion between point source magnitudes
and physical units, likely of order 2% for a well-characterized system’s relative
response curve (detector, filter, all optics, atmosphere if ground-based).

All these error components are independent so addition in quadrature is
appropriate, leading to plausible total uncertainties of ~9%.

7. A Challenging Application to Mid-IR TSB Prediction

Can one test this expected accuracy? Consider the 4.6-11.6 um spectra of the
sky taken by the IR Telescope in Space Mid-IR Spectrometer (MIRS: Roellig
et al. 1994). With its 8’ x 8 aperture and spectral resolution of about 0.3
pm, MIRS detected the PAH bands from the foreground cirrus throughout its
low latitude coverage of the Galactic plane (Onaka et al. 1996). Chan et al.
(1998) present spectra in four low latitude fields in which the requisite removal
of zodiacal emission does not pose a significant uncertainty because it is itself
overwhelmed by bulge starlight.

Fig. 9 presents their “zodi-subtracted” MIRS data at a longitude of ~ 8.7°
for four latitudes between about 3° and 6°. During the past 2 years all 32
separate MIRS passbands have been spectrally recharacterized (the IRTS was
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recovered from orbit by the Shuttle and taken to the ISAS Tokyo laboratories),
yielding a final recalibration. The Figure, therefore, offers the newly recali-
brated MIRS TSB data (filled squares with measured uncertainties). The open
squares likewise represent SKY5’s predicted TSB for all 32 MIRS narrow bands
in the four spatially distinct locations, using the identical implicit absolute
calibration. The comparison is highly encouraging. In spite of the noise in
some of the MIRS spectra for regions more distant from the plane, SKY5 clearly
indicates that one can provide the underlying continuum emission purely from
unresolved starlight. SKY5 deviates nowhere at the 3o level from the observa-
tions except within the known PAH spectral features, and is within 10-20% of
the observed continuum TSBs for all spectral channels in the four fields. Possible
(~ 20) deviations at the shortest wavelength are likely due to the non-triaxial
bulge still inherent in SKY5. (Chan et al. (1998) suggest that a large bulge pop-
ulation of old, low-luminosity, oxygen-rich AGB stars, with high mass-loss rates,
contributes the 11-12 um features in the two highest latitude fields through their
circumstellar silicate emission.) The MIRS data are currently unique and it is
likely that the comparison of many more of these spectra with SKY5’s predic-
tions would prove useful in quantifying what accuracy can really be achieved by
a model in estimating TSB.
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Discussion

Mike Werner: How much room or need is there for emission from the ISM
between the PAH features in your fit to MIRS data?

Martin Cohen: One can quantify this using one of the figures I showed and
looking at the wavelength-specific observational uncertainties. But, in general
terms, there’s no need to appeal to emission in the Galactic foreground in be-
tween the several PAH emission bands, at least for the 4.6 to 11.7 um range.
At the 3o level, there are no discrepancies that demand dust emission in these
spectra (except for the bulge stars postulated by Chan et al. to have strong
circumstellar dust shells at 12 um).

Charley Lineweaver: As the angular resolution of instruments improves,
will you need to introduce a parameter to account for more of the total surface
brightness being resolved?

Cohen: The philosophy of SKY is to simulate the point source sky. To that
extent, it does not address anything that is partially resolved when it calculates
integrated surface brightness. Its wavelength range is currently limited to 0.14
to 35 um, so it was not designed for applications to the FIR or millimeter range
where diffuse radiation overwhelms point sources.
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