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SOLUTIONS OF THE tt*-TODA EQUATIONS AND QUANTUM
COHOMOLOGY OF MINUSCULE FLAG MANIFOLDS

YOSHIKI KANEKO

Abstract. We relate the quantum cohomology of minuscule flag manifolds

to the tt*-Toda equations, a special case of the topological–antitopological

fusion equations which were introduced by Cecotti and Vafa in their study

of supersymmetric quantum field theories. To do this, we combine the Lie-

theoretic treatment of the tt*-Toda equations of Guest–Ho with the Lie-

theoretic description of the quantum cohomology of minuscule flag manifolds

from Chaput–Manivel–Perrin and Golyshev–Manivel.

§1. Introduction

It is well known that solutions of the two-dimensional Toda equations correspond to

primitive harmonic maps into flag manifolds. The tt*-Toda equations provide a special

case of the Toda equations; here, the harmonic maps can be regarded as generalizations

of variations of Hodge structure (VHSs). Certain special solutions illustrate the mirror

symmetry phenomenon: for example, according to Cecotti and Vafa [CV], the generalized

VHS for a solution may correspond to the quantum (orbifold) cohomology of a certain

Kähler manifold.

To be more precise, there are three aspects of this result. First, it is necessary to establish

a bijective correspondence between global solutions on C
∗ =C−{0} and their holomorphic

data. Second, these holomorphic data have to be identified with a flat connection of the type

used by Dubrovin in the theory of Frobenius manifolds—we call it the Dubrovin connection.

Finally, for certain specific solutions, this has to be identified with the Dubrovin connection

associated with the (small) quantum cohomology of a specific Kähler manifold. Guest, Its,

and Lin have investigated all three aspects in the case of the Lie group type An [GIL].

In [GH], the tt*-Toda equations are described for general complex simple Lie algebras.

Guest and Ho obtained a correspondence between solutions and the fundamental Weyl

alcove. It is expected (but not yet proved beyond the An case) that this gives a bijective

correspondence between global solutions and points of (a subset of) the fundamental Weyl

alcove.

This paper is a contribution to the second and third aspects of the generalization of [GIL]

to the case of general complex simple Lie algebras. That is, we establish a correspondence

between the holomorphic data of certain specific solutions of the tt*-Toda equations and

the Dubrovin connections of minuscule flag manifolds, based on the Lie-theoretic approach

of [GH]. Minuscule flag manifolds are the projectivized weight orbits of minuscule weights

(see [CMP]).

The quantum cohomology of flag manifolds has been the subject of many articles, espe-

cially from the point of view of quantum Schubert calculus. For Lie-theoretic treatments,

we mention in particular [FW]. The minuscule case has been studied in detail in [CMP].
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Golyshev and Manivel [GM] described the quantum cohomology of minuscule flag

manifolds in the context of the Satake isomorphism. For geometers, the most familiar

example of this is the relation between the cohomology of the Grassmannian and the exterior

powers of the cohomology of projective space. A quantum version of this was established in

[GM]. It depends on a description of the quantum cohomology of a minuscule flag manifold

G/Pλi in terms of a family of Lie algebra elements denoted by
∑n

j=1 e−αj + qeψ of the

Lie algebra g (see §2). Namely, quantum multiplication by the generator of the second

cohomology of G/Pλi coincides with the action of
∑n

j=1 e−αj +qeψ under the representation

whose highest weight is λi.

Our main observation is that this element arises from a certain solution of the tt*-Toda

equations. In the theory of [GH], this solution corresponds to the origin of the fundamental

Weyl alcove. The Dubrovin connection is then d+(1/λ)(
∑n

j=1 e−αj + qeψ)dq/q.

As this solution depends only on G, that is, it is independent of the choice of minuscule

representation of G, we obtain a relation between the quantum cohomology rings of all

minuscule flag manifold G/Pλi (for fixed G). For Lie groups of types An, Dn, and E6,

there are several minuscule weights; thus, in these cases, the same solution of the tt*-Toda

equations corresponds to the quantum cohomology of several minuscule flag manifolds. In

particular, this means that the tt*-Toda equation gives an explanation for the quantum

Satake isomorphism of [GM].

In addition to these tt* aspects, we give more concrete statements and more details of

the quantum cohomology results, based on the existing literature. We show directly how

the above statement concerning the action of
∑n

j=1 e−αj + qeψ follows from the quantum

Chevalley formula. Unlike the original proof in [GM], a case-by-case argument is not needed

for this.

The following are the contents of this paper. First, we review some aspects of the tt*-Toda

equations, quantum cohomology, and representation theory. In §2.1, we prepare notation

and recall the tt*-Toda equations for general complex simple Lie groups. Then we describe

the relationship between a solution and an element of the fundamental Weyl alcove. In §2.2,
we review the relations between representations, homogeneous spaces, and cohomology, in

particular in the minuscule case. In §2.3, we make some observations on minuscule weight

orbits. In §2.4, we give the definition of the Dubrovin connection. In §3, we state the main

theorem (Theorem 10) of this paper, which gives an explicit relation between the quantum

cohomology of a minuscule flag manifold G/Pλi and a particular solution of the tt*-Toda

equations for G. After that, we give the proof and make some comments on the quantum

Satake isomorphism.

§2. Preliminaries

First of all, we prepare some aspects of the tt*-Toda equations. Then we review some

representation theory. We discuss minuscule weights and irreducible representations. From

the Bruhat decomposition, we can obtain a cell decomposition of the projectivized maximal

weight orbit, its cohomology, and its quantum cohomology [FW].

2.1 The tt*-Toda equations

We explain some theory of the tt*-Toda equations. It is possible to obtain local solutions

through the DPW construction, and a relationship between the space of local solutions
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992 Y. KANEKO

and the fundamental Weyl alcove. For more details, we refer to the article by Guest and

Ho [GH].

Let G be a complex, simple, simply connected Lie group of rank n, and let g be its Lie

algebra. We take a Cartan subalgebra h and let g= h⊕
⊕

α∈� gα be the root decomposition

where � is the set of roots. We choose positive roots �+, and we obtain simple roots

Π = {α1, . . . ,αn}. We denote the negative roots −�+ by �−. Let ( , ) be the Killing form.

This Killing form induces a nondegenerate invariant form on h∗. We also denote this by the

same notation ( , ). We denote the coroot of α by α∨ ∈ h. This α∨ corresponds to 2
(α,α)α

in h∗. We define an ordering of the roots by α < β if β−α is positive.

We define Hα by (Hα,h) = (α,h) for all h in h where we denote the pairing between h

and h∗ by the same notation. Then we obtain a basis Hα1 , . . . ,Hαn of h. We may choose

basis vectors eα ∈ gα such that (eα, e−α) = 1 for all α ∈�. Then we have

[eα, eβ] =

⎧⎪⎨
⎪⎩
0, if α+β /∈�,

Hα, if α+β = 0,

Nα+βeα+β, if α+β ∈�−{0},

where Nα+β is a nonzero complex number. We define εi as the basis of h which is dual to

αi, that is, (αi, εj) = δi,j . We denote the highest root by ψ :=
∑n

j=1 qjαj and the Coxeter

number by s := 1+
∑n

j=1 qj .

Fix d0, . . . ,dn ∈ C
×. Let w be a function w : U → h where U is an open subset of C with

coordinate t. Then the Toda equations are

2wtt =−
n∑

j=1

dje
−2αj(w)Hαj −d0e

2ψ(w)H−ψ.

If we consider the connection form α,

α= (wt+
1

λ
Ẽ−)dt+(−wt̄+λẼ+)dt̄=: α′dt+α′′dt̄,

where Ẽ± = Ad(ew)(
∑n

j=1 c
±
j e±αj + c±0 e∓ψ) for c±i ∈ C

×, then the curvature dα+α∧α is

zero if and only if the Toda equations hold.

Given a real form of g, the corresponding real form of the Toda equations is defined by

imposing two reality conditions: αj(w) ∈ R for all j, and α′(t, t̄,λ) �→ α′′(t, t̄,1/λ̄) under the

conjugation with respect to the real form.

We add further conditions motivated by the tt* equations. Following Kostant [K], we

introduce h0 =
∑n

j=1 εj =
∑n

j=1 rjHαj , e0 =
∑n

j=1ajeαj , and f0 =
∑n

j=1(rj/aj)e−αj , where

rj ∈ R
× and aj ∈ C

×. Since these generators satisfy the conditions [h0, e0] = e0, [h0,f0] =

−f0, and [e0,f0] = h0, this subalgebra is isomorphic to sl2C. We can decompose g according

to the adjoint action by this subalgebra, and then we obtain highest weight vectors uj of

irreducible subrepresentations Vj of g=
⊕

j Vj .

We use the standard compact real form ρ which satisfies

ρ(eα) =−e−α, ρ(Hα) =−Hα,

for all α ∈�. By Hitchin [Hit], we have a C-linear involution σ : g→ g defined by

σ(uj) =−uj , σ(f0) =−f0 (0≤ j ≤ n).
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Using ρ and σ, we define

χ := σρ.

Then it can be shown that σρ= ρσ [Hit] and that this χ defines a split real form gR.

Definition 1 (The tt*-Toda equations). The tt*-Toda equations are the Toda

equations for w : C× → h together with:

(R) the above reality conditions (with respect to χ),

(F) σ(w) = w (Frobenius condition), and

(S) w = w(|t|) (similarity condition).

From (R), it follows that w takes values in h� =
⊕n

j=1RHαj .

Remark 2. It is known that σ is the identity on h unless g is of type An, D2n+1,

or E6. Thus, the Frobenius condition on w is nontrivial only for these three types.

Example 1. The tt*-Toda equations of An type (see [GH, Example 3.11] or [GIL]) are

2(wi)tt̄ =−di+1e
2(wi+1−wi)+die

2(wi−wi−1),

for i = 0,1, . . . ,n, where wn+1 = w0 and we assume
∑n

i=0wi = 0 and where all di > 0

and di = dn−i+1. The Frobenius condition is wi +wn−i = 0 for i = 0, . . . ,n. We consider

wi = wi(|t|).

By the well-known DPW construction (see [GH], [GIL]), it is possible to construct a local

solution w near t= 0 from the connection form

ω =
1

λ

⎛
⎝ n∑

j=1

zkje−αj +zk0eψ

⎞
⎠dz

(i.e., from any k0, . . . ,kn ≥−1). Here, z is a complex variable related to t by

t= sz
1
s .

This solution satisfies

w(|t|)∼−mlog|t|,

as t→ 0, where m ∈ h� is defined by

αj(m) =
s

N
(kj +1)−1, 1≤ j ≤ n,

where N = s+
∑n

i=0 ki. In fact, the converse is true.

Proposition 3 [GH]. Let m∈ h�. There exists a local solution near zero of the tt*-Toda

equations such that w(|t|)∼−m log |t| as t→ 0 if and only if αj(m)≥−1 for j = 0, . . . ,n.

The condition αj(m) ≥ −1, for j = 0, . . . ,n, is equivalent to the condition defining

the fundamental Weyl alcove A = {x ∈
√
−1h�| αreal

j (x) ≥ 0, ψreal(x) ≤ 1}. This gives the

following theorem.

Theorem 4 [GH]. We have a bijective map between:

(a) the space of asymptotic data A = {m ∈ h�| αj(m) ≥ −1, j = 0, . . . ,n} when

G �=An,D2m+1,E6 (or the set Aσ = {m ∈ A| σ(m) =m} when G=An,D2m+1,E6) and
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(b) the fundamental Weyl alcove A (or Aσ = {x ∈ A| σ(x) = x}) defined by

A→ A, m �→ 2π
√
−1

s
(m+h0), (or Aσ → Aσ).

2.2 Minuscule weights and homogeneous spaces

We review some properties of minuscule weights. We refer to the article [CMP]. For

a simple complex Lie algebra, we define the weight lattice I as the Z-module spanned by

λ1, . . . ,λn where λi is defined by (λi,α
∨
j ) = δij . These λi are called the fundamental weights.

Definition 5. We call a weight λ a dominant weight if (λ,α∨
i ) > 0 for all αi ∈ Π. We

call a dominant weight λ a minuscule weight if (λ,α∨)≤ 1 for all α ∈�+.

It is well known that the set of the minuscule weights is a subset of the fundamental

weights. We summarize the minuscule weights for each type of Lie group at the end of §2.2.
By the Borel–Weil theorem, we can obtain an irreducible representation Vλi from each

fundamental weight λi. When we consider the projective representation P(Vλi), we obtain

the homogeneous space

G/Pλi
∼=G · [vλi ]⊂ P(Vλi),

where vλi is a highest weight vector and Pλi is the stabilizer group of [vλi ]. Here, Pλi is a

parabolic subgroup, and we denote Pλi by Pi.

We denote the weight orbit of λi by W ·λi. That is, W ·λi = {x(λi)| x ∈W}. When we

write x as a product of simple reflections, we denote by 
(x) the minimal number of such

reflections. The following fact holds for any parabolic subgroup P of G. Let �P be the

subset of � such that Lie(P ) = h⊕
⊕

α∈�P
gα. We denote the subset of the simple roots

which belong to �P by ΠP . Let WP be the subgroup of W generated by the corresponding

simple reflections.

Proposition 6 (See §1.10 in [Hu]). For x ∈ W , there exist unique elements u ∈ WP

and v ∈WP such that

x= uv,

where WP = {x ∈W | 
(xsα)> 
(x) ∀α ∈ΠP }.

By this fact, u is a representative of [x] ∈W/WP . We have W ·λi =WPi ·λi.

We consider the cohomology ring of G/Pi. The following fact is well known.

Theorem 7 ((Bruhat decomposition) [Hil]). For a parabolic subgroup P of G, we have

a decomposition

G=
∐

u∈WP

BuP.

Here, we regard the elements ofW as the elements of G by the isomorphismW ∼=N(T )/T

where T is a maximal torus. We define the Schubert varieties of G/Pi by Xu :=BuPi/Pi.

We also define the opposite Schubert varieties by Yu := x0Bx0uPi/Pi = x0Xx0u where x0 is

the longest element of W. Then [Yu] ∈H2n−2�(u)(G/Pi), and these classes form an additive

basis. By the Poincaré duality theorem, we have a basis of H2�(u)(G/Pi). We denote this

generator by σu.
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Now, we obtain the correspondence between WPi · λi and an additive basis of the

cohomology H∗(G/Pi) by

u(λi)←→ σu.

In the following table of fundamental weights, the minuscule weights are marked.

α1
An (n≥ 1) :

α2 α3 αn−1 αn

Fund. weight λ1 λ2 λ3 λn−1 λn

Minuscule � � � � �

α1
Bn (n≥ 2) :

α2 αn−2 αn−1 αn

Fund. weight λ1 λ2 λn−2 λn−1 λn

Minuscule �

α1
Cn (n≥ 3) :

α2 αn−2 αn−1 αn

Fund. weight λ1 λ2 λn−2 λn−1 λn

Minuscule �

α1
Dn (n≥ 4) :

α2 αn−3 αn−2

αn−1

αn

Fund. weight λ1 λ2 λn−3 λn−2 λn−1 λn

Minuscule � � �

α1
E6 : α2 α3

α4

α5 α6

Fund. weight λ1 λ2 λ3 λ4 λ5 λ6

Minuscule � �

α1
E7 : α2 α3

α7

α4 α5 α6

Fund. weight λ1 λ2 λ3 λ4 λ5 λ6 λ7

Minuscule �

https://doi.org/10.1017/nmj.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.17


996 Y. KANEKO

It is known that G2,F4, and E8 have no minuscule weight. G/Pλi can be described

conveniently as a quotient of compact groups as follows.

(An case) G/Pi
∼= SU(n+1)/S(U(i)×U(n+1− i))∼=Gr(k,n+1).

(Bn case) G/Pn
∼= SO(2n+1)/U(n)∼=OG(n,2n+1).

(Cn case) G/P1
∼= Sp(n)/(U(1)×Sp(n−1))∼= CP 2n−1.

(Dn case) G/P1
∼= SO(2n)/(U(1)×SO(2n−2))∼=Q2n−2,

G/Pn−1
∼= SO(2n)/U(n)∼= S+,G/Pn

∼= SO(2n)/U(n)∼= S−.

(E6 case) G/P1
∼=G/P6

∼= E6/(SO(10)×U(1))∼=OP 2.

(E7 case) G/P1
∼= E7/(E6×U(1)).

Here, OG(k,n) is the set of k -dimensional isotropic subspaces of n-dimensional complex

vector space V with a nondegenerate quadratic form. This is called the orthogonal

Grassmannian. For Dn, OG(n,2n) has two components S+ and S−. These are called

varieties of pure spinors (or spinor varieties), and these are isomorphic to each other [Ma].

For An,Bn,Cn, and Dn, the minuscule representations are familiar (see §6.5 in [BD]). For

An, Vλi is the exterior power
∧i

Vλ1 (1≤ i≤ n) where Vλ1 is the standard representation on

C
n+1. For Bn, Vn is the half-spin representation. For Cn, Vλ1 is the standard representation

on C
2n. For Dn, Vλ1 is the standard representation on C

2n. Vλn−1 and Vλn are the half-

spin representations. We denote these two representations by Δ+ and Δ−. For exceptional

groups, the minuscule representations are given in §5 of [Ge]. For E6, Vλ1 and Vλ6 are

27-dimensional representations. For E7, Vλ1 is a 56-dimensional representation.

2.3 Minuscule weight orbits and simple roots

In §2.3, we observe relationships between minuscule weight orbits and the simple roots.

Let λi be a minuscule weight.

Proposition 8. The set of all weights of Vλi is the W-orbit of λi, and the multiplicities

of all weights of Vλi are 1.

Proof. It is obvious that �W/WPi ≤ dim(W ·vλi)≤ dim(Vλi). If there is a weight which

has multiplicity more than 1, then �W/WPi < dimVλi . Therefore, by contraposition, when

we show that �W/WPi coincides with dimCVλi , we obtain the statement of Proposition 8.

We justify the above claim in each case. We have the orders of all Weyl groups from

Table 2 in §2.11 of [Hu]. For type An, we have dimC

∧
i
C

n+1 =
(
n+1
i

)
(1 ≤ i ≤ n). On the

other hand, for this representation, we have W/WPi =Sn+1/(Si×Sn+1−i). Therefore, we

obtain �W/WPi =
(n+1)!

i!(n+1−i)! =
(
n+1
i

)
. For type Bn, a minuscule representation is the half-spin

representation and its dimension is 2n. Then W/WPn =Sn · (Z2)
n/Sn. Hence, �W/WPn =

2n · n!/n! = 2n. For type Cn, a minuscule representation is the standard representation

C
2n and its dimension is 2n. The corresponding W/WP1 = Sn · (Z2)

n/Sn−1 · (Z2)
n−1.

Hence, �W/WP1 = 2n · n!/2n−1 · (n− 1)! = 2n. For type Dn, there are three minuscule

representations. These are the standard representations and the two half-spin represen-

tations. These dimensions are 2n, 2n−1, and 2n−1, respectively. The corresponding W/WPi

(i = 1,n− 1,n) are Sn · (Z2)
n−1/Sn−1 · (Z2)

n−2, Sn · (Z2)
n−1/Sn, and Sn · (Z2)

n−1/Sn,

and �W/WPi(i= 1,n−1,n) are 2n, 2n−1, and 2n−1, respectively. For type E6, there are two

minuscule representations. These representations are both 27-dimensional representations.
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The corresponding W/WP1 and W/WP6 are both WE6/S5 · (Z2)
4 where WE6 is the Weyl

group of E6. Then �WE6/S5 · (Z2)
4 = 27 · 34 · 5/24 · 5! = 27. For type E7, the minuscule

representation is a 56-dimensional representation. The corresponding W/WP1 is WE7/WE6

where WE7 is the Weyl group of E7. Then �W/WP1 = 210 · 34 · 5 · 7/27 · 34 · 5 = 56. This

completes the proof.

From Proposition 8, we have the weights of Vλi as {vu(λi)|u∈WPi} and the multiplication

of these weights are all one. In addition, we know that the Weyl group is generated by the

simple reflections {sαj | j ∈ {1, . . . ,n}}. Therefore, all weights can be obtained from λi by

applying {sαj | j ∈ {1, . . . ,n}} to λi repeatedly. We use a canonical basis of Vλi from §5A.1

of the article [J] with the following properties:

e−αj (vu(λi)) =

{
vu(λi)−αj

, (u(λi),α
∨
j ) = 1,

0, otherwise,
(2.1)

eαj (vu(λi)) =

{
vu(λi)+αj

, (u(λi),α
∨
j ) =−1,

0, otherwise,
(2.2)

Hαj (vu(λi)) = (u(λi),α
∨
j )vu(λi),

for all weights u(λi) and all j ∈ {1, . . . ,n}. As a consequence of (2.2), we have

eψ(vu(λi)) =

{
vu(λi)+ψ, (u(λi),ψ

∨) =−1,

0, otherwise.
(2.3)

2.4 Dubrovin connection

We consider the minuscule flag manifolds G/Pi. Then H∗(G/Pi) is given by the Bruhat

decomposition (see Theorem 7). We have Π\Πi = {αi}, so there is only one element sαi

which satisfies 
(u)= 1 inWPi . Therefore,H2(G/Pi)∼=C. We consider the quantum product

by the second cohomology, that is, σsαi
◦q where q is a nonzero complex number. Then we

define the Dubrovin connection.

Definition 9. The Dubrovin connection on the trivial vector bundle H2(M ;C)×
H∗(M ;C)→H2(M ;C) is defined by

∇= d+
1

λ
(σsαi

◦q)
dq

q
.

We seek flag manifolds whose Dubrovin connection forms are of the form ω =
1
λ(
∑n

j=1 q
kje−αj +qk0eψ)dq. As we see in §3, we can use the quantum Chevalley formula to

calculate σsαi
.

§3. Results

For any minuscule weight λi, the discussion in §2.2 establishes an isomorphism

Vλi =
⊕

u(λi)∈WP ·λi

Vu(λi)
∼=H∗(G/Pi;C).

We remark that, from §2.3, this isomorphism is given by

Vu(λi) � vu(λi) ↔ σu ∈H2�(u)(G/Pi;C)
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for all u ∈ WPi . From this, it can be seen that the cohomology grading on the right

corresponds to the grading by simple roots on the left.

Now, we can state our main theorem.

Theorem 10. Fix g and a minuscule weight λi. There is a natural correspondence

between (i) the asymptotic data

m=−h0 =−
n∑

j=1

rjHαj ∈ h�

and (ii) the DPW data

ω =
1

λ

⎛
⎝ n∑

j=1

e−αj + qeψ

⎞
⎠ dq

q

for solutions of the tt*-Toda equations. The asymptotic data correspond to a unique global

solution when g has type An (and conjecturally for any g). The holomorphic data correspond

to the Dubrovin connection for the quantum cohomology of G/Pi, that is, the natural action

of
∑n

j=1 e−αj + qeψ corresponds to quantum multiplication by a generator of H2(G/Pi,C).

Proof. In the bijection of Theorem 4 (§2.1), we see that m = −h0 corresponds to the

origin of the fundamental Weyl alcove, and in this case, we have k0 = 0 and k1 = · · · =
kl =−1. This gives the correspondence between (i) and (ii) (with q = z). For the statement

concerning global solutions in the An case, we refer to [GIL], [Mo]. The identification of

ω with the Dubrovin connection can be extracted from [GM], but we present a new1 and

more direct proof here, using the quantum Chevalley formula.

Theorem 11 [FW]. For β ∈ Π\ΠPi and u ∈WPi , we have the quantum product ◦ by

σβ as

σsβ ◦σu =
∑

�(usα)=�(u)+1

(λβ,α
∨)σusα

+
∑

l(usα)=l(u)−nα+1

(λβ,α
∨)σusα · qd(α),

where α ranges over �+\�+
Pi
, λβ is the fundamental weight corresponding to β,

nα =

( ∑
γ∈�+\�+

Pi

γ,α∨

)
,

and

d(α) =
∑

β∈Π\ΠPi

(λβ,α
∨)σ(sβ),

and where σ(sβ) is the homology class of H2(G/Pi) which is Poincaré dual to σsβ .

1 After finishing the first draft of this paper, we found essentially the same proof is given in [LT]. We note
some differences between the proof given here and [LT] in Remark 15.
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In our situation, Π\ΠPi = {αi}. Therefore, the generator of the second cohomology is

only σsαi
and λβ = λi. We have d(α) = (λi,α

∨)σ(sαi) = σ(sαi) for α ∈�+\�+
Pi

because λi

is a minuscule weight. We consider qσ(sβ) only as a complex parameter q in C.

From Lemma 3.5 in [FW], the first Chern class of G/Pi is nα times a generator of

H2(G/Pi), and by [CMP], we know that nα is the Coxeter number s. Explicitly, we have

nα = n+1 (An type), nα =2n (Bn type), nα =2n (Cn type), nα =2n−2 (Dn type), nα =12

(E6 type), and nα = 18 (E7 type) for all α ∈�+\�+
Pi
.

Then we have the quantum Chevalley formula as follows:

σsαi
◦σu =

∑
�(usα)=�(u)+1

(λi,α
∨)σusα

+
∑

�(usα)=�(u)−(s−1)

(λi,α
∨)σusα · q,

where α ∈�+\�+
Pi
.

To replace the conditions of these summations, the following lemma, corollary, and

proposition are key ingredients.

Lemma 12. Let λi be a minuscule weight. For u ∈WPi and α ∈ Π, we have the three

following situations.

(I) (u(λi),α
∨) = 1⇔ 
(sαu) = 
(u)+1.

(II) (u(λi),α
∨) = 0⇔ 
(sαu) = 
(u).

(III) (u(λi),α
∨) =−1⇔ 
(sαu) = 
(u)−1.

Here, we consider the length function l(u) in WPi .

Proof. (a) First, we show the implication (⇒), for each of (I)–(III).

(II) We assume (u(λi),α
∨) = 0. We show su−1(α) ∈ WPi . Let u−1(α)∨ =

∑n
i=1 biα

∨
i

(bi ∈ R). Then we have

(λi,u
−1(α)∨) = bi = 0.

Therefore. u−1(α) ∈�Pi and su−1(α) ∈WPi . We obtain


(sαu) = 
(usu−1(α)) = 
(u) inWPi .

(I) and (III) Notice that w /∈WPi if and only if there exists β ∈ΠPi such that w(β) is a

negative root. Since u ∈WPi , we have u(β) is a positive root for all β ∈ΠPi . So, if sαu(β)

is a negative root, then sαu(β) = −α because sα preserves �−\{−α}. Then it must hold

that β = u−1(α) ∈ΠPi .

We assume (u(λi),α
∨) �= 0. Then we have bi �= 0 for u−1(α)∨ =

∑n
i=1 biα

∨
i as the same

way of (II). Thus, u−1(α) is not in ΠPi . Therefore, sαu(β) is a positive root for all β ∈ΠPi .

So we have sαu ∈WPi .

If (u(λi),α
∨) = 1, then (λi,u

−1(α)∨) = 1 and u−1(α) is a positive root. Therefore,


(sαu) = 
(u)+1 in WPi (see §1.6 in [Hu]). If (u(λi),α
∨) = −1, then (λi,u

−1(α)∨) = −1.

u−1(α) is a negative root. Thus, we obtain 
(sαu) = 
(u)−1 in WPi (see also §1.6 in [Hu]).

(b) Next, we show the implication (⇐), for each of (I)–(III). For (I), we assume 
(sαu) =


(u)+1. Since λi is minuscule, (u(λi),α
∨) takes only the values 1,0, and −1. If (u(λi),α

∨)

is 0 or −1, we obtain a contradiction, by part (a). The proofs in the cases (II) and (III) are

similar.
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Now, we have the weights of Vλi as λi−
∑n

j=1njαj where nj ∈ Z≥0. From Lemma 12, we

obtain the following corollary.

Corollary 13. For u ∈ WPi such that u(λi) = λi −
∑n

j=1njαj, we have 
(u) =∑n
j=1nj.

Proof. We have


(sαju) = 
(u)+1⇔ (u(λi),α
∨
j ) = 1

⇔ sαj (u(λi)) = u(λi)−αj

by Lemma 12. The elements of WPi are described by a product of simple reflections. Thus,


(u) =
∑n

j=1nj .

We have the following proposition.

Proposition 14. (I) If there exist α ∈ �+ such that 
(sαu) = 
(u)+ 1 for u ∈ WPi ,

then α ∈Π and (u(λi),α
∨) = 1.

(II) If there exist α ∈�+ such that 
(sαu) = 
(u)− (s−1) for u ∈WPi, then α= ψ and

(u(λi),ψ
∨) =−1.

Proof. (I) For α ∈�+ such that 
(sαu) = 
(u)+1, we have

sαu(λi) = u(λi)− (u(λi),α
∨)α.

By the assumption that 
(sαu)> 
(u), we have (u(λi),α
∨) = 1 and α must be a simple root

by Corollary 13.

(II) For α ∈�+ such that 
(sαu) = 
(u)− (s−1), we have

sαu(λi) = u(λi)− (u(λi),α
∨)α.

By the assumption 
(sαu)< 
(u), we have (u(λi),α
∨) =−1. When α=

∑n
j=1 qjαj , then α

must be ψ because there is only one positive root which has the height
∑n

j=1 qj = s−1.

By using the relation usα = su(α)u= s−u(α)u, Corollary 13, and Proposition 14, we can

replace the conditions of the summation in the quantum Chevalley formula.

We show that we can simplify the first summation to∑
(u(λi),α′∨)=1,α′∈Π

σsα′u

by setting α′ = u(α). Then we show that α′ is a positive root. In fact, if α′ is a negative root,

then (u(λi),α
′∨) = −1 satisfies 
(sα′u) = 
(u)+1. However, this contradicts α ∈ �+\�+

Pi

because we have

(u(λi),α
′∨) =−1⇔ (u(λi),u(α

∨)) =−1⇔ (λi,α
∨) =−1.

Thus, α′ is in �+. By Proposition 14, we have α′ ∈Π⊂�+. Hence, we have∑
�(usα)=�(u)+1

(λi,α
∨)σusα =

∑
(u(λi),α′∨)=1,α′∈Π

σsα′u

as the first summation of σsαi
◦σu.

For the second summation, let α′ = −u(α). Then we show that α′ is also a positive

root. In fact, if α′ is a negative root, then (u(λi),α
′∨) = 1 satisfies 
(sα′u) = 
(u)− (s−1).

https://doi.org/10.1017/nmj.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.17


THE TT*-TODA EQUATIONS AND QUANTUM COHOMOLOGY 1001

However, this contradicts α ∈�+\�+
Pi

because we have

(u(λi),α
′∨) = 1⇔ (u(λi),−u(α∨)) = 1⇔ (λi,α

∨) =−1.

Thus, α′ = −u(α) is in �+ for α ∈ �+\�+
Pi
. By Proposition 14, we have α′ = ψ and

(u(λi),ψ
∨) =−1. Hence, for the second summation of σsαi

◦σu, we have∑
�(usα)=�(u)−(s−1)

(λi,α
∨)σusα · q

=
∑

�(sα′u)=�(u)−(s−1)

(λi,−u−1(α′∨))σsα′u · q

=

{
qσsψu, (u(λi),ψ

∨) =−1,

0, otherwise.

Thus, we obtain

σsαi
◦σu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
(u(λi),α∨

j )=1

σsαj
u+ qσsψu, (u(λi),ψ

∨) =−1,

∑
(u(λi),α∨

j )=1

σsαj
u, otherwise.

On the other hand, for vu(λi), we have

(
n∑

j=1

e−αj + qeψ) ·vu(λi)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
(u(λi),α∨

j )=1

vu(λi)−αj
+ qvu(λi)+ψ, (u(λi),ψ

∨) =−1,

∑
(u(λi),α∨

j )=1

vu(λi)−αj
, otherwise,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
(u(λi),α∨

j )=1

vsαj
u(λi)+ qvsψu(λi), (u(λi),ψ

∨) =−1,

∑
(u(λi),α∨

j )=1

vsαj
u(λi), otherwise,

by using the definitions of (2.1) and (2.3). Therefore, we obtain

n∑
j=1

e−αj + qeψ = σsαi
◦ .

This completes the proof of Theorem 10.

Remark 15. We note some differences between the proof given here and Proposition 4.9

in [LT]. They mainly use Proposition 6.1 by Gross [Gr] and Lemma 5.3 by Stembridge [S].

However, Stembridge shows that there are only simple roots which satisfy the condition of

the first summation of the quantum Chevalley formula by using the idea of fully commutative

elements. We show this directly by using the minuscule condition and considering the length

of w ∈WPi .
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Remark 16 (On the Satake isomorphism). When g is of type An (or, conjecturally, of

types Dn and E6), the same global solution corresponds to the Dubrovin connection of any

minuscule weight. This suggests a relation between the quantum cohomology algebras of

the corresponding flag manifolds. In the An case, this can be stated as∧k
QH∗(CPn)∼=QH∗Gr(k,n+1)

(see [GM] for further explanation).

In the Dn case, the analogous relation is∧half
± QH∗(Q2n−2)∼= EndC(QH∗(S±)). (3.1)

This follows from Theorem 10 when we identify H∗(Q2n−2;C) with C
2n and H∗(S±;C)

with Δ±, because (3.1) corresponds to the well-known relation∧half
± C

2n ∼= EndC(Δ±).

This is an isomorphism of Dn-modules, and it preserves the operation of quantum product

by the generator of the second cohomology (i.e., by the hyperplane class of the projectivized

maximal weight orbit for each representation).

In order to explain the notation, we recall the relation here. We denote a positively

oriented orthonormal basis of C2n by e1, . . . , e2n. We define the isomorphism � :
∧i

C
2n →∧2n−i

C
2n by

�(eξ(1)∧eξ(2)∧· · ·∧eξ(i)) = sign(ξ)eξ(i+1)∧eξ(i+2)∧· · ·∧eξ(2n)

for any permutation ξ. Then we obtain � ·�=(−1)i(2n−i)id. We define ι := (−i)n� :
∧n

C
2n →∧n

C
2n. Then ι · ι = id. Thus, we have the canonical eigenspace decomposition

∧n
C

2n ∼=∧n
+C

2n⊕
∧n

−C
2n. If n= 2m+1, then we define

∧half
± C

2n by∧0
C

4m+2
⊕∧2

C
4m+2

⊕
· · ·

⊕∧2m
C

4m+2.

If n= 2m, then we define
∧half

+ C
2n by∧0

C
4m

⊕∧2
C

4m
⊕

· · ·
⊕∧2m

+ C
4m

and
∧half

− C
2n by ∧0

C
4m

⊕∧2
C

4m
⊕

· · ·
⊕∧2m

− C
4m.

From Theorem 6.2 of [BD], we have

Δ+⊗Δ+ =
∧n

++
∧n−2

+ · · · ,

Δ+⊗Δ− =
∧n−1

+
∧n−3

+ · · · ,

Δ−⊗Δ− =
∧n

−+
∧n−2

+ · · ·

as spin(2n) representations where the last terms are
∧4

+
∧2

+
∧0

or
∧3

+
∧1

. If n=2m+1,

then we have

EndC(Δ+)∼=Δ∗
+⊗Δ+

∼=Δ+⊗Δ−

∼=
∧2m

+
∧2m−2

+ · · ·+
∧2

+
∧0

=
∧half

± C
4m+2.

https://doi.org/10.1017/nmj.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.17


THE TT*-TODA EQUATIONS AND QUANTUM COHOMOLOGY 1003

If n= 2m, then we have

EndC(Δ+)∼=Δ∗
+⊗Δ+

∼=Δ+⊗Δ+

∼=
∧2m

+ +
∧2m−2

+ · · ·+
∧2

+
∧0

=
∧half

+ C
4m.

When we consider the minuscule Δ− and the corresponding homogeneous space S−, we

obtain

∧half
− QH∗(Q2n−2)∼= EndC(QH∗(S−))

as in the case of Δ+.
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[BD] T. Bröcker and T. Dieck, Representations of Compact Lie Groups, Springer, Berlin–Heidelberg,
1985.

[CV] S. Cecotti and C. Vafa, Topological–anti-topological fusion, Nucl. Phys. 367 (1991), 359–461.
[CMP] P. E. Chaput, L. Manivel, and N. Perrin, Quantum cohomology of minuscule homogeneous spaces.

II. Hidden symmetries, Int. Math. Res. Not. IMRN 2007, 1–29.
[FW] W. Fulton and C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom.

13 (2004), 641–661.
[Ge] M. Geck, “Minuscule weights and Chevalley groups” in Finite Simple Groups: Thirty Years of the

Atlas and Beyond , Contemp. Math. 694, Amer. Math. Soc., Providence, RI, 2017, 159–176.
[GM] V. Golyshev and L. Manivel, Quantum cohomology and the Satake isomorphism, preprint,

arxiv:1106.3120
[Gr] J. Gross, On minuscule representations and the principal SL2, Represent. Theory 4 (2000), 225–

244.
[GH] M. A. Guest and N.-K. Ho, Kostant, Steinberg, and the Stokes matrices of the tt*-Toda equations,

Selecta Math. (N.S.) 25 (2019), 50.
[GIL] M. A. Guest, A. Its, and C. S. Lin, Isomonodromy aspects of the tt* equations of Cecotti and Vafa

III. Iwasawa factorization and asymptotics, Commun. Math. Phys. 374 (2020), 923–973.
[Hil] H. Hiller, Geometry of Coxeter Groups, Res. Notes Math. 54, Pitman, Boston, 1982.
[Hit] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), 449–473.
[Hu] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.
[J] J. C. Jantzen, Lectures on Quantum Groups, Grad. Stud. Math. 6, Amer. Math. Soc., Providence,

RI, 1996.
[K] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple

Lie group, Amer. J. Math. 81 (1959), 973–1032.
[LT] T. Lam and N. Templier, The mirror conjecture for minuscule flag varieties, preprint,

arXiv:1705.00758
[Ma] L. Manivel, Double spinor Calabi–Yau varieties, Épijournal Géom. Algébrique 3 (2019), 14.
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