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Plenoptic particle image velocimetry and surface pressure measurements were used to
analyse the early development of leading-edge vortices (LEVs) created by a flat-plate
wing of aspect ratio 2 rolling in a uniform flow parallel to the roll axis. Four cases were
constructed by considering two advance coefficients, J = 0.54 and 1.36, and two wing
radii of gyration, Rg/c = 2.5 and 3.25. In each case, the wing pitch angle was articulated
such as to achieve an angle of attack of 33◦ at the radius of gyration of the wing. The
sources and sinks of vorticity were quantified for a chordwise rectangular control region,
using a vorticity transport framework in a non-inertial coordinate system attached to
the wing. Within this framework, terms associated with Coriolis acceleration provide a
correction to tilting and spanwise convective fluxes measured in the rotating frame and, for
the present case, have insignificant values. For the baseline case (J = 0.54, Rg/c = 3.25),
three distinct spanwise regions were observed within the LEV, with distinct patterns of
vortex evolution and vorticity transport mechanisms in each region. Reducing the radius of
gyration to Rg/c = 2.5 resulted in a more stable vortex with the inboard region extending
over a broader spanwise range. Increasing advance ratio eliminated the conical vortex,
resulting in transport processes resembling the mid-span region of the baseline case.
Although the circulation of the LEV system was generally stronger at the larger advance
coefficient, the shear-layer contribution was diminished.

Key words: vortex interactions, flow-structure interactions

1. Introduction

The interaction between a vortex and the surface of an aerodynamic body is a ubiquitous
phenomenon in unsteady and high-angle-of-attack aerodynamics, and is observed in a
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wide range of aerodynamic structures, including aggressively manoeuvring aircraft, blades
on helicopter rotors and gas turbine engines and wind turbines (Ol & Gharib 2003; Bridges
2010; Mulleners, Kindler & Raffel 2012; Yilmaz & Rockwell 2012). Robust models for
prediction of aerodynamic loads or the application of flow control in massively separated
flows require a better understanding of the underlying nonlinear dynamics and transport
processes, which are currently not well understood. A vorticity transport framework
provides a useful conceptual framework to understand and quantify some of the factors
governing vortex growth. In the present work, the evolution of a leading-edge vortex (LEV)
is investigated on a flat, rectangular plate of aspect ratio 2 that is articulated in a pure roll
motion in the presence of a free stream. Volumetric particle image velocimetry (PIV) is
employed, using a novel plenoptic imaging approach with a single high-resolution camera
(plenoptic PIV), to provide quantitative measurements of the complex, three-dimensional
flow fields. Vorticity fluxes contributing to the development and decay of the vortex
are examined in the non-inertial frame, while varying advance ratio and the radius of
gyration of the wing, to provide insight into the fundamental mechanisms governing vortex
development.

2. Background

Leading-edge vortices are prevalent across a broad range of geometries and applications,
from engineered aerodynamic bodies to natural swimmers and fliers. For an impulsively
started airfoil at high angle of attack, Pitt Ford & Babinsky (2013) demonstrated that
the LEV constituted the vast majority of the circulation around the body. Furthermore,
Wojcik & Buchholz (2014a) showed that the circulation associated with the LEV on
a low-aspect-ratio wing revolving in quiescent flow was significantly greater than that
predicted by thin airfoil theory for equivalent translating sections corresponding to specific
spanwise positions on the wing. (In the present context, the term revolving is used to
describe a wing undergoing a starting rotation, in contrast to continuous spinning.) These
observations support the common understanding that LEVs are a significant and often
dominant repository of circulation in separated flows. In the latter case, cross-cancelation
of LEV vorticity by entrainment of the secondary vortex was found to be a principal
mechanism constraining LEV growth, and thus contributing to its stability on the wing
(Wojcik & Buchholz 2014b).

While not necessarily sufficient for achieving an attached vortex, cross-cancelation of
LEV vorticity, due to entrainment of secondary (opposite-sign) vorticity into the vortex,
is a robust phenomenon, and the diffusive flux of secondary vorticity from the surface of
an airfoil has been shown to correlate directly with important events in the flow (Visbal
& Shang 1989; Acharya & Metwally 1992; Shih & Ho 1994; Kuo & Hsieh 2001; Eslam
Panah, Akkala & Buchholz 2015; Akkala & Buchholz 2017). For an airfoil in dynamic
stall, Shih & Ho (1994) conducted an order-of-magnitude analysis of the vorticity balance
on the suction surface, and demonstrated that the diffusive contributions are of the same
order of magnitude as the convective contributions during the formation of the dynamic
stall vortex. Indeed, Eslam Panah et al. (2015) conducted measurements of the diffusive
flux of secondary vorticity on a periodically plunging plate, and showed that it was
approximately 50 % of that of the shear layer. They used time-resolved PIV measurements
to reveal that the secondary vorticity was intermittently entrained by the leading-edge shear
layer, resulting in cross-cancelation with the primary vortex. Onoue & Breuer (2017) used
measurements of similar, entrained regions of secondary vorticity to estimate the rate of
vorticity cross-cancelation on pitching swept and unswept wings, and found it also to be
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comparable to the shear-layer flux late in the formation of the LEV; much more significant
than contributions due to axial flow in the vortex. Akkala & Buchholz (2017) extended the
analyses of Eslam Panah et al. (2015) to explore the effects of three-dimensionality on a
periodically plunging rectangular plate of aspect ratio 2, and showed that both spanwise
convective fluxes and surface-diffusive fluxes were important to the regulation of vortex
growth. In some instances, the combination of fluxes could actually reverse the vortex
formation process at a given spanwise position.

The spanwise convective flux of vorticity, due to axial flow in the vortex, has also been
surmised to drain vortex circulation and promote stability in several other studies (e.g.
Ellington et al. 1996; Maxworthy 1981; Lentink & Dickinson 2009b). Jardin & David
(2014) showed that, for a revolving wing, axial flow in the LEV was primarily driven by
spanwise gradients in the velocity of the wing. However, the role of spanwise flow on
LEV stability, for revolving wings, is complex and does not appear to be well understood.
For example, Birch & Dickinson (2001) found that blocking spanwise flow by applying
chordwise fences to a revolving wing had little effect on vortex development. Lim et al.
(2009) showed that spanwise flow was usually observed on a swept wing, but it did not
enhance LEV attachment. Rather, vortex stretching on a wing with curved leading-edge
planform was found to delay LEV detachment. Similarly, Wong, Kriegseis & Rival (2013)
also observed little effect of spanwise flow on large-aspect-ratio swept wings (in which
spanwise gradients were not present). However, Wong, laBastide & Rival (2017) conducted
a comparison of rotor-blade gust vs flapping-wing kinematics to show that spanwise flow
on the wing could either strengthen or weaken the vortex, depending on the sign of the
spanwise vorticity gradient. Chen, Wu & Cheng (2019) investigated the starting rotation
of an aspect-ratio 4 wing at Re = 1500, and observed that spanwise convection of vorticity
was only significant relatively early in the rotation, and suggested that it may not be
important for steadily revolving wings.

It is well established that wing rotation – as in the flapping motion of biological wings,
or the spinning of compressor or propeller blades – can have a substantial effect on the
development and stability of the flow over the body (Himmelskamp 1947). In particular,
the case of a wing revolving in a quiescent flow has been extensively investigated by several
authors (Lentink & Dickinson 2009a; Kim & Gharib 2010; Carr, Chen & Ringuette 2012;
Ozen & Rockwell 2012; Bross, Ozen & Rockwell 2013; Garmann, Visbal & Orkwis 2013;
Wojcik & Buchholz 2014b; Wolfinger & Rockwell 2015; Wong et al. 2017; Eldredge &
Jones 2019). Lentink & Dickinson (2009b) argued that the Coriolis acceleration acted to
increase spanwise flow, thus regulating the size and strength of the vortex by transporting
vorticity to the wing tip and into the wake. Alternatively, Garmann et al. (2013) focused
on the Coriolis force applied to the vortex, and found cases in which the direction of the
force acted away from the wing surface, presumably aiding detachment, and was an order
of magnitude less than that due to the pressure gradient.

The studies by Jardin & David (2014, 2015) and Jardin (2017) have greatly elucidated
the role of Coriolis accelerations and other non-inertial phenomena. In a comparison
between simulations of wings translating in uniform and revolving-wing-like shear flows,
as well as a revolving wing in quiescent fluid, Jardin & David (2014) showed that the
spanwise flow was primarily driven by the shear-induced spanwise pressure gradient in
the latter two cases, leading to prolonged attachment of the vortex. However, the revolving
case – the only case including Coriolis and centripetal accelerations – yielded a more
compact vortex positioned closer to the surface, and significantly greater forces than the
other two cases, despite having slower circulation growth. Further analysis by Jardin
& David (2015) demonstrated that the non-inertial effects were, indeed, dominated by
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Figure 1. Schematic of the wing.

the Coriolis acceleration, and not centrifugal effects. Jardin (2017) used a systematic
sequence of simulations of a high-aspect-ratio revolving wing to demonstrate that the
Coriolis acceleration contributes to both pressure gradients and spanwise flow, so that
the phenomena are extensively connected and it is impossible to separate their specific
effects. It should be noted that these studies focus primarily on Reynolds numbers of 500
or less, and Jardin (2017) showed that the Coriolis effects may be somewhat weaker at
higher Reynolds numbers.

In a recent review of the literature, Eldredge & Jones (2019) observed that LEV growth
on revolving wings is stabilized primarily by a combination of Coriolis accelerations and
vorticity annihilation over limited spanwise ranges. In an analysis of the vorticity budget,
they also showed that, mathematically, the Coriolis acceleration makes a contribution to
the vorticity transport equation analogous to tilting – which they dubbed, Coriolis tilting,
and suggested that this non-inertial tilting effect contributed to a net weakening of the
vortex by tilting surface-generated vorticity into a spanwise orientation with opposite sign
to that of the primary vortex.

The radius of gyration Rg of a revolving wing affects the degree to which these rotational
effects govern the flow. For example, Wolfinger & Rockwell (2015) investigated the impact
of varying radius of gyration of a wing revolving in quiescent fluid. A conical, coherent
LEV was observed for Rg/c = 1.7 (where c is the chord length of the wing); however, at
larger radii of gyration, the LEV exhibited an arch structure over the outboard portion of
the wing and eventually shed.

In contrast with the investigation of revolving wings in quiescent flow, and despite
the broad application in turbomachinery, the development of LEVs on high-incidence
revolving wings in the presence of a coaxial free stream has been largely unexplored. In
addition to the investigation by Wong et al. (2017) discussed above, a notable contribution
was made by Bross et al. (2013), who compared relatively rapidly revolving wings
in a free stream with that in quiescent fluid. They showed that LEV development
was not significantly affected by advance ratio (the ratio of streamwise progression to

957 A23-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

34
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.34


LEV development on a rolling wing

circumferential progression of the blade), over the range of values considered in their
study, but the parameter did significantly affect the shedding of vorticity from the trailing
edge. In a prior publication by the present authors (Johnson et al. 2020), plenoptic PIV
was employed to characterize LEV behaviour on a wing revolving in the presence of a free
stream. For sufficiently small advance ratios (i.e. fast rotation), and low wing radius of
gyration, an attached LEV was observed on the inboard portion of the wing. A vortex
bifurcation was observed further outboard, which was located at a spanwise location
dependent on advance ratio.

In the present work, we further examine the formation of LEVs on a wing revolving in a
free stream using the same configuration investigated by Johnson et al. (2020). A detailed
vorticity transport framework is used, which is formulated as a budget within a planar
control region in a non-inertial reference frame attached to the wing. As with the model of
Eldredge & Jones (2019), a Coriolis contribution is observed that bears resemblance to the
vorticity tilting term, and its role in the transport framework is examined. Advance ratio
and radius of gyration are varied – extending the range of advance ratios investigated by
Bross et al. (2013) – and the effects on vorticity fluxes governing the growth of the LEV
are investigated.

3. Methods

A flat-plate wing was articulated in a pure rolling motion, at fixed pitch angle, within
an oncoming uniform flow. Particle image velocimetry was conducted, using a novel
plenoptic imaging system, to characterize the evolution of the LEV.

Experiments were conducted in the University of Iowa’s free-surface water channel
with test section width of 0.61 m, and water depth of 0.33 m. The water channel has
flow conditioning consisting of an 8 : 1 contraction ratio, honeycomb and five screens to
maintain free-stream turbulence intensity below 0.3 %. Free-stream velocity, U∞, was held
constant for all experiments, producing a chord-based Reynolds number of Rec = 10 000.

3.1. Wing configuration and parameters
The flat-plate wing was manufactured from acrylic to minimize laser reflections, and had
a chord length, c = 76.3 mm, span b = 152.6 mm and thickness of 3.3 % of the chord,
with both the leading and trailing edges rounded with a constant radius of half the plate
thickness. A schematic of the wing is shown in figure 1. To ensure negligible deflection,
the root of the wing was inserted into a stainless steel bracket extending the full chord
length, and supported by an 8 mm diameter stainless steel mounting shaft at the leading
edge. The shaft was attached to the bracket using a 19 mm outside diameter bushing, which
facilitated the use of mounting shafts of different lengths in order to modify wing radius
of gyration.

The wing was articulated in a roll manoeuvre about a roll axis aligned with the free
stream, and coincident with the surface of a skim plate extending approximately 0.45 m
upstream and 0.78 m downstream of the wing mid-chord. The roll motion was achieved
using an Emerson XVM-8020-TONS-000 DC servo motor driven by an Emerson EP-204B
servo drive and Galil DMC-4040 motion controller. A second servo motor, capable
of articulating the wing in pitch, was installed on a rolling trunnion and was used in
the present study only to maintain static pitch angles during experiments. The motion
mechanism is shown in figure 2(a).

Four different combinations of kinematics and geometry were investigated by choosing
two different values of advance coefficient, J = U∞/φ̇Rg = 0.54 and 1.36, and two
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Figure 2. Experimental configuration and coordinate systems. (a) The motion mechanism; (b) angle and
coordinate definitions (top view); (c) streamwise view of the experiment showing the orientation of the camera
and laser illumination.

J Rg/c Case designation

0.54 3.25 J3.25 = 0.54
0.54 2.5 J2.5 = 0.54
1.36 3.25 J3.25 = 1.36
1.36 2.5 J2.5 = 1.36

Table 1. Summary of rolling-wing cases considered in this paper, and their designations; J3.25 = 0.54 is
referred to as the baseline case.

dimensionless radii of gyration, Rg/c = 3.25 and 2.5 – a subset of the parameter values
investigated by Johnson et al. (2020). Here, Rg is the radius of gyration of the wing, and φ̇

is the roll rate. The wing was given a pitch angle αgeo, specific to the roll rate and radius of
gyration, such as to achieve an effective angle of attack αeff = αgeo + arctan(φ̇Rg/U∞) =
33◦. at the radius of gyration, as shown in figure 2(b). The wing was fixed at pitch
angle αgeo prior to and during the roll motion. The roll displacement was prescribed as
a linear ramp, smoothed using the Eldredge function (Eldredge, Wang & Ol 2009) with
a smoothing parameter of 1.2 and maximum roll angle φmax = 50◦. The case in which
J = 0.54 and Rg/c = 3.25 is considered the baseline case, and designated (J3.25 = 0.54).
The other combinations of J and Rg/c are similarly designated J2.5 = 0.54, J3.25 = 1.36
and J2.5 = 1.36, as summarized in table 1.
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3.2. Plenoptic PIV
Three-dimensional velocity measurements were made using plenoptic PIV, which utilizes
a light-field, or plenoptic, camera. Through the addition of a microlens array in between
the main lens and the image sensor, a plenoptic camera gathers both spatial and angular
information of a scene. This information, stored in the two-dimensional plenoptic image,
is reconstructed into three-dimensional volumes. Akin to tomographic PIV, plenoptic
PIV uses the multiplicative algebraic reconstruction technique (MART) to reconstruct the
plenoptic images to volumes. The details of this process can be found in Fahringer, Lynch
& Thurow (2015). Specific application of the method to the present data is detailed in
Johnson et al. (2020), and summarized below.

Ensemble-averaged measurements were obtained at multiple angles. In order to simplify
the imaging configuration, the wing was imaged with the spanwise axis in the vertical
orientation for each case, requiring that the initial roll position of the plate was varied
for each measurement angle. A modified 29 megapixel Imperx Bobcat B6620 CCD
camera was used to record plenoptic images of the particle-laden flow field. The flow
was illuminated using a 200 mJ pulse−1 dual-cavity Nd:YAG laser, which illuminated
from the side of the water channel, pointing slightly upstream. The beam was spread
into a volume using spherical and cylindrical lenses. The arrangement can be seen in
figure 2(c). The right-handed non-inertial coordinate system for the measurement volume
has its origin at the intersection of the wing root, leading edge and suction surface. The
+x direction is along the chord, +y is normal to the wing and +z is along the span
towards the tip. A fixed (X, Y, Z) coordinate system is also defined, as shown in figure 2
such that the roll axis is parallel to the X-axis. Nearly the entire span of the wing was
studied using 3 distinct measurement volumes, each centred at 20 %, 55 % and 89 % span,
respectively. These planes are the nominal focal planes for each individual measurement
volume. Each laser volume was masked in the z-direction before entering the water tunnel
to extend ±34 mm from the nominal focal plane of and was clipped by the field of the
view of the camera in the x and y directions, resulting in a volume with dimensions of
102 mm × 68 mm × 68 mm in x, y and z, respectively.

To isolate the particle image data, reflections from the plate and other sources were
removed through a proper orthogonal decomposition background subtraction method,
described by Mendez et al. (2017). Each image was projected onto a basis where the most
energetic modes from the larger data set were removed, representing repeatedly occurring
light sources (Mendez et al. 2017). For this study, the number of modes to remove was
selected such that the change in normalized modal energy was less than the inverse of
the total number of images in the phase data set. This resulted in approximately the 20
most energetic modes – corresponding to the most repeatable intensity patterns – being
subtracted for each image.

Using 3 iterations of MART and a relaxation parameter of μ = 1.0, particle volumes
were reconstructed onto a discretized grid of 527 voxels × 357 voxels × 357 voxels. An
in-house three-dimensional cross-correlation algorithm was used (Fahringer et al. 2015)
with 5 passes of decreasing correlation volumes (64 , 48, 32, 16, 16 voxels and 50 %
overlap) to produce vector fields of 63 vectors × 42 vectors × 42 vectors, with spatial
resolution of 1.5 mm in each direction. Each vector field was then interpolated onto a grid
such that the previously defined origin was located at the leading edge of the plate. The
uncertainty of the measurements was quantified by measuring a free-stream flow, finding
the uncertainty in velocity measurements as 2.3 %, 1.8 % and 4.0 % of the free-stream
velocity for the velocities in the x, y and z directions (denoted ux, uy and uz), respectively.
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Figure 3. Planar control volume in which the vorticity transport analysis was conducted. The plane area of
the control region is designated A, and has boundary ∂A, with outward-pointing normal n∂A.

4. Vorticity transport analysis

A circulation budget was constructed to track the sources and sinks of vorticity governing
the strength of the LEV within a plane rectangular control region, as shown in figure 3. The
control region extended from 0.015 � x/c � 0.52 and 0 � y/c � 0.30, with the analysis
conducted at multiple spanwise positions. The position and size of the control region were
selected in order to closely encapsulate the LEV during its early development. However,
it is important to note that the intention is not to characterize only evolution of the LEV,
but also the growth of secondary vorticity within this very active region on the wing, in
the interest of elucidating and quantifying the mechanisms that contribute to the overall
circulation budget relevant to the LEV system. Therefore, the control region must be fixed
to the wing surface and cannot conform to the shape of the LEV such that, in cases in which
the LEV is shed, a significant quantity of circulation will cross the downstream boundary.
Our approach is, therefore, to first characterize the integral contributions to the budget,
then generate insight into the underlying physics by investigating the spatial distributions
of the integrands and their constituent quantities.

Extending the analysis of Eslam Panah et al. (2015) to include non-inertial accelerations
due to rotation of the reference frame, the rate of change of circulation, with constant
reference-frame angular velocity Ω = (Ωx, Ωy, Ωz), is given by

dΓ

dt
= −

∫
Az

(
uz

∂ωz

∂z

)
dA −

∮
(u · n∂A) ωz ds

+ 1
ρ

∫
bound 4

∂p
∂x

dx +
∫

Az

(
ωx

∂uz

∂x
+ ωy

∂uz

∂y

)
dA

−
∮

(u · n∂A) 2Ωz ds + 2
∮

∂A

(−Ωyuz dx + Ωxuz dy
)
. (4.1)

The velocity and vorticity values presented in (4.1) are all represented in the non-inertial
frame fixed to the rotating wing. The integrals are evaluated over the control-region area
Az or its boundary ∂A, which are illustrated in figure 3. The surface normal of Az is in
the positive z-direction, which points to the root of the wing, and the in-plane normal to
the boundary n∂A is outward pointing, as illustrated in figure 3. The linear segments of
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∂A are numbered 1 through 4, with distinct behaviours of the transport terms expected on
each. Boundary 1 tracks the shear-layer flux of vorticity into the control region, which is
the primary source of negative vorticity feeding the LEV. Boundary 2 is placed above
the vortex system such that it contributes little to the circulation budget. Boundary 3
captures fluxes due to convection of the boundary layer or a detached LEV structure,
and is generally small in planes where an attached LEV is present. Finally, boundary 4
is adjacent to the surface of the wing, and captures the diffusive flux of vorticity due to
pressure gradients created by the vortex system.

The non-inertial terms, which appear on the third line of (4.1), are derived in
Appendix A. The first three terms on the right-hand side of (4.1) are readily interpreted
in terms of physical convective and diffusive mechanisms. The first term describes the
contribution due to the spanwise convective flux (i.e. convection of vorticity in the
direction normal to the plane of the control region), and the second term describes the
in-plane convection across the control region boundaries. The third term, which is only
evaluated on boundary 4 (the surface of the wing), approximates the diffusive flux of
vorticity from the surface. Diffusive and turbulent transport are neglected in this analysis,
except on the surface of the wing (boundary 4), where diffusive transport dominates.
The fourth term describes the contribution due to vortex tilting. Although vorticity tilting
cannot affect the strength of a vortex tube surrounded by inviscid fluid, it can make a finite
net contribution here due to the continuous distribution of vorticity and finite extent of the
control region.

As noted in Appendix A, angular acceleration is absent during the measurements in this
study, and centripetal accelerations make no direct contribution to the circulation budget.
The two integrals in the third row of (4.1) represent the contributions due to Coriolis
accelerations within the non-inertial frame. These terms are interpreted as corrections
to the in-plane convection, and tilting contributions, respectively. For example, since the
vorticity represented in the non-inertial frame comprises the actual vorticity present in the
inertial ground reference frame, as well as the apparent solid body rotation corresponding
to the rotational component of the non-inertial reference frame (the ωz-component is
relevant here, since the control-region normal is in the z-direction), the contribution to
the second term of (4.1) made by the vorticity measured in an inertial reference frame
would be

−
∮

(u · n∂A) ωz ds −
∮

(u · n∂A) 2Ωz ds = −
∮

(u · n∂A) (ωz + 2Ωz) ds. (4.2)

In accord with Eldredge & Jones (2019), application of Green’s theorem to the second
Coriolis integral yields a form analogous to the vorticity tilting term

2
∮

∂A

(−Ωyuz dx + Ωxuz dy
) = −

∫
Az

(
2Ωx

∂uz

∂x
+ 2Ωy

∂uz

∂y

)
dA, (4.3)

so that the net tilting contribution must take into account both the measured and
Coriolis-tilting terms. It is noted that, while the physical tilting term represents actual
tilting of free vorticity ω, the Coriolis tilting term acts on the apparent vorticity induced
by the rotation of the non-inertial frame, 2Ω , which is not amenable to reorientation
by velocity gradients in the flow. With the interpretation of Coriolis accelerations as
corrections to the measured fluxes in the non-inertial frame, they may be combined
with the free-vorticity terms to represent net contributions to the circulation as observed
in an inertial frame instantaneously coincident with the control region attached to the
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(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) ( j)

(k) (l ) (m) (n) (o)

(p) (q) (r) (s) (t )

J3.25 = 0.54

J2.5 = 0.54

J3.25 = 1.36

J2.5 = 1.36

y′ x′

z′

φ = 12 deg. φ = 17 deg. φ = 21 deg. φ = 30 deg. φ = 40 deg.

Figure 4. The LEV formation shown with isosurfaces of normalized swirling strength levels of 0.10 and 0.25,
for combinations of J = 0.54 and 1.36 and Rg/c=3.25 and 2.5, with αeff = 33◦. Each row depicts a different
case; (a–e) J3.25 = 0.54, ( f –j) J2.5 = 0.54, (k–o) J3.25 = 1.36 and (p–t) J2.5 = 1.36. Each column represents a
specific roll angle comprising, from left to right, φ = 12◦, 17◦, 21◦, 30◦ and 40◦.

revolving wing
∫

Az

(
ωx

∂uz

∂x
+ ωy

∂uz

∂y

)
dA + 2

∮
∂A

(−Ωyuz dx + Ωxuz dy
)

=
∫

Az

(
(ωx + 2Ωx)

∂uz

∂x
+ (ωy + 2Ωy)

∂uz

∂y

)
dA, (4.4)

where the Coriolis-tilting term on the right-hand side is expressed using (4.3). For the
purpose of elucidating the magnitudes of Coriolis-tilting contributions in the present
framework, they will be presented separately, as given in (4.3).

In the present case of a pure rolling wing, Ωz = 0. Since the wing has a finite pitch
angle, the non-inertial coordinate system is rolling about both the local x- and y-axes with
roll rates Ωx = φ̇ cos θ and Ωy = φ̇ sin θ .

5. Results

5.1. Flow structure
Figure 4 shows the evolution of the LEV for the four cases summarized in table 1, using the
λci (swirling strength) criterion (Zhou et al. 1999). The phase-averaged flows are visualized
using isosurfaces of normalized swirling strength (λ2

ci/maxλ2
ci) at values of 10 % and 15 %,

following the guidelines given by Zhou et al. (1999). Plenoptic PIV data were acquired
over the entire span for the J3.25 = 0.54 case, and subsets of the span for the others, to
provide the breadth of parameter space presented here. The J3.25 = 0.54 case is hereafter
referred to as the baseline case.

It should be noted that the wing mounting bracket, which thickens the wing along the
root, will have some influence on the development of the LEV system. However, based
on the visualization of the baseline case, it appears that the bracket has not substantially
interfered with the formation of a conical LEV on the inboard portion of the wing.
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LEV development on a rolling wing

Region 1
Region 2

Region 3

Figure 5. Three distinct topological regions shown in the baseline case.

Both of the J = 0.54 cases (Rg/c = 3.25 and 2.5) exhibit an attached LEV on the
inboard region of the wing, for the duration of the measurements, consistent with the
observations of Bross et al. (2013), for a similar advance ratio. The highest advance ratio
investigated in that study was J = 0.537, and the authors noted similar LEV development
for lower advance ratios. For the baseline case, shown in figures 4(a) through 4(e), the
inboard region is captured within the plenoptic imaging domain; whereas, for the wing
with Rg/c = 2.5, it is inferred because the most inboard portion of the imaged vortex
remains stationary. This observation was also supported by dye visualizations (not shown).

Furthermore, for the baseline case, three distinct behaviours can be observed across the
span, as shown in figure 5. Region 1 (z/b � 0.37) is characterized by the attached, and
essentially stationary LEV for the duration of the starting roll manoeuvre. In region 2
(0.37 � z/b � 0.74), the LEV separates from the wing, forming an arch structure, which
sheds and is followed by the creation of subsequent vortices. By φ = 30◦, a second LEV
structure is apparent, and a third is evident by φ = 40◦. In region 3 (z/b � 0.74), tip effects
dominate, and the LEV structure reattaches and is pinned to the leading edge of the wing.
A tip vortex is also formed.

For the cases with Rg/c = 2.5 (figures 4f through 4j and 4p through 4t), data were
acquired only along the central region of the wing (0.35 � z/b � 0.75). The recorded
region of the J2.5 = 0.54 case also appears to support the existence of the two inboard
regions (region 3 is not captured in the domain); however, unlike the baseline case,
which exhibits sharp transitions between the three spanwise regions, the LEV structure
transitions smoothly from the inboard attached structure to the separating structure at the
mid-span (which is presumed to be a portion of an arch vortex displaced somewhat further
outboard in comparison with the baseline case). The transition to a separating structure is
most evident at φ = 30◦; whereas, it appears that, by φ = 40◦ the first LEV structure has
advected downstream and dissipated as it is replaced by a second structure.

At φ = 12◦, the J = 1.36 cases exhibit structures similar to the J = 0.54 cases at
later times in their evolution. The measured flow structure for J3.25 = 1.36 in figure 4(k)
exhibits strong similarities to the J3.25 = 0.54 case at φ = 21◦ (figure 4c). Similarly, the
central region of the J2.5 = 1.36 case, visible in figure 4(p), bears a strong resemblance to
the J2.5 = 0.54 case at φ = 21◦. Such observations of vortex-evolution delays governed by
advance ratio have previously been made by Bross et al. (2013) and Johnson et al. (2020).

5.2. Circulation distributions
Figure 6 shows the variation in LEV circulation – measured within the control region
illustrated in figure 3 – for the four rolling-wing cases. Circulation values were measured
at φ = 6◦, 12◦, 17◦, 21◦, 26◦, 30◦, 40◦ and 49◦. at spanwise increments of 0.066c, and
interpolated by a cubic spline using MATLAB’s interp2 function on each spanwise plane.
Approximate boundaries between regions 1, 2 and 3 – to the extent that they are included
within the domains visualized in figure 6 – are depicted as dashed lines. All three regions
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Figure 6. Spatial and temporal distribution of dimensionless circulation (Γ/(U∞c)). The approximate
boundaries between the regions defined in figure 5 are depicted here using dashed lines. In (a) J3.25 = 0.54, all
three regions are shown; in (b) J2.5 = 0.54, regions 1 and 2 are shown; in (c) J3.25 = 1.36, regions 2 and 3 are
shown; and in (d) J2.5 = 1.36, regions 1 and 2 are shown. Note the different spatial and circulation scales in
each plot.

are shown for J3.25 = 0.54, whereas only regions 1 and 2 are evident for J2.5 = 0.54 and
J2.5 = 1.36. Regions 2 and 3 are depicted for J3.25 = 1.36. The boundary appears to move
inboard for J2.5 = 1.36; hence the sloped line in figure 6(d).

The three regions defined in § 5.1 exhibit distinct patterns of circulation growth tied
to the disparate patterns of flow evolution found in these regions. For the baseline case,
the circulation within region 1 grows slowly throughout the stroke (figure 6a). A striking
transition in circulation is observed at the boundary between regions 1 and 2. In region 2,
the maximum circulation observed is approximately double that in region 1, and exhibits
two notable peaks at approximately φ = 21◦ and 30◦, associated with the development of
the second and third vortices. In contrast, in region 3, the circulation grows monotonically
and remains relatively constant after approximately φ = 25◦.

It is not unexpected that the vortex strength within region 1 should be less than
that further outboard, due to the lower velocity of the wing at inboard locations, and
three-dimensional effects, which are further examined in § 5.4. Also, as discussed in § 2,
it has been widely hypothesized, and demonstrated in some cases, that the conical vortex
structure is stabilized by transport mechanisms that act to limit the circulation. Indeed,
Jardin (2017) observed, for a large-aspect-ratio revolving wing in quiescent flow, that the
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LEV development on a rolling wing

evolution in normal force was well represented by the sectional normal force at around
80 % span, demonstrating that a conical LEV attached to the inboard portion of the wing
does not necessarily contribute a significant fraction of the lift.

Consistent with the observed flow structure behaviour, reducing the radius of gyration
appears to decrease unsteadiness in the circulation, as the J2.5 = 0.54 case (figure 6b)
exhibits more uniform circulation growth in time within the mid-span region of the wing.
Similarly, figures 4( f ) through 4(j) suggest that the vortex growth and shedding events
occur over greater roll displacements. As with the baseline case, a sharp increase in
circulation develops at approximately z/b = 0.47, suggesting the transition from region
1 to region 2 delineated by the dashed line in figure 6(b), despite an apparently continuous
variation in flow structure. It is also noteworthy that the location of this transition is further
outboard on the wing than for the baseline case, consistent with the spanwise shift of
LEV features observed in figure 4. While the tip region is not included in the J2.5 = 0.54
measurement domain, it appears that the transition to region 3 would also occur further
outboard.

For the J = 1.36 cases, the circulation distribution is aliased in time due to the rapid
shedding of vortices from the leading edge. However, the data suggest spanwise variation
in circulation that is roughly consistent with the fast-roll cases, despite that the measured
values are somewhat arbitrary in these cases due to the advection of vorticity out of
the downstream boundary. The spatial and temporal evolution of circulation for the
J2.5 = 1.36 case bears a strong qualitative similarity to J2.5 = 0.54. However, an important
distinction between the J2.5 = 0.54 and J2.5 = 1.36 cases is that, whereas the boundary
dividing the low- and high-circulation regions (ostensibly regions 1 and 2) is stationary in
the former, it moves inboard for the slow-roll (J = 1.36) case as the motion progresses, as
indicated by the slanted dashed line in figure 6(d). This indicates a destabilization of the
inboard LEV in the slow-roll case, as would be expected for a translating wing in contrast
to the fast-roll cases, where the LEV remains attached over the inboard region of the wing.
This suggests that the existence of region 1 and its associated characteristics may not
be caused by rotational effects, but merely prolonged by them. Data for the J3.25 = 1.36
case are acquired to the tip of the wing, revealing a transition from region 2 to region
3 at approximately Rg/c = 0.7, marked by the rapid drop in circulation. The location of
this boundary is comparable to the baseline case, which indicates that the transition from
region 2 to region 3 is due, primarily to tip effects, and not rotational effects.

5.3. Circulation budget closure and non-inertial contributions
Closure of the circulation budget described by (4.1) implies that the salient transport
processes are adequately modelled, and that the measurements and derived quantities
are sufficiently accurate. To assess the implementation of (4.1), spatial derivatives were
evaluated using second-order central differencing of the plenoptic PIV velocity fields, and
integrations were performed using the trapezoidal rule. The integral on boundary 4 of
the control region was evaluated using pressure measurements acquired at z/b = 0.5 and
chordwise positions of x/c = 0.015 and x/c = 0.65, employing the fundamental theorem
of calculus.

The terms on the right and left sides of (4.1), are plotted in figure 7 for J3.25 = 0.54 at the
mid-span (z/b = 0.50). The left side, dΓ/dt, is compared with the sum of the terms on the
right side (designated ‘integrated vorticity flux’ in figure 7. Each of the terms on the right
side of (4.1) are designated, generally, as instantaneous integrated vorticity fluxes (IIVF).
The shear-layer flux through boundary 1 of the control region is labelled ‘shear’; whereas
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Figure 7. Vorticity flux distribution for J3.25 = 0.54 at z/b = 0.5.

the combined contributions of tilting and Coriolis tilting are designated, ‘tilt and Coriolis’.
The other terms on the right side of (4.1) include the spanwise convective flux and the
diffusive flux through boundary 4. The computed rate of change of circulation (dΓ/dt)
agrees well with the sum of the terms on the right-hand side of (4.1), indicating that the
transport mechanisms governing control-region circulation are adequately described by
(4.1). Based on this agreement, for other planes and cases, the diffusive flux on boundary
4 will be computed directly from (4.1), using plenoptic PIV data to obtain the remaining
terms, and assuming equality.

Figure 7 shows that the dominant contributions to the circulation within the control
region at z/b = 0.5 are the leading-edge shear layer and the surface diffusive flux on
the surface of the plate. The shear-layer contributions in all cases are composed solely
of measurements of the velocity field in the non-inertial frame, and do not include
the Coriolis contributions. However, the distinction is practically unimportant in this
case since the Coriolis contribution to the in-plane convective flux is negligible (i.e.
2Ω � typical values of ωz in the shear layer). It should be noted that the sign of the
vorticity in the shear layer and LEV is primarily negative; hence the negative circulation
contribution of the shear layer.

The diffusive flux is opposite in sign, and thus strongly regulates the total circulation
as the shear-layer contribution continues throughout the stroke. Notably, the contributions
due to the tilting and Coriolis terms remain small in comparison with those of the dominant
fluxes. Their negligible contribution to the circulation budget will later be shown to be
robust across other spanwise locations and kinematic cases.

Figure 8 further examines the x- and y-components of the physical and Coriolis-tilting
contributions. Figure 8(a) shows that the spatial integral of x- and y-tilting terms (i.e.
the separate integrals of ωx∂uz/∂x and ωy∂uz/∂y, respectively) within the control region
exhibit a highly symmetric behaviour as the roll angle progresses, resulting in substantial
cancellation of their contributions to the circulation within the control region. This was
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Figure 8. Coriolis and tilting fluxes, integrated over the control region, for J3.25 = 0.54 at z/b = 0.5; (a) x-
and y-tilting terms (ωx∂uz/∂x, and ωy∂uz/∂y), (b) corresponding Coriolis terms (2Ωx∂uz/∂x, and 2Ωy∂uz/∂y)
and (c) a comparison between tilting and Coriolis contributions, as well as the net values of combined tilting
and Coriolis contributions.

also observed by Wojcik & Buchholz (2014b) for a wing revolving in quiescent fluid.
The Coriolis tilting, shown in figure 8(b), behaves similarly. The net contributions of
each of the tilting and Coriolis terms, as well as their sum is presented in figure 8(c).
It is evident that the magnitudes of the net Coriolis and physical tilting contributions are
indistinguishable within the measurement uncertainties.

5.4. Vorticity transport analysis on the baseline (J3.25 = 0.54) case
In this section, we will develop an understanding of the transport mechanisms governing
the evolution of the LEV system circulation by considering the baseline case in detail.
Figure 9 presents the contributions to the circulation budgets at nine spanwise locations
on the wing. The data for z/b = 0.20 to 0.30 (figure 9a–c) reside in region 1; z/b = 0.40 to
0.60 (figure 9d–f ) reside in region 2; and those for z/b = 0.80 to 0.90 (figure 9g–i) reside
in region 3. Note that figure 9(e) contains data presented in figure 7. Data are presented as
dimensionless vorticity fluxes (IIVF/cU∞Ωx).

Justified by the circulation budget closure demonstrated in § 5.3, the diffusive-flux
contribution, from the surface of the wing is inferred from (4.1) after computing the values
of the other terms. Since the in-plane convective fluxes through control-region boundaries
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Figure 9. Vorticity transport budget for J3.25 = 0.54. Data are shown for region 1 (top row; (a) z/b = 0.20,
(b) z/b = 0.25 and (c) z/b = 0.30), region 2 (middle row; (d) z/b = 0.40, (e) z/b = 0.50 and ( f ) z/b = 0.60)
and region 3 (bottom row; (g) z/b = 0.80, (h) z/b = 0.85 and (i) z/b = 0.90).

2 (top) and 3 (downstream) are negligible in the present case, the shear-layer flux through
boundary 1 is the main contribution to the in-plane convective term, and is labelled, shear
layer. The tilting term is computed according to (4.4), and combines the physical and
Coriolis tilting contributions.

At each of the spanwise locations represented in figure 9, the rate of circulation growth
dΓ/dt is generally negative (LEV strength increasing in time) and significantly smaller
than the magnitudes of the dominant flux contributions in each case, reflecting that
circulation growth within the control region is the result of competing sources and sinks of
vorticity. However, the transport processes exhibit striking differences in each of the three
regions. The distinct transport characteristics of each region are examined in detail below.

5.4.1. Region 1
The shear-layer flux is the source that drives the growth of the LEV. In region 1
(figure 9a–c), the shear-layer contribution is substantially balanced by the diffusive flux
from the wing surface early in the rotation. However, with increasing roll angle, the
diffusive flux diminishes, and is replaced by a monotonically growing spanwise convective
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flux as centrifugal pumping on the wing surface begins to develop. As noted in § 2, some
prior studies have measured a significant spanwise convective flux on revolving wings
(e.g. Wong et al. 2017) while others have not (Wojcik & Buchholz 2014b; Onoue & Breuer
2017).

Thus, the region 1 data illustrate that the importance of the spanwise convective flux is
time dependent. For a wing of aspect ratio 3 and root cut-out of 1 chord length, rotating in
quiescent fluid, Chen et al. (2019) found that spanwise convection was not significant until
after approximately 22◦ of rotation, but diminished again after about 90◦ of rotation. In the
present experiments, the growth of the spanwise convective flux appears to have similar
timing; however, there was not sufficient displacement to investigate whether spanwise
convection diminished in the longer term. It should be noted that Chen et al. (2022) found
that the importance of spanwise convective flux diminished significantly when Reynolds
number reduced from Rec = 1500 to 100.

To understand the physical processes that govern the growth of the spanwise convective
flux in region 1, figure 10 shows the distribution of spanwise vorticity, as well as
the integrand of spanwise convective flux (uz∂ωz/∂z) and its constituent quantities.
These include spanwise velocity (uz) and the derivative of the vorticity in the spanwise
direction (∂ωz/∂z), for z/b = 0.3. With increasing progression in time, figures 10(a)
through 10(d) show that the vortex becomes more diffuse, and its development begins to
regress; descending toward the surface, reattaching to the downstream boundary layer, and
decreasing in size. The start of this regression is concurrent with appearance of a strong
outboard flow in the core of the vortex, evident in figures 10( f ) and 10(g), and concomitant
growth of the integrated spanwise convective flux observed in figure 9(c).

Notably, the spanwise flow in the LEV core also diminishes abruptly between φ = 26◦
and 30◦ (figure 10g,h). However, as figure 9(c) shows, the integral contribution of the
spanwise convective flux does not diminish, but merely persists with a modest growth rate.
This is understood by considering the evolution of the vorticity gradient in figures 10(i)
through 10(l), which grows monotonically, within the LEV, throughout the manoeuvre.
Significant values of ∂ωz/∂z develop not only in the core of the LEV, but also in the
attached boundary layer downstream of the control region (x > 0.52). Despite the complex
variability of the spanwise velocity, the spanwise vorticity gradient is correspondingly
modulated in order to maintain a smoothly varying spanwise convective flux that mitigates
the decline of the diffusive flux. This suggests that the transport features observed here are
driven by constraints imposed by the global flow dynamics.

5.4.2. Region 2
In contrast to region 1, the spanwise convective flux is relatively insignificant throughout
the roll motion in region 2 (figure 9d–f ), and the circulation budget is dominated
by a balance between the shear-layer and surface-diffusive fluxes. This behaviour is
characteristic of planar motion of a nominally two-dimensional wing (e.g. Shih & Ho
1994; Eslam Panah et al. 2015).

A brief reduction in the magnitudes of both the shear-layer and diffusive fluxes occurs
around φ = 26◦. To better understand the cause of this fluctuation, figure 11 shows
the corresponding evolution of the spanwise vorticity field at z/b = 0.5. At φ = 26◦
(figure 11c), the phase-averaged LEV begins to become diffuse, and the region of
secondary vorticity, which has grown in size during the manoeuvre, starts to weaken and
atrophy. The atrophy is likely due to entrainment of the secondary vorticity layer into
the shear layer, as observed by Eslam Panah et al. (2015). The existence of a significant
accumulation of secondary vorticity is in distinct contrast to region 1 where, as figure 10
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Figure 10. The LEV formation and components of the spanwise convective flux (spcf) at z/b = 0.3. Panels
(a) to (d) depict the LEV evolution of the vorticity field. Panels (e) to (h) show the spanwise velocity
distributions. Panels (i) to (l) show distributions of ∂ωz/∂z. Finally, panels (m) to (p) show the spanwise
convective flux distributions (uz∂ωz/∂z). The columns represent roll angles of φ = 17◦, 21◦, 26◦ and 30◦ from
left to right.

shows, it is essentially non-existent. A second LEV is forming at φ = 30◦ and z/b = 0.50
(figure 11d) where figure 9(e) shows that the shear-layer flux has recovered.

5.4.3. Region 3
The flow field is highly three-dimensional in region 3, and exhibits flow evolution and
flux contributions that are very different from regions 1 and 2. As noted in § 5.2, region
3 is characterized by tip effects and appears to be relatively insensitive to rotation. As
figures 12(a) through 12(d) show, over time, the vortex evolves into a rapidly reattaching
shear layer, suggesting that a strong favourable pressure gradient develops late in the
manoeuvre. This is supported by the vorticity transport budgets for region 3, illustrated in
figures 9(g) through 9(i), which show a strong diffusive contribution of negative vorticity
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Figure 11. Spanwise vorticity (ωz) at z/b = 0.5, (a) φ = 17◦, (b) φ = 21◦, (c) φ = 26◦, (d) φ = 30◦,
(e) φ = 40◦ and ( f ) φ = 49◦.

by approximately φ = 40◦. Until approximately φ = 25◦, the shear layer is the primary
source of LEV circulation. Its eventual weakening and concomitant favourable pressure
gradient are plausibly connected with the development of the tip vortex.

The spanwise convective flux also evolves concurrently with the shear-layer and
diffusive fluxes. There is a characteristic drop in its magnitude around φ = 25 to 30◦,
which corresponds to the drop in diffusive flux observed in region 2 during the formation
of the second LEV, again suggesting that the three regions do not evolve independently.
Similarly to the diffusive contribution in region 2, the spanwise convective contribution in
region 3 subsequently recovers.

As with region 1, the persistent contribution of the spanwise convective flux can be
further understood by examining its spatial distribution, as well as that of its constituents,
as shown in figure 12 for z/b = 0.90. At φ = 21◦ (figure 12e), the spanwise flow in the
vicinity of the LEV and adjacent boundary layer is inboard (blue). An inboard flow persists
in the shear layer near the leading edge, throughout the manoeuvre, whereas a region of
outboard spanwise flow is apparent at φ = 26◦, and grows in size with increasing roll
angle. The outboard flow is predominantly located near the wing surface, and is likely
driven, in part, by the tip vortex. Interestingly, the distribution of spanwise vorticity
gradient is roughly complementary to the spanwise flow (i.e. positive values of ∂ωz/∂z
are approximately coincident with negative values of uz, and vice versa), such that the
spanwise convective flux produces positive contributions to the net circulation within the
shear layer, and adjacent to the wing surface. Similar to region 1, the patterns of spanwise
flow and vorticity gradient are quite complex.

5.5. The role of radius of gyration and advance ratio
The previous section established characteristic patterns of vorticity transport in region
1, where an attached LEV was observed and rotational accelerations were important,
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Figure 12. The LEV formation and components of the spanwise convective flux (spcf) at z/b = 0.9. Panels
(a) to (d) depict the evolution of the vorticity field. Panels (e) to (h) show the spanwise velocity distributions.
Panels (i) to (l) show distributions of ∂ωz/∂z. Finally, panels (m) to (p), show the spanwise convective flux
distributions (uz∂ωz/∂z). The columns represent roll angles of φ = 21◦, 26◦, 30◦ and 40◦ from left to right.

and in region 2, where rotational accelerations appeared to be relatively unimportant.
Lentink & Dickinson (2009a) showed that the influence of rotational accelerations is
inversely related to the Rossby number, which they expressed as Ro = U2/(Ω2Rgc) for
a wing or blade spinning in a free stream. In terms of the advance ratio, this may be
expressed as Ro = [(Rg/c)(1 + J2)]−1, such that the effects of rotational accelerations are
reduced when both radius of gyration (Rg/c) and advance ratio are increased. Thus, as
either parameter increases, we might expect the vorticity transport characteristics to tend
toward region 2 behaviour and, conversely, with decreasing parameter values, transport
flux behaviours characteristic of region 1 might become more prominent. In this section,
we test this hypothesis by considering the three additional cases listed in table 1, in which
J and Rg/c are varied.

Figure 13 shows the vorticity transport budget for the J2.5 = 0.54 case at z/b = 0.35
and 0.60. These spanwise locations are ostensibly within regions 1 and 2, respectively,
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Figure 13. The vorticity transport budget for J2.5 = 0.54, at (a) z/b = 0.35, and (b) z/b = 0.60.

considering the outboard shift of LEV features in comparison with the baseline case.
Figure 13(a) shows that the primary transport attributes of region 1 are robust as radius
of gyration is reduced. Specifically, the diffusive flux forms a significant contribution
to the overall budget early in the manoeuvre, but is diminished later, as the spanwise
convective flux increases. Again, tilting fluxes (physical and Coriolis) are negligible. The
visualizations in figure 4 indicate diminished unsteadiness and complexity in the mid-span
region, for the J2.5 = 0.54 case, in comparison with the baseline case. Similarly, the
evolution of the vorticity fluxes at z/b = 0.60 (figure 13b) lacks the significant fluctuations
in shear-layer and diffusive fluxes that are evident in the baseline case (figure 9d–f ).
A notable difference for J2.5 = 0.54 is that, with the exception of the early part of the
motion (i.e. φ < 15◦), the spanwise convective flux – while exhibiting oscillations, as in
the baseline case – is generally of similar magnitude to the diffusive flux in the mid-span
region of the wing (figure 13b). While this was also observed in the outboard portion
of region 2 for the baseline case (figure 9f ), the shear-layer and diffusive fluxes were
generally dominant over the majority of region 2. Thus, with reduction of the radius of
gyration, the distinction between regions 1 and 2 appears to be somewhat obscured, as
spanwise transport remains significant in the mid-span region for J2.5 = 0.54, supporting
our hypothesis on the effect of reducing radius of gyration. Furthermore, the correlation
between spanwise convective transport and the relative stability of the LEV persists in this
region.

The effects of advance ratio can be observed by comparing these data with figure 14,
which depicts the temporal evolution of the flux contributions in the slow-roll cases at the
same spanwise locations (z/b = 0.35 and 0.60). Figures 14(a) and 14(b) contain data for
the J2.5 = 1.36 case, and figures 14(c) and 14(d) contain data for the J3.25 = 1.36 case.

In all slow-roll cases, the vorticity transport budget is dominated by the shear-layer flux
and the surface-diffusive flux which, unsurprisingly, resembles region 2 of the baseline
case, for the spanwise locations shown in figure 14. In particular, the spanwise convective
flux is typically negligible at z/b = 0.35 and exhibits only modest fluctuations at z/b =
0.60. However, the effects of advance ratio, as well as radius of gyration and spanwise
location, on the magnitudes of the shear-layer and diffusive fluxes are quite significant.
The dimensionless vorticity fluxes are, in general, significantly larger at J = 1.36 than for
J = 0.54, with the exception of the J2.5 = 1.36 case at z/b = 0.60. It is not clear why the
flux values are lower in that case.
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Figure 14. The vorticity transport budgets for J2.5 = 1.36, at (a) z/b = 0.35, and (b) z/b = 0.60, and for
J3.25 = 1.36 and (c) z/b = 0.35 and (d) z/b = 0.60.

Figure 15 shows the spatial and temporal evolution of the shear-layer contribution over
the spanwise regions measured for each of the four cases listed in table 1. Again, the
temporal resolution of the measurements is not sufficient to resolve all of the events in
the evolution of the LEV (especially for the J = 1.36 cases, which exhibit rapid shedding
from the leading edge). However, the data are adequate to elucidate important spanwise
variations in the shear-layer flux.

Notably, all four cases exhibit maximum shear-layer flux at approximately z/b = 0.60
around the initiation of the roll motion, despite having highly varied shear-layer flux
distributions later in the manoeuvre. It is particularly noteworthy that the region of
initially strong shear-layer contribution appears to reside exclusively in region 2 for the
J3.25 = 0.54, J2.5 = 0.54 and J3.25 = 1.36 cases, and possibly also the J2.5 = 1.36 case.
The shear-layer evolution for the baseline case, shown in figure 15(a), displays strong
vertical banding, with sharp spanwise gradients evident at the boundaries between regions
1, 2 and 3, throughout much of the manoeuvre. In contrast, the boundaries are not as
evident for the cases with Rg/c = 2.5. This is consistent with earlier observations of flow
structure, and that the vorticity flux behaviours are not as distinct at z/b = 0.35 and 0.60
for the J2.5 = 0.54 case and, as noted above, the shear-layer flux is significantly lower for
the J2.5 = 1.36 case than for the others. A strong transition is evident for the J3.25 = 1.36
case at z/b = 0.70, which coincides with the boundary between regions 2 and 3, and
persists throughout the motion. The boundary between regions 2 and 3 is ostensibly outside
the measurement volume for the J2.5 = 1.36 case.
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Figure 15. Spatial and temporal evolution of the shear-layer flux contributions (IIVF/U2∞). Dashed lines,
representing boundaries between regions 1, 2 and 3, are copied from figure 6. Note the different spatial and
flux-contribution scales in each panel; (a) J3.25 = 0.54, (b) J2.5 = 0.54, (c) J3.25 = 1.36, (d) J2.5 = 1.36.

The difference in shear-layer strength between figures 15(c) and 15(d) is somewhat
surprising because, for the larger J value, rotational effects otherwise appear to be
minimal, suggesting that radius of gyration would be relatively unimportant. Since, as
discussed above, we expect stronger rotational effects for the Rg/c = 2.5 cases, we expect
that the shear-layer flux distribution for the J3.25 = 1.36 case is more representative
of a translating wing, and with further increases in J, the shear-layer flux patterns for
Rg/c = 2.5 might begin to look more like the J3.25 = 1.36 case.

6. Discussion and conclusions

Mechanisms of vorticity transport were quantified for a wing of aspect ratio 2 revolving
in a uniform flow in order to elucidate the physical mechanisms responsible for the
growth of the vortex system as it develops. The transport framework, defined by (4.1),
was cast in the non-inertial reference frame attached to the wing, and accounted for the
rotational accelerations associated with the rolling motion of the wing. For the constant
roll rate, the effect of centripetal accelerations vanishes, and only Coriolis accelerations
were represented, affecting the in-plane convective fluxes as well as the tilting fluxes.
These Coriolis terms were interpreted simply as corrections to the fluxes measured in
the non-inertial reference frame. Nevertheless, the influence of the Coriolis terms on the
overall circulation budget was shown to be negligible since the magnitude of the roll
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angular velocity was much less than typical values of vorticity in the LEV system. This
consideration of rotational accelerations is distinct from the more general perspective in
which the rotational accelerations are known to modify the flow field (in comparison with
translational wing motion), thereby affecting the velocities that are used to compute the
transport terms in (4.1). Indeed, variations in J and Rg/c were shown to yield substantial
changes to the behaviour of the LEV system and the corresponding flux contributions.

The baseline case, J3.25 = 0.54, exhibited three distinct spanwise regions with disparate
patterns of flow evolution and corresponding vorticity transport characteristics. A conical
LEV was observed over the inboard region of the wing. Early in the rotation, the growth of
the LEV system within the control region was regulated through dominant contributions
by the shear-layer convecting across the upstream boundary, and the surface-diffusive flux
of opposite-sign vorticity generated by pressure gradients on the wing surface, due to
its interaction with the vortex system. Later in the rotation, the diffusive contribution
diminished, and was replaced by a growing spanwise convective flux as the centrifugal
pumping mechanism grew, drawing vorticity in the conical LEV outboard.

This observation appears to address some of the disparate conclusions in the literature
about the importance of spanwise flow and, in particular, spanwise convective flux, in
regulating vortex strength. Since the development of spanwise flow is time dependent for
a starting rotation, the magnitude of the spanwise convective flux also depends on the stage
of vortex development. It is also noteworthy that the spanwise convective flux is often the
result of spatially averaged patterns of outboard and inboard flow coupled with complex
patterns of vorticity gradient within the control-region plane, which can also be positive
and negative. Thus, the notion of a spiralling vortex carrying vorticity from the root toward
the tip appears to be overly simplistic.

Vorticity transport by the spanwise convective flux was insignificant over the mid-span
region of the wing, for the baseline case, such that the growth of the LEV was governed
primarily by the opposite contributions of shear-layer convection and the surface diffusive
flux. Although rotational effects are still evident in this region – as evidenced by
the asymmetric radial dependence of the flow structure and transport processes – the
lack of three-dimensional transport mechanisms gives this region a behaviour more
representative of translational wings (e.g. Eslam Panah et al. 2015). The outboard region
of the wing is, again highly three-dimensional with a correspondingly significant role of
spanwise convective flux weakening the vortex. Interestingly, within the tip region, the
contribution of the shear layer was found to be substantially diminished by φ = 30◦, again
demonstrating an important transient in transport processes during the early stages of wing
rotation. A concomitant change in the sign of the surface-diffusive flux actually resulted
in the diffusive flux becoming a strengthening source to the LEV.

Reducing the dimensionless radius of gyration from 3.25 to 2.5 resulted in the inboard
region of the flow extending over a larger portion of the wing, and steadier flow in the
mid-span region. In contrast, increasing the advance ratio (i.e. reducing the roll rate of
the wing) led to an unsteady shedding of vorticity from the leading edge. While the
circulation within the control region was generally reduced for the higher-advance-ratio
cases (a quantity that is sensitive to the size of the control region for the J = 1.36 cases
since vortices generated at the leading edge rapidly shed and pass through the control
region), the shear-layer and diffusive fluxes are typically larger than for corresponding
spanwise locations at J = 0.54.

A comprehensive understanding of the physics of vortex development must also take
into account the dynamics of the vorticity in addition to the conservation analysis
presented here. Nevertheless, to the authors’ knowledge, this is the first time that the
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sources and sinks of vorticity governing the strength of the LEV system has been examined
for a revolving wing advancing in a flow, despite the numerous applications of the problem
archetype to applications such as turbine blades, propellers and rotors. The insights
provided by the analysis have highlighted some important and striking shifts in the relevant
transport processes with variations in spanwise position on the wing, and wing kinematics
that will provide a basis for further investigation to better understand and control rotational
effects on forming vortices.

Funding. We gratefully acknowledge support from the Air Force Office of Scientific Research under Grant
FA9550-16-1-0107.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Brian S. Thurow https://orcid.org/0000-0002-2166-9067;
James H.J. Buchholz https://orcid.org/0000-0001-8139-7684.

Appendix A. Derivation of non-inertial terms in the vorticity transport budget

For a fluid with constant properties, the rate of change of circulation within a control
region can be expressed as in (A1) by substitution of the Navier–Stokes equation (Potter
& Foss 1982)

dΓ

dt
=

∮
∂u
∂t

· ds

= −
∫

A
[∇ × (ω × u)] · nA dA −

∮
∂A

dp
ρ

−
∮

∂A
aI · ds +

∮
∂A

ν∇2u · ds, (A1)

where, for the planar control region shown in figure 3, nA = ez is the surface normal to the
plane of the control region, and aI is the local acceleration in the inertial frame, which can
be written as

aI = −2Ω × u − dΩ

dt
× r − Ω × (Ω × r) . (A2)

The terms on the right side of (A2) are the Coriolis, angular and centripetal accelerations,
respectively.

Following Eslam Panah et al. (2015), who derived the transport equation in a
non-rotating reference frame, (A1) can be represented in terms of interpretable convective,
diffusive and tilting fluxes

dΓ

dt
= −

∫
Az

(
uz

∂ωz

∂z

)
dA −

∮
(u · n∂A) ωz ds + 1

ρ

∫
bound 4

∂p
∂x

dx

+
∫

Az

(
ωx

∂uz

∂x
+ ωy

∂uz

∂y

)
dA −

∮
∂A

aI · ds. (A3)

With the exception of tangential accelerations of the boundary (not relevant to the present
study), linear accelerations do not affect the representation or transport of vorticity in the
control region. Thus, they are not represented in (A2). The terms in (A2) can be expressed,
for the control region of figure 3, in terms of rotations about the three principal axes in the
non-inertial frame (Ωx, Ωy, Ωz) and their accelerations (Ω̇x, Ω̇y, Ω̇z).
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The angular acceleration term can be expressed, in non-inertial coordinates, in
terms of the components of the rotational acceleration of the non-inertial system Ω =
(Ωx, Ωy, Ωz):

−
∮

∂A
aI,ang · ds =

∮
∂A

(Ω̇ × r) · ds =
∫∫

A

[
2Ω̇z −

(
Ω̇x

∂rz

∂x
+ Ω̇y

∂rz

∂y

)]
dA, (A4)

where the final expression is obtained with the use of Green’s theorem. Although we will
retain this term in the present derivation, it is important to note that in the present work,
we analyse only constant-rate roll rotations (i.e. rotation only about a single axis) such that
Ω̇ = 0, and thus angular accelerations do not contribute to the circulation in the control
region.

The centripetal acceleration can be examined by application of a vector identity to yield

−
∮

∂A
aI,cen · ds =

∮
∂A

Ω × (Ω × r) · ds

=
∮

∂A
[Ω(Ω · r) − r(Ω · Ω)] · ds. (A5)

Expressing (A6) in Cartesian coordinates for the planar control region where ds = dxêx +
dyêy, and expanding the scalar products yields

−
∮

∂A
aI,cen · ds =

∮
∂A

{[
(Ωxrx + Ωyry + Ωzrz)Ωx − Ω2rx

]
dx

+
[
(Ωxrx + Ωyry + Ωzrz)Ωy − Ω2ry

]
dy

}
. (A6)

Applying Green’s theorem to convert (A6) to an area integral reveals that the centripetal
acceleration makes no contribution to the rate of change of circulation within the control
region

−
∮

∂A
aI,cen · ds =

∫∫
A

(
ΩyΩx − ΩxΩy

)
dx dy = 0. (A7)

Evaluating the closed contour integral of the Coriolis acceleration about the control
region depicted in figure 3 yields

−
∮

∂A
aI,Cor · ds = −

∮
∂A

(2Ω × u) · ds

= −
∮

∂A

{
2(Ωyuz − Ωzuy) dx + 2(Ωzux − Ωxuz) dy

}

= −
∮

∂A
2Ωz(−uy dx + ux dy) −

∮
∂A

2
(
Ωyuz dx − Ωxuz dy

)

= −
∮

∂A
2Ωz(u · n) ds −

∮
∂A

(
Ωyuz dx − Ωxuz dy

)
. (A8)

The first term is the integrated convective flux of apparent z-vorticity (2Ωz) due to the
perceived solid body rotation of fluid within the rotating reference frame as a result
of a pitch rotation (which does not exist in the present case). Thus it is a correction
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to the augmented ωz measured in the rotating frame. The second term can be further
manipulated, using Green’s theorem

−
∮

∂A

(
Ωyuz dx − Ωxuz dy

) =
∫∫

A

(
2Ωx

∂uz

∂x
+ 2Ωy

∂uz

∂y

)
dA. (A9)

The resulting expression is identical in structure to the tilting term in (A1), with the
exception that the vorticity components ωx and ωy in (A1) are replaced by the apparent
vorticity components 2Ωx and 2Ωy in (A9). Whereas the measured vorticity vector ω =
(ωx, ωy, ωz) is free to tilt, the apparent vorticity components, 2Ωx and 2Ωy are determined
by the kinematics of the reference frame, and thus cannot provide any real contribution to
the vorticity dynamics. Thus, this apparent tilting is, as with the 2Ωz term, a correction to
fictitious contributions to the tilting term of (A1) manifest in the measurement of ωx and
ωy within the rotating frame.

Combining all the terms, and assuming we only have pitch (Ωx) and roll (Ωz)

dΓ

dt
=

∫
A

(
ωx

∂uz

∂x
+ ωy

∂uz

∂y
− uz

∂ωz

∂z

)
dA −

∮
(u · n∂A) ωz ds + 1

ρ

∫
bound 4

∂p
∂x

dx

− 2
∮

∂A
Ωz (u · n∂A) ds + 2

∮
∂A

Ωxw·ds +
∫∫

A

[
2Ω̇z −

(
Ω̇x

∂rz

∂x
+ Ω̇y

∂rz

∂y

)]
dA. (A10)
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