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Abstract

This paper analyzes the training process of generative adversarial networks (GANs)
via stochastic differential equations (SDEs). It first establishes SDE approximations for
the training of GANs under stochastic gradient algorithms, with precise error bound
analysis. It then describes the long-run behavior of GAN training via the invariant mea-
sures of its SDE approximations under proper conditions. This work builds a theoretical
foundation for GAN training and provides analytical tools to study its evolution and
stability.
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1. Introduction

Generative adversarial networks (GANs) introduced in [14] are generative models with two
competing neural networks: a generator network G and a discriminator network D. The gen-
erator network G attempts to fool the discriminator network by converting random noise into
sample data, while the discriminator network D tries to identify whether the input sample is
fake or true.

After being introduced to the machine learning community, the popularity of GANs has
grown exponentially with a wide range of applications, including high-resolution image gen-
eration [9, 29], image inpainting [45], image super-resolution [23], visual manipulation [48],
text-to-image synthesis [30], video generation [40], semantic segmentation [26], and abstract
reasoning diagram generation [21]; in recent years, GANs have attracted a substantial amount
of attention in the financial industry for financial time series generation [36, 42, 43, 46], asset
pricing [5], market simulation [6, 35], and so on. Despite the empirical success of GANs,
there are well-recognized issues in the training of GANs, such as the vanishing gradient when
the discriminator significantly outperforms the generator [1], and mode collapse where the
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generator cannot recover a multi-model distribution but only a subset of the modes; this issue
is believed to be linked with the gradient exploding [32].

In response to these issues, there has been growing research interest in the theoretical under-
standing of GAN training. In [3] the authors proposed a novel visualization method for the
GAN training process through the gradient vector field of loss functions. In a deterministic
GAN training framework, [28] demonstrated that regularization improved the convergence
performance of GANs. [7] and [11] analyzed a generic zero-sum minimax game including
GANs, and connected the mixed Nash equilibrium of the game with the invariant measure of
Langevin dynamics. In addition, various approaches have been proposed for amelioration of
the aforementioned issues in GAN training, including different choices of network architec-
tures, loss functions, and regularization. See, for instance, a comprehensive survey on these
techniques in [41] and the references therein.

1.1. Our work

This paper focuses on analyzing the training process of GANs via a stochastic differ-
ential equation (SDE) approach. It first establishes SDE approximations for the training of
GANs under stochastic gradient algorithms (SGAs), with precise error bound analysis. It then
describes the long-run behavior of GAN training via the invariant measures of its SDE approx-
imations under proper conditions. This work builds a theoretical foundation for GAN training
and provides analytical tools to study its evolution and stability. In particular:

• The SDE approximations characterize precisely the distinction between GANs with
alternating update and GANs with simultaneous update, in terms of the interaction
between the generator and the discriminator.

• The drift terms in the SDEs show the direction of the parameter evolution; the diffusion
terms prescribe the ratio between the batch size and the learning rate in order to modulate
the fluctuations of SGAs in GAN training.

• Regularity conditions for the coefficients of the SDEs provide constraints on the growth
of the loss function with respect to the model parameters, necessary for avoiding the
explosive gradient encountered in the training of GANs; they also explain mathemat-
ically some well-known heuristics in GAN training, and confirm the importance of
appropriate choices for network depth and of the introduction of gradient clipping and
gradient penalty.

• The dissipative property of the training dynamics under the SDE form ensures the exis-
tence of the invariant measures, hence the steady states of GAN training in the long run;
it underpins the practical tactic of adding a regularization term to the GAN objective to
improve the stability of the training.

• Further analysis of the invariant measure for the coupled SDEs gives rise to a fluctuation–
dissipation relation (FDR) for GANs. These FDRs reveal the trade-off of the loss
landscape between the generator and the discriminator and can be used to schedule the
learning rate.

1.2. Related work

Our analysis on the approximation and the long-run behavior of GAN training is inspired
by [24] and [25]. The former established the SDE approximation for the parameter evolution
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in SGAs applied to pure minimization problems (see also [18] on a similar topic); the lat-
ter surveyed the theoretical analysis of deep learning from two perspectives: propagation of
chaos through neural networks and the training process of deep learning algorithms. Among
other related works on the theoretical understanding of GANs, [13] reviewed the connec-
tion between GANs and the dual formulation of optimal transport problems; [27] studied
the interplay between the latent distribution and generated distribution in GANs with opti-
mal transport-based loss functions; [7] and [11] focused on the equilibrium of the minimax
game and its connection with Langevin dynamics; and [4] studied the connection between
GANs and mean-field games. Our focus is the GAN training process: we establish precise
error bounds for the SDE approximations, study the long-run behavior of GAN training via the
invariant measures of the SDE approximations, and analyze their implications for resolving
various challenges in GANs.

1.3. Notation

Throughout this paper, the following notation will be adopted:

• R
d denotes a d-dimensional Euclidean space, where d may vary from time to time.

• The transpose of a vector x ∈R
d is denoted by x� and the transpose of a matrix

A ∈R
d1×d2 is denoted by A�.

• Let X be an arbitrary nonempty subset of Rd; the set of k times continuously differen-
tiable functions over some domain X is denoted by Ck(X ) for any nonnegative integer
k. In particular, when k = 0, C0(X ) = C(X ) denotes the set of continuous functions.

• Let J = (J1, . . . , Jd) be a d-tuple multi-index of order |J| =∑d
i=1 Ji, where Ji ≥ 0 for all

i = 1, . . . , d; then the operator ∇J is ∇J = (
∂

J1
1 , . . . , ∂

Jd
d

)
.

• For p ≥ 1, ‖ · ‖p denotes the p-norm over Rd, i.e. ‖x‖p = (∑d
i=1 |xi|p

)1/p for any x ∈R
d;

Lp
loc(Rd) denotes the set of functions f : Rd →R such that

∫
X |f (x)|p dx<∞ for any

compact subset X ⊂R
d.

• Let J be a d-tuple multi-index of order |J|. For a function f ∈ L1
loc(Rd), its Jth-weak

derivative DJf ∈ L1
loc(Rd) is a function such that, for any smooth and compactly sup-

ported test function g,
∫
Rd DJf (x)g(x) dx = (−1)|J| ∫

Rd f (x)∇Jg(x) dx. The Sobolev space

Wk,p
loc (Rd) is a set of functions f on R

d such that, for any d-tuple multi-index J with
|J| ≤ k, DJf ∈ Lp

loc(Rd).

• Fix an arbitrary α ∈N
+. Gα(Rd) denotes a subspace of Cα(Rd;R) where, for any

g ∈ Gα(Rd) and any multi-index J with |J| =∑d
i=1 Ji ≤ α, there exist k1, k2 ∈N such

that ∇Jg(x) ≤ k1
(
1 + ‖x‖2k2

2

)
for all x ∈R

d. If g is a parametrized function gβ , then
gβ ∈ Gα(Rd) indicates that the choices of constants k1 and k2 are uniform over all
possible βs.

• Fix an arbitrary α ∈N
+. Gαw(Rd) denotes a subspace of Wα,1

loc (Rd) where, for any

g ∈ Gαw(Rd) and any multi-index J with |J| =∑d
i=1 Ji ≤ α, there exist k1, k2 ∈N such

that DJg(x) ≤ k1
(
1 + ‖x‖2k2

2

)
for almost all x ∈R

d. If g is a parametrized function gβ ,
then gβ ∈ Gαw(Rd) indicates that the choices of constants k1 and k2 are uniform over all
possible βs.
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2. GAN training

In this section we provide the mathematical setup for GAN training.

2.1. GAN training: Minimax versus maximin

GANs fall into the category of generative models to approximate an unknown probability
distribution Pr. GANs are minimax games between two competing neural networks, the gener-
ator G and the discriminator D. The neural network for the generator G maps a latent random
variable Z with a known distribution Pz into the sample space to mimic the true distribution
Pr. Meanwhile, the other neural network for the discriminator D will assign a score between
0 and 1 to an input sample, either a generated sample or a true one. A higher score from the
discriminator D indicates that the sample is more likely to be from the true distribution.

Formally, let (�,F , {Ft}t≥0, P) be a filtered probability space. Let a measurable space
X ⊂R

dx be the sample space of dimension dx ∈N. Let an X -valued random variable X denote
the random sample, where X :�→X is a measurable function. The unknown probability dis-
tribution Pr is defined as Pr = Law(X) such that Pr(X ∈ A) = P({ω ∈� : X(ω) ∈ A}) for any
measurable set A ⊂ X. Similarly, let a measurable space Z ⊂R

dz be the latent space of dimen-
sion dz ∈N. Let a Z-valued random variable Z denote the latent variable where Z :�→Z .
The prior distribution Pz is given by Pz = Law(Z) such that Pz(Z ∈ B) = P({ω ∈� : Z(ω) ∈ B})
for any measurable B ⊂Z . Moreover, X and Z are independent, i.e. P({ω : X(ω) ∈ A, Z(ω) ∈
B}) = Pr(X ∈ A)Pz(Z ∈ B) for any measurable sets A ⊂X and B ⊂Z .

In the vanilla GAN framework proposed by [14], the loss function with respect to G and D
is given by L(G,D) =EX∼Pr log D(X) +EZ∼Pz [ log (1 − D(G(Z)))], and the objective is given
by a minimax problem, minG maxD L(G,D). Under a given G, the concavity of L(G, D) with
respect to D follows from the concavity of the functions log x and log (1 − x); under a given
D, the convexity of L(G, D) with respect to G follows from the linearity of expectation and
the pushforward measure G#Pz = Law(G(Z)). Therefore, the training loss in vanilla GANs is
indeed convex in G and concave in D. In the practical training stage, both G and D become
parametrized neural networks Gθ and Dω, and therefore the working loss function is indeed
with respect to the parameter (θ, ω),

L̂(θ, ω) =EX∼Pr log Dω(X) +EZ∼Pz [ log (1 − Dω(Gθ (Z)))].

According to the training scheme proposed by [14], in each iteration,ω is updated first followed
by the update of θ . This precisely corresponds to the minimax formulation of the objective,
minθ maxω L̂(θ, ω). However, in the practice training stage of GANs, there might be an inter-
change of training orders between the generator and the discriminator. We should be careful as
the interchange implicitly modifies the objective into a maximin problem, maxω minθ L̂(θ, ω),
and hence raises the question of whether these two objectives are equivalent. This question is
closely related to the notion of Nash equilibrium in a two-player zero-sum game. According to
the original GAN framework, the solution should provide an upper value to the corresponding
two-player zero-sum game between the generator and the discriminator, i.e. an upper bound
for the game value. As pointed out by Sion’s theorem (see [34, 39]), a sufficient condition to
guarantee equivalence between the two training orders is that the loss function L̂ is convex in
θ and concave in ω. Though we have seen that the loss function L with respect to G and D
satisfies this condition, it is not necessarily true for L̂(θ, ω). In fact, [47] points out that these
conditions are usually not satisfied with respect to generator and discriminator parameters in
common GAN models, and this lack of convexity and/or concavity does create challenges in
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the training of GANs. Such challenges motivate us to take a closer look at the evolution of
parameters in the training of GANs using mathematical tools. In the following analysis, we
will strictly follow the minimax formulation and its corresponding training order.

2.2. SGA for GAN training

Typically, GANs are trained through a stochastic gradient algorithm (SGA). An SGA is
applied to a class of optimization problems whose loss function�(γ ) with respect to the model
parameter vector γ can be written as �(γ ) =EI [�I (γ )], where a random variable I takes
values in the index set I of the data points and, for any i ∈ I, �i(γ ) denotes the loss evaluated
at the data point with index i.

Suppose the objective is to minimize �(γ ) over γ . Applying gradient descent with learn-
ing rate η > 0, at an iteration k, k = 0, 1, 2, . . . , the parameter vector is updated by γk+1 =
γk − η∇�(γk). By the linearity of differentiability and expectation, this update can be written
as γk+1 = γk − ηEI [∇�I (γk)]. Under suitable conditions, EI [∇�I (γk)] can be estimated by
sample mean

ÊB[∇�I (γ )] =
∑B

k=1 ∇�Ik (γ )

B
,

where B = {I1, . . . , IB} is a collection of indices with Ik
i.i.d.∼ I, called a minibatch, and B 
 |I|.

Under an SGA, the uncertainty in sampling B propagates through the training process,
making it a stochastic process rather than a deterministic one. This stochasticity motivates us
to study a continuous-time approximation for GAN training in the form of SDEs, as will be
seen in (SML-SDE) and (ALT-SDE). (See also the connection between stochastic gradient
descent and Markov chains in [10]).

Consider GAN training performed on a data set D = {(zi, xj)}1≤i≤N, 1≤j≤M , where {zi}N
i=1 are

sampled from Pz and {xj}M
j=1 are real image data following the unknown distribution Pr. Let

Gθ : Z →X denote the generator parametrized by the neural network with parameter θ ∈R
dθ

of dimension dθ ∈N, and let Dω : X →R
+ denote the discriminator parametrized by the other

neural network with parameter ω ∈R
dω of dimension dω ∈N, where R

+ denotes the set of
nonnegative real numbers. Then the objective of the GAN is to solve the minimax problem

min
θ

max
ω
�(θ, ω) (1)

for some cost function �, with � of the form

�(θ, ω) =
∑N

i=1
∑M

j=1 J(Dω(xj),Dω(Gθ (zi)))

N · M
.

For instance, � in the vanilla GAN model [14] is given by

�(θ, ω) =
∑N

i=1
∑M

j=1 log Dω(xj) + log (1 − Dω(Gθ (zi)))

N · M
,

while � in a Wasserstein GAN [2] takes the form

�(θ, ω) =
∑N

i=1
∑M

j=1 Dω(xj) − Dω(Gθ (zi))

N · M
.

Here, the full gradients of� with respect to θ and ω are estimated over a minibatch B of batch
size B. One way of sampling B is to choose B samples out of a total of N · M samples without
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putting back; another is to take B independent and identically distributed (i.i.d.) samples. The
analyses for both cases are similar; here we adopt the second sampling scheme.

More precisely, let B = {(zIk , xJk )}B
k=1 be i.i.d. samples from D. Let gθ and gω be the full

gradients of � with respect to θ and ω such that

gθ (θ, ω) = ∇θ�(θ, ω) =
∑N

i=1
∑M

j=1 gi,j
θ (θ, ω)

N · M
,

gω(θ, ω) = ∇ω�(θ, ω) =
∑N

i=1
∑M

j=1 gi,j
ω (θ, ω)

N · M
.

(2)

Here, gi,j
θ and gi,j

ω denote ∇θJ(Dω(xj),Dω(Gθ (zi))) and ∇ωJ(Dω(xj),Dω(Gθ (zi))), respectively,

with differential operators defined as ∇θ := (
∂θ1 · · ·∂θdθ

)�
and ∇ω := (

∂ω1 · · ·∂ωdω

)�
. Then,

the estimated gradients for gθ and gω corresponding to the minibatch B are

gBθ (θ, ω) =
∑B

k=1 gIk,Jk
θ (θ, ω)

B
, gBω (θ, ω) =

∑B
k=1 gIk,Jk

ω (θ, ω)

B
.

Moreover, let ηθt > 0 and ηωt > 0 be the learning rates at iteration t = 0, 1, 2, . . . for θ and
ω respectively; then, solving the minimax problem (1) with SGA under alternating parameter
update implies descent of θ along gθ and ascent of ω along gω at each iteration, i.e.,

{
ωt+1 =ωt + ηωt gBω (θt, ωt),

θt+1 = θt − ηθt gBθ (θt, ωt+1).

Furthermore, within each iteration, the minibatch gradients for θ and ω are calculated on dif-
ferent batches. In order to emphasize this difference, we use B̄ to represent the minibatch for

θ and B for that of ω, with B̄ i.i.d.∼ B. That is,

{
ωt+1 =ωt + ηωt gBω (θt, ωt),

θt+1 = θt − ηθt gB̄θ (θt, ωt+1).
(ALT)

Some practical training of GANs uses simultaneous parameter update between the discrimi-
nator and the generator, corresponding to the similar yet subtly different form

{
ωt+1 =ωt + ηωt gBω (θt, ωt),

θt+1 = θt − ηθt gBθ (θt, ωt).
(SML)

For ease of exposition, we will assume a constant learning rate ηθt = ηωt = η throughout the
paper, with η viewed as the time interval between two consecutive parameter updates.

3. Approximation and error bound analysis of GAN training

The randomness in sampling B (and B̄) brings stochasticity to the GAN training pro-
cess prescribed by (ALT) and (SML). In this section, we establish their continuous-time
approximations and error bounds, where the approximations are in the form of coupled SDEs.
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3.1. Approximation

To get an intuition of how the exact expression of SDEs emerges, let us start by some
basic properties embedded in the training process. First, let I :�→ {1, . . . ,N} and J :�→
{1, . . . ,M} denote random indices independently and uniformly distributed respectively;
then, according to the definitions of gθ and gω in (2), we have E

[
gI,J
θ (θ, ω)

]= gθ (θ, ω) and
E
[
gI,J
ω (θ, ω)

]= gω(θ, ω). Denote the correspondence covariance matrices as

�θ (θ, ω) =
∑

i
∑

j

[
gi,j
θ (θ, ω) − gθ (θ, ω)

][
gi,j
θ (θ, ω) − gθ (θ, ω)

]�
N · M

,

�ω(θ, ω) =
∑

i
∑

j

[
gi,j
ω (θ, ω) − gω(θ, ω)

][
gi,j
ω (θ, ω) − gω(θ, ω)

]�
N · M

,

since the (Ik, Jk) in B are i.i.d. copies of (I, J); then,

EB
[
gBθ (θ, ω)

]=E

[∑B
k=1 gIk,Jk

θ (θ, ω)

B

]
= gθ (θ, ω),

EB
[
gBω (θ, ω)

]=E

[∑B
k=1 gIk,Jk

ω (θ, ω)

B

]
= gω(θ, ω),

VarB
(
gBθ (θ, ω)

)= VarB

(∑B
k=1 gIk,Jk

θ (θ, ω)

B

)
= 1

B
�θ (θ, ω),

VarB
(
gBω (θ, ω)

)= VarB

(∑B
k=1 gIk,Jk

ω (θ, ω)

B

)
= 1

B
�ω(θ, ω).

As the batch size B gets sufficiently large, the classical central limit theorem leads to the
following approximation of (ALT):⎧⎪⎨

⎪⎩
ωt+1 =ωt + ηgBω (θt, ωt) ≈ωt + ηgω(θt, ωt) + η√

B
�1/2
ω (θt, ωt)Z

1
t ,

θt+1 = θt − ηgBθ (θt, ωt+1) ≈ θt − ηgθ (θt, ωt+1) + η√
B
�

1/2
θ (θt, ωt+1)Z2

t ,

with independent Gaussian random variables Z1
t ∼ N

(
0, 1 · Idω

)
and Z2

t ∼ N
(
0, 1 · Idθ

)
,

t = 0, 1, 2, . . . Here, the scalar 1 specifies the time increment 1 =�t = (t + 1) − t.
Write t + 1 = t +�t. On one hand, assuming the continuity of the process {ωt}t with respect

to time t and sending�t to 0, one intuitive approximation can be easily derived in the following
form:

d

(

t

Wt

)
=

(
−gθ

(

t,Wt

)
gω

(

t,Wt

)
)

dt +
√

2β−1

(
�θ

(

t,Wt

)1/2 0

0 �ω
(

t,Wt

)1/2

)
dWt, (3)

with β = 2B/η and {Wt}t≥0 being a standard (dθ + dω)-dimensional Brownian motion sup-
ported by the filtered probability space (�,F , {Ft}t≥0, P). Let {FW

t }t≥0 denote the natural
filtration generated by {Wt}t≥0. As a continuous-time approximation for GAN training, SDEs
in this rather intuitive form are adopted without justification in some earlier works such as [7]
and [11]. Later we will show that (3) is in fact an approximation for GAN training under the
simulations update scheme (SML).
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On the other hand, the game nature in GANs is demonstrated through the interactions
between the generator and the discriminator during the training process; more specifically, the
appearance of ωt+1 at the update of θ as in (ALT). However, the widely adopted coupled pro-
cesses (3) do not capture such interactions. One possible approximation for the GAN training
process of (ALT) would be

d

(

t

Wt

)
=

[(
−gθ

(

t,Wt

)
gω

(

t,Wt

)
)

+ η

2

(
∇θgθ

(

t,Wt

) −∇ωgθ
(

t,Wt

)
−∇θgω

(

t,Wt

)−∇ωgω
(

t,Wt

)
) (−gθ

(

t,Wt

)
gω

(

t,Wt

) ) ]
dt

+
√

2β−1

(
�θ

(

t,Wt

)1/2 0

0 �ω
(

t,Wt

)1/2

)
dWt. (4)

Equations (3) and (4) can be written in the more compact forms

d

(

t

Wt

)
= b0

(

t,Wt

)
dt + σ

(

t,Wt

)
dWt, (SML-SDE)

d

(

t

Wt

)
= b

(

t,Wt

)
dt + σ

(

t,Wt

)
dWt, (ALT-SDE)

where the drift b(θ, ω) = b0(θ, ω) + ηb1(θ, ω), with

b0(θ, ω) =
(

−gθ (θ, ω)

gω(θ, ω)

)
, (5)

b1(θ, ω) = 1

2

(
∇θgθ (θ, ω) −∇ωgθ (θ, ω)

−∇θgω(θ, ω) −∇ωgω(θ, ω)

)(
−gθ (θ, ω)

gω(θ, ω)

)

= −1

2
∇b0(θ, ω)b0(θ, ω) −

(
∇ωgθ (θ, ω)gω(θ, ω)

0

)
, (6)

and the volatility σ (θ, ω) is given by

σ (θ, ω) =
√

2β−1

(
�θ

(

t,Wt

)1/2 0

0 �ω
(

t,Wt

)1/2

)
. (7)

The drift terms in the SDEs, i.e. b0 in (SML-SDE) and b in (ALT-SDE), show the direction
of the parameters’ evolution; the diffusion terms σ represent the fluctuations of the learning
curves for these parameters. Moreover, the form of the SDEs prescribes β, the ratio between
the batch size and the learning rate, in order to modulate the fluctuations of SGAs in GAN
training. Even though both (SML-SDE) and (ALT-SDE) are adapted to {FW

t }t≥0, the term

−η
2

(∇ωgθ (θ, ω)gω(θ, ω)

0

)

in (ALT-SDE) highlights the interaction between the generator and the discriminator in the
GAN training process; see Remark 1.
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3.2. Error bound for the SDE approximation

We will show that these coupled SDEs are indeed the continuous-time approximations of
GAN training processes, with the following error bound analysis. Here the approximations are
under the notion of weak approximation as in [24]. More precisely, Theorems 1 and 2 provide
conditions under which the evolution of parameters in GANs are within a reasonable distance
from the SDE approximation.

Theorem 1. Fix an arbitrary time horizon T > 0, and take the learning rate η ∈ (0, 1 ∧ T )
and the number of iterations N̄ = �T /η�. Suppose that

1(a) gi,j
ω is twice continuously differentiable, and gi,j

θ and gi,j
ω are Lipschitz, for any

i = 1, . . . ,N and j = 1, . . . ,M;

1(b) � is of C3
(
R

dθ+dω
)

and � ∈ G4
w

(
R

dθ+dω
)
;

1(c) (∇θgθ )gθ , (∇ωgθ )gω, (∇θgω)gθ , and (∇ωgω)gω are all Lipschitz.

Then, (
tη,Wtη) as in (ALT-SDE) is a weak approximation of (θt, ωt) as in (ALT) of order 2,
i.e. given any initialization θ0 = θ and ω0 =ω, for any test function f ∈ G3

(
R

dθ+dω
)
, we have

the estimate

max
t=1,...,N̄

|Ef (θt, ωt) −Ef (
tη,Wtη)| ≤ Cη2 (8)

for some constant C ≥ 0; this constant C is independent of the learning rate η but is dependent
on the time horizon T .

Theorem 2. Fix an arbitrary time horizon T > 0, and take the learning rate η ∈ (0, 1 ∧ T )
and the number of iterations N̄ = �T /η�. Suppose

2(a) �(θ, ω) is continuously differentiable and � ∈ G3,1
W

(
R

dθ+dω
)
;

2(b) gi,j
θ and gi,j

ω are Lipschitz for any i = 1, . . . ,N and j = 1, . . . ,M.

Then, (
tη,Wtη) as in (SML-SDE) is a weak approximation of (θt, ωt) as in (SML) of order 1,
i.e. given any initialization θ0 = θ and ω0 =ω, for any test function f ∈ G2

(
R

dθ+dω
)
, we have

the estimate

max
t=1,...,N̄

∣∣Ef (θt, ωt) −Ef
(

tη,Wtη

)∣∣≤ Cη

for some constant C ≥ 0; this constant C is independent of the learning rate η but is dependent
on the time horizon T .

Theorems 1 and 2 provide SDE approximations for GAN training in practice when we have
finite training samples and training iterations, i.e. N, M, and N̄ = �T /η� being finite and fixed;
they also provide error bounds for such approximations, in particular:

∣∣E[f (θN̄, ωN̄

)− f
(

ηN̄,WηN̄

)]∣∣≤ C1(T )ρ1(η) for all f ∈ G3(
R

dθ+dω
)
, (9)

where C1(T ) is a coefficient depending on the time horizon T , and ρ1(η) is an appropriate
error term such that either ρ1(η) = η2 or ρ1(η) = η. These SDE approximations will enable us
to analyze the long-run behavior of GAN training in Section 4 through studying the invariant
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measures of SDEs and then control the difference between the training outcome and some
equilibrium of the minimax game of GANs.

Remark 1. Modifying the intuitive SDE approximation (SML-SDE) into

d

(

t

Wt

)
=

[
b0
(

t,Wt

)− η

2
∇b0

(

t,Wt

)
b0
(

t,Wt

)]
dt + σ

(

t,Wt

)
dWt (10)

and applying similar techniques to the proof of Theorem 1, we can get an O
(
η2

)
approximation

for (SML). However, comparing (10) and (ALT-SDE), the term

−η
2

(∇ωgθ (θ, ω)gω(θ, ω)

0

)

still stands out, which is due to the interactions between the generator and discriminator during
training. It implies that the ‘game effect’ between the generator and the discriminator has an
impact on the evolution trajectories of the model parameters.

3.3. Proof of Theorem 1

In this section we provide a detailed proof of Theorem 1; the proof of Theorem 2 is a simple
analogy and thus omitted. We adapt the approach of [24] to our analysis of GAN training.

3.3.1. Preliminary analysis

One-step difference Recall that under the alternating update scheme and constant learning
rate η, the GAN training is given by (ALT).

Let (θ, ω) denote the initial value for (θ0, ω0), and

�=�(θ, ω) =
(
θ1 − θ

ω1 −ω

)
(11)

be the one-step difference. Let �i,j denote the tuple consisting of the ith and jth components
of the one-step difference of θ and ω, with i = 1, . . . , dθ and j = 1, . . . , dω.

Lemma 1. Assume that gi,j
θ is twice continuously differentiable for any i = 1, . . . ,N and

j = 1, . . . ,M.
The first moment is given by

E[�i,j] = η

(−gθ (θ, ω)i

gω(θ, ω)j

)
+ η2

({−∇ω[gθ (θ, ω)i]}�gω(θ, ω)

0

)
+ O

(
η3).

The second moment is given by

E

[
�i,j(�k,l)�]= η2

[
1

B

(
�θ (θ, ω)i,k 0

0 �ω(θ, ω)j,l

)
+

(−gθ (θ, ω)i

gω(θ, ω)j

)(−gθ (θ, ω)k

gω(θ, ω)l

)� ]
+ O

(
η3),

where�θ (θ, ω)i,k and�ω(θ, ω)j,l denote the elements at positions (i,k) and (j,l) of the matrices
�θ (θ, ω) and �ω(θ, ω), respectively.

The third moments are all of order O
(
η3

)
.
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Proof. By a second-order Taylor expansion, we have

�(θ, ω) = η

⎛
⎝−gB̄θ (θ, ω)

gBω (θ, ω)

⎞
⎠+ η2

(
−∇ωgB̄θ (θ, ω))gBω (θ, ω)

0

)
+ O

(
η3).

Then,

�i,j(θ, ω) = η

⎛
⎝−gB̄θ (θ, ω)i

gBω (θ, ω)j

⎞
⎠+ η2

({
−∇ω

[
gB̄θ (θ, ω)i

]}�
gBω (θ, ω)

0

)
+ O

(
η3),

�i,j(θ, ω)
[
�k,l(θ, ω)

]� = η2

⎛
⎝ gB̄θ (θ, ω)igB̄θ (θ, ω)k −gB̄θ (θ, ω)igBω (θ, ω)l

−gB̄θ (θ, ω)kgBω (θ, ω)j gBω (θ, ω)jgBω (θ, ω)l

⎞
⎠+ O

(
η3),

and higher-order polynomials are of order O
(
η3

)
. Notice that B̄ ⊥B and recall the definition

of �θ and �ω. The conclusion follows. �

Now, for (ALT-SDE) with the same initialization as (11), define the corresponding one-step
difference:

�̃= �̃(θ, ω) =
(

1×η − θ

W1×η −ω

)
.

Let �̃k be the kth component of �̃, k = 1, . . . , dθ + dω, and �̃i,j be the tuple consisting of
the ith and jth components of the one-step difference of 
 and W , with i = 1, . . . , dθ and
j = 1, . . . , dω.

Lemma 2. Suppose b0, b1, and σ given by (5), (6), and (7) are from C3
(
R

dθ+dω
)

such that, for
any multi-index J of order |J| ≤ 3, there exist k1, k2 ∈N satisfying

max
{∣∣∇Jb0(θ, ω)

∣∣, ∣∣∇Jb1(θ, ω)
∣∣, ∣∣∇Jσ (θ, ω)

∣∣}≤ k1

(
1 +

∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
2k2

2

)

and they are all Lipschitz.
The first moment is given by

E[�̃i,j] = η

(−gθ (θ, ω)i

gω(θ, ω)j

)
+ η2

({−∇ω[gθ (θ, ω)i]}� gω(θ, ω)

0

)
+ O

(
η3).

The second moment is given by

E

[
�̃i,j(�̃k,l)�]= η2

[
1

B

(
�θ (θ, ω)i,k 0

0 �ω(θ, ω)j,l

)
+

(−gθ (θ, ω)i

gω(θ, ω)j

)(−gθ (θ, ω)k

gω(θ, ω)l

)� ]
+ O

(
η3).

The third moments are all of order O
(
η3

)
.
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Proof. Let ψ : Rdθ+dω →R be any smooth test function. Under the dynamic (ALT-SDE),
define the following operators:

L1ψ(θ, ω) = b0(θ, ω)�∇ψ(θ, ω),

L2ψ(θ, ω) = b1(θ, ω)�∇ψ(θ, ω),

L3ψ(θ, ω) = 1

2
Tr
(
σ (θ, ω)σ (θ, ω)�∇2ψ(θ, ω)

)
.

Applying Itô’s formula toψ
(

t,Wt

)
, Liψ

(

t,Wt

)
for i = 1, 2, 3, and L2

1ψ
(

t,Wt

)
, we have

ψ(
η,Wη) =ψ(θ, ω) +
∫ η

0
(L1 + ηL2 +L3)ψ

(

t,Wt

)
dt

+
∫ η

0

[∇ψ(

t,Wt

)]�
σ
(

t,Wt

)
dWt

=ψ(θ, ω) + η(L1 +L3)ψ(θ, ω) + η2( 1
2L

2
1 +L2

)
ψ(θ, ω)

+
∫ η

0

∫ t

0

∫ s

0
L3

1ψ(
u,Wu) du ds dt

+
∫ η

0

∫ t

0

(
L3L1 +L1L3 +L2

3

)
ψ
(

s,Ws

)
ds dt

+ η

∫ η

0

∫ t

0
(L2L1 +L1L2 +L3L2 +L2L3)ψ

(

s,Ws

)
ds dt

+ η2
∫ η

0

∫ t

0
L2

2ψ
(

s,Ws

)
ds dt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

+ Mη,

where Mη denotes the remaining martingale term with mean zero. Given the regularity con-
ditions of b0, b1, and σ , [20, Theorem 9, Section 2.5] implies that (12) is of order O

(
η3

)
.

Therefore,

E
[
ψ
(

η,Wη

) |
0 = θ,W0 =ω
]=ψ(θ, ω) + η(L1 +L3)ψ(θ, ω) + η2( 1

2L
2
1 +L2

)
ψ(θ, ω).

Take ψ(
η,Wη) as �̃i, �̃i�̃j, and �̃i�̃j�̃k for arbitrary indices i, j, k = 1, . . . , dθ + dω, and
the conclusion follows. �

Estimate of moments. Next, we bound the moments of GAN parameters under (ALT).

Lemma 3. Fix an arbitrary time horizon T > 0 and take the learning rate η ∈ (0, 1 ∧ T ) and
the number of iterations N̄ = �T /η�. Suppose that gi,j

θ and gi,j
ω are all Lipschitz, i.e. there exists

L> 0 such that

max
i,j

{∣∣gi,j
θ (θ, ω)

∣∣, ∣∣gi,j
ω (θ, ω)

∣∣}≤ L

(
1 +

∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
2

)
.
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Then, for any m ∈N,

max
t=1,...,N̄

E

[∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m

2

]

is uniformly bounded, independent of η.

Proof. Throughout the proof, the positive constants C and C’ may vary from line to line.
The Lipschitz assumption suggests that

max
{∣∣gBθ (θ, ω)

∣∣, ∣∣gBω (θ, ω)
∣∣}≤ L

(
1 +

∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
2

)
.

For any k = 1, . . . ,m,

max
{∣∣gBθ (θ, ω)

∣∣k, ∣∣gBω (θ, ω)
∣∣k}≤ L · k

(
k

�k/2�
)

·
(

1 +
∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
k

2

)

and ∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
k

2

+
∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
m

2

≤ 2

(
1 +

∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
m

2

)
.

For any t = 0, . . . , N̄ − 1,∥∥∥∥∥
(
θt+1

ωt+1

) ∥∥∥∥∥
m

2

≤
∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m

2

+
m∑

k=1

(
m

k

)∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m−k

2

ηk

∥∥∥∥∥
(−gBθ (θt, ωt)

gBω (θt, ωt)

) ∥∥∥∥∥
k

2

≤
∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m

2

+ Cη
m∑

k=1

(
m

k

)∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m−k

2

(
1 +

∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m

2

)

≤ (1 + Cη)

∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m

2

+ C′η.

Write

am
t =

∥∥∥∥∥
(
θt

ωt

) ∥∥∥∥∥
m

2

.

Then am
t+1 ≤ (1 + Cη)am

t + C′η, which leads to

am
t ≤ (1 + Cη)t

(
am

0 + C′

C

)
− C′

C

≤ (1 + Cη)T /η
(

am
0 + C′

C

)
− C′

C

≤ eCT
(

am
0 + C′

C

)
− C′

C
.

The conclusion follows. �
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Mollification Notice that in Theorem 1 (and Theorem 2) the condition about the differentia-
bility of the loss function � is in the weak sense. For ease of analysis, we adopt the following
mollification, given in [12].

Definition 1. (Mollifier.) Define the function ν : Rdθ+dω →R,

ν(u) =
{

C exp
{−1/

(‖u‖2
2 − 1

)}
, ‖u‖2 < 1,

0, ‖u‖2 ≥ 1,

such that
∫
R

dθ+dω ν(u) du = 1. For any ε > 0, define

νε(u) = 1

εdθ+dω
ν

(
u

ε

)
.

Note that the mollifier ν ∈ C∞(
R

dθ+dω
)

and, for any ε > 0, supp(νε) = Bε(0), where Bε(0)
denotes the ε ball around the origin in the Euclidean space R

dθ+dω .

Definition 2. (Mollification.) Let f ∈L1
loc

(
R

dθ+dω
)

be any locally integrable function. For any
ε > 0, define f ε = νε ∗ f such that

f ε(u) =
∫
R

dθ+dω
νε(u − v)f (v) dv =

∫
R

dθ+dω
νε(v)f (u − v) dv.

By a simple change of variables and integration by parts, we can derive that, for any multi-
index J, ∇Jf ε = νε ∗ [DJf ]. Here we quote some well-known results about this mollification
from [12, Theorem 7, Appendix C.4].

Lemma 4.

(i) f ε ∈ C∞(
R

dθ+dω
)
.

(ii) f ε −→ f almost everywhere as ε−→ 0.

(iii) If f ∈ C
(
R

dθ+dω
)
, then f ε −→ f uniformly on compact subsets of Rdθ+dω .

(iv) If f ∈Lp
loc

(
R

dθ+dω
)

for some 1 ≤ p<∞, then f ε −→ f in Lp
loc

(
R

dθ+dω
)
.

To give a convergence rate for the pointwise convergence in Lemma 4, we have the
following lemma.

Lemma 5. Assume f ∈ W1,1
loc

(
R

dθ+dω
)

and there exist k1, k2 such that |Df (u)| ≤ k1

(
1 +

‖u‖2k2
2

)
; then, for any u ∈R

dθ+dω , there exists ρ : R+ →R such that limε→0 ρ(ε) = 0 and

|f ε(u) − f (u)| ≤ ρ(ε).

Proof.

|f ε(u) − f (u)| =
∣∣∣∣
∫

Bε(0)
νε(v)[f (u − v) − f (u)]

∣∣∣∣ dv

=
∣∣∣∣
∫

Bε(0)
νε(v)

∫ 1

0
[Df (u − hv)�v] dh dv

∣∣∣∣
≤ ε

∫
Bε(0)

νε(v)
∫ 1

0
|Df (u − hv)| dh dv.
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Since there exist k1, k2 such that |Df (u)| ≤ k1

(
1 + ‖u‖2k2

2

)
,

|f ε(u) − f (u)| ≤ ε
∫

Bε(0)
νε(v)

∫ 1

0

[
k1

(
1 + ‖u − hv‖2k2

2

)]
dh dv

≤ ε
∫

Bε(0)
νε(v)

∫ 1

0

[
k1

(
1 + ‖u‖2k2

2 + h2k2‖v‖2k2
2

)]
dh dv

≤ ε
∫

Bε(0)
νε(v)

[
k1

(
1 + ‖u‖2k2

2

)
+ k1

2k2 + 1
‖v‖2k2

2

]
dv

≤ ε
[
k1

(
1 + ‖u‖2k2

2

)]
+ k1

2k2 + 1
ε2k2+1.

Let ρ(ε) = ε
[
k1

(
1 + ‖u‖2k2

2

)]
+ (k1/(2k2 + 1))ε2k2+1. Then ρ(ε) −→ 0 as ε−→ 0. �

It is also straightforward to see that the mollification preserves Lipschitz conditions.
Consider the following SDE under component-wise mollification of coefficients:

d

(

εt

Wε
t

)
= [

bε0
(

εt ,Wε

t

)
dt + ηbε1

(

εt ,Wε

t

)]+ σε
(

εt ,Wε

t

)
dWt. (SDE-MLF)

Lemma 6. Assume b0, b1, and σ are all Lipschitz. Then

E

[
max

t=1,...,N̄

∥∥∥∥∥
(

εtη

Wε
tη

)
−

(

tη

Wtη

) ∥∥∥∥∥
2

2

]
ε→0−→ 0,

where (

εtη

Wε
tη

)
is given by (SDE-MLF),

(

tη

Wtη

)
is given by (ALT-SDE).

Proof. With Lemma 5, the conclusion follows from [20, Theorem 9, Section 2.5]. �

3.3.2. Remaining proof Given the conditions of Theorem 1 and the fact that mollification
preserves Lipschitz conditions, bε0, bε1, and σε inherit regularity conditions from Theorem 1.
Therefore, the conclusion from Lemma holds. Lemma 2 holds. Lemmas 1, 2, 3, and 5 verify
the condition in [24, Theorem 3]. Therefore, for any test function f ∈ C3

(
R

dθ+dω
)

such that,
for any multi-index J with |J| ≤ 3, there exist k1, k2 ∈N satisfying

|∇Jf (θ, ω)| ≤ k1

(
1 +

∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
2k2

2

)
,

we have the weak approximation given by (8), where (θt, ωt) and (
tη,Wtη) are given by
(ALT) and (SDE-MLF), respectively, and ρ is given as in Lemma 5.

Finally, taking ε to 0, Lemma 6 and the explicit form of ρ lead to the conclusion.

4. The long-run behavior of GAN training via SDE invariant measures

In this section we study the long-run behavior of GAN training and discuss some of the
implications of the technical assumptions as well as the steady state.
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4.1. Long-run behavior of GAN training

In addition to the evolution of parameters in GANs, the long-run behavior of GAN training
can be estimated from the SDEs (ALT-SDE) and (SML-SDE). This limiting behavior is char-
acterized by their invariant measures. Recall the following definition of invariant measures
in [8].

Definition 3. A probability measure μ∗ ∈P
(
R

dθ+dω
)

is called an invariant measure for a

stochastic process
{(

t Wt

)�}
t≥0 if, for any measurable bounded function f and t ≥ 0,∫

E[f
(

t,Wt

) |
0 = θ,W0 =ω]μ∗(dθ, dω) =
∫

f (θ, ω)μ∗(dθ, dω).

Remark 2. Intuitively, an invariant measure μ∗ in the context of GAN training describes the
joint probability distribution of the generator and discriminator parameters (
∗,W∗) in equi-
librium. For instance, if the training process converges to the unique minimax point (θ∗, ω∗)
for minθ maxω �(θ, ω), the invariant measure is the Dirac mass at (θ∗, ω∗).

Moreover, the invariant measure μ∗ and the marginal distribution of 
∗ characterize the
generated distribution Law(G
∗(Z)), necessary for producing synthesized data and for evalu-
ating the performance of the GAN model through metrics such as inception score and Fréchet
inception distance. (See [16, 32] for more details on these metrics.)

Finally, as emphasized in Section 2 GANs are minimax games. From a game perspective,
the probability distribution of 
∗ conditioning on the discriminator parameter W∗, denoted
by the Law(
∗ |W∗), corresponds to the mixed strategies adopted by the generator; likewise,
the probability distribution of W∗ conditioning on the generator parameter 
∗, denoted by
Law(W∗ |
∗), characterizes the mixed strategies adopted by the discriminator.

Recall that the SDE approximation (ALT-SDE) for the GAN training process is given by

d

(

t

Wt

)
= b

(

t,Wt

)
dt + σ

(

t,Wt

)
dWt,

where the drift coefficient is given by b(θ, ω) = b0(θ, ω) + ηb1(θ, ω) with

b0(θ, ω) =
(−gθ (θ, ω)

gω(θ, ω)

)
,

b1(θ, ω) = 1

2

( ∇θgθ (θ, ω) −∇ωgθ (θ, ω)

−∇θgω(θ, ω)−∇ωgω(θ, ω)

)(−gθ (θ, ω)

gω(θ, ω)

)

= −1

2
∇b0(θ, ω)b0(θ, ω) −

(∇ωgθ (θ, ω)gω(θ, ω)

0

)
,

and the diffusion coefficient is given by

σ (θ, ω) =
√

2β−1

(
�θ

(

t,Wt

)1/2 0

0 �ω
(

t,Wt

)1/2

)
.

Note that (ALT-SDE) depends on the first- and second-order derivatives of the training loss
with respect to the generator and the discriminator parameters.
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Theorem 3. Assume the following conditions hold:

3(a) both b and σ are bounded and smooth, and have bounded derivatives of any order;

3(b) there exist some positive real numbers r and M0 such that, for any
(
θ ω

)� ∈R
dθ+dω ,

(
θ ω

)
b(θ, ω) ≤ −r

∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
2

if

∥∥∥∥∥
(
θ

ω

) ∥∥∥∥∥
2

≥ M0;

3(c) A is uniformly elliptic, i.e. there exists l> 0 such that

for any

(
θ

ω

)
,

(
θ ′

ω′

)
∈R

dθ+dω ,
(
θ ′ ω′)�σ (θ, ω)σ (θ, ω)�

(
θ ′

ω′

)
≥ l

∥∥∥∥∥
(
θ ′

ω′

) ∥∥∥∥∥
2

2

.

Then (ALT-SDE) admits a unique invariant measure μ∗ with an exponential convergence rate
of the joint distribution of

(

t,Wt

)
towards μ∗ as t → ∞.

Similar results hold for the invariant measure of (SML-SDE) with b replaced by b0.

Proof. In order to prove Theorem 3, we construct an appropriate Lyapunov function to
characterize the long-term behavior for the SDE (ALT-SDE); the associated Lyapunov con-
dition leads to the existence of an invariant measure for the dynamics of the parameters. We
highlight this technique since it can be used in the analysis of broader classes of dynamical
systems, for both stochastic and deterministic cases; see, for instance, [22]. Consider the func-
tion V : [0,∞) ×R

dθ+dω →R given by V(t, u) = exp{δt + ε‖u‖2} for all u ∈R
dθ+dω , where

the parameters δ, ε > 0 will be determined later. Note that V is a smooth function, and

lim‖u‖2→∞ inf
t≥0

V(t, u) = +∞ (13)

for any fixed δ, ε > 0. Under (ALT-SDE), applying Itô’s formula to V gives

dV(t, 
t,Wt) =

V(t, 
t,Wt)

[
ε

(

t Wt

)
b
(

t,Wt

)
∥∥(
t Wt

)�∥∥
2

+ δ

+ 1

2
Tr

(
σ
(

t,Wt

)
σ
(

t,Wt

)�

×
{
ε
∥∥(
t Wt

)�∥∥2
2I + (

ε2
∥∥(
t Wt

)�∥∥
2 − ε

)(

t Wt

)�(

t Wt

)
∥∥(
t Wt

)�∥∥3
2

})]
dt

+ εV(t, 
t,Wt)

(

t Wt

)
σ
(

t,Wt

)
∥∥(
t Wt

)�∥∥
2

dWt.

Define the Lyapunov operator

LV(t, u) = V(t, u)

[
ε

u�b(u)

‖u‖2
+ δ+ 1

2
Tr

(
σ (u)σ (u)�

ε‖u‖2
2I + (ε2‖u‖2 − ε)uu�

‖u‖3
2

)]
.
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Given the boundedness of σ , i.e. there exists K > 0 such that ‖σ‖F ≤ K, and the dissipative
property given by condition 3(b), i.e. there exist r,M0 > 0 such that, for any u ∈R

dθ+dω with
‖u‖2 >M0, u�b(u) ≤ −r‖u‖2, we have

LV(t, u) ≤ V(t, u)

[
δ − rε+ 1

2

(
ε
‖σ‖2

F

‖u‖2
+ ε2‖σ‖2

F

)]

≤ V(t, u)

[
δ + K2ε2

2
−

(
r − K2

2‖u‖2

)
ε

]
.

Now take

M>max

{
K2

2r
,M0

}
, 0< ε <

2r

K2
− 1

M
, δ = −1

2

[
K2ε2

2
+

(
K2

2M
− r

)
ε

]
> 0;

then, for any ‖u‖2 >M, LV(t, u) ≤ −δV(t, u). Therefore,

lim‖u‖2→∞ inf
t≥0

LV(t, u) = −∞. (14)

Following [19, Theorem 3.7], (13) and (14) ensure the existence of an invariant measure μ∗
for (ALT-SDE). By the uniform elliptic condition 3(c), uniqueness follows from [17, Theorem
2.3]. Following from the main result in [38], the mixing coefficient

β(s) := sup
t

E
[
TVB∈σ (Xu,t+s≤u<∞)

∣∣P(B | σ (Xu, 0 ≤ u ≤ t)) − P(B)
∣∣ | X0 = x

]
, (15)

decays exponentially as s → ∞. For a Borel measurable set C ⊂R
dθ+dω ,

∣∣E[1{(
s,Ws
) ∈ C | (
0,W0) = (θ, ω)

}]−E
[
1
{(

s,Ws

) ∈ C
}]∣∣≤ β(s)

for all s> 0. Since any bounded and measurable function f can be approximated by simple
functions, the usual argument from indicator functions to simple functions implies that

∣∣E[f (
s,Ws
) | (
0,W0) = (θ, ω)

]−Eμ∗[f (
,W)]
∣∣≤ Cβ(s)

for all s> 0, for some constant C> 0. Let ν be an arbitrary initial distribution of (
0,W0).
Then we have ∣∣E(
0,W0)∼ν f

(

s,Ws

)−Eμ∗ f (
,W)
∣∣<Cβ(s)

for all s> 0. The conclusion follows. �

Theorem 3, together with Theorems 1 and 2, help to control the distance between the train-
ing output after N̄ = �T /η� iterations and the mixed-strategy equilibrium (
∗,W∗) ∼μ∗ in a
sense that ∣∣E[f (θN̄, ωN̄

)]−E
[
f
(

∗,W∗)]∣∣≤ C1(T )ρ1(η) + C2β(T ) (16)

for any bounded measurable function f ∈ G3
(
R

dθ+dω
)
, where C1 and ρ1 are as in (9), C2 is

some positive constant, and β is as in (15).
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4.2. Discussion of the assumptions

4.2.1. Implications of the technical assumptions on GAN training. The assumptions 1(a)–(c),
2(a) and (b), and 3(a) for the regularity conditions of the drift, the volatility, and the derivatives
of the loss function�, are more than mathematical convenience. They are essential constraints
on the growth of the loss function with respect to the model parameters, necessary for avoiding
the explosive gradient encountered in the training of GANs.

Moreover, these conditions put restrictions on the gradients of the objective functions with
respect to the parameters. By the chain rule, it requires both careful choices of network
structures and particular forms of the loss function �.

In terms of proper neural network architectures, let us take an example of a network with
one hidden layer. Let f : X ⊂R

dx →R be such that

f
(
x;Wh,wo)= σo

(
wo · σ h

(
Whx

))= σo

(
h∑

i=1

wo
i σh

( dx∑
j=1

Wh
i,jxj

))
.

Here, h is the width of the hidden layer, Wh ∈R
h×dx and wo ∈R

h are the weight matrix and
vector for the hidden and output layers respectively, and σh : R→R and σo : R→R are the
activation functions for the hidden and output layers. Then, taking partial derivatives with
respect to the weights yields

∂Wh
i,j

f
(
x;Wh,wo)= σ ′

o

(
h∑

i=1

wo
i σh

( dx∑
j=1

Wh
i,jxj

))
· wo

i · σ ′
h

( dx∑
j=1

Wh
i,jxj

)
· xj,

∂wo
i
f
(
x;Wh,wo)= σ ′

o

(
h∑

i=1

wo
i σh

( dx∑
j=1

Wh
i,jxj

))
· σh

( dx∑
j=1

Wh
i,jxj

)
,

from which we can see that the regularity conditions, especially the growth of the loss function
with respect to the model parameters (i.e. assumptions 1(a)–(c) and 2(a)–(b)) rely on the regu-
larity and the boundedness of the activation functions and the width and depth of the network,
as well as the magnitudes of the parameters and data. Therefore, assumptions 1(a)–(c), 2(a)
and (b), and 3(a) explain mathematically some well-known practices in GAN training such as
introducing various forms of gradient penalties; see, for instance, [15, 37]. See also [33] for a
combination of competition and gradient penalty to stabilize GAN training. It is worth noticing
that apart from affecting the stability of GAN training, the regularity of the network can also
affect the sample complexity of GANs and this phenomenon has been studied in [27] for a
class of GANs with optimal transport-based loss functions.

In terms of choices of loss functions, the objective function of the vanilla GANs in [14] is
given by

l(θ, ω) =EX∼Pr [ log Dω(X)] +EZ∼Pz [ log (1 − Dω(Gθ (Z)))].

Taking partial derivatives with respect to θ and ω, we see that

∇θ l(θ, ω) = −EZ∼Pz

[
1

1 − Dω(Gθ (Z))
JG
θ (Z)∇xDω(Gθ (Z))

]
,

∇ωl(θ, ω) =EX∼Pr

[
1

Dω(X)
∇ωDω(X)

]
−EZ∼Pz

[
1

1 − Dω(Gθ (Z))
∇ωDω(Gθ (Z))

]
,
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where JG
θ denotes the Jacobian matrix of Gθ with respect to θ , and ∇x denotes the gradient

operator over a (parametrized) function with respect to its input variable. [1] analyzed the
difficulties of stabilizing GAN training under the above loss function due to the lack of proper
regularity conditions, and proposed a possible remedy by an alternative Wasserstein distance
which enjoys better smoothness conditions.

4.2.2. Verifiability of assumptions in Theorems 1, 2, and 3 The assumptions from these theo-
rems can be summarized into the three categories specified below. For some of the assumptions,
there are available choices of GAN structures for a wide range of applications where these
assumptions can be verified easily; some are consistent with certain choices of regularization
applied in the training procedures of GANs; others are more subtle.

On the smoothness and the boundedness of drift and volatility Take the example of
Wasserstein GANs (WGANs) for image processing. Given that sample data in image process-
ing problems are supported on a compact domain, assumptions 1(a)–(c), 2(a) and (b), and 3(a)
are easily satisfied with proper choices of prior distribution and activation function: first, the
prior distribution Pz such as the uniform distribution is naturally compactly supported; next,
take Dω = tanh (ω · x), Gθ (z) = tanh (θ · z), and the objective function

�(θ, ω) =
∑N

i=1
∑M

j=1 Dω(xj) − Dω(Gθ (zi))

N · M
.

Then, assumptions 1(a)–(c), 2(a) and (b), and 3(a) are guaranteed by the boundedness of the
data {(zi, zj)}1≤i≤N,1≤j≤M and the very structure of the activation function:

ψ(y) = tanh y = ey − e−y

ey + e−y
= 1 − 2

e2y + 1
∈ (−1, 1).

More precisely, the first- and second-order derivatives of ψ are

ψ ′(y) = 4

(ey + e−y)2
∈ (0, 1], ψ ′′(y) = −8

ey − e−y

(ey + e−y)3
= −2ψ(y)ψ ′(y) ∈ (−2, 2);

any higher-order derivatives can be written as functions of ψ( · ) and ψ ′( · ) and are therefore
bounded.

On the dissipative property The dissipative property specified by 3(b) essentially prevents
the evolution of the parameters from being driven to infinity. The weight clipping technique in
WGANs, for instance, is consistent with this assumption.

On the elliptic condition Compared with the above two categories of assumptions, the
uniform ellipticity condition 3(c) is intrinsically rooted in the stochasticity brought by the
sampling procedures of stochastic gradient algorithms in general, i.e. the microscopic fluctua-
tion from the noise of SGAs, instead of the macroscopic loss landscape of GANs. Recall from
Section 2 that a cost function of the form

�(θ, ω) =
∑N

i=1
∑M

j=1 J(θ, ω;xj, zi)

N · M

naturally induces a random variable g(θ, ω;X, Z) = (∇θJ(θ, ω;X, Z),∇ωJ(θ, ω;X, Z)) with
mean (gθ (θ, ω), gω(θ, ω)), where (X, Z) follows the empirical distribution given by the dataset
D. The elliptic condition is essentially equivalent to the random variable g(θ, ω;X, Z) being
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non-degenerate, and the smallest eigenvalue of its covariance matrix, σ (Cov(g(θ, ω;X, Z))),
being bounded away from 0. Note that this condition cannot be guaranteed by adding parameter
regularizations as in the case of the dissipative property, since parameter regularizations only
change the drift term b. For suitable choices of loss function� such that σ (Cov(g(θ, ω;X, Z)))
is indeed bounded away from 0, control of the training outcome (16) holds; otherwise, we
could consider a perturbed SDE approximation,

d

(

λt

Wλ
t

)
= b

(

λt ,Wλ

t

)
dt + [

σ
(

λt ,Wλ

t

)+ λI
]

dWt,

(

λ0

Wλ
0

)
=

(

0

W0

)
,

for sufficiently small λ> 0. Under condition 3(a), Itô isometry and Gronwall’s inequality give
the error bound

E

∥∥∥∥∥
(

λt

Wλ
t

)
−

(

t

Wt

) ∥∥∥∥∥
2

≤ αλ, t> 0,

for some positive coefficient α= α(t) depending on time t. We can still control the distance
between the training outcome and the perturbed equilibrium by∣∣E[f (θN̄, ωN̄

)]−E
[
f
(

λ,∗,Wλ,∗)]∣∣≤ C1(T )ρ1(η) + C2β(T ) + C3(T )λk

for any bounded measurable function f ∈ G3(Rdθ+dω ), where C1, C2, ρ1, and β are as in (16),
C3 is some positive coefficient depending on T , and k ∈N is some positive integer.

4.3. Dynamics of training loss and FDR

We can further analyze the dynamics of the training loss based on the SDE approximations
and derive a fluctuation–dissipation relation (FDR) for the GAN training.

To see this, let μ= {μt}t≥0 be the flow of probability measures for
{(

t Wt

)�}
t≥0 given

by (ALT-SDE). Then, applying Itô’s formula to the smooth function� (see [31, Section 4.18])
gives the following dynamics of training loss:

�
(

t,Wt

)=�
(

s,Ws

)+
∫ t

s
A�(
r,Wr) dr +

∫ t

s
σ (
r,Wr)∇�(
r,Wr) dWr, (17)

where

Af (θ, ω) = b(θ, ω)�∇f (θ, ω) + 1

2
Tr(σ (θ, ω)σ (θ, ω)�∇2f (θ, ω)) (18)

is the infinitesimal generator for (ALT-SDE) on any given test function f : Rdθ+dω →R.
The existence of the unique invariant measure μ∗ for (ALT-SDE) implies the convergence

of
{(

t Wt

)�}
t≥0 in (ALT-SDE) to some

(

∗ W∗)� ∼μ∗ as t → ∞. By Definition 3 of the

invariant measure and (17), we have Eμ∗ [A�(
∗,W∗)] = 0. Applying the operator (18) over
the loss function φ yields

A�(θ, ω) = b0(θ, ω)�∇�(θ, ω) + ηb1(θ, ω)�∇�(θ, ω) + 1

2
Tr
(
σ (θ, ω)σ (θ, ω)�∇2�(θ, ω)

)
= −‖∇θ�(θ, ω)‖2

2 + ‖∇ω�(θ, ω)‖2
2

− η

2

[∇θ�(θ, ω)�∇2
θ�(θ, ω)∇θ�(θ, ω) + ∇ω�(θ, ω)�∇2

ω�(θ, ω)∇ω�(θ, ω)
]

+ β−1Tr
(
�θ (θ, ω)∇2

θ�(θ, ω) +�ω(θ, ω)∇2
ω�(θ, ω)

)
.
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Based on the evolution of the loss function (17), convergence to the invariant measure μ∗ leads
to the following FRD for GAN training.

Theorem 4. Assume the existence of an invariant measure μ∗ for (ALT-SDE); then

Eμ∗
[‖∇θ�(
∗,W∗)‖2

2 − ‖∇ω�(
∗,W∗)‖2
2

]
= β−1

Eμ∗
[
Tr
(
�θ (
∗,W∗)∇2

θ�(
∗,W∗) +�ω(
∗,W∗)∇2
ω�(
∗,W∗)

)]
− η

2
Eμ∗

[∇θ�(
∗,W∗)�∇2
θ�(
∗,W∗)∇θ�(
∗,W∗)

+ ∇ω�(
∗,W∗)�∇2
ω�(
∗,W∗)∇ω�(
∗,W∗)

]
. (FDR1)

The corresponding FDR for the simultaneous update case of (SML-SDE) is

Eμ∗
[‖∇θ�(
∗,W∗)‖2

2 − ‖∇ω�(
∗,W∗)‖2
2

]
= β−1

Eμ∗
[
Tr
(
�θ (
∗,W∗)∇2

θ�(
∗,W∗) +�ω(
∗,W∗)∇2
ω�(
∗,W∗)

)]
.

Remark 3. This FDR relation in GANs connects the microscopic fluctuation from the noise of
SGAs with the macroscopic dissipation phenomena related to the loss function. In particular,
the quantity Tr(�θ∇2

θ�+�ω∇2
ω�) links the covariance matrices �θ and �ω from SGAs with

the loss landscape of �, and reveals the trade-off of the loss landscape between the generator
and the discriminator.

Note that this FDR relation for GAN training is analogous to that for the stochastic gradient
descent algorithm on a pure minimization problem in [25, 44].

Further analysis of the invariant measure can lead to a different type of FDR that will be
practically useful for learning rate scheduling. Indeed, applying Itô’s formula to the squared
norm of the parameters

∥∥(
t Wt
)�∥∥2

2 shows the following dynamics:

d

∥∥∥∥∥
(

t

Wt

) ∥∥∥∥∥
2

2

= 2

(

t

Wt

)�
d

(

t

Wt

)
+ Tr

(
σ
(

t,Wt

)
σ
(

t,Wt

)�) dt.

Theorem 5. Assume the existence of an invariant measure μ∗ for (SML-SDE); then

Eμ∗
[

∗,T∇θ�(
∗,W∗) −W∗,T∇ω�(
∗,W∗)

]
= β−1

Eμ∗
[
Tr(�θ (
∗,W∗) +�ω(
∗,W∗))

]
. (FDR2)

Given the infinitesimal generator for (ALT-SDE), Theorems 4 and 5 follow from direct
computations.

Remark 4. (Scheduling of learning rate.) Notice that the quantities in (FDR2), including the
parameters (θ, ω) and first-order derivatives of the loss function gθ , gω, gi,j

θ , and gi,j
ω , are com-

putationally inexpensive. Therefore, (FDR2) enables customized scheduling of learning rate,
instead of predetermined scheduling ones such as Adam or RMSprop optimizer.
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For instance, recall that gBθ and gBω are respectively unbiased estimators for gθ and gω, and

�̂θ (θ, ω) =
∑B

k=1

[
gIk,Jk
θ (θ, ω) − gBθ (θ, ω)

][
gIk,Jk
θ (θ, ω) − gBθ (θ, ω)

]�
B − 1

,

�̂ω(θ, ω) =
∑B

k=1

[
gIk,Jk
ω (θ, ω) − gBω (θ, ω)

][
gIk,Jk
ω (θ, ω) − gBω (θ, ω)

]�
B − 1

are respectively unbiased estimators of�θ (θ, ω) and�ω(θ, ω). Now, in order to improve GAN
training with simultaneous update, we can introduce two tunable parameters ε > 0 and δ > 0
to have the following scheduling:

if

∣∣∣∣ 
�gBθ
(

t,Wt

)−W�
t gBω

(

t,Wt

)
β−1Tr

(
�̂θ

(

t,Wt

)+ �̂ω
(

t,Wt

)) − 1

∣∣∣∣< ε, then update η by (1 − δ)η.
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