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Abstract

This article studies the properties of word-hyperbolic semigroups and monoids, that is, those having
context-free multiplication tables with respect to a regular combing, as defined by Duncan and Gilman
[‘Word hyperbolic semigroups’, Math. Proc. Cambridge Philos. Soc. 136(3) (2004), 513–524]. In
particular, the preservation of word-hyperbolicity under taking free products is considered. Under mild
conditions on the semigroups involved, satisfied, for example, by monoids or regular semigroups, we
prove that the semigroup free product of two word-hyperbolic semigroups is again word-hyperbolic.
Analogously, with a mild condition on the uniqueness of representation for the identity element, satisfied,
for example, by groups, we prove that the monoid free product of two word-hyperbolic monoids is
word-hyperbolic. The methods are language-theoretically general, and apply equally well to semigroups,
monoids or groups with a C-multiplication table, where C is any reversal-closed super-AFL. In particular,
we deduce that the free product of two groups with ET0L with respect to indexed multiplication tables
again has an ET0L with respect to an indexed multiplication table.
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Hyperbolic groups, being groups whose Cayley graphs are hyperbolic metric spaces,
were introduced by Gromov in his seminal monograph [62]. Subsequently, the theory
of hyperbolic groups has grown to be one of the most influential areas of group
theory. It is natural to wish to generalise hyperbolicity from groups to semigroups
and monoids. This can be done in several ways. One way is to consider semigroups
and monoids whose (right, undirected) Cayley graphs are hyperbolic as metric spaces.
This approach is somewhat brittle: for a trivial example that illustrates this well, if
G is any group whatsoever, then G0 – the semigroup obtained from G by adjoining a
zero – has a hyperbolic Cayley graph when this is considered as an undirected graph. A
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[2] Multiplication tables in free products 397

second, and somewhat more robust, approach is to use the methods of formal language
theory, which is the starting point of the present article.

Language-theoretic methods in group theory have a rich history spanning the past
half century, starting with Anı̄sı̄mov in 1969 [7] and continuing with the seminal
[8]. It is in this latter article in which the ‘word problem’ of a group, being the
formal language of words over a generating set representing the identity element, was
introduced and studied. The connections between groups and context-free languages
were explored further by Anı̄sı̄mov [4–6, 9, 10]. Muller and Schupp [86] (contingent
on a weak form of a deep result by Dunwoody [39]) subsequently proved a striking
classification: a finitely generated group has context-free word problem if and only
if it is virtually free. This decisively demonstrated the depth of the connection first
uncovered by Anı̄sı̄mov.

With the importance of context-free languages to the theory of groups, it seems
natural to desire a purely language-theoretic definition of hyperbolicity in groups.
One such definition was given by Grunschlag [63], who proved that a group is
hyperbolic if and only if its word problem is generated by a terminating growing
context-sensitive grammar. (A terminating grammar is one in which for every variable
v, there is a sequence of productions that transforms v into a word over the terminals;
see [63, Section 1.8.5].) An arguably more elegant characterisation, using the weaker
expressive power of context-free languages, was given by Gilman [49]. This definition
has the added benefit of being generalisable directly to semigroups, which was
done by Duncan and Gilman [38]. To distinguish from the geometric variant, this
form of hyperbolicity is called word-hyperbolicity. Loosely speaking, a semigroup
S is word-hyperbolic if there exists a regular language of representatives (with no
requirement of uniqueness) such that the multiplication table for S with respect to
this language can be described by a context-free language. This definition (which
is described formally in Section 1.3) is equivalent to geometric hyperbolicity for
groups [38, Corollary 4.3] and for completely simple semigroups [46, Theorem 4.1].
In general, however, word-hyperbolic semigroups are a more restricted class than
hyperbolic semigroups, and appear somewhat more amenable to general results than
the geometric approach to hyperbolic semigroups. (Having said this – and as a paper on
hyperbolicity of semigroups may be considered to be skewed without some references
to the geometry of semigroups – there is a recent trend, pioneered by Gray and
Kambites, in successfully handling the directed geometry of semigroups in a manner
extending the usual geometric group theory (for example, the Milnor–Schwarz lemma
[103]), see [54–58]; see also [47, 68, 76, 101].) For example, just as in groups, there
are links between word-hyperbolicity and automaticity in semigroups.

Whenever a generalisation (for example, of hyperbolicity in groups) is made, it
is useful to ask: what properties should be desired to be retained, and which should
not? For example, hyperbolicity in groups is independent of the generating set chosen,
which is a rather (one may argue) essential and desirable property; this property
holds also for word-hyperbolic semigroups [38, Theorem 3.4]. Furthermore, the word
problem is well known to be decidable in all hyperbolic groups (in linear time); for
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word-hyperbolic semigroups, the word problem is also decidable [67, Theorem 3.8],
in fact in polynomial time [26, Theorem 7.1].

However, while hyperbolic groups are automatic [44, Theorem 3.4.5], it is not true
that word-hyperbolic semigroups are always automatic [67, Example 7.7]. Similarly,
while the isomorphism problem is decidable for hyperbolic groups [34], it is undecid-
able in general for word-hyperbolic semigroups [26, Theorem 4.3]. When considering
which properties are desired – and are reasonable to desire – if a definition is found
to not satisfy one such desired property, then an amendment to the definition which
forces this property to hold may be considered. (In fact, two amendments have already
been proposed, by Hoffmann and Thomas [69], which recovers automaticity, and Cain
and Pfeiffer [26], which has a word problem decidable in O(n log n)-time.) It is the
view of the author that free products of word-hyperbolic semigroups ought to be
word-hyperbolic; free products are free constructions, and free objects (for example,
free semigroups) are word-hyperbolic. While we are not able to prove this result with
exactly this statement, the main results of this article demonstrate that any possible
counterexample to the general statement will be exceptional, rather than the norm.

The outline of the paper is as follows. In Section 1, we give some background,
necessary definitions and notation. In particular, in Section 1.8, we give a brief
overview of the connections between substitutions in formal language theory (crucial
to the arguments in subsequent sections) and ET0L systems. In Section 2, we prove
the main result for semigroup free products, which is the following theorem.

THEOREM A. Let S1, S2 be 1-extendable word-hyperbolic semigroups. Then the free
product S1 ∗ S2 is word-hyperbolic.

The technical condition for a word-hyperbolic semigroup S to be 1-extendable is
defined and explored in Section 1.3, and loosely speaking consists of a condition
ensuring that the word-hyperbolic structure for S does not collapse if one adjoins an
identity to S. In particular (see Lemma 1.6), any monoid and any (von Neumann)
regular semigroup is 1-extendable, so Theorem A applies when S1 and S2 are from
either of these classes.

To deal with monoid free products (and, as a particular case, group free products),
in Section 3, we first develop some technical purely language-theoretic tools which we
call polypartisan ancestors. Loosely speaking, polypartisan ancestors model a form of
sequential rewriting with respect to rules of the form a→ W, where a is a single letter,
and where the word w to which the rewriting is applied is divided into some fixed
number k parts such that each part is rewritten using possibly different sets of rules.
In Section 4, we first use our previous results on semigroup free products to prove the
following main result.

THEOREM B. Let M1, M2 be two word-hyperbolic monoids with 1-uniqueness
(with uniqueness). Then the monoid free product M1 ∗M2 is word-hyperbolic with
1-uniqueness (with uniqueness).
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Here, 1-uniqueness (which is defined in Section 4.1) is the condition on a
word-hyperbolic monoid M, with regular language of representatives R, saying the
only word in R which represents the identity element is the empty word. In particular,
one can show that hyperbolic groups are word-hyperbolic with 1-uniqueness, and as
a corollary, we derive, by language-theoretic means, the well-known group-theoretic
result that the free product of hyperbolic groups is hyperbolic. Using polyparti-
san ancestors, we also deduce (Theorem 4.5) that the monoid free product of
�-word-hyperbolic monoids is �-word-hyperbolic. Here, �-word-hyperbolicity refers
to a condition which can be seen, in a sense made precise in Section 4.3, as
‘complementary’ to 1-uniqueness.

Finally, in Section 5, we use the language-theoretic generality in which the article is
written to note that our results generalise immediately from context-free multiplication
tables to much more general situations, including ET0L and indexed multiplication
tables, leading to Theorems A′ and B′, being more general versions of the main results
of this article. In particular, we deduce (Corollary 5.2) that the free product of two
groups, each having an ET0L multiplication table, again has an ET0L multiplication
table; the analogous statement (Corollary 5.3) for groups with indexed multiplication
tables is also deduced.

1. Introduction and notation

The paper also assumes familiarity with the basics of the theory of semigroup,
monoid and group presentations, which is written as Sgp〈A | R〉, Mon〈A | R〉 and
Gp〈A | R〉, respectively. For further background, see, for example, [1, 27, 82, 83, 87].

1.1. Formal language theory. We assume the reader is familiar with the fundamen-
tals of formal language theory. In particular, a full AFL (abstract family of languages)
is a class of languages closed under homomorphism, inverse homomorphism, intersec-
tion with regular languages, union, concatenation and the Kleene star. Furthermore, a
class C is reversal-closed if for all L ∈ C, we have Lrev ∈ C. Here, Lrev denotes the
language of all words in L read backwards (see Section 1.2 for a formal definition).
For some background on this, and other topics in formal language theory, we refer
the reader to standard books on the subject [20, 64, 70, 96]. The class of context-free
languages is denoted CF.

We also, in Sections 5 and 1.8, make reference to the class IND of indexed
languages. The latter was introduced in Aho’s Ph.D. thesis [2], see also [3] as an
extension of the context-free languages; we refer the reader to, for example, [48,
65, 102] or [70, Ch. 14] for particularly readable definitions. Finally, we make some
reference to the classes ET0L and EDT0L in Section 5 (but not in the main sections
of the paper). These are examples of L-languages, which arise from L-systems. The
theory of L-systems originated in 1968 in the work of Lindenmayer [80, 81] (whence
the L) as a theory for the parallel branching of filamentous organisms in biology, but
subsequently grew into a core branch of formal language theory [66, 93–95]. Because

https://doi.org/10.1017/S1446788723000010 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000010


400 C.-F. Nyberg-Brodda [5]

of this vast literature (and as we do not need the definitions), we do not define either
ET0L or EDT0L, instead referring the reader to more recent articles on the subject (for
example, especially [31], see also [24, 72, 92]). The research topic remains very active;
particularly, the connections between ET0L and EDT0L languages and equations over
groups and monoids have flourished in recent years; see, for example, [30, 31, 35,
45]. There are also recent links with geometric group theory. For example, Bridson
and Gilman [23] famously proved that any 3-manifold group admits a combing which
is an indexed language; in fact, their combing is an ET0L language [31] (note that
CF � ET0L � IND).

A useful analogy to keep in mind is the following: the class CF can be seen as
modelling closure under sequential recursion; the class ET0L models closure under
parallel recursion. See Section 1.8 for further details on this analogy, particularly
Theorem 1.13, as well as [97]. Finally, CF, ET0L and IND are all easily seen to be
reversal-closed.

1.2. Rewriting systems. Let A be a finite alphabet, and let A∗ denote the free monoid
on A, with identity element denoted ε or 1, depending on the context. Let A+ denote
the free semigroup on A, that is, A+ = A∗ − {ε}. For u, v ∈ A∗, by u ≡ v, we mean that
u and v are the same word. For w ∈ A∗, we let |w| denote the length of w, that is, the
number of letters in w. We have |ε| = 0. If w ≡ a1a2 · · · an for ai ∈ A, then we let wrev

denote the reverse of w, that is, the word anan−1 · · · a1. Note that rev : A∗ → A∗ is an
anti-homomorphism, that is, (uv)rev ≡ vrevurev for all u, v ∈ A∗. If X ⊆ A∗, then we let
Xrev = {xrev | x ∈ X}. If the words u, v ∈ A∗ are equal in the monoid M = Mon〈A | R〉,
then we denote this u =M v. By Mrev, we mean the reversed monoid

Mrev = Mon〈A | {urev = vrev | (u, v) ∈ R}〉.

For w1, w2 ∈ A∗, w1 =M w2 if and only if wrev
1 =Mrev wrev

2 . That is, M and Mrev are
anti-isomorphic (if G is a group, then clearly G � Grev). Finally, when we say that
a monoid M is generated by a set A, we mean that there exists a surjective homomor-
phism π : A∗ → M. We use analogous terminology for semigroups and groups.

We give some notation for rewriting systems. For an in-depth treatment and further
explanations of the terminology, see, for example, [21, 22, 73]. A rewriting system R
on A is a subset of A∗ × A∗. We denote rewriting systems by script letters, for example,
R, S , T . An element of R is called a rule. The system R induces several relations on
A∗. We write u −→R v if there exist x, y ∈ A∗ and a rule (�, r) ∈ R such that u ≡ x�y and
v ≡ xry. We let −→∗R denote the reflexive and transitive closure of −→R. We denote by
∗←→R the symmetric, reflexive and transitive closure of −→R. The relation

∗←→R defines
the least congruence on A∗ containing R. For X ⊆ A∗, we let ∇∗R(X) denote the set of
ancestors of X with respect to R, that is,

∇∗R(X) = {w ∈ A∗ | there exists x ∈ X such that w −→∗R x}.

The monoid Mon〈A | R〉 is identified with the quotient A∗/
∗←→R. For a rewriting

system T ⊆ A∗ × A∗ and a monoid M = Mon〈A | R〉, we say that T is M-equivariant
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if for every rule (u, v) ∈ T , we have u =M v. That is, T is M-equivariant if and
only if every pair of words in the congruence

∗←→T also belongs to
∗←→R, or, written

symbolically,
∗←→T ⊆

∗←→R.
Let u, v ∈ A∗ and let n ≥ 0. If there exist words u0, u1, . . . , un ∈ A∗ such that

u ≡ u0 −→R u1 −→R · · · −→R un−1 −→R un ≡ v,

then we denote this by u −→n
R v, that is, u rewrites to v in n steps. Thus, −→∗R=

⋃
n≥0 −→n

R.
A rewriting system R ⊆ A∗ × A∗ is said to be monadic if (u, v) ∈ R implies |u| ≥ |v|

and v ∈ A ∪ {ε}. We say that R is special if (u, v) ∈ R implies v ≡ ε. Every special
system is monadic. Let C be a class of languages. A monadic rewriting system R is
said to be C if for every a ∈ A ∪ {ε}, the language {u | (u, a) ∈ R} is in C. Thus, we may
speak of, for example, C-monadic rewriting systems or context-free monadic rewriting
systems. Monadic rewriting systems are extensively treated in [21].

DEFINITION 1.1. Let C be a class of languages. Let R ⊆ A∗ × A∗ be a rewriting
system. Then we say that R is C-ancestry preserving if for every L ⊆ A∗ with L ∈ C,
we have ∇∗R(L) ∈ C. If every C-monadic rewriting system is C-ancestry preserving,
then we say that C has the monadic ancestor property.

The terminology monadic ancestor property was introduced by the author in [91],
and also appears in [89, 90], but was treated implicitly already in [21, 73], see
especially [73, Lemma 3.4]. The idea of defining classes of languages via ancestry
in rewriting systems is not new, and can be traced back at least to, for example,
McNaughton et al.’s Church–Rosser languages [84] or Beaudry et al.’s McNaughton
languages [17, 18].

EXAMPLE 1.2. If R ⊆ A∗ × A∗ is a context-free monadic rewriting system, and L ⊆ A∗

is a context-free language, then ∇∗R(L) is a context-free language [21, Theorem 2.2].
That is, every CF-monadic rewriting system is CF-ancestry preserving. Hence, the
class of context-free languages has the monadic ancestor property.

Having the monadic ancestor property is analogous to being closed under sequential
recursion; see Section 1.8 for further elaboration on this. This gives rise to the notion
of a super-AFL.

DEFINITION 1.3. Let C be a full AFL. Then C is said to be a super-AFL if it has the
monadic ancestor property.

Hence, by Example 1.2, CF is a super-AFL. For the main body of the text, this is
the only super-AFL we deal with; see, however, Section 1.8 for a broader discussion,
and Section 5 for generalisations of our results to all reversal-closed super-AFLs.
The primary reason for dealing only with context-free languages comes from the
importance of CF with regards to word-hyperbolicity.

1.3. Word-hyperbolicity. Let S be a semigroup, finitely generated by some set
A, with associated surjective homomorphism πS : A+ → S. Let R ⊆ A+ be a regular
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language. If πS(R) = S, that is, every element of S is represented by some word from
R, then we say that R is a regular combing of S. If πS is bijective when restricted to
R, then we say that R is a regular combing with uniqueness. Let #1, #2 be two new
symbols, and let

TS(R) = {u#1v#2wrev | u, v, w ∈ R such that u · v =S w}.

We say that TR(S) is a multiplication table for S (with respect to R). If this table is
context-free, that is, if TS(R) ∈ CF, then we say that S is a word-hyperbolic semigroup
(with respect to the combing R). If R is additionally a combing with uniqueness, then
we say that TS(R) is word-hyperbolic with uniqueness. Not every word-hyperbolic
semigroup is word-hyperbolic with uniqueness [25].

The above notion of hyperbolicity was introduced by Duncan and Gilman [38]. One
can show that if S is hyperbolic with respect to one choice of finite generating set, then
it is hyperbolic with respect to every such choice [38, Theorem 3.4]. However, note
that even if TS(R1) ∈ CF for some regular combing R1, there may still be some regular
combing R2 of S such that TS(R2) � CF. For extensions of the condition TS(R) ∈ CF
to, for example, TS(R) ∈ ET0L or TS(R) ∈ IND, see Section 5.

We extend this definition in the obvious way to monoids (and groups) by substitut-
ing A∗ for A+. Thus, a monoid M generated by A is word-hyperbolic ‘as a monoid’ if
and only if there exists a regular combing R ⊆ A∗ such that TM(R) ∈ CF. However,
by [38, Theorem 3.5], a monoid is word-hyperbolic ‘as a monoid’ if and only if
it is word-hyperbolic as a semigroup (in the above sense). We therefore speak of
‘word-hyperbolic monoids’ always referring to a regular combing R ⊆ A∗. In fact, it is
not difficult to see, by using a rational transduction, that if M is word-hyperbolic with
respect to a combing R ⊆ A+, then it is word-hyperbolic with respect to R ∪ {ε} (see, for
example, the first paragraph in the proof of Lemma 1.5). We may thus assume without
loss of generality that any regular combing for M includes the empty word (which
necessarily represents the identity element). If M is word-hyperbolic with respect to
the combing R, and the only word in R representing the identity element of M is the
empty word, then we say that M is word-hyperbolic with 1-uniqueness.

One can show that a group is word-hyperbolic if and only if it is hyperbolic in
the usual sense, that is, the sense of Gromov [38, Theorem 4.3]. Furthermore, one
can show that, due to the Muller–Schupp theorem, if G is a group generated by A,
then TG(A∗) is context-free if and only if G is virtually free [49, Theorem 2(2)], a
condition which is significantly stronger than hyperbolicity. Indeed, more generally, it
is not difficult to see that a semigroup S is word-hyperbolic with respect to the combing
A+ if and only if S has a context-free word problem (in the sense of Duncan and Gilman
[38, Section 5]).

For brevity, for i = 1, 2, we let A#i = A ∪ {#i} and let A# = A ∪ {#1, #2}.

1.4. 1-extendability. We now define a slightly technical condition, which proves
useful in Section 2. Let S be a semigroup. We define S1 to be the semigroup with an
identity 1 adjoined, regardless of whether S has an identity element already or not. (If
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S is a monoid, then defining S1 in this manner (rather than simply taking S1 = S) is
only a technicality, but is used to avoid some other language-theoretic technicalities.)

DEFINITION 1.4 (1-extendable). Let S be a word-hyperbolic semigroup with respect
to a regular combing R ⊆ A+. We say that S is 1-extendable if S1 is word-hyperbolic
with respect to the regular combing R ∪ {ε}.

Thus, if S is a 1-extendable word-hyperbolic semigroup, then S1 is word-hyperbolic.
We do not know if the converse holds in general. Our main interest in 1-extendability is
in the statement of Theorem A, in which we show that the free product of 1-extendable
word-hyperbolic semigroups is again word-hyperbolic. We begin by showing that
1-extendability is not particularly elusive.

LEMMA 1.5 (Kambites). Let S be a word-hyperbolic semigroup. If every element of S
has a right stabiliser (that is, for every s ∈ S, there exists some t ∈ S with st = s), then
S is 1-extendable.

PROOF. Suppose S is generated by the finite set A, with R ⊆ A+ a regular combing and
TS(R) context-free. As noted by Duncan and Gilman [38, Question 1], to show that S1

is word-hyperbolic, it suffices to show that the language Q = {u#vrev | u, v ∈ R, u =S v}
is context-free, as

TS1(R ∪ {ε}) = {(#1#2)} ∪ {u#1#2vrev | u, v ∈ R, u =S v}
∪ {#1u#2vrev | u, v ∈ R, u =S v} ∪ TS(R),

that is, it is a union of TS(R) and languages obtainable from Q by a rational
transduction, and hence also context-free.

For every a ∈ A, let a′ ∈ R be a word such that aa′ =S a, that is, a right stabiliser
for a, which exists by assumption. Let A′ = {a′ | a ∈ A}. Then for every u ∈ R, say
u ≡ a1a2 · · · an, we have that ua′n =S u. By partitioning R based on the final letters of
words (which is well defined as ε � R), we find that the language

U =
⋃
a∈A

(R/{a})a#1a′

is a regular language, being a finite union of (pairwise disjoint) regular languages.
Now,

TS(R) ∩ (U#2Rrev)

= {u#1v#2wrev | u, v, w ∈ R, uv =S w, there exists a ∈ A : u ∈ A∗a, v ≡ a′}
= {u#1a′#2wrev | u, w ∈ R, there exists a ∈ A : u ∈ A∗a, ua′ =S w, ua′ =S u}
= {u#1a′#2wrev | u, w ∈ R, there exists a ∈ A : u ∈ A∗a, u =S w} =: L.

This latter language L is just given by

L =
⋃
a∈A
{u#1a′#2wrev | u, w ∈ R, u ∈ A∗a, u =S w} =:

⋃
a∈A

La.

https://doi.org/10.1017/S1446788723000010 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000010


404 C.-F. Nyberg-Brodda [9]

Now for every a ∈ A, we have La = L ∩ A∗#1a′#2A∗. Hence, as CF is closed under
union and intersection with regular languages, we have that L ∈ CF if and only if for
all a ∈ A, La ∈ CF. As TS(R) ∈ CF, and U#2Rrev is regular, we have L ∈ CF, and thus
also La ∈ CF for all a ∈ A.

For every a ∈ A, let �a be the rational transduction of La defined by deleting #1a′#2
in the input word and replacing it by # in the output word, and fixing all other parts of
the input word in La. Then,

L′a := �a(La) = {u#wrev | u, w ∈ R, u ∈ A∗a, u =S w}.

As CF is closed under rational transduction, we have L′a ∈ CF for all a ∈ A. However,
clearly ⋃

a∈A
L′a = {u#wrev | u, w ∈ R, u =S w} = Q.

As CF is closed under finite unions, we have Q ∈ CF, as was to be shown. �

The author thanks Mark Kambites for suggesting Lemma 1.5 and its proof. We
rephrase the above result to our current situation of 1-extendability, and note the
following direct consequence.

LEMMA 1.6. Let S be a word-hyperbolic semigroup. If S is either:

(1) a monoid;
(2) a (von Neumann) regular semigroup; or
(3) a word-hyperbolic semigroup with uniqueness,

then S is 1-extendable.

PROOF. Parts (1) and (2) are direct corollaries of Lemma 1.5. Part (3) is immediate,
and already noted by Duncan and Gilman [38, Question 1]. �

In particular, we find that hyperbolic groups are 1-extendable. On a philosophical
note, we remark (for reasons not too dissimilar from those which are discussed in
Section 4.3) that 1-extendability strikes the author as a very natural condition for
working with word-hyperbolic semigroups in the first place.

1.5. Semigroup free products. Semigroup free products can be found described
in, for example, [71, Ch. 8.2]. We give an overview of this theory here, with some
additional terminology that simplifies later notation.

Let S1, S2 be semigroups defined by Si = Sgp〈Ai | Ri〉 for i = 1, 2, assuming without
loss of generality that A1 ∩ A2 = ∅. The semigroup free product S = S1 ∗ S2 is defined
as S = Sgp〈A1 ∪ A2 | R1 ∪R2〉. We identify S with the semigroup whose elements
are all finite nonempty alternating sequences (s1, s2, . . . , sn) of elements si ∈ S1 ∪ S2,
where alternating means that si and si+1 come from different factors for 1 ≤ i < n.
We write si ∼ sj if si and sj come from the same factor, and si � sj otherwise. We
always have si ∼ si and si � si+1. Given any nonempty sequence s = (s1, s2, . . . , sn) with
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si ∈ S1 ∪ S2, we define the alternatisation s′ of s to simply be s′ = s if s is alternating;
otherwise, if, say, si∼ si+1, we define s′ as the alternatisation of (s1, . . . , si · si+1, . . . , sn).
Clearly, the alternatisation of s is a uniquely defined alternating sequence.

The product of two alternating sequences in S is given by the alternatisation of the
concatenation of the sequences. That is, explicitly, multiplication in S is given by

(s1, . . . , sn) · (t1, . . . , tm) =

⎧⎪⎪⎨⎪⎪⎩(s1, . . . , sn, t1, . . . , tm) if sn � t1,
(s1, . . . , snt1, . . . , tm) otherwise.

(1-1)

See, for example, [71, Eq. (8.2.1)]. Note that, in particular, the semigroup free product
of two monoids is never a monoid. We now define monoid free products in a similar
manner.

1.6. Monoid free products. Let M1, M2 be the monoids Mi = Mon〈Ai | Ri〉 for i =
1, 2, assuming without loss of generality that A1 ∩ A2 = ∅. The monoid free product
M = M1 ∗M2 is defined as M = Mon〈A1 ∪ A2 | R1 ∪R2〉. We identify M with the
monoid whose elements are all finite reduced alternating sequences (m1, m2, . . . , mn)
of elements mi ∈ M1 ∪M2, where reduced means that mi � 1 for all 1 ≤ i ≤ n. Given
an alternating sequence s = (s1, s2, . . . , sn), we define the reduction s′ of s to be s if s
is already reduced; and, otherwise, define s′ to be the reduction of the alternatisation
of the subsequence (si1 , si2 , . . . , sik ) consisting of precisely those sij that satisfy sij � 1.
Clearly, the reduction s′ of s is a uniquely defined reduced alternating sequence.

The product of two reduced sequences in M is then defined as the reduction of the
concatenation of the sequences. Hence, similar to Equation (1-1), we easily find an
explicit expression for multiplication of elements in a monoid free product as

(s1, . . . , sn) · (t1, . . . , tm) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(s1, . . . , sn, t1, . . . , tm) if sn � t1,
(s1, . . . , snt1, . . . , tm) if snt1 � 1,
(s1, . . . , sn−1) · (t2, . . . , tm) if snt1 = 1.

(1-2)

See, for example, [71, page 266]. Unlike the case of the semigroup free product,
the empty sequence is always an identity element for M, so the free product of two
monoids is always (obviously) a monoid. We also remark on the recursive definition
of multiplication in the third case of Equation (1-2). We may, of course, have that
sn−1 · t2 = 1, in which case we continue reducing. In particular, the monoid free product
of two groups is a group, and hence the monoid free product of two groups coincides
with the usual group free product of the same groups.

1.7. Alternating words and combings. We make the following definition of alter-
nating words, which is useful in describing the language theory of free products. Let
R1, R2 be regular languages over some alphabets A1, A2, respectively, with A1 ∩ A2 = ∅

(and hence R1 ∩ R2 = ∅ or R1 ∩ R2 = {ε}). Let w ∈ (R1 ∪ R2)+ be a nonempty word.
Then we can factorise w – not necessarily uniquely! – as a product w ≡ x1x2 · · · xn,
where for every 1 ≤ i ≤ n, we have xi ∈ R1 ∪ R2 and xi � ε. Any such factorisation
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x1x2 · · · xn of w gives rise to a parametrisation X : N→ {1, 2} uniquely defined on
{1, . . . , n} (as A1 ∩ A2 = ∅) by X(i) = j when xi ∈ Xj. If X(i) = X(i + 1) for some i,
then we write this as xi ∼ xi+1 (context will always make this slightly abusive notation
clear). If X is such that xi � xi+1, that is, X(i) � X(i + 1), for all 1 ≤ i < n, which is to
say that X is a standard parametrisation when restricted to {1, . . . , n}, then we say that
the factorisation x1x2 · · · xn of w is alternating. In this case, we may without loss of
generality assume X is a standard parametrisation.

If w admits an alternating factorisation, then we say that w is an (R1, R2)-alternating
word (or simply alternating word, if context makes the regular languages R1, R2 clear).
It is clear that w admits at most one alternating factorisation, and hence, if w is
an alternating word, then we may speak of the alternating factorisation of w, with
associated standard parametrisation X. We for convenience always also say that the
empty word is alternating, with the ‘unique’ alternating factorisation ε (if ε ∈ R1 ∩ R2,
then we simply for convenience choose ε ∈ R1). Note that not every factorisation as a
word over (R1 ∪ R2)+ of an alternating word is alternating: for example, if R1 = {x, xx}
and R2 = {y}, then the word xxy can be factorised as either x · x · y or xx · y as a word
over (R1 ∪ R2)+; only the latter of the two factorisations is alternating.

The language of all (R1, R2)-alternating words is regular, being the language

(R1R2)∗ ∪ (R2R1)∗ ∪ (R1R2)∗R1 ∪ (R2R1)∗R2. (1-3)

We denote the language in Equation (1-3) as Alt(R1, R2). We denote by Alt+(R1, R2)
the language Alt(R1, R2) − {ε} of nonempty alternating words.

LEMMA 1.7. Let S1, S2 be two semigroups, finitely generated by disjoint sets A1,
respectively A2, and with regular combings R1, respectively R2. Then the language
Alt+(R1, R2) is a regular combing of the semigroup free product S = S1 ∗ S2.

PROOF. Let (s1, s2, . . . , sk) ∈ S be an alternating sequence, with associated parametri-
sation X, that is, so that si ∈ SX(i) for all 1 ≤ i ≤ k. For every 1 ≤ i ≤ k, there is some
ri ∈ RX(i) such that πX(i)(ri) = si, as RX(i) is a combing of SX(i). Hence, π(r1r2 · · · rk) =
(s1, s2, . . . , sk), and as r1r2 · · · rk ∈ Alt+(R1, R2), we have the result. �

Now the following follows immediately from Lemma 1.7 and standard normal form
lemmas for semigroup free products.

LEMMA 1.8. Let S1 and S2 be as in Lemma 1.7. Let S = S1 ∗ S2 denote their semigroup
free product, and let u, v ∈ Alt+(R1, R2) be such that

u ≡ u1u2 · · · un, v ≡ v1v2 · · · vk

are the unique alternating factorisations of u and v, respectively, and with associated
standard parametrisations X, respectively Y. Then, u =S v if and only if

(1) n = k and X = Y;
(2) ui =SX(i) vi for all 1 ≤ i ≤ n.
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Finally, we give an explicit expression for how multiplication works in semigroup
free products with respect to the combing Alt+(R1, R2). For brevity, we let R =
Alt+(R1, R2) and S = S1 ∗ S2.

LEMMA 1.9. Let x ≡ x1x2 · · · xn ∈ R be an alternating product such that xi ∈ RX(i) for
some standard parametrisation X. Let w1, w2 ∈ R be such that w1 · w2 = x in S. Then
one of the following holds.

(1) For some 0 ≤ k ≤ n, we have

w1 ≡ x1x2 · · · xk, and w2 ≡ xk+1xk+2 · · · xn,

where xj ∈ RX( j) and xj = xj in SX( j) for all 0 ≤ j ≤ n.
(2) For some 0 ≤ k ≤ n, we have

w1 ≡ x1x2 · · · xk−1x′k and w2 ≡ x′′k xk+1 · · · xn,

where x′k, x′′k ∈ RX(k) with xk = x′kx′′k in SX(k), and xj ∈ RX( j) with xj = xj in SX( j) for
all 0 ≤ j < k and k < j ≤ n.

PROOF. This follows directly from Lemma 1.8 and the multiplication in Equation (1-1)
in semigroup free products; case (1) corresponds to the first case of Equation (1-1), and
case (2) corresponds to the second. �

We give a similar treatment regarding combings and monoid free products. Let
M1 and M2 be two monoids, generated by two finite disjoint sets A1, respectively A2.
Let M = M1 ∗M2 denote their monoid free product, and let S denote their semigroup
free product. (To emphasise just how different M and S are, we note that S is
always (!) an infinite semigroup, even if M1 and M2 are trivial monoids, whereas
in this latter case, M would simply be trivial.) We let A = A1 ∪ A2. Let R1, R2 be
regular languages with R1 ⊆ A∗1 and R2 ⊆ A∗2, and with R1 ∩ R2 = {ε}. We say that
a nonempty word u ∈ Alt(R1, R2), with alternating factorisation u ≡ u0u1 · · · un and
associated parametrisation X, is reduced if ui � 1 in MX(i) for all 0 ≤ i ≤ n. The empty
word is also declared to be reduced. Just as in the case of semigroup free products
(Lemma 1.7), it is easy to see that if R1, R2 are regular combings of M1, respectively
M2, then Alt(R1, R2) is a regular combing of M. We write, as before, R = Alt(R1, R2).
We have the following simple structural lemma, based on the identification of M with
the semigroup free product of M1 by M2 amalgamated over the trivial submonoid (see,
for example, [71, page 266]).

LEMMA 1.10. Let u, v ∈ R \ {ε} be reduced words. Then u =M v if and only if u =S v.

Of course, this lemma would fail spectacularly if the reduced condition is removed.
Despite this connection between M and S, there is one important distinction to
make from the semigroup free product case: when multiplying the alternating word
u0u1 · · · uk by the alternating word v0v1 · · · vn in a monoid free product, if we are
in the case uk ∼ v0, we may, of course, have ukv0 =Mi 1 for i = 1 or 2. Unlike
the case of semigroup free products, this now means that ukv0 =M 1. Hence, the
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multiplication table for M with respect to the regular combing R is mostly made up
of the multiplication table for S, but with one additional case. We spell the above out
in somewhat more technical language.

LEMMA 1.11. Let x ≡ x1x2 · · · xn ∈ R be reduced, with xi ∈ RX(i) for some standard
parametrisation X. Let w1, w2 ∈ R be reduced with w1 · w2 = x in M. Then one of the
following holds.

(1) For some 0 ≤ k ≤ n, we have

w1 ≡ x1x2 · · · xk and w2 ≡ xk+1xk+2 · · · xn,

where xj ∈ RX( j) and xj = xj in MX( j) for all 0 ≤ j ≤ n.
(2) For some 0 ≤ k ≤ n, we have

w1 ≡ x1x2 · · · xk−1x′k and w2 ≡ x′′k xk+1 · · · xn,

where x′k, x′′k ∈ RX(k) with 1 � xk = x′kx′′k in MX(k), and xj ∈ RX( j) with xj = xj in
MX( j) for all 0 ≤ j < k and k < j ≤ n.

(3) For some k ≥ 0 and m ≥ n, we have

w1 ≡ x1x2 · · · xk−1x′k and w2 ≡ x′′k xk+1 · · · xm,

where x′k, x′′k ∈ RX(k) with x′kx′′k = 1 in MX(k). Furthermore, setting

w′1 ≡ x1x2 · · · xk−1 and w′2 ≡ xk+1xk+2 · · · xm,

we have w′1, w′2 ∈ R and w′1 · w
′
2 = x in M.

Cases (1) and (2) are ‘inherited’ from S by combining Lemmas 1.9 and 1.10 in the
case that the concatenation w1w2 is reduced, while case (3) corresponds to case (3) in
Lemma 1.10. This case (3) highlights the recursive nature of reduction in free products
(see, for example, free reduction), and this recursion eventually terminates as |w′j | < |wj|
for j = 1, 2. We give an example of an application of Lemma 1.11 below, in the case of
the free product of two copies of the bicyclic monoid.

EXAMPLE 1.12. Let Mi = Mon〈bi, ci | bici = 1〉 for i = 1, 2 be two copies of the
bicyclic monoid, and let Ri = c∗i b∗i . Let x ≡ b2

2, and let w1 ≡ b2b1, w2 ≡ c1b2. Then,

w1w2 = b2b1c1b2 = b2
2 ≡ x,

in M, so we can apply Lemma 1.11. Indeed, we find that we are in case (3), taking k = 2
and m = 3, x1 ≡ b2, x′2 ≡ b1 and x′′2 ≡ c1, x3 ≡ b2, for then,

x′kx′′k ≡ x′2x′′2 ≡ b1c1 = 1

in M1, and we have w′1 ≡ x1 ≡ b2 and w′2 ≡ x3 ≡ b2, and this satisfies w′1 · w
′
2 ≡

b2
2 =M x. We may reapply Lemma 1.11, and find ourselves in case (1), taking x1 ≡ b2

and xn ≡ b2.

These are all the statements we require about free products in the sequel.
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1.8. ET0L and substitutions. Word-hyperbolicity is connected with CF-multipli-
cation tables. However, our results are true more generally, substituting, for example,
ET0L or IND for CF, and we elaborate on this topic in Section 5. Specifically,
the proofs of the main results about preservation properties in free products of
word-hyperbolic algebraic structures (semigroups, monoids, or groups) in Sections 2
and 4 are all applicable to free products of algebraic structures with C-multiplication
tables, where C is some full AFL satisfying the monadic ancestor property. This
includes the cases when C is one of CF, IND or ET0L. We give a brief overview of
the strong historical connections between ET0L and the monadic ancestor property.
This is a complex history; we cannot do it full justice here, and it will be expanded on
in a future survey article.

We give the definition of a substitution. Let A be an alphabet. For each a ∈ A, let
σ(a) be a language (over any finite alphabet); let σ(ε) = {ε}; for every x, y ∈ A∗, let
σ(xy) = σ(x)σ(y); and for every L ⊆ A∗, let σ(L) =

⋃
w∈L σ(w). We then say that σ is

a substitution. For a class C of languages, if for every a ∈ A we have σ(a) ∈ C, then
we say that σ is a C-substitution. Let A be an alphabet, and σ a substitution on A.
For every a ∈ A, let Aa denote the smallest finite alphabet such that σ(a) ⊆ A∗a. Extend
σ to A ∪ (

⋃
a∈A Aa) by defining σ(b) = {b} whenever b ∈ (

⋃
a∈A Aa) \ A. For L ⊆ A∗,

let σ1(L) = σ(L), and let σn+1(L) = σ(σn(L)) for n ≥ 1. Let σ∞(L) =
⋃

n>0 σ
n(L).

Then we say that σ∞ is an iterated substitution. If for every b ∈ A ∪ (
⋃

a Aa) we
have b ∈ σ(b), then we say that σ∞ is a nested iterated substitution. Note that every
nested iterated substitution is, of course, an example of an iterated substitution. If σ∞

is nested, then it is convenient for inductive purposes to set σ0(L) := L. Note that
the nested property ensures L ⊆ σ(L), so

⋃
n≥0 σ

n(L) =
⋃

n>0 σ
n(L). We say that C

is closed under nested iterated substitution if for every C-substitution σ and every
L ∈ C, we have: if σ∞ is a nested iterated substitution, then σ∞(L) ∈ C. A similar
definition yields closure under iterated substitutions. For the benefit of the reader,
we mention two facts that can be useful to keep in mind, expanded on below: the
class CF is closed under nested iterated substitution (but not iterated substitution), and
the class ET0L is closed under iterated substitution (and hence also nested iterated
substitution).

Substitutions are closely related to AFLs. Indeed, the 1967 article by Greibach
and Ginsburg which first defined AFLs [50] (later expanded in [51]) included a proof
about a form of substitution-closure for AFLs (under ε-free regular substitutions) and
for full AFLs (under regular substitutions). The closure of CF under nested iterated
substitution was proved by Král [75] in 1970. Following some further results (for
example, [52]), an abstract basis for substitution was developed by Ginsburg and
Spanier [53]; one particular important notion developed there was treating the (nested)
substitution-closure of a full AFL as a form of ‘algebraic closure’. In particular, it is
proved that the substitution-closure of a full AFL is a full AFL [53, Theorem 2.1].
Lewis [79] used substitution to define full AFLs, and rediscover the aforementioned
result by Ginsburg and Spanier, see [79, Theorem 1.13]. See also [12, 19].
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Substitutions can be useful in studying full AFLs for a number of reasons; for
example, one can recover results of Ginsburg and Greibach [52] about principal AFLs,
see [79, Corollary 1.21]. One can also use substitution-based ideas to produce (see [28,
Corollary 4.13]) an infinite strict hierarchy

CF � C1 � C2 � · · · � Ci � · · · � ET0L

of full AFL-s Ci between the classes CF and ET0L, see also [60, 78] for related such
hierarchies; for similar hierarchies between ET0L ⊂ IND, see [40, 43]; and for infinite
hierarchies between IND ⊂ CS, see [16, 42].

Because of the importance and utility of iterated substitution, Greibach [59] (later
expanded in [61]) defined super-AFLs as a full AFL closed under nested iterated
substitution (by [90, Proposition 2.2], this is equivalent to the definition of super-AFL
as defined in Section 1.2). Not long after, the notion of a hyper-AFL was introduced,
being any full AFL closed under iterated substitution [11, 99]. (Asveld [14, page 1]
on this point says the following: ‘Similar as in ordinary algebra – where one went
from groups to semigroups, rings, and fields – full AFLs gave rise to weaker structures
(full trios, full semiAFLs) and more powerful ones: full substitution-closed AFLs,
full super-AFLs, and full hyper-AFLs’. We cannot agree with this assessment of the
historical development of ‘ordinary’ algebra. Finite fields and groups were intricately
connected already in the early works of both Lagrange and Galois (see [88]), whereas
rings and semigroups would not appear as objects of study until half a century,
respectively, a century later. Similarly, Klein initially posed an axiomatisation of group
as what we today call a monoid, but as Lie ‘in his study of infinite groups saw it as
necessary to expressly require [the existence of inverses]’, it was this axiomatisation
that was chosen (‘. . .sah sich Lie genötigt, ausdrücklich zu verlangen. . .’, [74, page
335]). We strongly recommend the interested reader to consult Wußing [103]. The
above paragraph shows the difficulty in simplifying the development of ordinary
algebra in a linear manner; and one may feel similarly about the linear narrative
regarding AFLs.) Many fundamental results about hyper-AFLs and substitution were
developed by Christensen [28], who also, along with Asveld [11], fleshed out the
connections between ET0L and hyper-AFLs noted by for example Salomaa [98, 99]
and Čulík [33]; see also [37, 41]. In particular, at this point, we arrive at the following
rather pleasant result.

THEOREM 1.13

(1) [61, Theorem 2.2] The class CF is the least super-AFL.
(2) [28, Corollary 4.10] The class ET0L is the least hyper-AFL.

Furthermore, one can also show that IND is a super-AFL [36].
As mentioned, the connections between substitutions and ET0L remain active

research topics (if somewhat implicitly), but are far too numerous to recount here.
While they will be given a proper treatment in the future, we mention a few. For
example, one can give a complexity analysis of iterated substitutions, with applications
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to both ET0L and EDT0L languages [13], and there are connections with fuzzy logic
[15]. One can also extend the notion of substitution to ‘deterministic substitution’
(which is not defined here), leading to a statement analogous to the fact that EDT0L
is the least dhyper-AFL [12, Corollary 4.5]; see also [77] for more on EDT0L
and substitutions. At this point, it bears mentioning that there is a great deal of
involved and often obfuscating notation and abbreviations; as an example, we have
that ‘if K is a pseudoid, then η(K) is the smallest full dhyper-QAFL containing K’
[12, Theorem 4.5]. In addition, there are a great number of abbreviations for classes
of languages associated with Lindenmayer systems (yielding the L); aside from ET0L
and EDT0L, we have, for example,

L, 0L, P0L, T0L, E0L, X0L, EP0L, FE0L(k), EPT0L, FEPT0L(k), . . .

see for example [85] for a large number of these. (Given the number of abbreviations,
one may reasonably inquire about the language-theoretic properties of the language
of all abbreviations of classes of languages.) We ensure the reader not familiar with
this multitude of notation that most, if not all, such classes are generally defined
(or definable) by relatively straightforward means; see, for example, the definition
of ET0L as given by Theorem 1.13(2). Furthermore, the reader may notice, in the
subsequent sections, the importance of substitution in dealing with free products –
this link between the algebraic and the formal language theoretic runs deep, and there
seems to be ample opportunity to develop it further.

2. Free products of word-hyperbolic semigroups

In this section, we prove the main result regarding semigroup free products and
word-hyperbolicity (Theorem A).

Let S1, S2 be two semigroups, finitely generated by disjoint sets A1, respectively A2,
and with regular combings R1, respectively R2. Let S = S1 ∗ S2 denote the semigroup
free product of S1 and S2. We begin by recalling (Lemma 1.7) that the language
Alt+(R1, R2) of alternating words is a combing for S. Let R = Alt+(R1, R2). This is,
in the following, our chosen combing for proving that the table TS(R) is context-free
when the factors S1, S2 are word-hyperbolic.

THEOREM A. Let S1, S2 be 1-extendable word-hyperbolic semigroups. Then the free
product S1 ∗ S2 is word-hyperbolic.

PROOF. Suppose, for i = 1, 2, that Si is generated by the finite set Ai, and that Si is
word-hyperbolic with respect to the regular combing Ri ⊆ A+i , with the multiplication
table T (Ri) context-free. We assume without loss of generality that A1 ∩ A2 = ∅, and
hence that R1 ∩ R2 = ∅. As Si is 1-extendable, the semigroup S1

i is word-hyperbolic
with respect to the regular combing Ri = Ri ∪ {ε}, where now ε is the unique word
mapping to the identity element 1i of S1

i . Let A = A1 ∪ A2.
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For i = 1, 2, define the monadic rewriting system Ri by

Ri = {(w, #2) | w ∈ T (Ri)}.

Then, by assumption, Ri is a context-free monadic rewriting system. Note that for
every x, x′ ∈ Ri with x =Si x′, we have that x′#1#2xrev ∈ T (Ri), as πi(x′) · 1i = πi(x),
and thus also (x′#1#2xrev, #2) ∈ Ri. Let R be the rewriting system R1 ∪R2. This is
also a context-free monadic rewriting system. Recall that A# = A ∪ {#1, #2}.

LEMMA 2.1. Let w ∈ A∗#. Then w ∈ ∇∗R(#1#2) if and only if it is of the form

w ≡ #1

( n∏
i=1

xi#1yi

)
#2

( n∏
i=1

zi

)rev

(2-1)

for some n ≥ 0, and where for every 1 ≤ i ≤ n, we have xi, yi, zi ∈ RX(i) with xiyi = zi in
S1

X(i), where X is some parametrisation.

PROOF. For ease of notation, we write −→∗ for −→∗R, and analogously for −→,−→k, and so
on.

(⇐=) Suppose w is of the form of Equation (2-1). We prove the claim by induction
on n. The case n = 0 is immediate. Suppose n > 0. Then w contains exactly one
occurrence of #2; to the left of this occurrence is an occurrence of the word xn#1yn,
and to the right is an occurrence of the word zrev

n . As xn, yn, zn ∈ RX(n) and xnyn = zn in
S1

X(n), we have (xn#1yn#2zrev
n , #2) ∈ RX(n) ⊆ R. Hence,

w −→ #1

( n−1∏
i=1

xi#1yi

)
#2

( n−1∏
i=1

zi

)rev
,

and the right-hand side now lies in ∇∗R(#1#2) by the inductive hypothesis.
(=⇒) Suppose w −→∗ #1#2, say w −→k #1#2 for some k ≥ 0. The proof is by induction

on k. The base case k = 0 is trivial, for then w ≡ #1#2. Suppose k > 0. Then there is
some w′ ∈ A∗# such that w −→ w′ −→k−1 #1#2, and such that the rewriting is via some rule
r ≡ (x#1y#2zrev, #2) ∈ R. Then, as r ∈ R, we have x, y, z ∈ R1 ∪ R2 and x · y = z in S1

j
for j = 1 or j = 2. Now, by the inductive hypothesis,

w′ ≡ #1

( m∏
i=1

xi#1yi

)
#2

( m∏
i=1

zi

)rev
,

with some parametrisation X′ such that for every 1 ≤ i ≤ m, we have x′iy
′
i = z′i in S1

X′(i).
As the right-hand side of r contains only one occurrence of #2, and as w′ contains only
one occurrence of #2, it follows that

w ≡ #1

( m∏
i=1

xi#1yi

)
(x#1y#2zrev)

( m∏
i=1

zi

)rev
, (2-2)

https://doi.org/10.1017/S1446788723000010 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000010


[18] Multiplication tables in free products 413

and hence, taking n = m + 1 and defining the parametrisation X(i) = X′(i) for i � n,
and X(n) = j, the expression in Equation (2-2) is an expression of the form in Equation
(2-1) for w. �

We now show that a particular rational transduction of the language of all words of
the form of Equation (2-1) equals TS(R). This yields the result. Let τ0 ⊆ A∗# × A∗# be
the rational transduction defined by

τ0 = {{(#1, #1), (#1, ε)} ∪ {(a, a) | a ∈ A ∪ {#2}}}∗.

For any word w ∈ A∗#, the language τ0(w) consists of all words obtainable by erasing
some (possibly zero) amount of #1-symbols in w, while fixing all other symbols. Define
the language

L0 = τ0(∇∗R(#1#2)) ∩ R#1R#2Rrev. (2-3)

LEMMA 2.2. The language L0 is a context-free language.

PROOF. This is an immediate consequence of the expression in Equation (2-3), in
combination with the facts that (i) R is a context-free monadic rewriting system; (ii)
every singleton language is in CF; (iii) the class CF has the monadic ancestor property;
and (iv) the class CF closed under rational transduction (and hence also, in particular,
intersection with regular languages). �

We now show that L0 = TS(R).

LEMMA 2.3. L0 ⊆ TS(R).

PROOF. Suppose w ∈ L0. Then, (1) w is an element of τ0(w′), where w′ is of the form
of Equation (2-1) (by Lemma 2.1); and (2) w ∈ R#1R#2Rrev. As τ0(w′) consists of all
words obtainable from w′ by erasing some number of #1-symbols, and the words in
R#1R#2Rrev contain exactly one #1, it follows from the expression in Equation (2-1) for
w′ that

w ≡
( k∏

i=1

xiyi

)
#1

( n∏
i=k+1

xiyi

)
#2

( n∏
i=1

zi

)rev
,

where for every 1 ≤ i ≤ n, we have xi, yi, zi ∈ RX(i) and xiyi = zi in S1
X(i), with X some

parametrisation.
Now xi ∼ yi for all 1 ≤ i ≤ n. Furthermore, yi � xi+1 for all 1 ≤ i < k and k < i ≤ n,

as
∏k

i=1(xiyi) and
∏n

i=k+1(xiyi) are alternating words. It follows that we must have xiyi ∈
RX(i) for every 1 ≤ i ≤ n and that zi � zi+1 for every 1 ≤ i < n except possibly i = k. We
thus have two cases: (1) zk � zk+1; or else (2) zk ∼ zk+1. In either case, let zi ≡ xiyi for
1 ≤ i ≤ n. Then zi ∈ RX(i), and w is of the form

w ≡
( k∏

i=1

zi

)
#1

( n∏
i=k+1

zi

)
#2

( n∏
i=1

zi

)rev
.
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Suppose we are in case (1). As zi ≡ xiyi, and zi = zi in S1
X(i), we thus have that w is the

element of the multiplication table TS(R) corresponding to the product

(z1z2 · · · zk) · (zk+1zk+2 · · · zn) =S z1z2 · · · zn,

which clearly holds in S.
In case (2), as zk =S1

X(k)
xkyk ≡ zk ∼ zk+1 =S1

X(k+1)
zk+1, it follows that zk ∼ zk+1, and

hence, as R consists of alternating words, that zkzk+1 ∈ RX(k). Let z ≡ zkzk+1, and let z ≡
zkzk+1. Then, z =S1

X(k)
z. Thus, w is the element of TS(R) corresponding to the product

(z1z2 · · · zk) · (zk+1zk+2 · · · zn) =S z1z2 · · · zk−1zzk+2 · · · zn,

which also clearly holds in S. Thus, in either case, we have that w ∈ TS(R). �

We hence have L0 ⊆ TS(R). We now prove the converse of Lemma 2.3.

LEMMA 2.4. TS(R) ⊆ L0.

PROOF. Suppose that w ≡ w1#1w2#2xrev ∈ TS(R), that is, that w1, w2, x ∈ R are such
that w1 · w2 =S x. As w1, w2, x ∈ R = Alt+(R1, R2), we have that

x ≡ x1x2 · · · xn,

where xi ∈ RX(i) for some standard parametrisation X. By Lemma 1.9, we either fall in
case (1) or (2) of the same lemma.

In case (1), we have, using the notation of that lemma, that

w ≡ w1#1w2#2xrev

≡ x1x2 · · · xk#1xk+1xk+2 · · · xn#2xrev
n xrev

n−1 · · · x
rev
1

∈ τ0

[( k∏
i=1

#1xi

)( n∏
i=k+1

#1xi

)
#1 #2

( n∏
i=i

xi

)rev]

= τ0

[( n∏
i=1

#1xi

)
#1 #2

( n∏
i=1

xi

)rev]
.

Let W ≡ (
∏n

i=1 #1xi) #1 #2 (
∏n

i=i xi)rev. As w1, w2, x ∈ R, and hence w ∈ R#1R#2Rrev, it
suffices by the expression in Equation (2-3) to show that W ∈ ∇∗R(#1#2). As xi = xi in
SX(i), we have (xi#1#2xrev

i , #2) ∈ R for every 1 ≤ i ≤ n. Hence,

W −→
( n−1∏

i=1

#1xi

)
#1 #2

( n−1∏
i=1

xi

)rev
−→ · · · −→ (#1x1) #1 #2 (xrev

1 ) −→ #1#2,

which is what was to be shown.
In case (2), the proof is almost the same as in case (1), but the reductions are no

longer exclusively by rules of the form (xi#1#2xrev
i , #2). In the same way as in case (1),
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however, we find that w ∈ τ0(W), where

W ≡
( k−1∏

i=1

#1xi

)
#1 (x′k#1x′′k )

( n∏
k+1

#1xi

)
#2

( n∏
i=1

xi

)rev
.

By applying the rules (xi#1#2xrev
i → #2) to W, for i = n, n − 1, . . . , k + 1 (all such rules

are in R as xi · ε = xi in S1
X(i)), we find that

W −→∗
( k−1∏

i=1

#1xi

)
#1 (x′k#1x′′k ) #2

( k∏
i=1

xi

)rev

≡
( k−1∏

i=1

#1xi

)
#1 (x′k#1x′′k ) #2 xrev

k

( k−1∏
i=1

xi

)rev

−→
( k−1∏

i=1

#1xi

)
#1 #2

( k−1∏
i=1

xi

)rev
,

where in the final step, we use the rule (x′k#1x′′k #2xrev
k , #2), which is in R as x′k · x′′k = xrev

k
in SX(k) (and hence also in S1

X(k)). The proof now proceeds just as in case (1), and we
find that W ∈ ∇∗R(#1#2), and as w ∈ τ0(W) and w ∈ R#1R#2Rrev, we have w ∈ L0. �

Thus, we have TS(R) = L0. As R is a regular combing of S = S1 ∗ S2 by Lemma
1.7, and as L0 is context-free by Lemma 2.2, we conclude that (R,TS(R)) is a
word-hyperbolic structure for S = S1 ∗ S2. This completes the proof of Theorem A.

By Lemma 1.6, we find the following explicit corollaries of Theorem A.

COROLLARY 2.5. The semigroup free product of two word-hyperbolic monoids is
word-hyperbolic.

COROLLARY 2.6. The semigroup free product of two (von Neumann) regular
word-hyperbolic semigroups is word-hyperbolic.

COROLLARY 2.7. The semigroup free product of two word-hyperbolic semigroups
with uniqueness is word-hyperbolic with uniqueness.

The final ‘with uniqueness’ in the statement of Corollary 2.7 follows from the fact
that the elements of Alt+(R1, R2) represent pairwise distinct elements of S. We now
turn towards considering monoid free products. To do this, we first need to introduce
a useful purely language-theoretic operation.

3. Polypartisan ancestors

In this section, we generalise (in a fairly uncomplicated manner) the bipartisan
ancestors introduced in [90] to polypartisan ancestors, and prove that this construction
preserves certain language-theoretic properties of the languages to which it is applied.
We use this construction to obtain the multiplication table for a monoid free product
from the table for a semigroup free product.
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Let A be a finite alphabet, and let k ≥ 1. Let #1, #2, . . . , #k be k new symbols, and let
A# = A ∪⋃k

i=1{#i}. We let xk(A) denote the language

xk(A) = {u0#1u1#2 · · · #kuk | ui ∈ A∗}.

We call xk(A) the full k-shuffled language (associated to A). Any subset of xk(A) is
called a k-shuffled language (with respect to A). Thus, the ‘word problem’ in the sense
of Duncan and Gilman [38] for a monoid generated by A is a 1-shuffled language, that
is, a subset of x1(A), and its multiplication table is a 2-shuffled language, that is, a
subset of x2(A). Furthermore, the solution set for a set of equations in k unknowns
over a group is a k-shuffled language [29].

For elements w ∈ xk(A), we introduce the notation

w ≡ [u0, u1, . . . , uk] ⇐⇒ w ≡ u0#1u1#2 · · · #kuk.

To abbreviate even further, we write [u(k)] for [u0, u1, . . . , uk]. Thus, the word problem
for a monoid M consists of words [u(1)] with u0 =M urev

1 , and a multiplication table for
M consists of words of the form [v(2)] with v0 · v1 =M vrev

2 .
Let k ≥ 1, and let R0, R1, . . . , Rk ⊆ A∗ × A∗ be a collection of k + 1 rewriting

systems. Let L ⊆ xk(A) be any language. We define a new language R(k)(L) ⊆ xk(A)
as

R(k)(L) = {[w(k)] : there exists [u(k)] ∈ L such that wi −→∗Ri
ui for all 0 ≤ i ≤ k}. (3-1)

We call R(k)(L) the (k + 1)-partisan ancestor of L (with respect to R0, R1, . . . , Rk).
Polypartisan ancestors generalise in an easy way the bipartisan ancestors introduced

by the author in [90]. It is clear that R(k)(L) is a k-shuffled language. The use
for polypartisan ancestors in this present article is in preserving language-theoretic
properties, in the following sense.

PROPOSITION 3.1. Let C be a super-AFL. Let L ∈ C, and let Ri ⊆ A∗ × A∗ be
C-monadic rewriting systems for 0 ≤ i ≤ k. Then R(k)(L) ∈ C.

The technique we use to prove Proposition 3.1 is a generalisation of a similar
technique used to prove [90, Proposition 2.5], but follows its ideas rather closely.
We first prove a weaker form of Proposition 3.1 (namely Lemma 3.2). We then use
a rational transduction to move from the general case to this weaker form.

Let A0, A1, . . . , Ak be k + 1 alphabets, with A ∩ Ai = ∅ for all i, and with Ai ∩ Aj = ∅

for i � j. We define the language

x̂k(A0, . . . , Ak) = xk

( k⋃
i=0

Ai

)
∩ A∗0#1A∗1#2 · · · #kA∗k,

and call x̂k(A0, . . . , Ak) a separated k-shuffle. For separated k-shuffles, preservation
properties are simple to prove.
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LEMMA 3.2. Let Ri ⊆ A∗i × A∗i be C-monadic rewriting systems for 0 ≤ i ≤ k. Let L ∈
C be such that L ⊆ x̂k(A0, . . . , Ak). Then R(k)(L) ∈ C.

PROOF. This closely follows the proof of [90, Lemma 2.4], which is the case for
k = 1, so we only sketch the main idea. As R(k)(L) ∈ xk(A), it suffices to show that
R(k)(L) ∈ C. It is not difficult to see that as the alphabets Ai are disjoint, Ri ⊆ A∗i × A∗i ,
and every word in L is of the form u0#1u1#2 · · · #kuk, where ui ∈ A∗i , we have that
R(k)(L) = ∇∗⋃k

i=0 Ri
(L). As each Ri is C-monadic – and C is closed under unions being a

super-AFL – so too is R :=
⋃k

i=0 Ri. As C is a super-AFL, it has the monadic ancestor
property, whence we find that ∇∗R(L) is in C. �

We, from this point on, assume that |Ai| = |A| for all 0 ≤ i ≤ k, and fix bijections
ϕi : A→ Ai. We extend these to isomorphisms ϕi : A∗ → A∗i of free monoids. We let
AI =

⋃k
i=0 Ai, and let AI,# = AI ∪

⋃k
i=0{#i}. Further, we write Rϕi = ϕi(Ri), where the

action of ϕi is entry-wise on the rules of Ri. If Ri is a C-monadic rewriting system,
then so too clearly is Rϕi .

We define a rational transduction μk ⊆ A∗# × A∗I,# as

μk =

(⋃
a∈A

(a,ϕk(a))
)∗ k∏

i=1

(⋃
a∈A

(a,ϕi(a))
)∗

(#i, #i).

Then μk is indeed rational, as it is of the form X∗0x1X∗1 · · · xkX∗k , where the subset Xi ⊆
A∗# × A∗I,# is finite for 0 ≤ i ≤ k, and xj ∈ A∗# × A∗I,# is a single element for 1 ≤ i ≤ k.
Hence, μk is a rational subset of A∗# × A∗I,#. If μk is applied to (the singleton language
containing) exactly one word w ∈ xk(A), it clearly produces (the singleton language
containing) exactly one word from x̂k(A0, . . . , Ak), and μk is injective on xk(A). That
is, if

w ≡ u0#1u1#2 · · · #kuk ∈ xk(A),

where ui ∈ A∗, then

μk(w) = {ϕ0(u0) #1 ϕ1(u1) #2 · · · #kϕk(uk)}, (3-2)

and if w1, w2 ∈ xk(A), then μk(w1) = μk(w2) if and only if w1 ≡ w2, as each ϕi is an
isomorphism of free monoids. Slightly abusively, we write the equality in Equation
(3-2) as μk([u(k)]) = [ϕk(u(k))]. Let μ−1

k denote the inverse of the rational transduction
μk. Then the above amounts to saying that

( μ−1
k ◦ μk)(L) = L (3-3)

for every L ⊆ xk(A).

LEMMA 3.3. Let L ⊆ xk(A). Then R(k)(L) = μ−1
k Rϕ(k)( μk(L)).

PROOF. By Equation (3-1), [w(k)] ∈ R(k)(L) if and only if there exists [u(k)] ∈ L such
that wi −→∗Ri

ui for all 0 ≤ i ≤ k, which is true if and only if ϕi(wi) −→∗Rϕi ϕi(ui), that is,
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[ϕk(w(k))] ∈ Rϕ(k)(ϕk(u(k))). However, this is simply saying μk([w(k)]) ∈ Rϕ(k)( μk([u(k)])),
which by Equation (3-3) is equivalent to

[w(k)] ∈ μ−1
k (Rϕ(k)( μk([u(k)]))).

With less cumbersome notation, we have proved that w ∈ R(k)(L) if and only if there
is some u ∈ L such that

w ∈ μ−1
k (Rϕ(k)( μk(u))).

In other words, as w is arbitrary, we have R(k)(L) = μ−1
k Rϕ(k)( μk(L)). �

PROOF OF PROPOSITION 3.1. As L ∈ C, we have μk(L) ∈ C, as the super-AFL C is
closed under rational transduction. As Ri is C-monadic, so too is Rϕi for 0 ≤ i ≤ k. As
μk(L) ⊆ x̂k(A0, . . . , Ak), we conclude by Lemma 3.2 that Rϕ(k)( μk(L)) is in C. Finally,
as μ−1

k is a rational transduction, the language μ−1
k Rϕ(k)( μk(L)) is in C; by Lemma 3.3,

R(k)(L) is hence in C. �

This completes our discussion of polypartisan ancestors.

4. Monoid free products

In this section, we consider monoid free products. We begin by proving the
main theorem for free products of word-hyperbolic monoids with 1-uniqueness
(Theorem B). We then present a theorem which applies outside the 1-uniqueness
case, to the cases when the combings Ri of the factor monoids Mi satisfy R∗i = Ri

(Theorem 4.5). We then argue that these two cases are, in a certain sense, complemen-
tary (Section 4.3).

4.1. The case of 1-uniqueness. Suppose that Mi (for i = 1, 2) is a word-hyperbolic
monoid with 1-uniqueness, with respect to the regular combing Ri. By definition, the
only word in Ri that represents the identity of Mi is ε. Let R′i = Ri − {ε}. Then it is
clear that every alternating word in Alt(R′1, R′2) is reduced; for if u0u1 · · · un is the
alternating factorisation of u ∈ Alt(R′1, R′2), and u is not reduced, then ui = 1 in either
M1 or M2 for some 0 ≤ i ≤ n, and hence ui ≡ ε, a contradiction to ui ∈ R′1 ∪ R′2. Hence,
by Lemma 1.8, monoid free products of monoids with 1-uniqueness behave essentially
as semigroup free products of the same monoids, up to the fact that the product of two
reduced sequences may not be reduced.

Using monadic ancestry, we may deal with this latter issue, and show the following
main theorem.

THEOREM B. Let M1, M2 be two word-hyperbolic monoids with 1-uniqueness
(with uniqueness). Then the monoid free product M1 ∗M2 is word-hyperbolic with
1-uniqueness (with uniqueness).

PROOF. Suppose M1 (respectively M2) is word-hyperbolic with 1-uniqueness with
respect to the regular combing R1 (respectively R2). As usual, we let R = Alt(R1, R2).

https://doi.org/10.1017/S1446788723000010 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000010


[24] Multiplication tables in free products 419

If M1 (respectively M2) are word-hyperbolic with 1-uniqueness, then the only element
of R representing the identity element is ε, as the only element of R1 (respectively
R2) representing the identity element of M1 (respectively M2) is ε. Analogously, if
M1, M2 are word-hyperbolic with uniqueness, then every alternating word is reduced,
and hence every pair of distinct words in R represent distinct elements of M by Lemma
1.10. Hence, it suffices to show that M is word-hyperbolic with respect to R.

For i = 1, 2, we define the monadic rewriting system

Si = {(u#1v, #1) | u, v ∈ Ri, u · v = 1 in Mi}.

Now, the language of left-hand sides of #1 in Si is

{u#1v | u, v ∈ Ri, u · v = 1 in Mi} = TMi (Ri)/{#2ε},

where / denotes the right quotient, in this case by the regular language {#2ε}. As
TMi (Ri) is a context-free language, so too is the quotient of TMi by any regular
language. We conclude that Si is a context-free monadic rewriting system. Hence,
the union S = S1 ∪S2 is also a context-free monadic system.

We define the language

L1 = ∇∗S (TS(R)) ∩ R#1R#2Rrev. (4-1)

We prove that L1 = TM(R), which suffices to prove the theorem (as a quick
argument shows). This highlights that the language-theoretic properties of the monoid
free product of word-hyperbolic monoids with 1-uniqueness are not significantly more
complicated than those of the semigroup free product of the same. One direction is
easy, and depends on little more than the two facts that (i) if u · v =S w, then u · v =M w
for u, v, w ∈ R; and (ii) if u · v =Mi 1, then u · v =M 1 for u, v ∈ Ri.

LEMMA 4.1. L1 ⊆ TM(R).

PROOF. The proof of this is entirely analogous to that of Lemma 2.3, with one
minor addition: note that if w1#1w2#2wrev

3 ∈ TS(R), then we have w1 · w2 =S w3 and
hence also w1 · w2 =M w3. If u, v ∈ Ri are such that u · v =Mi 1 for some i = 1, 2, then
u · v =M 1, so also w1u · vw2 =M w3. Hence, if w1u, vw2 ∈ R, then we conclude that
w1(u#1v)w2#2wrev

3 ∈ TM(R), and

w1(u#1v)w2#2wrev
3 −→S w1#1w2#2wrev

3 .

We leave the (simple) details to the reader. �

We remark (as is needed in Section 4.2) that the assumption of 1-uniqueness is not
needed to prove Lemma 4.1. The nontrivial part of the equality TM(R) = L1 is given
by the following lemma.

LEMMA 4.2. TM(R) ⊆ L1.

PROOF. Suppose w ≡ w1#1w2#2xrev ∈ TM(R). Then w1, w2, x ∈ R, and w1 · w2 =M x.
By 1-uniqueness, w1, w2, and x are all necessarily reduced (though w1, w2 may not be).
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Hence, we can apply Lemma 1.11. If we are in case (1) or (2), then by Lemma 1.9, we
have w1 · w2 =S x, and so w1#1w2#2xrev ∈ TS(R), and hence, using no rewritings, we
find

w ≡ w1#1w2#2xrev ∈ ∇∗S (TS(R)) ∩ R#1R#2Rrev = L1.

If we are instead in case (3), then we must use S nontrivially. As x′k, x′′k ∈ RX′(k) satisfy
x′k · x′′k =MX′(k)

1, we have (x′k#1x′′k , #1) ∈ SX′(k) ⊆ S . Hence, also

w ≡ w1#1w2#2xrev ≡ w′1(x′k#1x′′k )w′2#2xrev −→S w′1#1w′2#2xrev. (4-2)

As w′1, w′2, x ∈ R satisfy w′1 · w
′
2 =M x, and |w′1| + |w

′
2| < |w1| + |w2|, we may use induc-

tion on the parameter |w1| + |w2| (the base cases being cases (1) and (2) above), where
the inductive hypothesis yields w′1#1w′2#2xrev ∈ L1. Thus, w′1#1w′2#2xrev ∈ ∇∗S (TS(R)),
so by Equation (4-2), we also have w ∈ ∇∗S (TS(R)). We conclude by induction that
w ∈ L1, as desired. �

Hence, we have found a regular combing R of M such that TM(R) is given by
the right-hand side of Equation (4-1). The right-hand side of Equation (4-1) is
context-free, by the following chain of reasoning: (i) TS(R) ∈ CF by Theorem A; and
hence (ii) ∇∗S (TS(R)) ∈ CF, as the class of context-free languages has the monadic
ancestor property and S is a context-free monadic rewriting system; and (iii) thus,
TM(R) ∈ CF as CF is closed under intersection with regular languages. Hence,
(R,TM(R)) is a word-hyperbolic structure for M = M1 ∗M2. This completes the proof
of Theorem B. �

Word-hyperbolicity with 1-uniqueness is not an unusual phenomenon. For example,
it always holds in hyperbolic groups, so we find the following immediate corollary of
Theorem B.

COROLLARY 4.3. The free product of two hyperbolic groups is hyperbolic.

PROOF. By [49, Theorem 1] (see also [38, Corollary 4.3]), a group is hyperbolic (in
the geometric sense) if and only if it is word-hyperbolic (in the language-theoretic
sense of this paper). Hence, as the monoid free product of two groups is the same
as the (ordinary) free product of two groups, in view of Theorem B, it suffices to
show that hyperbolic groups are word-hyperbolic with 1-uniqueness. However, every
hyperbolic group G, generated by a finite set A, is word-hyperbolic with respect to
the regular combing R ⊆ A∗ given by the language of geodesics in the Cayley graph
of G, and there is only one geodesic corresponding to the identity element, see [32,
Theorem 4.2]. �

Of course, Corollary 4.3 is well known in geometric group theory, and is not
difficult to show geometrically. Our approach, via Theorem B, gives a proof which
instead goes via formal language theory.

4.2. �-word-hyperbolic monoids. In this section, we describe a stronger property
than word-hyperbolicity. Let M be a word-hyperbolic monoid with respect to a regular
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combing R. If R = R∗, then we say that M is �-word-hyperbolic (with respect to R).
We do not know if every word-hyperbolic monoid is �-word-hyperbolic, but do not
suspect this to be the case: �-word-hyperbolic monoids appear to inch too close to
monoids with context-free word problem.

EXAMPLE 4.4. It is easy to see that the bicyclic monoid B = Mon〈b, c | bc = 1 〉 is
word-hyperbolic with respect to the regular combing c∗b∗ (as is shown explicitly in
[38, Example 3.8]). Of course, for this combing, we have (c∗b∗)∗ � c∗b∗. However, B
is also word-hyperbolic with respect to the combing {b, c}∗, as is easily seen by using
the complete monadic rewriting system (bc, 1) (see also the first few sentences of [25,
Theorem 3.1], coupled with [21, Corollary 3.8]). In particular, the bicyclic monoid is
�-word-hyperbolic.

In fact, this example is a consequence of the general fact that the group of units of
the bicyclic monoid is trivial. Recall that a monoid is special if every defining relation
is of the form wi = 1 (see [1, Ch. III]). As proved by the author, a special monoid M has
context-free word problem – in the sense of Duncan and Gilman [38, Section 5] – if and
only if its group of units U(M) is virtually free [91]. Any monoid generated by a finite
set A clearly has context-free word problem if and only if it is word-hyperbolic with
respect to the regular combing A∗ (one direction is trivial by a rational transduction;
the other is observed at the beginning of the proof of [25, Theorem 3.1]). See also [49,
Theorem 2(2)]. Thus, any context-free monoid is �-word-hyperbolic.

The main theorem of this section is the following, which uses polypartisan
ancestors.

THEOREM 4.5. Let M1, M2 be two �-word-hyperbolic monoids. Then the monoid free
product M1 ∗M2 is �-word-hyperbolic.

PROOF. Suppose M1, M2 are �-word-hyperbolic monoids with respect to the regular
combings R1 (respectively R2). Then R∗1 = R1 and R∗2 = R2. Let, as usual, R =
Alt(R1, R2), and let M denote the monoid free product M1 ∗M2. However, note that,
in this case, we can simplify Alt(R1, R2) = (R1 ∪ R2)∗. It suffices to show that TM(R)
is a context-free language, as R clearly combs M. We have done most of the heavy
lifting in the proofs of Theorems A and B. However, unlike in the setting of these
theorems, we cannot assume that every element of R is reduced. We remedy this with
a context-free monadic rewriting system.

We first define, for i = 1, 2, the rewriting systems

Ti = {(w, 1) | w ∈ Ri, w =Mi 1}.

Then, Ti is a context-free monadic rewriting system, as the left-hand sides of 1 are
obtained by taking a right quotient of the context-free multiplication table TMi (Ri)
by the regular language #1#2. Note that for every rule (w, 1) ∈ Ti, we have w =M 1,
by the properties of the monoid free product. We let T = T1 ∪T2, which is also a
context-free monadic system. We let further T rev be the system consisting of all rules
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(wrev, 1) such that (w, 1) ∈ T . Then T rev is a context-free monadic rewriting system,
as the class CF is closed under reversal.

Note that for every word w ∈ R, there exists some (not necessarily unique) reduced
w′ ∈ R such that w −→∗T w′. Of course, as T is M-equivariant, for such w, w′, we have
w =M w′.

Let R1 = R2 = T , and let R3 = T rev. Consider the polypartisan ancestor

L2 = R(3)(L1) ∩ R#1R#2Rrev. (4-3)

Recall the definition of L1 as Equation (4-1), and see Section 3 for notation pertaining
to polypartisan ancestors. By Lemma 4.1 (and the remark following it), we have
L1 ⊆ TM(R). Hence,L2 consists of some collection of words of the form w1#1w2#2xrev

with w1, w2, x ∈ R such that there exist words w′1, w′2, x′ ∈ R with w′1 · w
′
2 =M x′. As

the systems R1 and R2 are M-equivariant, and R3 is Mrev-equivariant, it follows
easily that w1 =M w′1, w2 =M w′2, and x =M x′. Thus, w1 · w2 =M x, so it follows that
L2 ⊆ TM(R). We show the reverse inclusion, which (by a simple argument) suffices to
show that M is word-hyperbolic.

LEMMA 4.6. TM(R) = L2.

PROOF. We have shown the inclusion L2 ⊆ TM(R) above. For the inclusion TM(R) ⊆
L2, suppose that w ≡ w1#w2#2xrev ∈ TM(R). First, w1 is an alternating product, say
w1 ≡ w1,0w1,1 · · ·w1,k, where w1,i ∈ RX(i) for some parametrisation X. Now, w1 may
not be reduced; however, by removing each factor wi,j with wi,j =MX(i)= 1, we obtain
a reduced word w′1 ≡ w1,i1 w1,i2 · · ·w1,i� . Now, it may be the case that w1,ij ∼ w1,ij+1 , that
is, that w1,ij and w1,ij+1 come from the same factor, and that the factorisation of w′1
is not alternating. However, and crucially, as R∗X(i) = RX(i), we can find some word
w′′1,ij
∈ RX(i) such that w′′1,ij

≡ w′1,ij
w′1,ij+1

. By merging all terms in this way, we find an
alternating factorisation of w′1, so w′1 ∈ R. Thus there exists a word w′1 ∈ R such that
w1 −→∗T w′1. In exactly the same way, there are words w′2, x′ ∈ R such that w2 −→∗T w′2
and x −→∗T x′. In particular, xrev −→∗T rev (x′)rev. We note in passing that w′1 · w

′
2 =M x′, by

M-equivariance. It follows from the above that

w ≡ w1#1w2#2xrev ∈ R(3)({w′1#1w′2#2(x′)rev}) ∩ R#1R#2Rrev. (4-4)

As the words w′1, w′2, x′ ∈ R are reduced and satisfy w′1 · w
′
2 =M x′, we have

w′1#1w′2#2(x′)rev ∈ L1. (4-5)

From Equations (4-4) and (4-5), we find immediately by the definition in Equation
(4-3) that w ∈ L2, which is what was to be shown. �

To finish our proof, we must simply conclude that L2 is context-free, which follows
by combining the facts that (i) L1 is a context-free language (the proof of this uses
nothing about 1-uniqueness); (ii) R(3)(L1) is a context-free language by Proposition
3.1; and (iii) the intersection of a context-free language with a regular language is
context-free. Hence, as TM(R) = L2 by Lemma 4.6, it follows that (R,TM(R)) is a
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word-hyperbolic structure for M; as

R∗ = Alt(R1, R2)∗ = ((R1 ∪ R2)∗)∗ = (R1 ∪ R2)∗ = Alt(R1, R2) = R,

it follows that M is �-word-hyperbolic.

The reader may feel somewhat unsatisfied by the lack of a theorem stating simply
that ‘the free product of two word-hyperbolic monoids is word-hyperbolic’ (see also
Section 5). However, the combination of Theorems B and 4.5 essentially covers all
cases of interest. We demonstrate this now, by showing that the �-word-hyperbolic
case can be viewed as a ‘complement’ to the 1-uniqueness case treated in Section 4.1.

PROPOSITION 4.7. Suppose M1, M2 are word-hyperbolic without 1-uniqueness with
respect to regular combings R1 (respectively R2), and suppose further that the monoid
free product M = M1 ∗M2 is word-hyperbolic with respect to some regular combing
R. If Alt(R1, R2) ⊆ R, then M1, M2, and M are all �-word-hyperbolic.

PROOF. Suppose that z ∈ R1 is a nonempty word such that z =M1 1. Then also z =M 1.
Let

u1, . . . , uk, v1, . . . , vm, w1, . . . , wn ∈ R2

be any words such that

(u1u2 · · · uk) · (v1v2 · · · vm) =M2 (w1 · · ·wn).

Then certainly

zu1zu2 · · · zuk · zv1zv2 · · · zvm =M zw1zw2z · · · zwn. (4-6)

Now the left-hand side of Equation (4-6) is of the form r · s, where r, s ∈ Alt(R1, R2),
and the right-hand side is also an element of Alt(R1, R2). Hence, we have

zu1zu2 · · · zuk#1zv1zv2 · · · zvm#2(zw1zw2z · · · zwn)rev (4-7)

is an element of Alt(R1, R2) #1 Alt(R1, R2) #2 Alt(R1, R2)rev. As Alt(R1, R2) ⊆ R, we
find that Equation (4-7) is an element of R#1R#2Rrev, and hence in TM(R).

We can thus simulate the multiplication table for M2 with respect to R∗2 by using
TM(R), and inserting sufficiently many z-symbols between the words in R∗2; rigorously,
we perform a rational transduction of TM(R) to first obtain all words of the form
Equation (4-7), and then kill all symbols z by a homomorphic image, and in this
way obtain TM2 (R∗2), which is thus context-free. Thus, M2 is �-word-hyperbolic; by
symmetry, so too is M1. By Theorem 4.5, so too is M. �

We remark on why this proposition is useful. Assume the notation of the
proposition. Given the ‘alternating’ nature of a free product, it is very natural to ask
for a regular combing R of M to at least contain the alternating products of elements
from R1 and R2. Indeed, if it did not, then the regular combing of the free product
could be seen as wholly artificial, and not in any way dependent on the structure of
the free factors. In this natural setting, Proposition 4.7 then tells us: if M1 and M2 are
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word-hyperbolic, but without 1-uniqueness, then we must have that M1 and M2 are
in fact �-word-hyperbolic. We elaborate on this remark in Section 4.3, and use this
to suggest that a new definition of word-hyperbolic monoid may be suitable. No new
results are presented therein, and so may be skipped without losing any readability of
Section 5.

4.3. 1-uniqueness as the norm. The definition of word-hyperbolic semigroups by
Duncan and Gilman has been noted by Cain and Maltcev [26] to lead to some minor
technical issues to be fixed. Namely, Cain and Maltcev note the following: there exist
a finite set A, a regular language R ⊆ A+ and two non-isomorphic semigroups S, T
each generated by A such that TS(R) = TT (R). That is, the word-hyperbolic structure
(R,TS(R)) does not necessarily determine the semigroup S up to isomorphism.
(However, if considering monoids, this is not an issue, as the problem arises from the
fact that some generators can be indecomposable in a semigroup, which never happens
in monoids.) If, however, the associated homomorphism π : A+ → S is assumed to
be injective on A, then one can show that uniqueness up to isomorphism does hold
[26, Proposition 3.5], and that furthermore every word-hyperbolic semigroup admits a
word-hyperbolic structure with this additional ‘injectivity on generators’ requirement
[26, Proposition 3.6]. It is therefore no real restriction to impose the requirement on
word-hyperbolic semigroups that π be injective on the generators.

In a similar vein, we would like to suggest that for word-hyperbolic monoids, the
earlier result (Proposition 4.7) demonstrates that 1-uniqueness in word-hyperbolic
monoids is natural. This argument is based on three desired premises:

(1) the free product of two word-hyperbolic monoids ought to be word-hyperbolic;
(2) a word-hyperbolic structure for a free product should reflect the structure of the

free factors in an alternating manner; and
(3) �-word-hyperbolicity should be exceptional, rather than the norm.

If these premises are accepted, and premise (2) is interpreted as in the para-
graph following Proposition 4.7, then we conclude from Proposition 4.7 that any
given word-hyperbolic monoid ought to be either �-word-hyperbolic, or else is
word-hyperbolic with 1-uniqueness. The third premise would therefore guide us to
prescribing that word-hyperbolic monoids with 1-uniqueness should be the norm.
If the premises are accepted, a natural definition of word-hyperbolic monoid would
thus be the following: a monoid M is word-hyperbolic if and only if it admits a finite
generating set A and a regular combing R such that (i) the multiplication table TM(R)
is context-free; and (ii) ε ∈ R, and this is the only word in R that represents 1 ∈ M.
If this were the definition of word-hyperbolic monoid, then the free product of two
word-hyperbolic monoids is again word-hyperbolic (Theorem B).

Whether these premises (1)–(3) are acceptable or not depends on the reader.
Ideally, we would like to bypass this definition-based argument and say that every
word-hyperbolic monoid admits a word-hyperbolic structure with 1-uniqueness, but
we do not know whether this is the case. Indeed, one might suspect that this is not
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the case, as there are word-hyperbolic monoids that do not admit any word-hyperbolic
structure with uniqueness [25].

5. Super-AFLs and C-tabled groups

The observant reader may have noticed that, for all our usage of the properties of
context-free languages, we have nowhere used the words ‘context-free grammar’ or
‘pushdown automaton’, or any of the usual specifications of context-free languages.
Indeed, we have only used two properties of the class CF of context-free languages,
namely:

(1) CF is a reversal-closed full AFL; and
(2) CF has the monadic ancestor property (see Section 1.2).

That is, in the terminology of Section 1.8, we have only used the property that CF is
a reversal-closed super-AFL. (Similarly, general statements involving reversal-closed
super-AFLs appear as the main results in previous work by the author [89–91].) Hence,
the main results of this article (Theorems A, B, 4.5, and their corollaries) remain valid
if CF is replaced in the definition of word-hyperbolicity by any other reversal-closed
super-AFL, such as IND or ET0L. We have chosen not to state our theorems in this
general form to maintain clarity; there does not, at present, seem to be a great deal
of interest in the language-theoretic properties of multiplication tables outside the
case of CF (that is, hyperbolicity). However, due to the recent interest in the class
of ET0L-languages (see Section 1.8), which forms a super-AFL, we opt to include
this discussion in this final section.

Let S be a semigroup, finitely generated by A. We say that a regular combing
R ⊆ A+ is a (language of) normal forms for S if every element of S is represented
by exactly one word in S. We extend this in the natural way to monoids and groups.
For example, the language a∗b∗ is a language of normal forms for the free commutative
monoid Mon〈a, b | ab = ba〉, and the (regular) language of freely reduced words over
(A ∪ A−1)∗ is a language of normal forms for the free group on A.

DEFINITION 5.1. Let S be a semigroup, finitely generated by A. Let C be a class of
languages. We say that S is C-tabled if there exists a regular language R ⊆ A+ of
normal forms for S such that the multiplication table TS(R) lies in C.

For example, the condition of being CF-tabled is the same as being word-hyperbolic
with uniqueness. The definition is extended in the obvious way to monoids and groups.
Recently, Duncan, Evetts, Holt and Rees (private communication) have proved that the
free product of two EDT0L-tabled groups is again EDT0L-tabled. We are in a place to
complement these results since, as justified earlier, the statements of Theorems A, B,
4.5, and their corollaries, can be altered to replace ‘word-hyperbolic’ with ‘C-tabled’
for any reversal-closed super-AFL C without any loss of validity. Furthermore, the
uniqueness of representatives in a normal form allows us to bypass the technical
conditions of, for example, 1-uniqueness.
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THEOREM A′. Let C be a reversal-closed super-AFL. Let S1, S2 be C-tabled semi-
groups. Then the semigroup free product S1 ∗ S2 is C-tabled.

THEOREM B′. Let C be a reversal-closed super-AFL. Let M1, M2 be C-tabled
monoids. Then the monoid free product M1 ∗M2 is C-tabled.

These theorems, which are quite elegant to state, demonstrate that the property of
having unique normal forms ensures that free products behave very well, although
many of the difficulties from words representing the identity being inserted into other
words are bypassed in this way. Additionally, Theorem B′ yields the corresponding
result for groups and group free products, too, as the monoid free product of two groups
coincides with the group free product of the same groups. In particular, we find the
following corollaries, both corresponding to Corollary 4.3:

COROLLARY 5.2. The free product of two ET0L-tabled groups is ET0L-tabled.

COROLLARY 5.3. The free product of two IND-tabled groups is IND-tabled.

This complements the aforementioned result by Duncan, Evetts, Holt and Rees for
EDT0L-tabled groups.
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