Bull. Aust. Math. Soc. 83 (2011), 353-368
doi:10.1017/S0004972711002103

DIFFERENTIAL SUBORDINATIONS FOR CLASSES OF
MEROMORPHIC p-VALENT FUNCTIONS DEFINED BY
MULTIPLIER TRANSFORMATIONS

R. M. EL-ASHWAH, M. K. AOUF and T. BULBOACA™
(Received 28 September 2009)

Abstract

We investigate several inclusion relationships and other interesting properties of certain subclasses of
p-valent meromorphic functions, which are defined by using a certain linear operator, involving the
generalized multiplier transformations.
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1. Introduction

Forn > —p,let )’ o denote the class of meromorphic functions of the form

(00)
f@=27+> ai, peN={1,2,3,..},
k=n
which are analytic and p-valent in the punctured unit disc U =U \ {0}, where U =
{z € C:|z| < 1}. For convenience, we write Zp = Zp,—p—i—l‘

If f and g are two analytic functions in U, we say that f is subordinate to g,
written symbolically as f(z) < g(z), if there exists a Schwarz function w, which
(by definition) is analytic in U with w(0) =0, and |w(z)| <1, z € U, such that
f@=g(w(z)) forallze U.

It is well known that, if f(z) < g(z), then f(0) = g(0) and f(U) C g(U). Further,
if the function g is univalent in U, then we have the following equivalence (see [9];
see also [10, p. 4]):

f@)<g@) < f(0)=g0) and [f(U)<g).
For the functions f; € Zp’n, j=1,2, given by

00
- k
[i@=27"+) a
k=n
© 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 $16.00

353

https://doi.org/10.1017/5S0004972711002103 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002103

354 R. M. El-Ashwah, M. K. Aouf and T. Bulboaci 2]

we define the Hadamard (or convolution) product of fi and f; by
o0
(fix D@ =274 aaz".
k=n

Define the linear operator Il’,”(n; Y Zp,n — Zp,n’ where A >0, [ >0, and

m € Ng =N U {0}, by
o0
o Df@=27"4) (1.1)

[/\(k+p) +l}’" L
—_— | arz .
k=n

l
Then, we can write (1.1) as

I 2 D f () = (@7 % @),
where o
_ Mk +p)+1]"
p.m k
=n
Using definition (1.1), it is easy to verify that the next formula holds for A > 0:

Az A D F @) =1 s A, D f @) — Op +DIN s A, Df R, (1.2)
REMARK 1.1. (1) We note that I9(n; A, ) f = f and

@ f )Y
ZP

In: 1, 1) f(2) = =(p+ 1)@+ @.

(2) For some special values of the parameters A, [/, m and p, we obtain the following
operators studied by various authors:
@) Iﬁ(n; 1,)= I[’,”(n, [) (see Cho et al. [2]);
@) I 1’;’ (n; 1,1)= D,’:f » (see Aouf and Hossen [1], and Liu and Srivastava [6]);
(iii) I7*(0; 1,1) = D;" (see Cho et al. [3, 4]);
@iv) I7"(0; 1, 1) = I"™ (see Uralegaddi and Somanatha [18]).
Using differential subordinations as well as the linear operator / ;," (n; A, 1), we will

introduce a subclass of ) p.n» as follows.

DEFINITION 1.2. (1) For the fixed parameters A and B, with —1 < B < A <1, we

say that a function f € Zp’n is in the class Zr;;’n()\., [; A, B), if it satisfies the
subordination condition

Zp“(l,’,"(n; LD @) . 1+ Az

p 1+ Bz’

(2) For convenience, we write

m m 2a
hINCE a)EZ<X, L1——, —1), 0<a<p,
p.n p.n p

[,A>0,meNy,n>—p. (1.3)
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that is, Z’I'; 2 (A, I; o) denotes the class of functions f € ) oo satisfying
Re{—sz(I;”(n; MDF@)Y>a, zelU.

REMARK 1.3. We have the next special cases of Z';}’n()», [; A, B), studied previously

by different authors:

(1) ’;”0(1, 1; A, B) = Ry, p(A, B) (see Liu and Srivastava [6]);

(i) Z’;”n(l, 1; A, B) = Z;’;n (A, B) (see Srivastava and Patel [16]);

(ii1) Zg’o(l, 1; A, B)=H(p; A, B) (see Mogra [11, 12]);

(iv) Z’;’n(l, l; A, B)= Z’;}”fl(A, B), where ZZ’”,IZ (A, B) is the class of functions
[ €3, satisfying

AN D) 1+ Az
u— < ,
p 1+ Bz
and Il',”(n, )= I?(n; 1, D).

In the present paper we obtain several inclusion relationships for the function class
ZZ’ .(A, 1; A, B), and we investigate various other properties of functions belonging

[>0,meNy,n>—p,

to the class Z'l',”n()», [; A, B). Relevant connections of the results presented in this
paper with those obtained in earlier works are also pointed out.

2. Preliminaries
To establish our main results, we will need the following lemmas and definition.

LEMMA 2.1 [5]. Let the function h be convex (univalent) in U, with h(0) = 1.
Suppose also that the function ¢ given by

@) =14 cpsn2 + cpynprzP T 4 2.1)

is analytic in U. Then

/
0(2) + w;Z) <h(z), Red=>0,5#0,
implies that
3 z
0(2) <V (2) = 778/ p+m) / A/ PE=1p Y dr < h(z), (2.2)
p+n 0

and  is the best dominant of (2.2).
DEFINITION 2.2. We denote by P(y) the class of functions ¢ given by

9@ =1+biz+byz +-- 2.3)
which are analytic in U and satisfy the inequality

Rep(z) >y, zeUO<y<l).
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LEMMA 2.3 [14]. Let the function ¢ given by (2.3) be in the class P(y). Then

20 -y)

Rep(z) >2y — 14+ — 12,
¢ (z) =2y T

zeUO<y<1l).

LEMMA 2.4 [17]. For 0 <y < y» < 1, the inclusion

Py1) * P(y2) CP(y3) whereys =1—=2(1 —y1)(1 — y),

holds and the result is the best possible. The symbol ‘x’ stands for the previous
mentioned Hadamard product of the power series.

LEMMA 2.5 [15]. Let ® be an analytic function in U, with ®(0) =1 and Re ®(z) >
1/2, z € U. Then, for any function F analytic in U, the set (¢ x F)(U) is contained
in the convex hull of F(U), that is, (® % F)(U) C co F(U).

LEMMA 2.6 [19]. For all real or complex numbers ay, az, Bi, where By & Ly, =
{0, -1, =2, ...},

1
/ R (B O (I
0

2.4)
= F@)T'(h1 — a2) 2F1(ay, a2, B1;2) for Re By >Reay >0,
'(B1)
2Fi(ar, a2, B1; 2) = 2F1 (a2, a1, Bi; 2), (2.5)

_ z
2Fi(ar, a2, B1:20) =1 —2) % 2 F (al, B1 — a2, Bi; z—_1>’ (2.6)

and

1 1 7.[1“ ajtar+1
o +a + ,_)_ NN G ) @7

ZFI(a19a27 ’ — T a1 a1
2 2] reFHreE

where o F| represents the Gauss hypergeometric function.

3. Subordination theorems and the associated functional inequalities

Unless otherwise mentioned, we shall assume throughout the paper that n is an
integer withn > —p,that -1 < B < A<1,A,[>0,meNy, 8 >0,and p e N.

THEOREM 3.1. If the function f € > o satisfies the subordination condition

A= AR A DfE) 4 BT 2 D) 1 A
p 1+ Bz’

then

Uy A D f(2) 1+ Az
B p <@ = 1+ Bz

: (3.1
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where the function Q is given by

A+(1 A)(1+B)‘1F(11 Ly B ) B#0
. - Z s Ly > ) )
B B 2 2B(p +1n) 1+ Bz
0(z) = |
1+ —— Az B =0,
AB(p+n)+1
and it is the best dominant of (3.1).
Furthermore, for all k € N, we have
PN (s &, D) f(2)) VR
Re|:— p f ] >plk  zeu, (3.2)
p
where p = Q(—1), and the inequality (3.2) is the best possible.
PROOF. If we consider the function ¢ defined by
I s 2, D f(2))
9() = — . : (3.3)

P

then ¢ has the form (2.1) and is analytic in U. Applying the identity (1.2) in (3.3), and
differentiating the resulting equation with respect to z, we get

LU= BIp e A DF @) + B U 4, D f @)

p
B Br 1+ Az
=@(z) + ; 729 (2) < T+ B2

Now by using Lemma 2.1 for y =[/(A8), we deduce that

AR m L DfR) .

0(2)
p
= ;Z—l/)ﬁ(%ﬁ-n) /Z t(l/kﬂ(p-q-n))_lﬂ gt
AB(p +n) 0 T B
A+<1 A>(1+B)_1F(11 l 41 Bz ) B0
_ — — Z .1, : ’ ’
? . P o T T B

l

1+ ——— A7 B =0,
AMB(p+n)+1

where we made a changes of variables, followed by the use of the identities (2.4), (2.5),

and (2.6) (with b =1 and ¢ = a + 1). Hence, assertion (3.1) is proved.
In order to prove assertion (3.2), it is sufficient to show that

inf{Re Q(2) : |z| <1} = Q(=D).
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Indeed, for |z] <r < 1,

1+Az 1-—Ar
>

e > , zl<r <.
1+ Bz 1 — Br
Setting
1+ Asz
G(s,2)=
(s, 2) 1+ Bsz
and p
dv(s) = ——s!/MPtm s 0<s <1,
AB(p +n)

which is a positive measure on [0, 1], we get

1
0(2) =/ G(s, z) dv(s),
0

so that

Ly — Asr
ReQ(z)z/ AT sy = 0(=r), 2l <r<l.
o 1 —Bsr

Letting r — 17 in the above inequality, and using the elementary inequality

Rewl/kz(Rew)l/k, Rew >0,keN,

we obtain (3.2). Finally, inequality (3.2) is the best possible, as the function Q is the
best dominant of (3.1). O

REMARK 3.2. Putting A =/ =1 in Theorem 3.1, we obtain the result of Srivastava
and Patel [16, Theorem 1].

For A=1=1,n=0, and 8 =1, Theorem 3.1 yields the following result, which
improves the corresponding one of Liu and Srivastava [7, Theorem 1].

COROLLARY 3.3. The inclusions

Riyt1,p(A, B) C Ry p(A, B) C Ry p(1 —2p, —1)

hold, where
A+1 A(l B)’1F111+1' B B#0
_ B B 21 9 Sp ’B_l 9 9
p= A
[ B=0,
p+1

and the result is the best possible.

Putting A=1-2a/p, B=-1, p=A=Il=1, m=0 and n=—p+2 in
Theorem 3.1, and using (2.7), we get the following result.
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COROLLARY 3.4. If the function f € ) , satisfies the inequality

p’_p—"—
Re(—z""[(p+2) /'@ +2f" @l >, zeUO=a<p),
then
Re[—z"*' f'()] > a + (p — a)(% - 1>, zel,
and the result is the best possible.

REMARK 3.5. Taking « = —p(wr — 2)/(4 — m) in the above corollary, we obtain that
if the function f € 3., ., satisfies

pr=2)

Re(=z"" (P + 2 '@ + 2f '@ > == ——,

zeU,
then Re[—z”T! f/(2)] > 0, z € U (see Pap [13]).
THEOREM 3.6. Ifthe function f € ZZL’”()\., I;0),0<a < p, then

Re{—2"*![(1 = B)UIT (n: 1, D f @) + BULT (0 0 D) f@)]) > e,

for |z| < R, where

A 2 A 1/(p+n)
k= (Y oeme-Lipn] 7
The result is the best possible.
PROOF. If we let
=PI 1, D) =a+ (p — a)p(2), (3.5)

then ¢ has the form (2.1), and is analytic with positive real part in U. Using the
identity (1.2) in (3.5), and differentiating the resulting equation with respect to z,

_z”“[(l — B (2, D f (@) + BUy T (3 2, D f ()] +
p—o (3.6)

A
=)+ ﬂ7z<p/(z).

Applying in (3.6) the estimate (see [8])
29'@1 _ 2(p +m)r?™"

Regp(z) = 1 —r2ptm ° lzl=r <1,
we get
Re{_zp+l[(1 — B0 2, D F@Y + BUIT (03 2, D ()] + a}
re (3.7)

. [1 2B (p + n)rptr

TW} Re w(Z)a
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and it is easy to see that the right-hand side of (3.7) is positive, provided that » < R,
where R is given by (3.4).

In order to show that the bound R is the best possible, we consider the function
f€>_,, defined by

1+ zPt"
_ZPH(II’?”(H; MDf@) =a+(p— a)m-
Then
P - BYU (s &, D) f(2) + /3(11',"“ (m A D)+«
p—a

1 22 2fi(p +mn)zPt 0

- (1— ZPtn)2 -
for z = R exp(im/(p + n)), which completes the proof of the theorem. O

REMARK 3.7. Putting A =/ =1 in Theorem 3.6, we obtain the result of Srivastava
and Patel [16, Theorem 2].

For g = 1, Theorem 3.6 reduces to the following result.

COROLLARY 3.8. If  the function fed ) (A l;a), O<a<p,  then
fe Zm+l(k, I; @) for |z| < R, where

p.n
- A 2 A 1/(p+n)
R:|: 1+<7> (p+n)2—7(p+n):| .

The result is the best possible.
THEOREM 3.9. Let f € Z’;n()\, [; A, B), and let

c < _
F,,,C(f)(z)=zc+p/0 1Pl f(y de,  e>0. (3.8)
Then .
PTI(ns A DFp o(f)(2) 1+ A
- P rett <0 < 2% (3.9)
p 1+ Bz
where © is defined by
T I P O (T A A B#£0
B B Z 2 1 b 9 p+n 9 1+ BZ 9 9,
O(z) =
Ac
1+—Zs B=O9
c+p+n

and it is the best dominant of (3.9).
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Furthermore,

Re[_zP“(I,’Z’(n; A, l)Fp,c(f)(Z))’] -
p

zeU,

where k = ®(—1), and this inequality is the best possible.

PROOF. Setting

prL (M A, D F, . !
(p(z):_z (I (n p) », (f)(z)), 3.10)

then ¢ has the form (2.1), and is analytic in U. Using in (3.10) the operator identity

2Ly (5 &k, DFp o (f)(2) = el (n; &, 1) f(2) = (¢ + p)UT (5 &, DFp () (@),

and differentiating the resulting equation with respect to z, we find that

P s 2 D f(2) W@ 1+ Az

p c 1+ Bz
Now, the remaining part of the proof follows by employing the same techniques
that we used in the proof of Theorem 3.1. O

REMARK 3.10. (1) Setting n =0 and /[ =X =1 in Theorem 3.9, we obtain the
following result which improves the corresponding work of Liu and Srivastava [7,
Theorem 2]. If c > O and f € R, ,(A, B), then

Fp,c(Rm,p(A7 B)) C Rm,p(1 - zé'a _1) - Rm,p(Aa B),

where
A+<1 A>(1 B)~! F(l Sy B ) B#£0
- - 5 - 21 s Ly T s T— |, )
B B B—1
¢ = Y P 3.11)
1— , B=0.
c+p
The result is the best possible.
(2) Observing that
c [* .
05 0, DFp (NG = — / PN A DY dr, (3.12)
0

whenever f € )" p.n and ¢ > 0, the above remark can be restated as follows. If ¢ > 0
and f € Ry, »,(A, B), then

Re[_ic / (P (s 2, D £ (1) dr} >¢ zel,
0

where ¢ is given by (3.11).
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According to (3.12), and taking in the above theorem A =1 — 2a/p, B = —1, and
m = 0, we obtain the following special case.

COROLLARY 3.11. Ifc>0andif f € Zp’n satisfies the inequality

Re[—z’T (D>, zeU@O<a<p),

Re[—% / W dt]
2 Jo

1
>oc+(p—0t)|:2F1<1,1, ¢ +1;—>—1], zeU,
p+n 2

then

and the inequality is the best possible.

Using the technique of Srivastava and Patel [16, Theorem 4], we can prove the next

theorem.
THEOREM 3.12. Let the function f € }_, ,, and suppose that g € }_ , , satisfies the
inequality
Re[z”I} (n; A, 1)g(2)] >0, zeU.

If

17 (n; 1, 1) f(2)

¥—1‘<1, zeU (meNy, 1, 1>0),

13 (n; A, 1)g(2)
then

Re[_z(l,, (n; 2, D) f(2)) } 0.
Iy &, 0 f(2)

for |z| < Ry, where

_ Ve n?2+4pCp+m) —3(p+n)

Ro
22p +n)

(3.13)

PROOF. Letting

AR A D f(2)

=P =k P4k pintl oo 3.14
I[,)n(n; * Dg(2) p+nZ p+n+123 ( )

w(z)

then w is analytic in U, with w(0) =0, |w(z)| <1 for all ze U, and w(z) =

KpsmzP T 4+ kpymp1zP T 4 ... Defining the function ¥ by
w(z) .
e zeU,
V()= wP+Tm) ()
(p + m)! 9 9
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then v is analytic in U and continuous in U, hence it is analytic in the whole unit disc
U.1If r € (0, 1) is an arbitrary number, since |w(z)| < 1 for all z € U, we deduce that

lw(2)] 1
<max —— < ———,
lzl=r |z|P*tm  pptm

w(z)
zptm

[¥(z)| < max lz| <r <1.

lz|=r

By letting » — 17 in the above inequality, we get [/(z)| < 1 for all z € U, that is,
w(z) = zP ™y (z), where the function v is analytic in U, and | (z)| < 1,z € U.
Therefore, (3.14) leads us to

Iy A, D f(2) = I 2, Dg (@) + 27"y (2), z€U,
and differentiating logarithmically the above relation, we obtain

Uy D f (@) Uk, D) 2P (p + )Y (2) + 29/ (2)]
I a,Df@) I a, Dg() 1+ 2P (2)

. (3.15)

Setting ¢(z) = z”(I[’)” (n; A, D)g(2)), we see that the function ¢ has the form (2.1),
is analytic in U with Re ¢(z) > 0, for all z € U, and

2 (s 2, Dg@)  z9'(2)
Imn; A, g ¢

Hence, from (3.15) we find that

Re[_z(l,’,"(n; A, l)f(z))’] o
A, Df@ |~

P (p+m)Y(2) + 29/ (2)]
1+ zPt(2)

2¢'(2)
©(2)

(3.16)
Now, by using in (3.16) the known estimates (see [8])

9'@| _2(p+nyrrtr!
< , lzl=r <1,
(p(z) 1— rz(p'"”)
(p+my@+zy'@)| __ ptn l=r <1
1+ 2Pt (2) 1 —rtn’ B ’

we conclude that

R [_Z(I;,"(n; A, l)f(z))’] _P=3(p+mrrtt—2p + n)r2ptm
Iy, Df( |~ 1 — r2(p+n)

for |z| = r < 1, which is positive provided that r < Ry, where Ry is given by (3.13). O

]

THEOREM 3.13. Let —1 <B; < A; <1, i=1,2, and suppose that each of the
functions f; € > » satisfies the subordination condition
14+ Az

(1—ﬂ)zi’lg(x,z)ﬁ(z)+ﬂz”1;1+1(x,1)ﬁ(z)<1+Biz, i=1,2, (3.17)
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where 121()», = I?(—p + 1; A, ). Then

1+ (1 -2n)z
1—z

k]

(1= P I) (A, DG R) + B 1) (0, DG (2) <

where

G(2) =17 (%, p)(f1* f2)(2)

_ 4(A; — B1)(A2 — By) o1
"= TaT By - By [l_zFl(l’l’ﬁx“’ 2)]

The result is the best possible when B| = B, = —1.

and

[12]

PROOF. Since each of the functions f; € Z » i =1, 2, satisfies condition (3.17), then

by letting
0i() =1 =B Ir0, D fiR) + B Iy 0L D fir), i=1,2,

we have

—A; (=12
B, i=1,2).

@i € P(yi) wherey; = 1
Using identity (1.2) in (3.18),
I} D fi(z) = ,3 Pl foz (B gy de, i=1,2,
which, according to the definition of G, yields
I} (A, DG(z) = ,BZA —p=i/pA /OZ P o) dt,

where
90(x) = (1 = )" I} (1, DG () + B2P I} (1, DG (2)

[ _ z _
= [T s e .
BA 0
Since ¢; € P(y;),i =1, 2, it follows from Lemma 2.4 that

1 x¢2€P(y3) where yz =1—2(1 —y)(1 — y2).
By using (3.20) and (3.19), from Lemmas 2.3 and 2.6, we get

l ! _
Re ¢o(2) = i 7B /0 u/PY=1 Re(g) * ¢2)(uz) du

I ! 2(1 —
> L / u(l/;ff*)—l[zy3 14 M] du
B* Jo 1+ ulz|

1! 2(1 —
>_/ L P R Club £ DA
B Jo L+u
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L MA— Bl)(AZ—BZ)[l _ L/I WD (] 4 ) du}
(I =Bl - B) Br Jo

4(A1 — B1)(Ar — By) 1 ) 1
— 1—=»Fi{1,1,— 1;— =n, U.
[ 22 ‘( i 2)} oRe

(I =B - By)
When B; = B, = —1, consider the functions f; € ) s i =1, 2, which satisfy
assumptions (3.17) and are defined by

[ < 1+ At
I"A, D fi(z) = — _’/’”/ (WBO=H 2 gy i =1, 2.
FosD i =g | — i

Thus, from (3.19) and Lemma 2.6, it follows that

B
=1-(1+ADU0+A)+A+ADI+ A1 —2)"!

Al Lo F
y .
21 ”ﬂ)\‘ 7Z_1

1 l 1
- 1-({0+ADA+ A+ 5(1 +AD+ Az)zFl(l, 1, B +1; §>,

1
9(2) = L/ u(l/““[l — (ANt Ap + & +f1‘1)(1 +A2)}du
0 —uz

as z — —1, which completes the proof. O

Taking A; =1 -2, Bi=—1(i=1,2), m=0and [ =X =1 in Theorem 3.13,
we obtain the following result which refines the work of Yang [20, Theorem 4].

COROLLARY 3.14. Ifthe functions f; € Zp, i =1, 2, satisfy the inequality

Re{(1 + Bp)2" fi(@) + BT f/(@} > i, z€eU(O<ai<1,i=1,2), (3.21)

then
Re{(1 + Bp)z”(fi * ) (@) + Bz (fi * f) @) > no, zeU,

where | . .
=1-4(1- 1— 1—-2F(L 1, =41 =)
10 (1 —e1)( 0!2)[ 72 1( ,3+ 2)]
The result is the best possible.
THEOREM 3.15. If the function f € ) oo satisfies the subordination condition
1+ Az
1+ Bz

(1= B2 1) (; a, D f(2) + B2P I (ns &, D f (2) <

E}

then
Relz I (n; 1, D f ()14 > p'4, zeU (geN),

where p = Q(—1) is given as in Theorem 3.1. The result is the best possible.
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PROOF. Defining the function ¢ by
¢(2) =21} (n; 1, 1) f(2), (3.22)

we see that ¢ has the form (2.1) and is analytic in U. Using identity (1.2) in (3.22),
and differentiating the resulting equation with respect to z, we obtain

A 1+ A
(1= Bzl 17 (s D f (2) + ﬁzl’l;j’“(n; L Df@) =9+ ﬁTw’(Z) <7 iB?

Now, by following similar steps to the proof of Theorem 3.1, and using the
elementary inequality

Re w!'/? > (Re w)l/q, Rew >0, g €N,

we obtain the result asserted by Theorem 3.15. O

From Corollary 3.14 and Theorem 3.15, for the special case n = —p + 1, m =0,
A=1-2n9, B=—1and g =1, we deduce the next result.

COROLLARY 3.16. Let the functions f; € Zp (i =1,2), satisfy inequality (3.21).
Then

Re[z”(f1 * f2)(2)] > no + (1 — no)[zFl(l, L, % +1; %) - 1], zeU,

where ng is given as in Corollary 3.14. The result is the best possible.

THEOREM 3.17. If the function g € Zp,n satisfies the inequality

Re[zPg(2)]> 3. zeU, (3.23)

then, for any function f € Z’;:,n()" [, A; B), we have

m
fxg€) (h1; A, B).
p.n

PROOF. It is easy to check that

U D ) @) [_zp“u;,"(n; D fR)
p p

] * [2Pg(2)].

According to this relation, by applying Lemma 2.5 for the functions

s 2, D f(2)

F(z)=-
P
and ®(z) = z”g(z), and using the fact that the function i(z) = (1 + Az)/(1 + Bz) is
convex (univalent) in U, we deduce the conclusion of the theorem. O
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