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Abstract

Let g > 2 be a fixed integer. Let N denote the set of all nonnegative integers and let A be a subset of N.
Write (A, n) = §{(a;, a2) € A® : a; + a» = n}. We construct a thin, strongly minimal, asymptotic g-adic
basis A of order two such that the set of n with r,(A, n) = 2 has density one.
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1. Introduction

Let N denote the set of all nonnegative integers and let A be a subset of N. Write
A(x)=#{n€eA:n<x}.Forh>2,let

m(A,n) = t#{(ar, az,...,ap) €A" 1ay +az + - + ay = nl.

Let W be a nonempty subset of N. Denote by ¥ (W) the set of all finite, nonempty
subsets of W. For any integer g > 2, let A,(W) be the set of all numbers of the form
2 feF arg’, where F € F*(W) and 1 <ay < g — 1. The set A is called an asymptotic
basis of order & if r;,(A,n) > 1 for all sufficiently large integers n. In particular, A is
a basis of order & if r;(A,n) > 1 for all n > 0. An asymptotic basis A of order # is
minimal if no proper subset of A is an asymptotic basis of order 4. This means that,
for any a € A, the set E, = hA\h(A\{a}) is infinite. An asymptotic basis A of order A
is called strongly minimal if, for every a € A, there exists a constant ¢ = c¢(a) > 0 such
that E,(x) > c(A(x))""! for all x sufficiently large. An asymptotic basis A of order 4 is
called thin if there is a constant ¢ > 0 such that A(x) < cx'/" for all x sufficiently large.

In 1955, Stohr [10] introduced the concept of minimal asymptotic bases. In 1956,
Hirtter [4] proved that minimal asymptotic bases of order & exist for all i > 2.
Nathanson [7] constructed a minimal asymptotic basis of order two and an asymptotic
basis of order two no subset of which is minimal. In 2011, Chen and Chen [2] resolved
some questions on minimal asymptotic bases posed by Nathanson [8]. For related
problems concerning minimal asymptotic bases, see [5, 6, 9, 10]. In 2012, Chen [1]
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proved that there is a basis A of order two such that the set of n with ry(A,n) =2
has density one. In 2013, Yang [12] extended Chen’s theorem to a basis of order A.
Recently, the second author of this paper [11] developed Yang’s method of proof to
establish a more general result.

To our surprise, the structure of the minimal asymptotic basis given by
Nathanson [7] is similar to the structure of the basis given by Chen [1]. Motivated
by this observation, we obtain the following result.

Theorem 1.1. Fori=0,1,let W; = {n € N|n=i(mod2)}. Then A, = A,(Wp) U Ag(W))
is a thin, strongly minimal, asymptotic g-adic basis of order two and the set of n with
12(Ag,n) = 2 has density one.

Remark 1.2. Using [6, Lemma 2] and the same idea as in the proof of [2, Theorem 4],
we can extend [2, Theorem 4] to all g > 2 as follows. Let 4 > 2 and let ¢ be the least
integer with ¢ > max{1,logh/logg}. Let N = Wy U - -- U W,_; be a partition such that
each set W; is infinite and contains ¢ consecutive integers for i =0, 1,...,h — 1. Then
Ag =A,(Wp) U ---UA,(W,_y) is a minimal asymptotic g-adic basis of order /.

2. Proofs
Lemma 2.1 [6, Lemma 1]. Let g > 2 be any integer.

(@) If Wi and W, are disjoint subsets of N, then A,(W1) N Ag(W,) = 0.

(b) If WC N and W(x) = 0x + O(1) for some 6 € (0, 1], then there exist positive
constants c¢i and c, such that c;x’ < A(W)(x) < c2X? for all x sufficiently large.

(c) Let N=WyU---UW,_, where W; #0 for i=0,1,...,h—1. Then A, =
A (Wo) U --- U A (W) is an asymptotic basis of order h.

Lemma 2.2 [3, Theorem 143]. Almost all positive integers, when expressed in any
scale, contain a given possible sequence of digits.
Proor oF THEoREM 1.1. We shall show that the set A, satisfies:

(i) A is a thin asymptotic basis of order two;

(i1) the set of n with r,(A,, n) = 2 has density one;
(iii) A, is a minimal asymptotic basis of order two;
(iv) Ay is strongly minimal.

Proof of (i). By Lemma 2.1(c), for a fixed g > 2, the set A, is an asymptotic basis of
order two. Since W;(x) = %x + O(1) for i =0, 1, Lemma 2.1(b) implies that there is a
constant ¢ > 0 such that A,(W;)(x) < cx!'/? for all i and all x sufficiently large. Thus,
Ag(x) < 2¢x'/? for all x sufficiently large and A, is a thin asymptotic basis of order two.

Proof of (ii). Define
U = {n € N : n expressed in the scale g contains three consecutive digits g — 1}.

By Lemma 2.2, the set U has density one. We show that r,(A,,n) =2 foralln € U.
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For any nonnegative integers m and ¢, we write m = 3.y a;g’, where a; are integers
with 0 < a; < g — 1 and X is a set of nonnegative integers, and define

T(m,t) = Z a/igi.
1

i€XN[0,t

Let n = Y, Big' € U, where f; are integers with 0 < 3; < g — 1, and let n = a; + a,,
where a;,a; € Ag. Then clearly

T(n,t) <T(a1,t)+ T(az,t) 2.1)

for all integers ¢ > 0.
Suppose that a, € A,(W;), s = 1,2. By the definition of U, there exists a positive
integer ip such that 55, _1 = B2, = g — 1. By (2.1),

T(ar, 2ip) + T(az, 2ip) = T(n, 2ip) = (g = D(g™™" + ).

On the other hand, since g > 2 and a, € A, (W), s = 1,2,

io—1
T(ar,2i) + T(ax, 2i0) <2(g = 1) ) &' < (¢ = (g™ +g™™),

h=0

which is a contradiction.

Suppose that a, € A,(Wp), s = 1,2. By the definition of U, there exists a positive
integer ip such that 85, = 52,1 = g — 1. By (2.1),

T(ay,2ip + 1) + T(az, 2ip + 1) > T(n, 2ip + 1) > (g — 1)(g* + g?o+h),

On the other hand, by g > 2 and a, € A,(Wy), s = 1,2,

io
T(ar,2ig+ 1)+ T(a, 2ig+ 1) <2g = 1) )| g < (g = D(&™ + ™),
h=0

which is a contradiction.

Thus, for any j with 0 < j < 1, there exists an integer s; with 1 < s; <2 such that
as; € Ag(Wj). It is clear that s¢, s are distinct. Therefore, by the uniqueness of the
representation in the scale g and the definition of A,, we have ry(A,, n) = 2.

Proof of (iii). We must show that for each b € A, there are infinitely many numbers
m =b+ b’ = b’ + b with no other representation as the sum of two elements of A,.
Fix an integer i € {0, 1} and suppose that b € Ag(W;). Then

b= ang2n+i + Z asg2s+i’

seS

where S is a finite, possibly empty, set of integers greater than n, 1 <a, < g — 1 and
l<a;<g-1lforallsesS.
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For any finite set T of integers greater than n, let

m=apg + Z a8+ (g - Dg' 7+ Z b, ifn=0, (2.2)
seS teT
_ o 2s+i _ (1-D@n-1-i) | 2n+l-i
m=a, g+ Y a g + (g (g + g1
seS
+ > b itn >0, 2.3)
teT

where 1 <b, <g-1forallteT.

By the uniqueness of the g-adic representation of m, no other partition of m as the
sum of an element of A,(Wy) and an element of A,(W)) is possible. Now we show that
mé¢ 2Ag(Wl) and m ¢ 2Ag(W1,l’).

Suppose that m € 2A,(W;). Then there exist my,my € A,(W;) such that m = my + my.

Let
mi= ) /g%, =12, 2.4)
keK
where K is a set of nonnegative integers, 1 < c(’) —1forall k€ K and C(J) 0 for
allk ¢ K.

Case 1: i=1. By (2.2) and (2.4), we have m=g—1 (mod g) and m; =myp =
0 (mod g), which is impossible.

Case 2: i =0. If n =0, then, by (2.2) and (2.4), we have m = ag + (g — 1)g (mod g?)
and m; +myp = cél) + c(z) (mod g?). But

0<cy’ +cy <2g-1)<ap+g(g—1)<g
which is a contradiction. If n > 0, then, by (2.3) and (2.4),

m= ang2n + (g _ 1)g2n—l + (g _ 1)g2n+l (mod g2n+2)

and .,
1 2
my +nmy = Z(C’(‘ )+ c,(( ))gzk (mod g>"*2).
k=0
Again,

n
ng(cg) (2))g2k<(g I)ZngH <ang2"+(g g 2n— l+(g— 1)g2n+l <g2n+2
= k=0

is a contradiction.
Suppose that m € 2A,(W;_;). Then there exist mj, m} € A;(W;_;) such that m =
m) +m). Let
my= " dlg" N, j=1,2, 2.5)
heH

where H is a set of nonnegative integers, 1 < dﬁlj) <g-1lforallhe H and d(’) 0 for
allh¢ H.

https://doi.org/10.1017/5S0004972715000805 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972715000805

378 D. Ling and M. Tang [5]

Case 1: i=1. If n=0, then, by (2.2) and (2.5), we have m = apg + g — 1 (mod g°)
and m/ +m), = d)’ +d3 (mod g?). Thus,

OSd(()l)+dE)2)<a0g+g— 1<g%
which is a contradiction. If n > 0, then, by (2.3) and (2.5),

m= a,g™*! + (g — 1)+ (g — 1)g™" (mod g***?)
and .
mi +my = ) (d +dP)g" (mod g*?)
h=0
and again

n
0 S Z(dﬁll) +d22))g2h < 2g2n+l _g2n < ang2n+1 + (g _ 1) + (g _ 1)g2n < g2n+2
h=0
is a contradiction.

Case 2: i=0. If n=0, then, by (2.2) and (2.5), we have m = ay (mod g) and
m| = m} = 0 (mod g), which is a contradiction. If n > 0, then, by (2.3) and (2.5),

mzanan +(g_ ) 2n—1 (modg2n+1)
and
n—1
mi +my = ) (d +d )" (mod g,
h=0
But then

n—1

0< Z(d(l) d(z) 21 2g2n _g2n—1 B angz" +(g - 1)g2n—1 < g2n+1’

which is a contradiction.

Proof of (iv). Since A, is thin, it suffices to prove that there is a constant ¢ = c¢(b) > 0
such that E,(x) > cx!/? for all x sufficiently large. Choose an integer v such that v > n
and v > sforall s € S. Let x > g2, Define w > v by g2"*1 < x < g?*? Let T be
any subsetof {n + 1,n+2,...,w}. By (2.2) and (2.3), we know that there are

w—=n
( )(g -1y =g"
i=0

choices of m. Moreover,

2w+1

mS(g—l)Zgi=g2w+2—1<x,

and so m is counted in Ej(x). Therefore, E;(x) > g¥"™" > cx!/?, where ¢ = g="*?),

This completes the proof of Theorem 1.1. ]
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