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Abstract

Consider a projective limit G of finite groups G,,. Fix a compatible family 8" of coactions of the G, on
a C*-algebra A. From this data we obtain a coaction § of G on A. We show that the coaction crossed
product of A by § is isomorphic to a direct limit of the coaction crossed products of A by the §". If
A = C*(A) for some k-graph A, and if the coactions " correspond to skew-products of A, then we can
say more. We prove that the coaction crossed product of C*(A) by § may be realized as a full corner
of the C*-algebra of a (k + 1)-graph. We then explore connections with Yeend’s topological higher-rank
graphs and their C*-algebras.
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1. Introduction

In this paper we investigate how certain coactions of discrete groups on k-graph
C*-algebras behave under inductive limits. This leads to interesting new connections
between k-graph C*-algebras, nonabelian duality, and Yeend’s topological higher-rank
graph C*-algebras.

We consider a particularly tractable class of coactions of finite groups on k-graph
C*-algebras. A functor ¢ from a k-graph A to a discrete group G gives rise to two
natural constructions. At the level of k-graphs, one may construct the skew-product
k-graph A x. G; and at the level of C*-algebras, ¢ induces a coaction § of G on
C*(A). Tt is a theorem of [15] that these two constructions are compatible in the
sense that the k-graph algebra C*(A x. G) is canonically isomorphic to the coaction
crossed-product C*-algebra C*(A) x5 G.

The skew-product construction is also related to discrete topology: given a regular
covering map from a k-graph I' to a connected k-graph A, one obtains an isomorphism
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of I' with a skew-product of A by a discrete group G [15, Theorem 6.11]. Further
results of [15] then show how to realize the C*-algebra of I' as a coaction crossed
product of the C*-algebra of A.

The results of [12] investigate the relationship between C*(A) and C*(T") from a
different point of view. Specifically, they show how a covering p of a k-graph A by
a k-graph T" induces an inclusion of C*(A) into C*(I'). A sequence of compatible
coverings therefore gives rise to an inductive limit of C*-algebras. The main results
of [12] show how to realize this inductive limit as a full corner in the C*-algebra of a
(k + 1)-graph.

We can combine the ideas discussed in the preceding three paragraphs as follows.
Fix a k-graph A, a projective sequence of finite groups G, and a sequence of functors
¢n : A — G, which are compatible with the projective structure. We obtain from this
data a sequence of skew-products A x., G, which form a sequence of compatible
coverings of A. By results of [12], we therefore obtain an inductive system of k-graph
C*-algebras C*(A X, G,). The results of [15] show that each C*(A x., G,) is
isomorphic to a coaction crossed product C*(A) xs» G,. It is therefore natural to ask
whether the direct limit C*-algebra li_r)n(C*(A X¢, Gn)) is isomorphic to a coaction
crossed product of C*(A) by the projective limit group 1(1Ln Gp.

After summarizing in Section 2 the background needed for our results, we answer
this question in the affirmative and in greater generality in Theorem 3.1. Given a
C*-algebra A, a projective limit of finite groups G, and a compatible system of
coactions of the G, on A, we show that there is an associated coaction § of 1(ln G,
on A, such that A x (l(iﬂl Gy = li_n>1(A xsn Gp).

In Section 4, we consider the consequences of Theorem 3.1 in the original
motivating context of k-graph C*-algebras. We consider a k-graph A together with
functors ¢, : A — G, which are consistent with the projective limit structure on
the G,. In Theorem 4.3, we use Theorem 3.1 to deduce that C*(A) xs G is isomorphic
to h_r)n(C*(A) xsn Gp). Using results of [12], we realize C*(A) x5 G as a full corner
in a (k 4 1)-graph algebra (Corollary 4.5). We digress in Section 5 to investigate
simplicity of C*(A) x5 G via the results of [18].

We conclude in Section 6 with an investigation of the connection between our
results and Yeend’s notion of a topological k-graph [20, 21]. We construct from
an infinite sequence of coverings p, : A,4+1 — A, of k-graphs a projective limit
A which is a topological k-graph. We show that the C*-algebra C*(A) of this
topological k-graph coincides with the direct limit of the C*(A,,) under the inclusions
induced by the p,. In particular, the system of cocycles ¢, : A — G, discussed in
the preceding paragraph yields acocyclec: A — G := LiLn(Gn, qn), the skew-product
A X, G is a topological k-graph, and the C*-algebras C*(A x. G) and C*(A) x5 G
are isomorphic, generalizing the corresponding result [ 15, Theorem 7.1(ii)] for discrete
groups.

2. Preliminaries

Throughout this paper, we regard N¥ as a semigroup under addition with identity
element 0. We denote the canonical generators of Nk by ej,...,ex. Forne Nk,
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we denote its coordinates by ny, ..., ny € Nso that n = Zle nje;. Form,n e Nk,
we write m <nif m; <n; foralli e {1, ..., k}.

We will at times need to identify N* with the subsemigroup of N¥*! consisting of
elements n whose last coordinate is equal to zero. For n € N¥, we write (n, 0) for the
corresponding element of N¥*1. When convenient, we regard N* as (the morphisms
of) a category with a single object in which the composition map is the usual addition
operation in N¥.

2.1. k-graphs Higher-rank graphs are defined in terms of categories. In this paper,
given a category C, we will identify the objects with the identity morphisms, and think
of C as the collection of morphisms only. We will write composition in our categories
by juxtaposition.

Fix an integer kK > 1. A k-graph is a pair (A, d) where A is a countable category
and d : A — NF is a functor satisfying the factorization property: whenever A € A and
m, n € Nf satisfy d(A) = m + n, there are unique u, v € A withd(u) =m, d(v) =n,
and A = puv. For n € N¥, we write A" for d='(n). If p <qg <d(A), we denote by
A(p, q) the unique path in A?77 such that A = A’A(p, g)A” for some A’ € A? and
2 e AN—a,

Applying the factorization property with m =0, n =d(A) and with m =d(}),
n =0, one shows that A® is precisely the set of identity morphisms in A. The
codomain and domain maps in A therefore determine maps r, s : A — A°. We think
of A0 as the vertices—and A as the paths—in a ‘k-dimensional directed graph’.

Given F C A and v € A°, we write vF for F N r~!(v) and Fv for F Ns~ 1 (v). We
say that A is row-finite if vA”" is a finite set for all v € A” and n € N¥, and we say that
A has no sources if vA™ is always nonempty.

We denote by ; the k-graph Q; := {(p, ¢) e N¥ x N¥: p < ¢} with r(p, q) :=
(p, p).s(p, q) :=(q,q)and d(p, q) := g — p. As a notational convenience, we will
henceforth denote (p, p) € 92 by p. An infinite path in a k-graph A is a degree-
preserving functor (otherwise known as a k-graph morphism) x : Q — A. The
collection of all infinite paths is denoted A®°. We write r(x) for x(0), and think of
this as the range of x.

For A € A and x € s(X)A®°, there is a unique infinite path Ax € r (1) A® satisfying
(Ax) (0, p) :=Ax(0, p —d()) for all p>d(Ar). In particular, r(x)x =x for all
x € A®, so we denote {x € A% :r(x) = v} by vA®. If A has no sources, then vA>®
is nonempty for all v € A°,

The factorization property also guarantees that for x € A® and n € N¥ there is a
unique infinite path 6" (x) € x(n) A® such that 6" (x) (p, g) =x(p +n, g +n). We
somewhat imprecisely refer to o as the shift map. Note that o?® (Ax) = x for all
reA, x €s(AM)A®, and x = x(0, n)o"(x) for all x € A® and n € N*.

We say that a row-finite k-graph A with no sources is cofinal if, for every v € A°
and every x € A%, there exists n € N such that vAx(n) #@. Given m #n € Nf
and v e A%, we say that A has local periodicity m, n at v if o™ (x) =o"(x) for
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all x € vA®. We say that A has no local periodicity if, for every m, n € Nf and
every v € AY, we have 0" (x) # ¢ (x) for some x € vA™®.

2.2. Skew-products Let A be a k-graph, and let G be a group. A cocyclec: A — G
is a functor from A to G where the latter is regarded as a category with one object.
That is, ¢ : A — G satisfies c(uv) = c(u)c(v) whenever w, v can be composed in A.
It follows that ¢(v) = e for all v € A°, where e € G is the identity element.

Given a cocycle ¢ : A — G, we can form the skew-product k-graph A x. G. We
follow the conventions of [15, Section 6]. Note that these are different from those
of [9, Section 5]. The paths in A x. G are

(A x:G)":=A" x G,

for each n € NK. The range and source maps r, s : A X, G — (A X, G)Y are given
by r(A, g) :=(r(A), c(A)g) and s(X, g) := (s(A), g). Composition is determined by
(u, c(v)g) (v, g) = (uv, g). Itis shown in [15, Section 6] that A x. G is a k-graph.

2.3. Coverings and (k + 1)-graphs We recall here some definitions and results
from [12] regarding coverings of k-graphs. Given k-graphs A and I', a k-graph
morphism ¢ : A — I' is a functor which respects the degree maps. A covering of
k-graphs is a triple (A, I', p) where A and I" are k-graphs, and p : I' — A is a k-graph
morphism which is surjective and is locally bijective in the sense that for each v € I'?,
the restrictions p|,r : v[I' = p(v)A and p|r, : 'v — Ap(v) are bijective.

REMARK 2.1. What we have called a covering of k-graphs is a special case of what
was called a ‘covering system of k-graphs’ in [12]. In general, a covering system
consists of a covering of k-graphs together with some extra combinatorial data. We do
not need the extra generality, so we have dropped the word ‘system’.

A covering (A, T, p) is row-finite if A (equivalently I') is row-finite, and
|p‘1 (v)| < oo forall v e AY. By [12, Proposition 2.6] we can associate to a row-finite
covering p : I' = A of k-graphs a row-finite (k + 1)-graph ALr containing disjoint
copies 1(A) and j(I') of A and I" with an edge of degree e;| connecting each vertex
J() € 7(I'Y to its image 1 (p(v)) € 1(A?).

More generally, given a sequence (A;, Ap+1, pn) of row-finite coverings of k-
graphs, [12, Corollary 2.10] shows how to build a (k 4 1)-graph lim(A,; p,), which
we sometimes refer to as a tower graph, containing a copy I, (Ani—of each individual
k-graph in the sequence, and an edge of degree e;4; connecting each 1,41(v) €
In+1 (A2+]) to its image 1, (p, (v)) € zn(Ag). The (k + 1)-graph lim(A,; p,) has no
sources if the A,, all have no sources. T

Given a covering (A, T, p), [12, Proposition 3.2 and Theorem 3.8] show
that the covering map p:I'— A induces an inclusion ¢, : C*(A) — C*(I).
If (A, Ant1, pu)ie, is a sequence of coverings, the (k+ 1)-graph algebra
C*(l\ir_n(A,,; pn)) is Morita equivalent to the direct limit li_r)n(C*(A,,), Lpy)-
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2.4. Coactions and coaction crossed products Here we give some background
on group coactions on C*-algebras and coaction crossed products. For a detailed
treatment of coactions and coaction crossed products, see [4, Appendix A].

Given a locally compact group G, we write C*(G) for the full group C*-algebra
of G. We prefer to identify G with its canonical image in M (C*(G)), but when
confusion is likely we use s — u(s) for the canonical inclusion of G in M (C*(G)). If
A and B are C*-algebras, then A ® B denotes the spatial tensor product. For a group
G, we write 8¢ for the natural comultiplication 3G : C*(G) - M(C*(G) ® C*(G))
given by the integrated form of the strictly continuous map which takes s € G to
s®s eUM(C*(G) @ C*(G)).

As in [4, Definition A.21], a coaction of a group G on a C*-algebra A is an injective
homomorphism § : A - M (A ® C*(G)) satisfying:

(1) the coaction identity (§ ® 1g) 06 = (14 ® ) o 8 (as maps from A to M(A ®
C*(G) ® C*(G))); and
(2) the nondegeneracy condition §(A) (14 ® C*(G)) = M(A ® C*(G)).

Asin [7, 8], the nondegeneracy condition (2)—rather than the weaker condition that §
be a nondegenerate homomorphism—is part of our definition of a coaction (compare
with [4, Definition A.21 and Remark A.22(3)]). Since we will be dealing only with
coactions of compact (and hence amenable) groups, the two conditions are equivalent
in our setting in any case (see [14, Lemma 3.8]).

Let§: A — M(A ® C*(G)) be a coaction of G on A. We regard the map which
takes s € G to u(s) € M(C*(G)) as an element wg of UM (Cy(G) ® C*(G)). Given
a C*-algebra D, A covariant homomorphism of (A, G, §) into M (D) is a pair (7, ()
of homomorphisms 7 : A — M (D) and i : Co(G) — M (D) satisfying the covariance
condition:

(7 ®idg) 0 8(a) = (1 ® idg) (wg) (T(a) ® (1 ®idg) (W)™,

foralla € A.

The coaction crossed product A x5 G is the universal C*-algebra generated by
the image of a universal covariant representation (j4, jg) of (A, G, ) (see [4,
Theorem A.41]).

3. Continuity of coaction crossed products

In this section, we prove a general result regarding the continuity of the coaction
crossed-product construction. Specifically, consider a projective system of finite
groups G, and a system of compatible coactions §”" of the G, on a fixed C*-algebra A.
We show that this determines a coaction § of the projective limit 1(&1 G, on A, and that
the coaction crossed product of A by § is isomorphic to a direct limit of the coaction
crossed products of A by the §”.
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The application we have in mind is when A = C*(A) is a k-graph algebra, and the
8" arise from a system of skew-products of A by the G,. We consider this situation in
Section 4.

THEOREM 3.1. Let A be a C*-algebra, and let

dn+1 qn q1

Gpti Gy G

be surjective homomorphisms of finite groups. For each n let §" be a coaction of G,
on A. Suppose that the diagram

A

gn+l %
M(AQ C*(Gny1))

X\ lid@q" 3.1)

M(A® C*(Gy))

commutes for each n.

For each n, write Q, for the canonical surjective homomorphism of 1<ir_n(Gm, qm)
onto G,; write q) : C(G,) — C(Gyy1) for the induced map q;(f) := f o qn, and
write J,, for the homomorphism J,, .= jf;’+I X (jGoiy ©Gp) from A Xsn Gy to A X gnti
Gn+1.

Then there is a unique coaction § of l(iLn(G,,, qn) on A such that:

(1)  the diagrams
Ao MAQ® C*(lim Gy))
o iid®Qn
M(A® C*(Gp))
commute; and
i) A x5 im(Gy, gn) ZHM(A x50 G, ).

REMARK 3.2. Indiagram (3.1) we could replace M (A ® C*(G)) with A ® C*(G,)
and M(A ® C*(Gp+1)) with A ® C*(Gp41) because G, G, are discrete.

PROOF OF THEOREM 3.1. Put

G =1im G,,
<
B, = A xsn Gy,

-8"+1 . *
Jn =Ja X (-]Gn-H an)an—>Bn+1,
B = lim(B,. Ju).

K, = the canonical embedding B,, — B.

We aim to apply Landstad duality [17]: we will show that B is of the form C x5 G for
some coaction (C, G, §), and then we will show that we can take C = A. To apply [17]
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we need:

° an action « of G on B; and

° a nondegenerate homomorphism u : C(G) — M (B) whichis rt — « equivariant,
where rt is the action of G on C(G) by right translation.

Then [17] will provide a coaction (C, G, §) and an isomorphism

Q:BiCx(gG,

such that
fou=jc and O(B*)= jc(C).
This is simpler than the general construction of [17], because our group G is compact
(and then we are really using Landstad’s unpublished characterization [13] of crossed
products by coactions of compact groups).
We begin by constructing the action «: for each s € G, the diagrams

—_—

8n+1 0
n+10)
By ——— By

| B

By —— B,
8" 0 (s)

commute because

. L -
8" g © Jn 0 ji =8"g L) 0 J4
.8n+1
=ja
=Jyo ]ft

=Jn 08", 05

and

st = 571 0,11() © JGuy1 © 4
= JGu11 ©TLQ,11(5) © 4y

= JGu11 © G ©Tlg,00,41(s)
=J,o0 -Z\Gn ortg,(s)

=J, O(SnQn(s) ° jG,-

0u11() © Jn 0 jG,

Thus, because the @Qn(‘v) are automorphisms, by universality there is a unique
automorphism o such that the diagrams
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commute. It is easy to check that this gives a homomorphism « : G — Aut B. We
verify continuity: each function s — o (b) for b € B is a uniform limit of functions of
the form s — a; o K,,(b) for b € B,,. But

as 0 Ky(b) =K, o g?lQn(s)(b)s

which is continuous since K,,, O, and ¢ — g;‘t(b) :G, —> B, are.

We turn to the construction of the nondegenerate homomorphism w: first note
that the increasing union |, Q}(C(Gy)) is dense in C(G) by the Stone—Weierstrass
theorem, and it follows that there is an isomorphism

C(G) =1im(C(Gn). 4,
taking QF to the canonical embedding. We have a compatible sequence of

nondegenerate homomorphisms

jGn+1
C(Gpt1) ———— M(Bn+1)

i )

C(Gn) ———— M(By).
so by universality there is a unique homomorphism p making the diagrams

cG)- % =M

al e

C(Gn) o M(By)
commute. Moreover, 1 is nondegenerate since K, and jg, are.
We now have « and p, and the equivariance
Qg 0 L= [LorTtg
follows from
a.vONOQZ =a50K, 0 jg,
= K, 08"9,(5) © JG,
= Ky 0 jG, o1tg,(s)

= o 0, ortg,(s)
=qpmortgo Q:

Thus we can apply [17] to obtain a coaction (C, G, §) and an isomorphism

0:B—>Cx;sG.
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such that
Oopu=jg and 6O(B%) = jc(C).

We want to take C = A. Note that we have a compatible sequence of nondegenerate

homomorphisms

.5n+1

JA
A——— By

\\ Tln
J4

By,

so by universality there is a unique homomorphism j making the diagrams

41)3
N
i

. B,

A

commute. Moreover, j is injective and nondegenerate since K,, and jgn are. Because
J, jc, and 0 are faithful, to show that we can take C = A it suffices to show that

j(A) = B°.

Now
Jj(A) C BY,
because
@0 =ay0K,o ¥
= K, 08,5 0
= Ky o jif
=j.
For the opposite containment, let b € B*. There is a sequence b, € B, such that

K, (b,) — b. The functions s — o5 o K,;(b,) converge uniformly to the function
s+ az(b), so

/ozsoKn(bn)ds—>/ og(b) ds = b.
G G

Also

/ a5 0 Ky(by) ds = / Ky 068" 0,5 (by) ds = K, (/ 5" 0, s) (bn) ds>.
G G G

Since
/G 5" 0, () (bn) ds € B = j§ (A),

https://doi.org/10.1017/5144678870800030X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870800030X

388 D. Pask, J. Quigg and A. Sims [10]

we conclude that

beKyojh (A)=j(A).
Therefore we can take C = A, so that we have a coaction (A, G,d8) and an
isomorphism

6:B—> A x;G,

such that
Oou=jg.

We have proved (ii). For (i), we calculate that

(4 ®id) o (id ® Op) 08 = (iId® Q) 0 (j} ®id) 08
= (id ® 0n) 0 Ad(ji ® id) (wg) o (j4 ® 1)
= Ad(id ® ) ((jG ® id) (wg)) 0 (id ® Q) 0 (j§ ® 1)
= Ad(je ®id)((ld ® Q,) (wg)) o (j4 ® 1)
= Ad(jg ® id)((Q} ®id) (wg,)) o (ji® 1)
= Ad(jg 0 0 ®id) (wg,) o (j, ® 1)
= Ad(0 o Kp 0 jg, ®id) (wg,) 0 (0 0 Kpoj5 @ 1)
— (00K, ®id) 0 Ad(jg, ®id) (wg,) o ;S ® 1)
— (oK, ®id) o (' ®id)os"
=@ oK,oj, ®id)os"
= (j4 ®id) o 8"

Since j /‘i is faithful, we therefore have (id ® Q) o § = §". O

The following application of Theorem 3.1 motivates the work of the following
sections.

ExAMPLE 3.3. Let A= C(T) =C*(Z), and let z denote the canonical generating
unitary function z — z. For n € N, let G, := Z/2"~'7Z be the cyclic group of order
2"=1 'We write 1 for the canonical generator of G,, and 0 for the identity element.
Let g — u,(g) denote the canonical embedding of G, into C*(G,). Define g, :
Gn+1 — Gy by g, (m) :=m(mod 2"=1) and write gn also for the homomorphism
qn : C*(Gp41) = C*(G,) satisfying g, (uy+1(g)) = u,(gn(g)). For each n, let 8" be
the coaction of G,, on A determined by §"(z) :=z ® u,(1).

Let g+ u(g) denote the canonical embedding of lim G, as unitaries in the
multiplier algebra of C*(lim G,). The coaction § of lim G, on A described in
Theorem 3.1 is the one determined by §(z) :=z ® u(l1, 1, . ..); the corresponding
coaction crossed product is known to be isomorphic to the Bunce-Deddens algebra
of type 2% (see, for example, [6, 8.4.4]).
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4. Coverings of skew-products
In this section and the next, we adopt the following notation and assumptions.

NOTATION 4.1. Let A be a connected row-finite k-graph with no sources. Fix a vertex
v e A, and denote by 7 A the fundamental group 71 (A, v) of A with respect to v.
Fix a cocycle ¢ : A — 7 A such that the skew-product A X, 7 A is isomorphic to the
universal covering 25 of A (such a cocycle exists by [15, Corollary 6.5]).

Fix a descending chain of finite-index normal subgroups

..<Hp1 <H,<...<H :=nA. “.1)

For eachn,let G, :=x A/H,,andlet g, : G,+1 — G, be the induced homomorphism

qn(gHy 1) :=gH,.

Then

dn+1 4qn q1

Gy G, G :={e}

is a chain of surjective homomorphisms of finite groups. Let G denote the projective
limit group l(igl(Gn, qn)-
For each n, let ¢, : A — G, be the induced cocycle ¢, (1) = c¢(A) H,, and let

Ay i=A x¢, Gy

be the skew-product k-graph. Define covering maps p,, : A,+1 — A, by p,(X, g) ==
(A, gn(8)).

As in [15, Theorem 7.1(1)], for each n there is a coaction §" : C*(A) — C*(A) ®
C*(G,) determined by 8" (s3) := s) ® ¢, (1). Denote by J,, the inclusion

+1

S =78 X (jG,y 0q)) : C*(A) X0 Gy = C*(A) Xgnt1 Gupl,s
described in Theorem 3.1(i1).

As in [15, Theorem 7.1(ii)], for each n there is an isomorphism ¢, of C*(A,) =
C*(A x¢, Gy) onto C*(A) xsn (Gp) which satisfies ¢, (s(1,g)) := (s, &)-

EXAMPLE 4.2 (Example 3.3 continued). Let A be the path category of the directed
graph B consisting of a single vertex v and a single edge f with r(f) =s(f) = v.
Note that as a category, A is isomorphic to N, and the degree functor is then the identity
function from N to itself.

Then 7 A is the free abelian group generated by the homotopy class of f, and so is
isomorphic to Z. We define a functor ¢ : A — Z by ¢(f) = 1.

For each n, let H, :=2""'Z C Z, so that - - - < Hy1<H,<---<<Hj:=mAis
a descending chain of finite-index normal subgroups. For each n, G, :=7Z/H, is the
cyclic group of order 2"~ !, and g, : G,4+1 — G, is the quotient map described in
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Example 3.3. The induced cocycle ¢, : A — G, obtained from c is determined by
cn(f)=1€2/2" 7.

For p € N, let C, denote the simple cycle graph with p vertices: Cg = {vf 1j €
Z/pZ} and C),:={e¥ : j € Z/pZ}, where r(e]) = v/ and s(ef) = v/, 04 , For
each n, the skew-product graph A, := A X, G, is isomorphic to the path-category
of Cyu—1. The associated covering map p, : Ap+1 — A, corresponds to the double-
covering of C,u-1 by Co» satisfying Ul_zn — U[Z";n'o 4 on—1 and eiz" — ef";nlo 4 on—1-

Modulo a relabelling of the generators of N2, the 2-graph lim(A,, p,) obtained
from this data as in [12] (see Section 2.3) is isomorphic to the 2-graph of [16,
Example 6.7]. Combining this with the final observation of Example 3.3, we obtain
a new proof that the C*-algebra of this 2-graph is Morita equivalent to the Bunce—
Deddens algebra of type 2°° (see [ 16, Example 6.7] for an alternative proof).

THEOREM 4.3. Adopt Notation 4.1. Taking A := C*(A), the coactions 8" and the
quotient maps q, make the diagrams (3.1) commute. Let § denote the coaction of
G = LiLn(Gnv gn) on C*(A) obtained from Theorem 3.1. Let Py denote the projection
Y veao Sv in the multiplier algebra of C*(lim(A,, pp)). Then Py is full and

PoC*(lim(Ay, pn)) Py = C*(A) x5 G.

To prove this theorem, we first show that, in the setting described above, the
inclusions of k-graph algebras induced from the coverings p, : A,+1 — A, asin [12]
are compatible with the inclusions of coaction crossed products induced from the
quotient maps g, : Gp+1 — Gp.

LEMMA 4.4. With Notation 4.1, fix n €N, and let 1, be the inclusion of C*(Ay)
into C*(Ap+1) obtained from [12, Proposition 3.3(iv)]. Then the inclusion i, and the
isomorphisms ¢y, ¢ny1 of Notation 4.1 make the following diagram commute:

Lpn

C*(A,) C*(An+1)

J{d’n \L¢r1+l

C*(A) xgn Gy —2> C*(A) Xgus1 Gpi1

PROOF. By definition,

Lpn (SO gHy)) = Z S(OV\g Hys1)-
p(WV,g" Hyt1)=(A,g Hyp)

By definition of p,, this becomes

tpa (SrgH,)) = Z S(uig Hys)+
{8’ Hyr1€Gpy1:8' Hy=g Hy}
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Hence
Gut10tp, (St gH,)) = Z (sns & Hut1)-
{¢'Hy11€Gpy1:8' Hy=g Hy}
But this is precisely ¢(¢;, (s(.,gH,))) by definition of ¢ and ¢,. O

COROLLARY 4.5. With Notation 4.1, let Py denote the projection ), o0 sy in the
multiplier algebra of C*(lim(A,, pn)). Then Py is full and

PoC*(@(An, pn))Po =Hm(C*(A) xsn G, tn).

PROOF. By [12, Equation (3.2)], PoC*(lim(A,, py))Py is isomorphic to
li_r)n(C*(An), tp,)- The latter is isomorphic to 1'21)1(C*(A) xgn Gy, 1) by Lemma 4.4
and the universal property of the direct limit. O

PROOF OF THEOREM 4.3. It is immediate from the definitions of the maps involved
that the maps 8" and ¢, make the diagram (3.1) commute. The rest of the statement
then follows from Corollary 4.5 and Theorem 3.1(ii). O

5. Simplicity

In this section we frequently embed N* into N¥*! as the subset consisting of
elements whose (k + 1)th coordinate is equal to zero. For n € Nk, we write (1, 0)
for the corresponding element of NA+1,

THEOREM 5.1. Adopt Notation 4.1. The (k + 1)-graph C*-algebra
C*(lim(A,, pn)) is simple if and only if the following two conditions are satisfied:

(i) each Ay is cofinal;
(i) wheneverv e A°, pF#qeE Nk satisfy oP (x) = 09(x) forall x € vAD, there exist
x € vA®, [ e N and N € N such that ey (x(p, p +1)) # en(x(q, g + 1)).

The idea is to prove the theorem by appealing to [18, Theorem 3.1]. To do this, we
will first describe the infinite paths in hm(An, pn). We identify hm(G,,, qn) with the

set of sequences g = (gn);'lo | such that g, qn(gn+1) = gy for all n.

LEMMA 5.2. Adopt Notation 4.1. Fix x € A*° and g = (gn);2; € l(in(Gn, qn)-

For each n €N there is a unique infinite path (x, g,) € Aoo determined by
(x, gn) (0, m) = (x(0, m), ¢, (x(0, m))’lgn) for all m e N, There is a unique
infinite path x8 € lim(A,, p,))*° such that x8(0, (m, 0)) = x(0, m) for all m €
N¥ and x&(neg+1) ;(x(O), gn) for all n € N; moreover, o"%+1(x8) (0, (m, 0)) =
(x, gn) (0, m) for all m € N, Finally, every infinite path y € (lim(A,,, p,))*> is of
the form o"+1(x8) for somen €N, x € A°° and g € l(iEI(Gn, qn\)._
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PROOF. That the formula given determines unique infinite paths (x, g,), n € N,
follows from [9, Remarks 2.2]. That there is a unique infinite path x& such that
x8(0, (m, 0)) = x(0, m) for all m € N* and x&(nex41) = (x(0), gn) for all n e N
follows from the observation that for each n € N there is a unique path

o =ag, = e(x(0), g1)e(x(0), g2) - - - e(x(0), gn),

with d(ag ) = negt1, r(@) =x(0) € A% and s(@) = (x(0), g») € AY, and that for
eachm e Nk,

a(x, gu) (0, m) = x(0, mye(x(m), c1(x(0, m)) "' g1)
ce(x(m), ey (x(0, m)) "L gy)

is the unique minimal common extension of x(0, m) and «. This also establishes the
assertion that o”¢+1(x8) (0, (m, 0)) = (x, g,) (0, m) for all m € N¥.

For the final assertion, fix y € (lim(A,, p,))®°. We must have y(0) = (v, g»)
for some ve A®, g, € G, =nA/H, and n € N. Let x € A% be the infinite path
determined by x (0, m) := y(0, (m, 0)) for all m € Nk, By definition of A, = A X,
G,, we have x(0, m) := (ctm, cn(on) 'g,) where each @, € vA™ and g is the
element of w A such that y(0) = v(g,) as above. There is then an infinite path in
x’ € A® determined by x'(0, m) = a,, for all m € Nk, For n > i > 1, inductively
define g; :=¢i(gi+1), and for n < i let g; be the unique element of G; such that
v((i —n)exs1) = (v, gi); that such g; exist follows from the definition of lim(A,,, p,).
Then g := (g;);2, is an element of 1(i£1(Gn, qn) by definition, and routine calculations
using the definitions of the A, show that x = o"%+1((x')¥). O

LEMMA 5.3. Adopt Notation 4.1. Then the (k + 1)-graph lim(A,,, py) is cofinal if
and only if each A, is cofinal. T

PROOF. Suppose that each A, is cofinal. Fix y € lim(A,, p,) and w € lim(A?).
By Lemma 5.2, we have y=c/0%+(x8) for some g= (gn)y2, € LiLn(Gn, qn),
some igp € N and some x € A®°. We must show that w(lim(A,, p,))y(q) # @ for
some ¢g. We have w € A% for some m € N, so w = (w’, h) for some h € G,,. If
m < io, fix any h’ € w A such that i’ H;, = h, and note that w(lim(A,, p,))(w’, hHj,)
is nonempty, so that it suffices to show that (w’, b’ H;,)(lim(A,, pn))y(q) # 9 for
some g. That is to say, we may assume without loss of generEty that m > ip. But now
w e A?n and J(O"“’O'm”(’)(y) € (lim(A,, pp))® withr(y) € A?O. Since A, is cofinal,
we have wA; (x, gn) (q) # ¥ for some g € N (recall that x, (gi);2, are such that

y = ol0%+1(x8)). By definition, (x, g») (¢) = y(q1, . . ., gk, m — ip) and this shows
that w(lim(An, pa))y(q) # P for g = (qi. ..., gk, m —n).

Now suppose that lim(A,, p,) is cofinal. Fix n € N and a vertex w and an

infinite path x in A,. Then x(0) = (v, gH,) for some v € A, g emA. There are
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paths «,, € A, m € N¥, determined by x(0, m) = (o, cn(otm)_lgH,,); there is

then an infinite path x’ € A such that x'(0, m) = @, for all m. Let g :=gH;
for all i e N. In an abuse of notation we denote by g the element (gH;):2, of
hm(Gn, qn). Let y=0"((x")%) be the infinite path of lim(An, pn) provided by
Lemma 5.2. As hm(An, pn) is cofinal, we may fix a path AE hm(An, Pn) such
that (1) = w and s(k) lies on y. By definition of y, there exist n’ > n and m € NF
such that s(1) = (x'(m), ¢,y (am) ' gu). We then have d(MNg+1 =n' — n, and we may
factorize A = A'A” where d(\/) =d()) — (0’ — n)exy1 and d(A”) = (W' — n)ery1. By
construction of lim(A,, p,), if d(n) = jex+1 and s(u) = (v, gH,) € Ag then n > j

and r () = (v, gH,—j) € Agfj. In particular,

s =r() = &'(m), cu(am)  gn) = x(m),

so wA,x(m) # @. O

LEMMA 5.4. Adopt Notation 4.1. Then the (k + 1)-graph hm(An, Pn) has no local
periodicity if and only if it satisfies condition (ii) of Theorem 5.1.

PROOF. First suppose that condition (ii) of Theorem 5.1 holds. Fix a vertex v €
(lim(A,,, pn))0 and p#gq € Nkt So v e A2 for some n, and v therefore has the
f(\)_r—m v=(w, gH,) for some w € A and g € 7A. We must show that there exists
x € v(lim(A,, p,))* such that o?(x) #£ o9(x).

We first consider the case where Pk+1 7 qk+1. By construction of the tower graph
lim(A,, p,), this forces the vertices x(p) and x(g) to lie in distinct A, for any
xe v(lim(A,, p,))®; in particular, they cannot be equal.

No“:uppose that pr+1 = gr+1. If every x € v(lim(An, Pn))° satisfies op(x) =
09(x), then for any « € v(hm(An, Pn))Pk+1€k+1 and any y € s(a) (hm(An, Pn))C, w
have o”(ay) = 09 (ay); that i is,

o PPk (y) = g9+ (y)  forall y € s(a) (IM(A,, pp))™.

So we may assume without loss of generality that pyy; = gx+1 = 0. Write p’ and ¢’
for the elements of N¥ whose entries are the first k entries of p and g.

We have v € A, for some n, so there exist w € AY and g €mA such that
v=(w, gH,). Suppose first that there exists x € wA® such that o? (x) # aq,(x).
Then the infinite path (x, g H,) € vA;° such that

(x, gHy) (0, m) := (x(0, m), c,(x(0, m))~'gH,) forallm e N,

also satisfies ol’l((x, gH,)) #oq/((x, gH,)). By Lemma 5.2 we may choose an
infinite path y such that y|yk, oy = (x, gHp), and then y € v(lim(A,, Pn))C satisfies

ol (y) #ai(y).
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Now suppose that every path x € wA™ satisfies o? (x) =09 (x). Then by
condition (ii) of Theorem 5.1, we may fix x € wA® and N €N such that
en(x(0, p')) #cen(x(0, ¢")). It then follows from the definition of the c; that
cj(x(0, p")) #¢;j(x(0, ¢")) whenever j > N. So with j := max{N, n},

(x, gH)) (p)) = (x(p)), ¢;(x (0, p)"'gH)) # (x(q"), ¢j(x(0, ¢")) ' gH;)
= (x, gH)) ().

There is an element g = (g;);2, of im(G,, g,) determined by g; := g H; for all i. Let
x& be the element of (lim(A,, p,))>° determined by x and g as in Lemma 5.2. Then
(x, gHy) ((j — l’l)€k+1\: p) # (x, gH,) ((j —n)ex+1 + q), and therefore x 8 satisfies
oP(x8) #09(x8) as required. Hence condition (ii) of Theorem 5.1 implies that
lim(A,, p,) has no local periodicity.

" To show that if lim(A,, p,) has no local periodicity then condition (ii) of
Theorem 5.1 holds, w\e_?)rove the contrapositive statement. Suppose that condition (ii)
of Theorem 5.1 does not hold. Fix ve A® and p, g € N such that o?(x) = 0% (x)
for all x € vA® and c,(x(p, p+1)) = ca(x(g, g +1)) for all n € N, [ € N*. Then
for each x € vA™ and each g = (g,)2 | € 11m(Gn, pn), we have o?(x, g,) (0,1) =
09(x, g,) (0,1) for all neN and [ € N, Hence Lemma 5.2 implies that every
y € v(lim(A,, pn))™ satisfies o P9 (y) = ¢ @0 (y). O

PROOF OF THEOREM 5.1. From [18, Theorem 3.1] we see that C*(lim(A,, p,)) is
simple if and only if lim(A,, p,) is cofinal and has no local periodici\—ty. The result
then follows directly from Lemmas 5.3 and 5.4. O

6. Projective limit k-graphs

Let (An, Any1, Pn),-; be a sequence of row-finite coverings of k-graphs with no
sources as in Section 2.3. We aim to show that the sets (1(i£1 A = 1<i£1(A;", pi)
under the projective limit topology with the natural (coordinate-wise) range and source
maps specify a topological k-graph (in the sense of Yeend). Moreover, we show
that the associated topological k-graph C*-algebra is isomorphic to the full corner
PyC *(lim(A,,, pn)) Po determined by Py := ZUE A0 Sv- In particular, when the A,

and p, "are as in Notation 4. 1, the C*-algebra of the projective limit topological k-
graph is isomorphic to the crossed product of C*(A) by the coaction of the projective
limit of the groups G; obtained from Theorem 3.1.

Let (An, Apy1, pn),-; be a sequence of row-finite coverings of k-graphs with no
sources. Let 1<i£1(A i, pi) be the projective limit category, equipped with the projective
limit topology. That is, hm(A,, pi) consists of all sequences (}; )°°] such that each

Ai € A; and p;(A;j+1) = A;; the structure maps 7, §, o and id on lim(A;, p;) are
H

obtained by pointwise application of the corresponding structure maps for A. The

cylinder sets Z(Ay, ..., A;) = {(u;)72, € l(iEl(A,', pi) i =X forl <i < j} form

a basis of compact open sets for a locally compact Hausdorff topology.
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Define d : l(iLn(Ai, pi) —> Nk by J((Ai)?il) :=d(A1). Since the p; are degree-
preserving,
d(0)E2) =d() foralli > 1.
For fixed A = (A;){2, € 1<i1_n(A,, pi)"", the unique factorization property for each A;

produces unique elements A(0, m) := (4; (0, m))°°1 € hm(Al, pi)™ and A(m, n) :=

(Ai(m, n)2, ehm(A,, pi)"* such that A = 1(0, m)k(m n); that is, (hm(A,, DPi), d)
is a second- countable small category with a degree functor satisfying the factorization

property.

The identity d((ki)?il) =d(};) for all i > 1 implies that Z(Ay, ..., A;) is empty
unless d(A1) =-- - =d(X;), and it follows that d is continuous.

We claim that 7 and 5 are local homeomorphisms. To see this, fix a cylinder set
Z(vy,...,vj)C 1<i1_n(A,', pi)0 and, for e viAj and 2 <[ < j, let vlp;;(k) be the
unique element of v; A; such that pj o ppo---0 Pl—l(UleJl (A)) = A. Then

~_1 . . . Al . 71 . —1

FZ@, vy Nlim(As, p)" = || 20, v2pT 300, - 0 py V),

)LEU]A?

which is clearly open, showing that 7 is continuous. —Moreover, this same
formula shows that for A = (Ai)?il € l(ir_n(A,-, pi), the restriction of 7 to Z(Ay) is a
homeomorphism, and 7 is a local homeomorphism as claimed. A similar argument
shows that § is also a local homeomorphism.

It is easy to see that the inverse image under composition of the cylinder set
Z(A1, ..., j) € l(ir_n(A,-, pi)" is equal to the disjoint union

L] ZGu. p). ... 20 p) x ZGa(po @), . 2 (. @),
ptq=n

of cartesian products of cylinder sets and hence is open, so that composition is
continuous, and it follows that (1<iLn(Al~, Pi), cf) is a topological k-graph in the sense
of Yeend [20, 21].

Let lim(An, pn) be as described in Section 2.3, and let Py denote the full projection
Z €Al sv eM (C*(hm(An, pn))). For the following proposition, we need to describe
POC*(hm(An, pn))Po in detail. For n >m > 1, we write p,, , : A, — Ay, for the
coverlng map pm.p 1= pm -+ -0 pn_1, with the convention that p, , is the identity
map on A,. For ve A%, and I <m, we denote by a;,,(v) the unique path in
lim(An; pn)(m Derr1 whose source is v (and whose range is py ,,(v)). In particular,

o, m(v) the unique path in hm(An, pn)(m Dert1 whose source is v with range in Aj.
For A € Ay,

Sott () Sary e (r () SPLI ) = St (rO)SASe 1 (s))

= S p1n (WSt (50D Sy 1 (51))-
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Furthermore, PoC*(lim(A,, py)) Py is equal to the closed span
POC*(I\i_r_n(An’ pn))Po= Span{salim(r(k))sks;l’m(s()h)) im>1, A€ Ay}

PROPOSITION 6.1. Let (Ap, Ap+1, Pn)ye, be a sequence of row-finite coverings
of k-graphs with no sources, and let lim(An; pn) be the associated (k + 1)-graph
as in [12]. Let Py := ZUEAO Sy € MC*(hm(A,,, pn)). Let (hm(A,, Pi), d) be the
topological k-graph defined above Then there is a unique lsomorphlsm

72 PoC*(lim(Ay, pn))Po — C*(ljgl(/\i, Pi)),
such that for A € Ay,

T (et () S22y 1 (5(30)) = XZ(P1n (). P2 (A Pt (1)) (6.1)

In particular, with Notation 4.1, there is an isomorphism of the C*-algebra
C *(hm(A,, pi)) of the topological k-graph 11m(A,, pi) with the coaction crossed
product C*(A) x5 G.

PROOF. The final statement will follow from Theorem 4.3 once we establish the first
statement.

To prove the first statement we will use Allen’s gauge-invariant uniqueness
theorem for corners in k-graph algebras [1]. We adopt Allen’s notation: for u, v €
A(l)l\i_r_n(A,,; Pn), we let t, , :=s,s) € POC*(I\i_r_n(A,,; pn))Py.  The factorization
property guarantees that for i, v € A?lim(An; Pn), We can rewrite ;L1 = aq , (r())
and v =« , (r(v))V" for some m z\l_and w', v e Ay with s(u') =s('). By [I,
Corollary 3.7], there is an isomorphism 6 of PyC*(lim(A,; p,)) Py onto Allen’s
universal algebra C*(lim(A,; pn), A(l)) (see [1, Definition 3.1 and the following
paragraphs]) which satisfies O(ty,v) =Ty, for all p,v. It therefore suffices to
show that there is an isomorphism v : C*(lim(Ay; pn), A(l)) — C*(l(iEl(Ai, pi))
such that ¥ (T, , ()it m - 0)) = XZ(p1n (), Z(p1m0),..v) Tor all m = 1 and
W, vE A, with s(u) =s(v); the composition 7 := o6 clearly satisfies (6.1),
and it is uniquely specified by (6.1) because the elements {fy, ,,(r(\)n.01 () °
m>1, A € Ay} generate POC*(lim(An, Pn)) Py as a C*-algebra.

Let I denote the topological - -graph hm(A,, pi). Since I' is row-finite and has
no sources, 0I' =T, As in [21], for open subsets U, V CT', let Zg. (U *; V, m)
denote the set {(ux, m,vx):ueU,veV,x eI s(u) =s(v)=r(x)}. Then Gp
is the locally compact Hausdorff topological groupoid

Gr={(x,m—n,y):x,yel® m,neN ¢"(x)=0c"(y)},

where the Zg. (U *; V, m) form a basis of compact open sets for the topology.
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For m>1 and A € Ay, let Uy ) :=Z(p1,m(X), ..., A) CT. So the U, are
a basis for the topology on I' = l(iEI(Ai, pi). Now for m > 1 and u, v € A, with
s(p) =s(v), let

Uty (F (Vs POV 7= XZ (U s U vrd () —d (v)) € Ce(G).

Tedious but routine calculations using the definition of the convolution product and
involution on C.(Gr) C C*(Gr) show that

{uaLm(r(u))u,alvm(r(v))v m=>1, pu,veA,, s(u)=sW)},

is a Cuntz—Krieger (lim(Ay; pn), A‘l))—family in C*(Gr). By the universal property
of C*(lim(Ay; pn), A(l)) (see [I, Section 3]), there is a homomorphism 1 :
C*(lim(Ap; pn), AY) — C*(Gr) such that

V(T (r ()t r0))V) = Uty (r ()01 (r ()05

for each m, w, v. The canonical gauge action 8 : T — Aut(C*(Gr)) determined
by B.(f) (x, m, y):=27" f(x, m, y) satisfies ¥ o y. = B, o ¢ for all z € T¥, where
y is the gauge action on C*(lim(A.; pn), A?). By [21, Proposition 4.3],
each ug, -y 18 nonzero, and it follows from the gauge-invariant
uniqueness theorem [I, Theorem 3.5] that i is injective. The topology
on gﬁo) is generated by the collection of compact open sets {Up.y:m > 1,
A € Ay}, and the topology on Gr is generated by the collection of compact open sets
{Um,pc ks Up,y :m>1, u, v € Ay, s(u) =s(v)}. Since C*({u(xlym(r(,t,c))u,othm(r(v))v :
m>1,u,ve Ay, s(u)=s)}) C C*(Gr) contains the characteristic functions of
these sets, it follows that v is also onto, and this completes the proof. O

REMARK 6.2. The final statement of Proposition 6.1 suggests that we can regard
l(iLn(A,', pi) as a skew-product of A by G.

To make this precise, note that for A € A, ¢(A) := (c,(1));2, belongs to G, and
c: A — G is then a cocycle. There is a natural bijection between the cartesian
product A x G and the topological k-graph 1<iLn(A,~, Di), so we may view A x G as
a topological k-graph by pulling back the structure maps from li_II)l(Ai, pi). What we
obtain coincides with the natural definition of the skew-product A x. G.

With this point of view, we can regard Proposition 6.1 as a generalization
of [15, Theorem 7.1(ii)] to profinite groups and topological k-graphs: C*(A x. G) =
C*(A) x5 G.

EXAMPLE 6.3 (Example 3.3 continued). Resume the notation of Examples 3.3
and 4.2. The resulting projective limit 1<iLn(An, pn) 1s the topological 1-graph E
associated to the odometer action of Z on the Cantor set as in [21, Example 2.5(3)].
That is, E can be realized as the skew-product of B} by the 2-adic integers Z with
respect to the functor ¢ : B — Z; determined by c(f) = (1, 1, 1, .. .), where f is the
loop edge generating BY.
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