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Abstract

Factor rotation is a crucial step in interpreting the results of exploratory factor

analysis. Several rotation methods have been developed for simple structure solu-

tions, but their extensions to bi-factor analysis are often not well established. In this

paper, we propose a mathematical framework that incorporates customized factor

structure as a regularization to produce the optimal orthogonal or oblique rotation.

We demonstrate the utility of the framework using examples of simple structure ro-

tation and bi-factor rotation. Through detailed simulations, we show that the new

method is accurate and robust in recovering the factor structures and latent correla-

tions when bi-factor analysis is applied. The new method is applied to a test data

and a Quality of Life survey data. Results show that our method can reveal bi-factor

structures that are consistent with the theories.
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1 Introduction

Factor analysis is a popular technique for learning the underlying structure of multivari-

ate data and has wide applications in psychology and the social sciences. Factor analysis

suffers from the rotational indeterminacy issue where the loading matrix and the factors

can be simultaneously rotated under the same model. The rotation procedure is a crucial

step in obtaining an interpretable structure. The prevailing solution seeks the rotation

that renders a simple structure (Thurstone, 1947). Roughly speaking, Thurstone’s simple

structure means that the loading matrix contains as many (approximately) zero entries as

possible, so that each observed variable can be explained by only a few factors. Never-

theless, the simple structure is not the only desired solution, especially when the result

does not admit a perfect simple structure. The bi-factor analysis, for instance, has become

a popular alternative solution for exploring the factor structure (Reise, 2012). A classic

approach to the bi-factor analysis is the Schmid-Leiman (SL; Schmid and Leiman, 1957)

transformation. However, the SL transformation imposes an unnecessary proportionality

constraint, making the loading matrix inevitably rank-deficient (Waller, 2018). Moreover,

the SL transformation only produces orthogonal factors, leaving the oblique bi-factor anal-

ysis unsolved. Recently, some new strategies have been developed for bi-factor analysis

(Jennrich and Bentler, 2011, 2012; Abad et al., 2017), but their performance has not been

thoroughly discussed, and none of them has been accepted as the conventional approach.

This paper attempts to shed some light on the bi-factor rotation problem, and more

generally, on the factor rotation problem. We provide a mathematical framework to formu-

late and solve the rotation problem (both orthogonal and oblique) in factor analysis. Given

any desired property of the factor structure, our framework incorporates it as a penalty

term or a constraint, and by solving an optimization problem, it produces a rotation that

rotates an initial loading matrix towards the desired property. In the bi-factor analysis,

for example, the rotated loading matrix is expected to have a bi-factor structure. Accord-

ingly, our framework takes the bi-factor structure as a constraint and produces a rotation

that rotates an initial loading matrix into a bi-factor matrix as much as possible. We also

provide a convergent algorithm to solve the optimization problem. Jennrich (2001, 2002)

has devised a gradient-based algorithm for optimizing a general rotation criterion function,

which generates a sequence of monotone iterates. However, the monotone iterates only

guarantee the convergence of some subsequence, and there might exist multiple limiting

points. Indeed, the monotone iterates may oscillate indefinitely and generate paths with

infinite length (see Absil et al., 2005 for such an example). In contrast, our algorithm

2

https://doi.org/10.1017/psy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.1


guarantees the convergence of the whole iterates.

Although the problem of simple structure rotation has been extensively studied, we

still demonstrate the utilization of our framework in solving this problem, partly because it

serves as an example of the penalty-type formulation and partly because it provides a new

perspective (and a new algorithm) on solving this problem. Thurstone’s original concept of

simple structure largely concerns the number of zero loadings, but many existing methods

maximize some dispersion of factor loadings so that the loadings tend to be either very high

or very low. As Nesselroade and Cattell (2013) note, “the position that gives merely a lot of

low loadings is different from the exact one that maximizes the number of zero loadings.”

Moreover, these dispersion-based methods raise the scaling issues, such as sensitivity to

outliers and the question of normalization. In contrast, our framework provides a solution

on the basis of the count of zero/nonzero loadings, agreeing with the very notion of simple

structure.

We emphasize that our framework is not limited to the simple structure or bi-factor

rotations. The regularization term in our framework can be customized to represent any

subjective or theoretical assumptions about the factor structure, and our framework iden-

tifies the optimal rotation solution corresponding to the given assumption. This is an

attractive advantage because researchers may have various demands on the exploratory

factor analysis (EFA) across different applications. This regularized formulation also pro-

vides a perspective to unify the rotation procedure and the penalized estimation. We justify

in Section 6.2 that these two seemingly competing procedures are mathematically almost

equivalent.

The remainder of this paper is organized as follows. Section 2 and Section 3 describe our

framework for solving the orthogonal and oblique rotation problems, respectively. In each

section, we demonstrate both the simple structure rotation and the bi-factor rotation, along

with their algorithms. In Section 4, we conduct a simulation to compare the performance of

our framework in the exploratory bi-factor analysis with existing methods. The proposed

method is applied to real datasets in Section 5. Section 6 discusses some connections

between our framework and other methods. Section 7 concludes this paper. Technical

derivations and proofs are postponed to the Appendix, which also includes supplementary

simulation studies.
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2 Orthogonal Rotation

2.1 Rotation to simple structure

Let A ∈ Rp×k be an initial loading matrix and T ∈ Rk×k an orthogonal matrix. The

concept of simple structure in factor analysis concerns the search of T such that AT is as

simple as possible. If simplicity is defined as the number of zero loadings, a natural choice

is to minimize ‖AT‖0, where ‖ · ‖0 counts the number of nonzero entries. Unfortunately,

AT would not contain many exact zeros in general, especially when the loading matrix is

subject to sampling error. In practice, very small loadings are accepted as zeros. In other

words, AT would be considered simple if it is close to some matrix with many zeros. Thus,

we formulate the objective function as

min
T,S
‖AT − S‖2F + ρ‖S‖0,

s.t. T ′T = Ik,
(2.1)

where ‖·‖F is the Frobenius norm, ρ > 0 is the tuning parameter, the prime denotes matrix

transpose, and Ik is the k-by-k identity matrix. In practice, we use ρ = 0.32, and this choice

will be explained in Section 6.1.

2.2 Algorithm

Our objective function (2.1) introduces a new parameter S and seems to be more difficult

to optimize than the usual criteria that involve only a rotation parameter T . However, we

shall show that the introduction of a new parameter not only simplifies the optimization

but also broadens its applicability. The key is the separation of the rotation constraint (on

T ) and the desired property (on S). The usual approaches consider the desired sparsity

or its surrogate criterion directly on the rotated loadings, the interlock of which makes the

factor rotation problem challenging. In (2.1) these two features are individually applied

to T and to S, and they are linked by a simple Frobenius distance function. This makes

the optimization with respect to each parameter very simple. While this might suggest

applying an alternating minimization algorithm to solve (2.1), this algorithm suffers from

the same drawback as the gradient-based algorithm: the sequence of parameters generated

by the algorithm is not guaranteed to converge (Powell, 1973). Therefore, a convergent

algorithm called the proximal alternating minimization (PAM) algorithm (Attouch et al.,

2010) is employed to solve (2.1).
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If X = UDV ′ is the singular value decomposition of X, then T = UV ′ minimizes

‖X − T‖2F subject to T ′T = TT ′ = Ik (Gower and Dijksterhuis, 2004). We denote this

projection by Porth(X) = UV ′. Let H(X, κ) = X ◦ I(|X| > κ) be the entrywise hard-

thresholding operator for a matrix X, where ◦ is the entrywise matrix product and I(|X| >
κ) is the entrywise indicator function for whether the absolute value of X entries is greater

than a scalar threshold κ. The algorithm is presented in Algorithm 1, which updates T

and S alternately using the above operators (see Appendix A.1 for the derivation). The

convergence result of this algorithm is summarized in Proposition 1, whose proof is given in

Appendix A.2. The algorithm converges to a stationary point∗ for any bounded stepsizes

γt and ηt. In practice, we choose some small values, such as γt = ηt = 0.01. Also worth

mentioning is the issue of local minima. Like many other rotation methods, Algorithm 1

may converge to a local minimum because the rotation problem is non-convex. Therefore,

it is recommended to run the algorithm with multiple random initializations and choose

the one with the smallest objective value.

Proposition 1 Assume that the sequences of stepsizes γt and ηt are bounded away from

zero and infinity, that is, there exists some positive numbers r+ > r− > 0 such that γt, ηt

belong to (r−, r+) for all t ≥ 0. Then the iterates (Tt, St) generated by Algorithm 1 converge

to a stationary point of (2.1).

2.3 Bi-factor rotation

In the simple structure rotation, we maximize the degree of simplicity for the loading

matrix, so our framework formulates the problem as a penalized optimization. When the

loading matrix is desired to satisfy certain restrictions, we formulate it as a constrained

problem, which can also be efficiently solved by the PAM algorithm. An example of such

a problem is the exploratory bi-factor analysis.

∗For a smooth function, a stationary point is a point whose gradient is zero. For a non-smooth function,

the concept of gradient is generalized to the subdifferential set, and a stationary point becomes a point

whose subdifferential set contains zero. The subdifferential set ∂f(x) of f at x is defined by

∂f(x) =
{
u ∈ Rd : ∃xt → x, f(xt)→ f(x) and ∃ut ∈ ∂̂f(xt), ut → u as t→∞

}
,

where ∂̂f(x) is the Fréchet subdifferential, defined as

∂̂f(x) =
{
u ∈ Rd : lim

y 6=x
inf
y→x

f(y)− f(x)− 〈u, y − x〉
‖y − x‖

≥ 0
}
.

A local minimum must be a stationary point.
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Algorithm 1 PAM for orthogonal simple structure rotation problem (2.1).

Input: Initial loading matrix A, tuning parameter ρ.

Output: Rotation matrix T , sparse loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 = H(AT0,
√
ρ).

2: for t = 0, 1, . . . do

3: Take γt > 0 and compute

Tt+1 = Porth(A′St + γtTt). (2.2)

4: Take ηt > 0 and compute

St+1 = H
(ATt+1 + ηtSt

1 + ηt
,
√
ρ/(1 + ηt)

)
. (2.3)

5: end for

A bi-factor model has a loading matrix of the form

Λ =



∗ ∗ 0

∗ ∗ 0

∗ 0 ∗
∗ 0 ∗
∗ 0 ∗


.

Formally speaking, the loading matrix has a column of free parameters, and besides this

column, it has at most one free parameter in each row. The factor corresponding to the

free column is called a general factor, and the remaining factors are called group factors.

Exploratory bi-factor analysis (Jennrich and Bentler, 2011; Reise, 2012) can uncover the bi-

factor structure and estimate the loadings simultaneously, unlike the confirmatory bi-factor

analysis that requires the bi-factor structure to be specified in advance. Let Sbi denote the

set of matrices with bi-factor structure. Our method performs exploratory bi-factor analysis

by solving

min
T,S
‖AT − S‖2F,

s.t. T ′T = Ik, S ∈ Sbi.
(2.4)

The algorithm for solving (2.4) is very similar to Algorithm 1 and is presented in Algo-

rithm 2. It involves the projection operator onto bi-factor matrices Pbi(X) := arg minS∈Sbi ‖S−
X‖F. The evaluation of this projection requires solving a simple combinatorial optimization
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to find the column of general factor loadings and then keeping the largest (in absolute value)

entry in each row of the remaining columns as the group factor loadings (see Appendix A.3

for a detailed description).

Algorithm 2 PAM for orthogonal bi-factor rotation problem (2.4).

Input: Initial loading matrix A.

Output: Rotation matrix T , bi-factor loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 = Pbi(AT0).

2: for t = 0, 1, . . . do

3: Take γt > 0 and compute

Tt+1 = Porth(A′St + γtTt). (2.5)

4: Take ηt > 0 and compute

St+1 = Pbi

(ATt+1 + ηtSt

1 + ηt

)
. (2.6)

5: end for

3 Oblique Rotation

3.1 Rotation to simple structure

In the orthogonal rotation case, the factors are uncorrelated, and the rotation matrix is

restricted to be an orthogonal matrix. When the factors are allowed to be correlated, the

oblique rotation problem arises. This section provides a counterpart of our framework to

solve the oblique rotation problem, which is similar to the orthogonal case but has some

subtle yet crucial differences.

If one is primarily interested in the loading matrix estimation, the oblique version of

the simple structure rotation problem might be formulated as

min
T,S
‖A(T ′)−1 − S‖2F + ρ‖S‖0,

s.t. diag(T ′T ) = Ik,
(3.1)

where diag(·) keeps the diagonal part of a matrix and assigns zeros to the off-diagonal

part, as (3.1) finds the rotated loading matrix A(T ′)−1 that is closest to a hypothesized
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simple loading matrix S. However, in the oblique factor analysis, the factor correlation

matrix also needs to be estimated, and the rotation T is responsible for both the loading

matrix A(T ′)−1 and the factor correlation matrix Φ = T ′T . In order to get an overall better

estimation of the loading matrix and the factor correlation matrix, we propose to formulate

the oblique rotation problem as

min
T,S
‖A− ST ′‖2F + ρ‖S‖0,

s.t. diag(T ′T ) = Ik.
(3.2)

When ‖A−ST ′‖F is minimized, the reproduced covariance matrix A(T ′)−1ΦT−1A′+ Ψ2 =

AA′ + Ψ2 will be close to the hypothesized covariance matrix ST ′TS ′ + Ψ2 with a simple

loading matrix S, where Ψ2 is a diagonal matrix of uniqueness. As the covariance matrix

is governed by the loading matrix and factor correlation matrix, achieving closeness in the

covariance matrix facilitates a balanced estimation of these two parameters. The rotated

loading matrix A(T ′)−1 will be approximately simple since A(T ′)−1 ≈ ST ′(T ′)−1 = S; the

factor correlation matrix Φ = T ′T is suitable for the hypothesized simple structure since

ST ′TS ′+Ψ2 is close to the optimal covariance matrix AA′+Ψ2. The advantages of (3.2) in

estimating the correlation matrix will be numerically illustrated in Section 4 and Appendix

A.7.

This nuance does not appear in the orthogonal rotation problem because the orthogonal

factor correlation matrix is invariant and the rotation is only responsible for the loading

matrix. In effect, for an orthogonal matrix T , ‖A−ST ′‖F = ‖(A−ST ′)T‖F = ‖AT −S‖F,

so the two formulations are equivalent.

As for the algorithm, although the alternating minimization algorithm and the PAM

algorithm are conceptually applicable to (3.2), they do not lead to a practical algorithm

because the iteration steps for problem (3.2) do not bear explicit updating formulas with

these algorithms. We employ the proximal alternating linearized minimization (PALM)

algorithm (Bolte et al., 2014) to solve (3.2). The resulting algorithm is reported in Al-

gorithm 3. The projection onto oblique rotation matrices Poblq(X) = X{diag(X ′X)}−1/2

rescales each column of matrix X to unit length. We use an orthogonal matrix as initial-

ization because, in general, it has empirically better performance than an oblique one. In

practice, we choose the values of γ and η slightly above one, such as γ = η = 1.01. This al-

gorithm is also convergent, as recorded in Proposition 2 with proof given in Appendix A.5.

It is again recommended to run the algorithm multiple times to alleviate the issue of local

minima.
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Algorithm 3 PALM for oblique simple structure rotation problem (3.2).

Input: Initial loading matrix A, tuning parameter ρ.

Output: Rotation matrix T , sparse loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 = H(A(T ′0)
−1,
√
ρ).

2: for t = 0, 1, . . . do

3: Take γ > 1 and compute

Tt+1 = Poblq

(
Tt +

(A′ − TtS ′t)St

γ‖S ′tSt‖F

)
. (3.3)

4: Take η > 1 and compute

St+1 = H
(
St +

(A− StT
′
t+1)Tt+1

η‖T ′t+1Tt+1‖F
,
√
ρ/(η‖T ′t+1Tt+1‖F)

)
. (3.4)

5: end for

Proposition 2 Assume inft≥0 ‖St‖F > 0 and supt≥0 ‖St‖F < ∞, then the iterates (Tt, St)

generated by Algorithm 3 converge to a stationary point of (3.2).

3.2 Bi-factor rotation

As in the orthogonal case, formulation (3.2) and the PALM algorithm can be used for other

purposes in oblique rotation. We continue to demonstrate the exploratory bi-factor analysis

because it highlights some new issues in the oblique case. We shall show that the bi-factor

model suffers from what we would call group-factor indeterminacy when the factors are

allowed to be correlated. This indeterminacy can be suppressed if we restrict all the group

factors to be uncorrelated with the general factor.

The group-factor indeterminacy is illustrated as follows. Let Λ ∈ Rp×k be a bi-factor

loading matrix and F ∈ Rk the corresponding factors. Without loss of generality, we let the

first component in F be the general factor. Let Φ = (φij) ∈ Rk×k be the factor correlation

matrix. Construct a transformation matrix Γ ∈ Rk×k as

Γ =



1

d2 c2

d3 c3
...

. . .

dk ck


(3.5)
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that has zeros at locations other than the main diagonal and the first column. Matrix Γ

has an inverse

Γ−1 =



1

−d2/c2 1/c2

−d3/c3 1/c3
...

. . .

−dk/ck 1/ck


whenever it exists. The transformed factor F̃ = ΓF has a covariance matrix ΓΦΓ′, whose

diagonal elements are d2r + 2crφ1rdr + c2r (except for the first one). We set dr = −crφ1r ±√
1− c2r(1− φ2

1r) for all 2 ≤ r ≤ k, so that the transformed factor is standardized. The

cr can be any nonzero number between −1/
√

1− φ2
1r and 1/

√
1− φ2

1r. The transformed

loading matrix Λ̃ = ΛΓ−1 has the same bi-factor structure as Λ. Thus, we have constructed

a different oblique bi-factor representation Λ̃F̃ = ΛF . Intuitively, each cluster of items

indicated by the group factors forms a micro factor model with two common factors (the

general factor and the corresponding group factor). Under the oblique factor case, the

group factor can be rotated towards or against the general factor within this two-factor

model (we should not rotate the general factor because it is shared by other clusters).

This explains how we construct the transformation matrix Γ, and we call this phenomenon

group-factor indeterminacy of the oblique bi-factor model. This result is not new and has

been disclosed by Jennrich and Bentler (2012). A natural yet putative strategy to resolve

this indeterminacy is to restrict the group factors to be uncorrelated with the general

factor. We call such a bi-factor representation a semi-oblique bi-factor model. A fully

oblique bi-factor representation can be transformed into a semi-oblique one using Γ with

cr = 1/
√

1− φ2
1r and dr = −crφ1r for all 2 ≤ r ≤ k.

Even given the indeterminacy and the putative restriction, we can still formulate and

solve the oblique exploratory bi-factor analysis with

min
T,S
‖A− ST ′‖2F,

s.t. diag(T ′T ) = Ik, S ∈ Sbi.
(3.6)

It should be clarified that the fully oblique bi-factor models are not considered false or

invalid. They are different representations of the equivalent bi-factor models. In effect, this

indeterminacy does not affect the feasibility S ∈ Sbi and the objective value ‖A − ST ′‖2F.

Consequently, (3.6) has a continuum of optimal solutions that correspond to a single model,

and we transform the final result into a semi-oblique one to provide a unique representation.†

†It is possible to formulate the optimization problem that constrains the rotation T to be semi-oblique,
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Hence, Algorithm 4 solves the oblique bi-factor problem with the PALM algorithm, followed

by a partial orthogonalization step.

Algorithm 4 PALM for oblique bi-factor problem (3.6).

Input: Initial loading matrix A.

Output: Rotation matrix T , bi-factor loading matrix S.

1: Initialize an orthogonal matrix T0 and let S0 = Pbi(A(T ′0)
−1).

2: for t = 0, 1, . . . do

3: Take γ > 1 and compute

Tt+1 = Poblq

(
Tt +

(A′ − TtS ′t)St

γ‖S ′tSt‖F

)
. (3.7)

4: Take η > 1 and compute

St+1 = Pbi

(
St +

(A− StT
′
t+1)Tt+1

η‖T ′t+1Tt+1‖F

)
. (3.8)

5: end for

6: Partially orthogonalize T∞ and S∞ to T∞Γ′ and S∞Γ−1 with Γ in (3.5), cr =

1/
√

1− φ2
1r, dr = −crφ1r for all 2 ≤ r ≤ k, and Φ = T ′∞T∞, provided that the

general factor is rearranged to the first column.

4 Simulation

We have proposed a general framework to formulate and solve the rotation problem in

factor analysis and demonstrated it through the examples of simple structure rotation and

exploratory bi-factor analysis. Because the simple structure rotation problem has been

extensively studied and mature solutions have been developed, our simulation experience

shows considerable similarity between our method and the existing popular methods in

terms of numerical performance (see Appendix A.6 for the simulation results). Here, we

exhibit the simulation results for the exploratory bi-factor analysis.

We compare our proposed method with eight existing methods: (a) the SL (the Schmid-

Leiman procedure; Schmid and Leiman, 1957); (b) the SLt (the SL followed by a partially

specified target rotation; Reise et al., 2010); (c) the SLi (the SL followed by iterated

but the algorithm would become impractical because the set of semi-oblique rotations does not have a

simple projection solution.
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target rotations; Abad et al., 2017); (d) the DSL (the Direct Schmid-Leiman method;

Waller, 2018); (e) the DBF (the Direct Bi-Factor method; Waller, 2018); (f) the PEBI (the

orthogonal or oblique Pure Exploratory BI-factor analysis; Lorenzo-Seva and Ferrando,

2019); (g) the BQ.orth (the orthogonal Bi-Quartimin method; Jennrich and Bentler, 2011);

and (h) the BQ.oblq (the oblique Bi-Quartimin method; Jennrich and Bentler, 2012). We

basically follow the simulation settings from Abad et al. (2017) and Giordano and Waller

(2020). Specifically, we consider a total of 22 items clustered into four groups, with four,

five, six, and seven items in each group. We examine four types of bi-factor structures: (a)

the independent cluster (IC) structure that is a perfect bi-factor loading matrix; (b) the

independent cluster basis (ICB) structure that contains cross-loadings; (c) the independent

cluster pure (ICP) structure where some items have nonzero loadings only on the general

factor; and (d) the independent cluster basis pure (ICBP) structure that contains both

cross-loadings and pure items. In our simulation, the group factor loadings take either high

or low values. When they take high values, they are randomly selected from the interval

[0.6, 0.9]; for the low value case, they are selected from the range [0.3, 0.6]. When cross-

loadings are present, the last item in each cluster has a cross-loading of 0.4 on the next

group factor. For pure items, the item in the middle position of each cluster has a loading

of 0.01 on the corresponding group factor. The loadings on the general factor are randomly

selected so that every item has communality no greater than 0.81. When necessary, some

rows of loading vector are rescaled to prevent excessively large communality caused by the

cross-loadings. Finally, every loading entry is randomly assigned a positive or negative

sign. An example of simulated loading matrices is presented in Table 1.
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Given the simulated loading matrix Λ, we generate the population correlation matrix

R = ΛΦΛ′ + Ψ2,

where Φ is the factor correlation matrix and Ψ2 is a diagonal matrix of uniqueness, chosen

to constrain the diagonal elements of R to one. In the orthogonal bi-factor case, Φ will

be an identity matrix. In the semi-oblique case, the correlations among group factors

are randomly selected from the interval [0.2, 0.6]. If the generated correlation matrix is

not positive definite, we re-generate a new one until it is positive definite. The final step

generates the data from a multivariate normal distribution with zero mean and covariance

matrix R, with a sample size N ∈ {200, 500, 2000}. The simulation is replicated 50 times

for each scenario.

The accuracy of the rotation methods is evaluated by the root mean squared error

(RMSE) between the population and estimated bi-factor loading matrices:

RMSE(Λ, Λ̂) =
1√
pk
‖Λ− Λ̂‖F, (4.1)

after the estimated factors are aligned and orientated with respect to the population factors.

The initial loading matrix is extracted using the maximum likelihood method. The results

of our regularized rotation methods (REGL.orth and REGL.oblq) and the competitors are

shown in Figures 1, 2, and 3. We also include an oracle method that rotates (orthogonally

or obliquely) the initial loading matrix towards the true loading matrix Λ, that is, the

oracle orthogonal rotation minimizes ‖AT −Λ‖F and the oracle oblique rotation minimizes

‖A(T ′)−1 − Λ‖F. This oracle method can be considered the optimal rotation for loading

estimation and is used as a reference.

Under the orthogonal bi-factor models (Figure 1), our methods and the Bi-Quartimin

methods perform best, but our methods are slightly better at recovering the ICB and

ICBP structures. Since the orthogonal model is a special case of the oblique model, the

oblique versions of these two methods have almost the same performance as their orthogonal

counterparts. The SLi method has comparable results to the best ones. We contend that

the success of SLi should attribute to the iterating steps. To illustrate this, we replace

the SL initialization in the SLi procedure with a random bi-factor loading initialization,

and the resultant RANDi method remains successful. Note also the similarity between its

iterative spirit and the PAM algorithm. All the other SL-based methods fail to recover the

loading matrix.

As for the oblique bi-factor models (Figure 2), our proposed oblique rotation method and

the oblique Bi-Quartimin method are the only successful methods, while the oblique PEBI
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method and all other orthogonal methods fail to provide reasonable estimates. Compared

to the Bi-Quartimin method, our method again has an advantage in recovering the ICB

and ICBP structures, indicating its robustness. This superiority is more evident when

the group loadings take high values. Moreover, our method provides better estimation of

the factor correlation matrix than the Bi-Quartimin method, as shown in Figure 3. The

accuracy of factor correlation estimation is measured by

RMSE(Φ, Φ̂) =
1√
k2
‖Φ− Φ̂‖F.

Interestingly, our method can even outperform the oracle method when the underlying

model is strictly a bi-factor model. This is because the oracle method minimizes ‖A(T ′)−1−
Λ‖F which emphasizes the discrepancy of the loading matrix, and the estimated rotation

does not necessarily produce an optimal factor correlation matrix. In contrast, our method

minimizes ‖A− ST ′‖F which is compatible with the discrepancy of the covariance matrix,

resulting in a rotation that balances the estimation of the loading matrix and the factor

correlation matrix. Hence, our method can better estimate the factor correlation matrix

even though it does not use the true loading matrix Λ. A detailed comparison of the two

formulations in estimating the loading matrix and the factor correlation matrix is given in

Appendix A.7.

5 Real Data Examples

5.1 Holzinger’s fourteen tests data

We now apply the proposed exploratory bi-factor analysis approach to Holzinger’s fourteen

tests data. This data was used by Holzinger and Swineford (1937) to illustrate bi-factor

analysis. The correlation matrix was provided in Holzinger and Swineford (1937), and their

preliminary analysis divided the fourteen tests into four groups to reflect spatial, mental

speed, motor speed, and verbal factors (see Table IV in Holzinger and Swineford, 1937).

This bi-factor structure is consistently recovered by our orthogonal and oblique bi-factor

analyses, as shown in Table 2, except that the oblique bi-factor model has two crossing
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loadings. The estimated factor correlation matrix in the oblique model is

Φ =



1 0 0 0 0

0 1 .77 .37 .67

0 .77 1 .46 .36

0 .37 .46 1 .17

0 .67 .36 .17 1


.

Since both orthogonal and oblique bi-factor analyses recover the desired structure, deter-

mining which model is more appropriate may depend on domain knowledge.

Table 2: Exploratory bi-factor rotation results of the proposed methods applied to the

Fourteen Tests data (loadings ≥ .20 in absolute value are bolded).

Item Orthogonal bi-factor loadings Oblique bi-factor loadings

T1 .56 .28 .17 .03 −.08 .21 .38 .33 .01 −.11

T2 .80 .33 −.10 −.04 .07 .37 .94 −.12 .01 −.08

T3.4 .59 .56 .04 .01 .14 .05 .68 .12 −.01 .08

T6 .64 .04 .39 .14 −.01 .41 −.19 .69 .11 .10

T28 .51 .10 .35 .00 −.12 .29 −.04 .64 −.05 −.07

T29 .61 −.05 .35 −.05 −.00 .47 −.15 .64 −.09 .08

T32 .12 .15 −.12 .41 .13 −.06 .13 −.25 .47 .15

T34 .41 −.09 .02 .60 −.14 .29 .04 −.02 .69 −.13

T35 .12 .12 .13 .49 −.12 −.06 −.14 .18 .50 −.05

T36a .54 −.16 .04 .37 .05 .46 −.02 .06 .45 .10

T13 .62 .06 −.05 .03 .53 .42 .13 −.05 .07 .61

T18 .63 −.13 −.09 −.04 .56 .56 .05 −.11 .03 .65

T25b .43 .14 .02 −.04 .61 .24 −.08 .08 −.04 .76

T77 .45 .07 .02 −.07 .58 .31 −.10 .08 −.06 .72

5.2 Quality of life data

When applied to another data set, our methods demonstrate the necessity of oblique bi-

factor analysis. Chen et al. (2006) have applied a confirmatory bi-factor analysis to a

Quality of Life data set. This data set contained 403 observations for 17 items answered

on a 5-point Likert scale from 1 (all of the time) to 5 (never), with high scores on the

scale indicating a high quality of life. These items were hypothesized to reflect a common
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general factor (Quality of Life) and four group factors (Cognition, Vitality, Mental Health,

and Disease Worry). We apply both the proposed orthogonal and oblique exploratory

bi-factor analyses to this data set, with results shown in Table 3. In the orthogonal bi-

factor case, not all loadings on the group factor are significant for the third hypothesized

cluster (Mental Health), consistent with the published studies (Chen et al., 2006; Jennrich

and Bentler, 2011; Abad et al., 2017). Additionally, we identify a possible cross-loading

for the “pep” item, which is also reported by Abad et al. (2017). The results become

promising in the oblique case, where our method produces a bi-factor structure consistent

with the hypothesized structure, except for a potential cross-loading for the “nerv” item.

The estimated factor correlation matrix is

Φ =



1 0 0 0 0

0 1 .51 .65 .45

0 .51 1 .64 .51

0 .65 .64 1 .65

0 .45 .51 .65 1


,

and the group factors have moderate correlations. This might explain the failure of the

orthogonal bi-factor models to recover the hypothesized structure.

6 Discussion

6.1 Relation to other methods

The rotation to simple structure has been a classic problem in factor analysis, and a number

of methods have been proposed in the literature. Although we develop the solution from a

different perspective, it is mathematically related to some existing methods. We discuss the

connection to Jennrich (2004)’s component loss function (CLF) method and Kiers (1994)’s

simplimax method.

Jennrich (2004) has investigated a class of rotation criteria based on the CLF including

the family of right constant CLF, to which we now demonstrate our method is equivalent.

Let Λ = AT be the rotated loading matrix with entries λir. The CLF method finds the

rotation T that minimizes the component loss criterion Q(Λ), defined as

Q(Λ) =
∑
i

∑
r

h(λ2ir)
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Table 3: Exploratory bi-factor rotation results of the proposed methods applied to the

Quality of Life data (loadings ≥ .20 in absolute value are bolded).

Item Orthogonal bi-factor loadings Oblique bi-factor loadings

diff .56 .64 −.01 −.08 −.04 .16 .78 −.01 .11 −.03

slo .46 .47 .07 −.03 .03 .19 .58 .08 −.03 .05

con .53 .67 .04 .07 .04 .28 .86 −.01 −.09 .04

for .44 .67 .02 .01 −.01 .17 .86 −.03 −.08 −.03

dcon .57 .61 −.00 −.01 −.02 .23 .76 −.02 .08 −.01

tired .67 .04 .52 −.02 −.06 .42 −.00 .76 .03 −.07

ener .56 −.00 .38 .01 .04 .37 −.03 .54 .02 .06

worn .66 .07 .54 −.11 .03 .35 .04 .79 −.06 .05

pep .66 −.01 .43 .21 .00 .60 −.01 .56 .03 −.03

calm .73 −.01 −.04 .41 .02 .72 .03 −.10 .45 .01

blue .83 −.04 −.10 .05 −.03 .48 −.10 −.03 .74 .05

hap .66 −.05 .09 .38 −.01 .68 −.02 .08 .34 −.03

nerv .68 .19 −.04 .01 .02 .35 .21 −.00 .40 .09

down .82 .01 −.08 −.08 −.16 .35 −.08 .05 .85 −.10

afr .69 .00 −.09 −.08 .55 .35 −.01 −.08 .08 .82

frust .69 .00 .09 .01 .42 .44 −.00 .13 .01 .60

wor .61 −.00 .00 .06 .54 .43 .02 −.03 −.10 .76

with some component loss function h(·). One particular CLF is the right constant function

h(λ2) =

(λ/b)2, if |λ| ≤ b,

1, if |λ| > b.

The component loss criterion with this right constant function is equivalent to (2.1) for

ρ = b2. To see this, we rewrite (2.1) as a partial minimization problem

min
T

{
min
S

(
‖AT − S‖2F + ρ‖S‖0

)}
. (6.1)

The inner minimization problem over S has an explicit solution S = S(T ) := H(AT,
√
ρ).

Thus, if we let Λ = AT , (6.1) becomes

min
T
‖AT − S(T )‖2F + ρ‖S(T )‖0

= min
T

∑
i

∑
r

{
λ2irI(λ2ir ≤ ρ) + ρI(λ2ir > ρ)

}
,
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which is exactly b2Q(Λ) with the right constant CLF and ρ = b2. This equivalence has

several consequences. First, the desirable properties of the right constant CLF provided by

Jennrich (2004) directly apply to our method, such as the ability to recover perfect simple

structure or Thurstone’s simple structure whenever they exist. Second, it suggests choosing

the tuning parameter ρ as the square of the threshold b, such as ρ = 0.32. Finally, our

method provides a natural justification and interpretation for the right constant CLF, and

we also offer a simple and convergent algorithm for the equivalent methods.

Another related method is the simplimax rotation (Kiers, 1994). Although the simpli-

max method is proposed for oblique rotation, the idea can be analogously applied to the

orthogonal rotation. Given a number m, the simplimax maximizes the simplicity by mini-

mizing the sum of m smallest squared entries of the rotated loading matrix. It is derived

from the formulation:

min
T,S
‖AT − S‖2F,

s.t. ‖S‖0 ≤ pk −m,
(6.2)

where T is either an orthogonal or an oblique rotation matrix. Thus, the simplimax

can be viewed as a constrained version of (2.1), while (2.1) is a penalized version. The

PAM algorithm is still applicable to the constrained problem (6.2), in which (2.3) is re-

placed by a truncation operation that sets the m smallest (in absolute value) entries of

(ATt+1 + ηtSt)/(1 + ηt) to zero. The constrained version (6.2) is appropriate when the

number of zero loadings is pre-specified, while the penalized version (2.1) is appropriate

when the threshold for small loadings is given, which is typically the case.

In developing the approach of exploratory bi-factor analysis, Jennrich and Bentler (2011,

2012) proposed constructing the rotation criterion as an index that measures the depar-

ture of a loading matrix from a bi-factor structure. If such departure is measured by the

Frobenius distance to the set of bi-factor loading matrices, one naturally derives our formu-

lation (2.4). Formulation (3.6) measures a distance not directly under the loading matrix

scale but under the covariance matrix scale. This scale has the benefit of balancing the

estimation accuracy for the loading matrix and the factor correlation matrix, hence the

better performance shown in Figure 3.

6.2 Bridging simple structure rotation and penalized estimation

Penalized estimation is a popular technique in statistics and machine learning for incorpo-

rating prior knowledge about parameters. When the parameters are assumed to be sparse,

sparsity-promoting penalties such as the Lasso (Tibshirani, 1996) are incorporated into
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the loss functions (e.g., the likelihood function) to produce sparse estimates. This tech-

nique has been introduced to the EFA for the estimation of sparse loadings and has been

suggested as an alternative to the factor rotation procedure because it produces sparser

loadings (Hirose and Yamamoto, 2015; Scharf and Nestler, 2019). We now show via our

framework that the factor rotation procedure and the penalized estimation are two sides of

the same coin. Their relation is summarized in Table 4. In the REGL formulation (2.1),

the optimal value for S given a fixed T is H(AT,
√
ρ), and the optimal value for T given a

fixed S is Porth(A′S) = arg min{T :T ′T=Ik} ‖AT − S‖F. Thus, the penalized estimate S is a

truncated matrix of the rotated loading AT , and the rotated loading AT is an untruncated

version of S. The difference between the rotation procedure and penalized estimation is

merely a matter of choosing the output between AT and S.

Table 4: Classification of estimation procedures

output

objective function AT or A(T ′)−1 S

likelihood/squared loss/etc. penalized estimation/CFA

approximated loss function EFA/REGL REGL

While one may argue that our sparse estimates S in (2.1) and (3.2) are not exactly

the penalized likelihood estimations discussed in the literature, the difference is peripheral.

The classic penalized estimation minimizes a loss function (e.g., the likelihood function or

the squared loss) d(Σ̂, SΦS ′ + Ψ2), which represents the discrepancy between the sample

covariance matrix Σ̂ and the model covariance matrix SΦS ′ + Ψ2, along with a penalty

term for S. In contrast, we minimize ‖A − ST ′‖2F plus a penalty term. The loss function

d(Σ̂, SΦS ′ + Ψ2) can be quadratically approximated (up to constant scaling and shifting)

by ‖AA′ − SΦS ′‖2F, as AA′ + Ψ̂2 is the minimizer of the loss function. Taking the “square

root” of the matrices AA′ and SΦS ′ = ST ′TS ′, we can further approximate ‖AA′−SΦS ′‖2F
by ‖A − ST ′‖2F. Therefore, our formulas (2.1) and (3.2) are approximated penalized loss

functions, and our sparse estimates S are approximate solutions to the standard penalized

estimation. Ideally, it would be best to solve the penalized loss function directly because

the initial loading matrix A is only an intermediate estimator. We frame the problem

within the rotation paradigm partly because factor rotation procedures have historically

been central to the EFA and partly because the rotation of a given matrix presents an

algebraic problem of independent interest. Moreover, employing a penalized loss function

introduces challenges in solving the optimization problem, as our algorithm is neither prac-

tical nor necessarily convergent when applied to it. The exploration of efficient algorithms
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for minimizing the penalized loss function in factor analysis remains a topic for future

research.

We can further draw a connection with the confirmatory factor analysis (CFA). In the

CFA, the likelihood function (or a loss function in general) is minimized under the restric-

tion where certain loading entries are pre-specified with fixed values or subject to equality

constraints. This approach constitutes constrained estimation. Similar to the penalized

formulation, our REGL framework provides a mathematical correspondence between the

rotation procedure and the constrained estimation. The constrained estimates produced

by our framework are again approximate solutions for CFA estimation by substituting the

standard loss function with ‖A−ST ′‖2F. Although the exploratory and confirmatory factor

analyses are usually considered distinct disciplines with different objectives, our framework

reveals a mathematical connection between their estimates.

7 Conclusion

We have proposed a general framework to solve the rotation problem in factor analysis.

The problem is formulated as either a penalized or a constrained optimization, depending

on the type of rotation purpose. This regularized formulation can incorporate any desired

assumptions about the factor structure, and the optimization process finds the optimal

rotation based on these assumptions. The optimization problem is solved using simple

and convergent algorithms. This framework is applicable to both orthogonal and oblique

rotations. We illustrate the penalized and constrained formulations using examples of

simple structure rotation and bi-factor rotation, respectively.

Simulation studies show that, for exploratory bi-factor analysis, our method performs

better than most other methods under many conditions, and mostly equally well as Bi-

Quartimin, except in the conditions ICB and ICBP, where it performs better than Bi-

Quartimin. When applied to real data sets, our method uncovers bi-factor structures that

are consistent with the hypothesized theory. Our framework also provides insight into the

mathematical relationship among exploratory factor rotation, penalized estimation, and

confirmatory factor analysis.

Finally, we want to point out that we are essentially providing a numerical iterative

approach to an algebraic problem: given a matrix A, how to find its approximate factoriza-

tion ST ′ where S and T satisfy certain structures or properties. This matrix factorization

framework has potential applications beyond factor analysis and could be valuable in other

fields. For example, in dictionary learning (Rubinstein et al., 2010; Zhai et al., 2020), the
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problem of sparse representation modeling can be approached in a manner similar to (2.1)

for orthogonal dictionaries or (3.2) for general dictionaries. The potential connections and

extensions of our algebraic framework to related problems may be explored in future work.

A reviewer raised a question regarding the performance of formulation (3.1) for the oblique

rotation problem. We have not yet identified a convergent algorithm for solving (3.1), al-

though some preliminary findings are presented in Appendix A.7. A comprehensive and

systematic study of (3.1) represents another promising direction for future research.
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Figure 1: Boxplot of the estimation error for loading matrix under orthogonal bi-factor

models.
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Figure 2: Boxplot of the estimation error for loading matrix under semi-oblique bi-factor

models.
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bi-factor models.
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Appendix

A.1 Derivation of Algorithm 1

For the problem (2.1), the PAM algorithm (Attouch et al., 2010) readsTt+1 = arg min
T ′T=Ik

{
‖AT − St‖2F + ρ‖St‖0 + γt‖T − Tt‖2F

}
, (A.1)

St+1 = arg min
S

{
‖ATt+1 − S‖2F + ρ‖S‖0 + ηt‖S − St‖2F

}
. (A.2)

Step (A.1) is a proximal version of Procrustes problem, and can be converted to a standard

one:

arg min
T ′T=Ik

‖AT − St‖2F + ρ‖St‖0 + γt‖T − Tt‖2F

= arg min
T ′T=Ik

trace[(T ′A′ − S ′t)(AT − St)] + γttrace[(T ′ − T ′t)(T − Tt)]

= arg min
T ′T=Ik

trace(−2S ′tAT ) + γttrace(−2T ′tT )

= arg min
T ′T=Ik

trace[−2(S ′tA+ γtT
′
t)T ]

= arg min
T ′T=Ik

‖T − (A′St + γtTt)‖2F.

Thus Tt+1 = Porth(A′St + γtTt). Step (A.2) can be rearranged to

arg min
S
‖ATt+1 − S‖2F + ρ‖S‖0 + ηt‖S − St‖2F

= arg min
S

∥∥∥S − ATt+1 + ηtSt

1 + ηt

∥∥∥2
F

+
ρ

1 + ηt
‖S‖0,

which can be optimized entry-wisely. In general, function (x− t)2 + κ‖x‖0 is minimized at

x = 0 if |t| <
√
κ and at x = t otherwise, that is, the minimizer is x = H(t,

√
κ). Hence,

St+1 = H
(ATt+1 + ηtSt

1 + ηt
,
√
ρ/(1 + ηt)

)
.

A.2 Proof of Proposition 1

This convergence result is a direct application of Theorem 3.2 in Attouch et al. (2010). In

particular, Theorem 3.2 of Attouch et al. (2010) requires that the objective function has

the Kurdyka– Lojasiewicz property and that its smooth part has a Lipschitz continuous

gradient. A function f(x) is called Lipschitz continuous if there exists a constant L ≥
0 such that ‖f(x) − f(y)‖ ≤ L‖x − y‖ for all x and y. The constant L is called the

Lipschitz modulus. The function ‖AT − S‖2F in (2.1) is a quadratic function of T and

S, so it is continuously differentiable and has a Lipschitz continuous gradient on bounded
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subsets. Theorem 3 in Bolte et al. (2014) shows that semi-algebraic functions must have

the Kurdyka– Lojasiewicz property (both definitions can be found in Attouch et al., 2010

or Bolte et al., 2014). Semi-algebraic functions are ubiquitous. In particular, polynomial

functions, the Stiefel manifold (i.e., the set of orthogonal matrices), and ‖ · ‖0 are all semi-

algebraic (see the Appendix in Bolte et al., 2014). Hence, the objective function (2.1) has

the Kurdyka– Lojasiewicz property.

Theorem 3.2 in Attouch et al. (2010) implies that any bounded sequence converges to

a stationary point. We now show that our sequence is bounded. The orthogonal matrix Tt

is bounded. The iteration (2.3) implies that

‖St+1‖F =
∥∥∥H(ATt+1 + ηtSt

1 + ηt
,
√
ρ/(1 + ηt)

)∥∥∥
F

≤
∥∥∥ATt+1 + ηtSt

1 + ηt

∥∥∥
F

≤
∥∥∥ATt+1

1 + ηt

∥∥∥
F

+
∥∥∥ ηtSt

1 + ηt

∥∥∥
F

=
1

1 + ηt
‖A‖F +

ηt
1 + ηt

‖St‖F

≤ 1

1 + ηt
max{‖A‖F, ‖St‖F}+

ηt
1 + ηt

max{‖A‖F, ‖St‖F}

= max{‖A‖F, ‖St‖F}.

This is valid for any t. Therefore,

‖St+1‖F ≤ max{‖A‖F, ‖St‖F}

≤ max
{
‖A‖F,max{‖A‖F, ‖St−1‖F}

}
= max{‖A‖F, ‖St−1‖F}

≤ · · ·

≤ max{‖A‖F, ‖S0‖F}.

Hence our sequence (Tt, St) is bounded and thus converges to a stationary point.

A.3 Projection onto bi-factor loadings

Algorithms 2 and 4 involve projecting a matrix onto the set of bi-factor loading matrices

Pbi(X) = arg minS∈Sbi ‖S−X‖F. To find this projection, one needs to identify which column

of S corresponds to the general factor. Suppose that the r-th column of S represents the

general factor loadings; then this column is free and should be equal to the r-th column

of X in order to minimize the Frobenius distance. After that, simple algebra shows that

29

https://doi.org/10.1017/psy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.1


the group factor loadings in S should be identical (in both value and location) to the

largest (in absolute value) entry in each row of the remaining X sub-matrix. By letting

every column be a potential general factor loading, we obtain k candidates for the bi-factor

loading matrices. The projection will be the one with the largest Frobenius norm, because

in this case ‖S −X‖2F = ‖X‖2F − ‖S‖2F for those candidate matrices S.

A.4 Derivation of Algorithm 3

For the minimization of H(T, S) + f(T ) + g(S), the PALM algorithm (Bolte et al., 2014)

reads 
Tt+1 = arg min

T

{
〈T − Tt,∇TH(Tt, St)〉+

ct
2
‖T − Tt‖2F + f(T )

}
, (A.3)

St+1 = arg min
S

{
〈S − St,∇SH(Tt+1, St)〉+

dt
2
‖S − St‖2F + g(S)

}
. (A.4)

In our case (3.2), H(T, S) = ‖A−ST ′‖2F, g(S) = ρ‖S‖0, and f(T ) is the indicator function

for the constraint diag(T ′T ) = Ik, i.e., f(T ) = 0 if T belongs to the constraint, and

f(T ) = +∞ otherwise. We have

∇TH(T, S) = −2(A′ − TS ′)S, and ∇SH(T, S) = −2(A− ST ′)T.

For these functions,

‖∇TH(T1, S)−∇TH(T2, S)‖F = ‖2(T1 − T2)S ′S‖F ≤ 2‖T1 − T2‖F‖S ′S‖F

and

‖∇SH(T, S1)−∇SH(T, S2)‖F = ‖2(S1 − S2)T
′T‖F ≤ 2‖S1 − S2‖F‖T ′T‖F,

so they are Lipschitz continuous with moduli L1(S) = 2‖S ′S‖F and L2(T ) = 2‖T ′T‖F,

respectively. The PALM algorithm requires that ct = γL1(St) and dt = ηL2(Tt+1) for some

γ > 1, η > 1. Thus, (A.3) becomes

arg min
diag(T ′T )=Ik

〈T − Tt,−2(A′ − TtS ′t)St〉+ γ‖S ′tSt‖F‖T − Tt‖2F

= arg min
diag(T ′T )=Ik

∥∥∥T − Tt − (A′ − TtS ′t)St

γ‖S ′tSt‖F

∥∥∥2
F
.

Therefore,

Tt+1 = Poblq

(
Tt +

(A′ − TtS ′t)St

γ‖S ′tSt‖F

)
.
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Step (A.4) becomes

arg min
S
〈S − St,−2(A− StT

′
t+1)Tt+1〉+ η‖T ′t+1Tt+1‖F‖S − St‖2F + ρ‖S‖0

= arg min
S

∥∥∥S − St −
(A− StT

′
t+1)Tt+1

η‖T ′t+1Tt+1‖F

∥∥∥2
F

+
ρ

η‖T ′t+1Tt+1‖F
‖S‖0.

Hence

St+1 = H
(
St +

(A− StT
′
t+1)Tt+1

η‖T ′t+1Tt+1‖F
,
√
ρ/(η‖T ′t+1Tt+1‖F)

)
.

A.5 Proof of Proposition 2

This convergence result is a direct application of Theorem 1 in Bolte et al. (2014). Specif-

ically, the constraint diag(T ′T ) = Ik is defined by a series of polynomial equations, so it is

semi-algebraic by definition. Similar to the proof of Proposition 1, the other terms in (3.2)

are also semi-algebraic. Therefore, (3.2) has the Kurdyka– Lojasiewicz property. The As-

sumptions 1 and 2 required in Bolte et al. (2014) can be easily verified to be true for (3.2).

Thus, the bounded iterates (Tt, St) converge to a stationary point.

A.6 Simulation on simple structure rotation

This section provides the simulation results of the proposed method and existing methods

for recovering simple structure in EFA. The simulation setting is very similar to that of the

bi-factor rotation simulation in Section 4. There are a total of 22 items, and they admit a

factor model with a perfect simple structure. There are four latent common factors, and

these common factors have nonzero loadings on four, five, six, and seven items, respectively.

The nonzero loadings are randomly selected from the intervals [0.3, 0.6] or [0.6, 0.9], and

then each entry is randomly assigned a positive or negative sign. The population correlation

matrix is generated as

R = ΛΦΛ′ + Ψ2,

where Φ is the factor correlation matrix and Ψ2 is a diagonal matrix of uniqueness, chosen to

constrain the diagonal elements of R to one. In the orthogonal model, Φ will be an identity

matrix. In the oblique model, the correlations among common factors are randomly selected

from the interval [0.2, 0.6]. If the generated correlation matrix is not positive definite, we

re-generate a new one until it is positive definite. The final step generates the data from a

multivariate normal distribution with zero mean and covariance matrix R, with a sample

size N ∈ {200, 500, 2000}. The simulation is replicated 50 times for each scenario. The

estimation accuracy is evaluated by the RMSE (4.1).
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We compare our proposed methods with the conventional rotation methods, namely,

the Varimax for orthogonal rotation and the oblimin for oblique rotation. The results are

shown in Figures 4 and 5. The oracle method rotates the initial loading matrix towards

the true loading matrix, so it is optimal in the sense of minimizing the RMSE of loading

matrix estimation. Under the orthogonal model, all the methods achieve nearly optimal

performance. Under the oblique model, these oblique methods (REGL.oblq and oblimin)

are as good as the oracle method. Nonetheless, as shown in Figure 5, our method has

better performance in estimating the factor correlations. Our method exhibits outliers in

Figures 4 and 5 because it gets trapped in local minima in these cases.

high low
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Oracle REGL.orth REGL.oblq Varimax oblimin Oracle REGL.orth REGL.oblq Varimax oblimin

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

method

R
M

S
E

sample size 200 500 2000

Figure 4: Boxplot of the estimation error for loading matrix under factor models with

perfect simple structure.

A.7 Comparing two formulations of oblique rotation

This section investigates the performance of two different formulations of the oblique rota-

tion problem through simulations. The simulation settings are exactly the same as those
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Figure 5: Boxplot of the estimation error for factor correlation matrix under oblique factor

models with perfect simple structure.

in Section 4. The two formulations are

min
T,S
‖A(T ′)−1 − S‖2F,

s.t. diag(T ′T ) = Ik, S ∈ Sbi,
(A.5)

and

min
T,S
‖A− ST ′‖2F,

s.t. diag(T ′T ) = Ik, S ∈ Sbi.
(A.6)

(A.5) is solved by the alternating minimization algorithm and the updating of T given

a fixed S is achieved by Jennrich (2002)’s gradient projection algorithm. (A.6) is solved

by Algorithm 4. Both solutions are partially orthogonalized to the semi-oblique bi-factor

results. The two corresponding oracle methods are

min
T
‖A(T ′)−1 − Λ‖2F,

s.t. diag(T ′T ) = Ik,
(A.7)

and

min
T
‖A− ΛT ′‖2F,

s.t. diag(T ′T ) = Ik,
(A.8)

where Λ is the true loading matrix. (A.7) and (A.8) are solved by the gradient projection

algorithm.

33

https://doi.org/10.1017/psy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.1


IC ICB ICP ICBP

high
low

LoadingOracle CovOracle LoadingREGL CovREGL LoadingOracle CovOracle LoadingREGL CovREGL LoadingOracle CovOracle LoadingREGL CovREGL LoadingOracle CovOracle LoadingREGL CovREGL

0.01

0.10

1.00

0.01

0.10

1.00

method

R
M

S
E

 (
in

 lo
g 

sc
al

e)

sample size 200 500 2000

Figure 6: Boxplot of the estimation error for loading matrix under semi-oblique bi-factor

models.
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Figure 7: Boxplot of the estimation error for factor correlation matrix under semi-oblique

bi-factor models.

The results of the four methods in estimating the loading matrix and factor correlation

matrix are shown in Figures 6 and 7. The LoadingOracle (A.7) always has the optimal
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loading matrix estimation, as it minimizes the loading matrix RMSE (4.1). The CovOracle

(A.8) produces comparable results for loading matrix estimation when the loadings are

high but performs slightly worse when the loadings are low. The extremely poor results of

CovOracle under ICP and ICBP conditions arises from a nearly singular estimate of the

matrix T , with which A(T ′)−1 will be extremely biased. A reversed trend is observed for

the estimation of the factor correlation matrix. While LoadingOracle and CovOracle yield

similar results when the loadings are high, CovOracle demonstrates superior estimation

of the factor correlation matrix when the loadings are low. This outcome highlights the

benefit of minimizing the covariance distance, even though it sacrifices some accuracy in

the loading matrix estimation.

The pattern follows for the two practical methods, CovREGL (A.6) and LoadingREGL

(A.5). These methods perform comparably in estimating the loading matrix when the

loadings are high, but CovREGL shows slightly worse performance when the loadings are

low. For factor correlation matrix estimation, the two methods are comparable when the

loadings are high, but CovREGL outperforms LoadingREGL when the loadings are low,

particularly under IC and ICP conditions. However, under ICB and ICBP conditions, the

advantage of CovREGL over LoadingREGL in estimating the correlation matrix diminishes.

This deterioration is likely due to model misspecification, as Λ 6∈ Sbi under these conditions.

Surprisingly, CovREGL occasionally outperforms its oracle counterpart under IC and ICP

conditions. In particular, the issue of extreme bias observed with CovOracle is no longer

present with CovREGL.
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