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Abstract

Niven’s theorem asserts that {cos(rπ) | r ∈ Q} ∩ Q = {0,±1,±1/2}. In this paper, we use elementary
techniques and results from arithmetic dynamics to obtain an algorithm for classifying all values in the set
{cos(rπ) | r ∈ Q} ∩ K, where K is an arbitrary number field.
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1. Introduction

Finding exact values of trigonometric functions is a classical problem. For the
sake of simplicity, we will mainly focus on the cosine. Analogous results for other
trigonometric functions can be deduced using simple identities like

sin(θ) = cos
(
π

2
− θ
)
, tan2(θ) =

1 − cos(2θ)
1 + cos(2θ)

.

Common trigonometric values which are usually covered in introductory trigonometry
lessons include

cos(0) = 1, cos
(
π

6

)
=

√
3

2
, cos

(
π

4

)
=

√
2

2
, cos

(
π

3

)
=

1
2

, cos
(
π

2

)
= 0.

There are many other exact values of the cosine which are not as common, such as

cos
(
π

12

)
=

√
6 +
√

2
4

, cos
(
π

5

)
=

1 +
√

5
4

.
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Observe that all of these values are expressible using only arithmetic operations and
square roots, so they are algebraic numbers. In fact, by suitably applying de Moivre’s
formula, it can be seen that cos(rπ) is an algebraic number for any r ∈ Q (see, for
example, [7]). However, if r is an irrational algebraic number, then it follows from
the Gelfond–Schneider theorem [12, Theorem 10.1] that cos(rπ) is transcendental. It
is therefore an interesting problem to explicitly determine values of cos(rπ) when r is
rational. Since algebraic number fields, that is, finite field extensions of Q, constitute
the field of algebraic numbers, this problem can also be rephrased as follows.

PROBLEM 1.1. Given a number field K, find all elements in K which are values of the
cosine at a rational multiple of π.

By the Abel–Ruffini theorem, if K is a number field of degree higher than four,
it might not be possible to write an element of K in a closed form. By ‘explicitly
determining’ an algebraic number α, we generally refer to finding the minimal
polynomial of α. It should be remarked that Problem 1.1 is neither new nor open;
its complete solution, in some sense, has been known for some time now (see a
remark after Theorem 1.4 below). A prime example is the following theorem, which
corresponds to the case K = Q.

THEOREM 1.2 (Niven’s theorem, [12], Corollary 3.12). If r and cos(rπ) are both
rational, then cos(rπ) ∈ {0,±1,±1/2}.

Elementary proofs of Theorem 1.2 are given in [7, 14, 15]. The next result can be
seen as an extension of Niven’s theorem to quadratic number fields.

THEOREM 1.3. Let r ∈ Q. If cos(rπ) is a quadratic irrationality, then

cos(rπ) ∈
{
±
√

2
2

,±
√

3
2

,
±1 ±

√
5

4

}
.

Using values of the cosine listed at the beginning of this section, one sees
that the quadratic irrational values of cos(rπ), with r rational, correspond to
r ∈ {±1/4,±1/6,±1/5,±2/5}. Jahnel [7] proved Theorem 1.3 using standard tools
from algebraic number theory such as prime ideal decomposition and general forms
of quadratic integers. We refer the reader to recent work of the second-named author
[17] for an alternative proof of this theorem which relies purely on basic notions in
elementary number theory. For number fields of higher degree, we have the following
general result, which is originally due to Lehmer ([8], see also [12, Theorem 3.9]).

THEOREM 1.4. Let m, n ∈ Z, with n > 2, be relatively prime. Then cos(2πm/n) is an
algebraic number of degree ϕ(n)/2, where ϕ(n) is Euler’s totient function.

With the help of this result, one can resolve Problem 1.1 for a number field K of
degree D > 1 by finding all n ∈ N for which ϕ(n) | 2D and determining all distinct
values among cos(2πm/n), where m ∈ {1, 2, . . . , n} and (m, n) = 1, which belong to K.
Since ϕ(n) ≥

√
n/2 for all n ∈ N, there can be at most finitely many n for which we

have ϕ(n) | 2D for any fixed D ∈ N.
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Proofs of the main results in [7, 14, 15, 17] make use of the double-angle formula

cos(2θ) = 2 cos2(θ) − 1. (1.1)

If we define F : R→ R by F(x) = 2 cos(x), then it is obvious from (1.1) that F(x)
satisfies the functional equation F(2x) = (F(x))2 − 2, from which one can deduce that,
for any nonnegative integer k,

F(2kx) = f (k)(F(x)),

where f (x) = x2 − 2 and f (k) denotes the k-fold composition of f with itself. By
periodicity of the cosine, the set {F(2krπ) | k ≥ 0} is finite for any r ∈ Q. Niven’s
theorem can then be proven easily by iteratively applying f (x) to a rational value of
F(rπ) and using the fact that F(x) ∈ [−2, 2] for any x ∈ R. Observe that this argument
has a dynamical flavour as it involves iteration of the rational map f (x) = x2 − 2.
Therefore, we have an intuitive conviction that these proofs can be rewritten in the
language of dynamical systems. The main purpose of this article is to present a
systematic approach to solving Problem 1.1 using ideas from arithmetic dynamics.
Our first main result is the following theorem.

THEOREM 1.5. Let K be a number field and let C(K) := {2 cos(rπ) | r ∈ Q} ∩ K. Define
f : K → K by f (x) = x2 − 2. Then C(K) = PrePer( f , K), where PrePer( f , K) denotes
the set of preperiodic points of f in K.

Problem 1.1 then boils down to finding the preperiodic points of f (x) = x2 − 2 over
K. By Northcott’s theorem [13], the set PrePer( f , K) is finite for any number field K.
Although determining all elements of this set in general is not an easy task, there
exists a procedure which allows us to compute them in a finite number of steps. More
precisely, we shall prove the following result.

THEOREM 1.6. Let K be a number field of degree D and let α ∈ K be a periodic point
of f (x) = x2 − 2 with minimal period n. Then n | D. In particular, f (D)(α) = α.

Choosing K = Q in Theorem 1.6, one sees that the rational periodic points of f
must be its fixed points. In general, the periodic points of f which belong to some
number field of degree D are exactly the zeros of irreducible factors of the polynomial
f (D)(x) − x whose degrees do not exceed D. Since all preperiodic points can be
obtained from the periodic points via the inverse mappings of f, we can systematically
compute PrePer( f , K) using this result. Detailed computations over number fields of
degree up to five will be illustrated in Section 4. We prove Theorems 1.5, 1.6 and
some other related results in Section 3. In the next section, we review basic definitions
and notions in arithmetic dynamics. Especially, we invoke some known results about
dynamical properties of the map f (x) = x2 − 2, which are crucial for the proof of
Theorem 1.6.
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2. Arithmetic dynamics of the map f (x) = x2 − 2

For any map g from a set S to itself and k ∈ N, we define g(k)(x) := g(g(· · · g︸���︷︷���︸
k times

(x))).

We say that a point P ∈ S is periodic with respect to g if g(n)(P) = P for some n ∈ N
and we call the smallest such n the minimal period for P. The point P is said to be
preperiodic if g(m)(P) is periodic for some m ∈ N, which is equivalent to saying that
the forward orbit Og(P) := {g(k)(P) | k ≥ 0} is finite. The set of preperiodic points of g
(in S) is denoted by PrePer(g, S).

If a field K does not have characteristic 2, then any quadratic polynomial
g(x) = Ax2 + Bx + C ∈ K[x] with A � 0 can be transformed into fc(x) = x2 + c by
changing variables:

fc(x) = ϕ−1 ◦ g ◦ ϕ(x), ϕ(x) =
2x − B

2A
, c =

B
2
− B2

4
+ AC.

The study of an orbit of a rational function plays a central role in arithmetic dynamics.
For example, given a number field K, the Morton–Silverman uniform boundedness
conjecture [11] asks if there is an upper bound for the number of preperiodic points
of f (x) ∈ K[x] depending only on [K : Q] and deg f . It is still open for the family of
quadratic polynomials with K = Q. For periods 1, 2 and 3 of fc(x) ∈ Q[x], we can
explicitly describe the relationship between the rational preperiodic points and the
parameter c (see [21]). In addition, it is known that fc(x) has no rational periodic
points of minimal periods 4, 5 and 6 (conditionally on a version of the Birch and
Swinnerton-Dyer conjecture) (see [5, 10, 19]). For polynomials with integral coeffi-
cients, by using a simple divisibility argument, it can be shown that all preperiodic
points have periods at most 2. For a number field K and c ∈ OK , a result in [4] implies
that the set of preperiodic points of fc(x) is uniformly bounded depending only on
D = [K : Q] (see also [22]). However, it is still interesting to find an explicit bound for
the number of preperiodic points of an integral quadratic polynomial. In this paper,
we describe the preperiodic points of f−2(x) = x2 − 2 over K, where the base field K
varies.

An important tool to study preperiodic points of a polynomial is its dynatomic
polynomial. A dynatomic polynomial is a polynomial that encodes information about
the orbits of a point under iteration of a polynomial map f (x). Given a polynomial
f (x) and a positive integer n, the nth dynatomic polynomial of f, denoted by Φn, f (x), is
the polynomial whose roots are the points that remain fixed under iteration of f (x) for
exactly n steps. These fixed points are also called the formal n-periodic points, and are
solutions of the equation f (n)(x) = x. As an analogue of cyclotomic polynomials, the
nth dynatomic polynomial can be computed using the formula

Φn, f (x) =
∏
d|n

( f (d)(x) − x)μ(n/d),
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where μ is the Möbius function defined by μ(1) = 1 and

μ(pi1
1 pi2

2 · · · p
ik
k ) =

⎧⎪⎪⎨⎪⎪⎩(−1)k if ij = 1 for all j ∈ {1, 2, . . . , k},
0 if ij ≥ 2 for some j ∈ {1, 2, . . . , k}.

For example, the first few dynatomic polynomials of fc(x) are

Φ1, fc (x) = x2 − x + c,

Φ2, fc (x) = x2 + x + (c + 1),

Φ3, fc (x) = x6 + x5 + (3c + 1)x4 + (2c + 1)x3 + (3c2 + 3c + 1)x2

+ (c2 + 2c + 1)x + (c3 + 2c2 + c + 1).

The dynatomic polynomials are important in the study of arithmetic dynamics, in
particular in the study of the arithmetic and geometric properties of the orbits of points
under iteration of polynomial maps. For more details of the dynatomic polynomials,
see [3, 9, 18].

Vivaldi and Hatjispyros [20, Section 5.2] explicitly described the nth dynatomic
polynomial of f (x) = x2 − 2.

THEOREM 2.1. Let f (x) = x2 − 2 and define Ψm(x + x−1) = Φm(x)x−ϕ(m)/2, where
Φm(x) is the cyclotomic polynomial of order m. Then

Φn, f (x) =
∏
d|n

( ∏
d1 |2d−1

Ψd1 (x)
∏

d2 |2d+1

Ψd2 (x)
)μ(n/d)

.

REMARK 2.2. It is known that Ψ2
1(x) = x − 2,Ψ2

2(x) = x + 2 and, for m > 2, Ψm(x) is
an irreducible polynomial with integer coefficients [12, Lemma 3.8]. In fact, it can
be seen from a proof of Theorem 1.4 that Ψm(x) is the minimal polynomial of the
algebraic integer 2 cos(2π/m), so degΨm = ϕ(m)/2.

3. Proofs of the main results

PROOF OF THEOREM 1.5. Let α = mπ/n, where m, n ∈ Z with n > 0, and let

Xn := {2 cos(jπ/n) | j ∈ Z}.

Suppose that γ := 2 cos(α) ∈ K. Then we have

f (γ) = 4 cos2(α) − 2 = 2 cos(2α) ∈ Xn.

It follows that O f (γ) = {2 cos(2kα) | k ≥ 0} ⊆ Xn. By the periodicity of the cosine, the
set Xn is finite, so O f (γ) must also be finite. Hence, γ ∈ PrePer( f , K).

Conversely, let δ ∈ PrePer( f , K). Then there exists k ∈ N for which β := f (k)(δ) is
periodic. We first show that |δ| ≤ 2. Assume to the contrary that |δ| > 2. Then it is easy
to see that f (j)(δ) > 2 for all j ≥ 1. Moreover, we have

f (j+1)(δ) − f (j)(δ) = ( f (j)(δ) − 2)( f (j)(δ) + 1) > 0,
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so the sequence { f (j)(δ)}∞j=1 is strictly increasing. Hence, f (j)(δ) is not periodic for any
j ∈ N, which is a contradiction. Therefore, we may conclude by continuity of the cosine
that δ = 2 cos(rπ) for some r ∈ R. Since β is periodic, there exists l ∈ N such that

2 cos(2krπ) = f (k)(δ) = β = f (l)(β) = f (k+l)(δ) = 2 cos(2k+lrπ).

Thus, 2krπ = ±2k+lrπ + 2tπ for some t ∈ Z. It is clear from this equation that r is
rational, so δ ∈ C(K) as desired. �

REMARK 3.1. In fact, Theorem 1.5 holds for any Chebyshev polynomial Pn defined by

P1(x) = x, P2(x) = x2 − 2 and Pm+1(x) = xPm(x) − Pm−1(x) for m ≥ 2.

A proof of this more general result can be found in [6, Proposition 2.2.2]. Since our
proof is quite simple and should be accessible to a more general audience, we decided
to include it here rather than solely referring to the result above.

It is a well-known fact that if r is rational, then 2 cos(rπ) is an algebraic integer.
Proofs of this result using the theory of algebraic numbers can be found in [12,
Theorem 3.9] and [7]. However, we shall apply Theorem 1.5 to prove this fact, without
resorting to any advanced machinery in algebraic number theory.

COROLLARY 3.2. Let K be a number field. Then C(K) ⊆ OK, where OK denotes the
ring of algebraic integers of K.

PROOF. Let γ ∈ C(K). Then by Theorem 1.5, there exists m ∈ N such that f (m)(γ) is a
periodic point, where f (x) = x2 − 2. Hence, there exists l ∈ N such that

f (l+m)(γ) = f (l)( f (m)(γ)) = f (m)(γ).

Let h(x) = f (l+m)(x) − f (m)(x). Then it is obvious that h(x) ∈ Z[x] is monic and annihi-
lates γ. Therefore, γ ∈ OK . �

Using Theorems 1.4 and 1.5, one can easily obtain an explicit upper bound for the
order of PrePer( f , K) in terms of [K : Q], in line with Northcott’s theorem.

COROLLARY 3.3. Let K be a number field of degree D and f (x) = x2 − 2. Then,

|PrePer( f , K)| ≤
8D2∑
n=1

ϕ(n).

PROOF. By Theorems 1.4 and 1.5,

PrePer( f , K) ⊆
{
2 cos

(
2π

m
n

)
: n ∈ N,ϕ(n) | 2D, 1 ≤ m < n, (m, n) = 1

}
.

If ϕ(n) | 2D, then by a trivial lower bound for ϕ(n), we have
√

n/2 ≤ ϕ(n) ≤ 2D,
implying n ≤ 8D2. Hence, the cardinality of the set on the right-hand side is at most∑8D2

n=1 ϕ(n). �
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REMARK 3.4. The summation in Corollary 3.3 can be written as a value of the totient
summatory function Φ(m) :=

∑m
n=1 ϕ(n), which satisfies an asymptotic formula

Φ(m) ∼ 3m2

π2 + O(m log m).

One can modify a proof of this formula to obtain a simpler upper bound for
|PrePer( f , K)|. Note, however, that this bound is very far from optimal. One way to
improve it is to use a stronger lower bound for ϕ(n). For instance, it is known from [1,
Theorem 8.8.7] that for n > 2,

ϕ(n) >
n

eγ log log n +
3

log log n

,

where γ is Euler’s constant.

To prove Theorem 1.6, we need the following auxiliary results about divisors of
2l ± 1, where l is a prime power. Recall that for a prime p and a nonzero integer s, the
p-adic valuation of s, denoted by vp(s), is the exponent of the highest power of p that
divides s.

LEMMA 3.5. Let k ∈ N.

(i) If k > 1 and q is a prime divisor of 22k
+ 1, then q = 2k+2m + 1 for some m ∈ N.

(ii) For any odd prime p, if q is a prime divisor of 2pk − 1 (respectively 2pk
+ 1) and

q � 2pk−1 − 1 (respectively q � 2pk−1
+ 1), then q = 2pkm + 1 for some m ∈ N.

(iii) For any odd prime p,

v3(2pk
+ 1) =

⎧⎪⎪⎨⎪⎪⎩k + 1 if p = 3,
1 if p > 3,

(3.1)

v3(2pk − 1) = 0. (3.2)

PROOF. (i) This assertion is known as the Euler–Lucas theorem [4, Theorem 1.3.5],
which gives an explicit form of the prime divisors of Fermat numbers.

(ii) Recall that for a positive integer n and an integer a which is relatively prime to n,
the order of a modulo n, denoted by ordna, is the smallest positive integer r such that

ar ≡ 1 (mod n).

Indeed, for any s ∈ N, if as ≡ 1 (mod n), then ordna | s. Let p be an odd prime and
let q be a prime divisor of 2pk − 1, where q � 2pk−1 − 1. Then it follows immediately
that ordq2 = pk. Since q is odd, 2q−1 ≡ 1 (mod q) by Fermat’s little theorem, implying
pk | q − 1. Moreover, since 2 | q − 1 and q > 1, we have q = 2pkm + 1 for some integer
m ≥ 1, as desired.
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Next, assume that q | 2pk
+ 1, but q � 2pk−1

+ 1. Obviously, 3 | 2l + 1 for every l ∈ N,
so q > 3. Observe that

22pk
= (2pk

)2 ≡ (−1)2 = 1 (mod q),

so ordq2 | 2pk. Since q � 3, we have ordq2 � 2. Moreover, since 2pk−1
� ±1 (mod q),

we have 22pk−1
� 1 (mod q). Therefore, we can conclude that ordq2 = 2pk. Again, by

Fermat’s little theorem, we can write q = 2pkm + 1 for some m ∈ N.
(iii) Applying the lifting-the-exponent lemma [2, Theorem 6.2], one sees immedi-

ately that (3.1) holds. In addition, since 3 | 2pk
+ 1, we have 2pk − 1 ≡ −2 mod 3, which

yields (3.2). �

LEMMA 3.6. Let t = pk, where p is prime and k ∈ N. Then the degree of each
irreducible factor of Φt, f (x) over Q is a multiple of t.

PROOF. We divide the proof into three cases, according to the value of p.

Case p = 2. From Theorem 2.1,

Φt, f (x) =
k∏

r=0

( ∏
d1 |22r−1

Ψd1 (x)
∏

d2 |22r
+1

Ψd2 (x)
)μ(2k−r)

=
∏

d1 |22k−1

Ψd1 (x)
∏

d2 |22k
+1

Ψd2 (x)
∏

d1 |22k−1−1

Ψd1 (x)−1
∏

d2 |22k−1
+1

Ψd2 (x)−1

=
∏

c1 |22k−1−1
c2 |22k−1

+1
c1,c2>1

Ψc1c2 (x)
∏

d2 |22k
+1

d2>1

Ψd2 (x),

where we have used the trivial factorisation 22k − 1 = (22k−1 − 1)(22k−1
+ 1) to deduce

the last equality. If k = 1, then Φt, f (x) = Ψ5(x), which is a quadratic polynomial. If
k = 2, then Φt, f (x) = Ψ15(x)Ψ17(x), where degΨ15 = 4 and degΨ17 = 8. It remains to
consider k > 2. Let c1, c2 > 1 be divisors of 22k−1 − 1 and 22k−1

+ 1, respectively. Since
22k−1 − 1 and 22k−1

+ 1 are coprime, so are c1 and c2. Let q be a prime divisor of c2. Then
there exist l, s ∈ N such that c2 = lqs and gcd(l, q) = 1. Moreover, from Lemma 3.5(i),
q = 2k+1m + 1 for some m ∈ N. By the remark under Theorem 2.1 and multiplicativity
of ϕ, we have

degΨc1c2 =
ϕ(c1c2)

2
=
ϕ(c1)ϕ(c2)

2
=
ϕ(c1)ϕ(l)qs−1(q − 1)

2
= ϕ(c1)ϕ(l)qs−12km,

so t = 2k | degΨc1c2 . It can be shown using the same argument that 2k | degΨd2 for any
divisor d2 > 1 of 22k

+ 1.
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Case p = 3. By Theorem 2.1,

Φt, f (x) =
∏

d1 |23k−1
d1�23k−1−1

Ψd1 (x)
∏

d2 |23k
+1

d2�23k−1
+1

Ψd2 (x).

Let d1 be a positive divisor of 23k − 1, where d1 � 23k−1 − 1. Since

23k − 1 = (23k−1 − 1)((23k−1
)2 + 23k−1

+ 1),

and by (3.2),

gcd(23k−1 − 1, (23k−1
)2 + 23k−1

+ 1) = gcd(23k−1 − 1, 23k−1
+ 2) = gcd(23k−1 − 1, 3) = 1,

there exists a prime divisor q of d1 such that q � 23k−1 − 1. Let s = vq(d1) and l = d1/qs.
By Lemma 3.5(ii), q = 2(3km) + 1 for some m ∈ N, whence

degΨd1 =
ϕ(d1)

2
=
ϕ(l)qs−1(q − 1)

2
= ϕ(l)qs−13km.

Now let d2 be a positive divisor of 23k
+ 1, where d2 � 23k−1

+ 1. Observe that

23k
+ 1 = (23k−1

+ 1)((23k−1
)2 − 23k−1

+ 1),

where

gcd(23k−1
+ 1, (23k−1

)2 − 23k−1
+ 1) = gcd(23k−1

+ 1, 23k−1 − 2) = gcd(23k−1
+ 1, 3) = 3.

If d2 is a power of 3, then d2 = 3k+1 from (3.1), in which case

degΨd2 =
ϕ(d2)

2
= 3k.

Otherwise, d2 has a prime divisor q > 3 such that q � 23k−1
+ 1, so we can again employ

Lemma 3.5(ii) to deduce that 3k | degΨd2 .

Case p > 3. By Theorem 2.1,

Φt, f (x) =
∏

d1 |2pk−1
d1�2pk−1−1

Ψd1 (x)
∏

d2 |2pk
+1

d2�2pk−1
+1

Ψd2 (x).

Simple calculations yield

2pk − 1 = (2pk−1 − 1)m1, 2pk
+ 1 = (2pk−1

+ 1)m2,
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Q

Q(β1) Q(β2) · · · Q(βr)

Q(α)

K

FIGURE 1. Diagram for the proof of Theorem 1.6.

where m1 > 1, m2 > 1 and gcd(2pk−1 − 1, m1) = gcd(2pk−1
+ 1, m2) = 1. Hence, for any

d1 and d2 in the product above, there exist prime divisors q1 and q2 of d1 and d2 such
that q1 � 2pk−1 − 1 and q2 � 2pk−1

+ 1. Then, with the aid of Lemma 3.5(ii), it can be
shown using arguments in the same vein as those in the previous cases that pk | degΨd1

and pk | degΨd2 . �

PROOF OF THEOREM 1.6. The case n = 1 is trivial, so we may assume that n > 1.
By the fundamental theorem of arithmetic, we can write n as n = pa1

1 · · · p
ar
r , where

r, a1, . . . , ar ∈ N and p1, . . . , pr are distinct primes. For 1 ≤ i ≤ r, let ni = n/pai
i and

βi = f (ni)(α) ∈ Q(α) ⊆ K. Then βi is a periodic point of f with minimal period pai
i .

Recall that the periodic points of f with minimal period l in Q are zeros of Φl, f (x).
Hence, βi must be a root of an irreducible factor τi(x) of Φp

ai
i , f (x). By Lemma 3.6, for

1 ≤ i ≤ r,

pai
i | deg τi = [Q(βi) : Q].

Moreover, since [Q(βi) : Q] | [K : Q] (see Figure 1), it follows that n =
lcm(pa1

1 , . . . , par
r ) | [K : Q], as desired. �

4. Examples in number fields of low degree

In this section, we apply our results to classify all values of the cosine at a rational
multiple of π which belong to a number field K of degree D with 1 ≤ D ≤ 5. We start
by factoring the polynomial f (D)(x) − x. By Theorem 1.6, the periodic points of f in K
can be obtained from zeros of irreducible factors of f (D)(x) − x which have degree at
most D. All the preperiodic points of f in K can then be computed by taking preimages
of these values under f, which can be done in a finite number of steps.
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EXAMPLE 4.1. For D = 1, we have K = Q and the periodic points must be fixed points
of f. Since f (x) − x = x2 − x − 2 = (x + 1)(x − 2), we have the following two digraphs
representing all rational preperiodic points of f :

−20 2 1 −1

Here, a→ b means f (a) = b. In other words, we have PrePer( f ,Q) = {0,±1,±2},
which is equivalent to Niven’s theorem.

EXAMPLE 4.2. For D = 2, K is a quadratic number field; that is, K = Q(
√

m) for some
square-free integer m and f (2)(x) − x = x4 − 4x2 − x + 2 = (x − 2)(x + 1)(x2 + x − 1).
Hence, the preperiodic points of f in K can be seen from the following three digraphs,
thereby proving Theorem 1.3:

0±
√

2 −2 2

±
√

3 1 −1

1 +
√

5
2

−1 +
√

5
2

−1 −
√

5
2

1 −
√

5
2

EXAMPLE 4.3. For D = 3, f (3)(x) − x = (x − 2)(x + 1)(x3 − 3x + 1)(x3 + x2 − 2x − 1).
Suppose that α1 < α2 < α3 and β1 < β2 < β3 are all roots of the third and the fourth
factors, respectively. The following four digraphs represent all preperiodic points in
cubic fields:

−α2

−α1

−α3

α1

α3

α2

0 −2 2

−β2

−β1

−β3

β1

β3

β2

1 −1

Therefore, {±α1,±α2,±α3,±β1,±β2,±β3} is the set of all cubic irrational values of
2 cos(rπ), where r ∈ Q.

EXAMPLE 4.4. For D = 4, we have f (4)(x) − x = (x − 2)(x + 1)(x2 + x − 1)(x4 −
x3 − 4x2 + 4x + 1)(x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x + 1). Let α1 < α2 <
α3 < α4 be the roots of the quartic factor of f (4)(x) − x. Then we have the following
four digraphs:
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-α1

α1 α4

−α2

−α4

α2 α3

-α3

±
√

2 +
√

2
√

2

0 −2 2

±
√

2 −
√

2 −
√

2

±
√

2 +
√

3
√

3

1 −1

±
√

2 −
√

3 −
√

3

±

√
5 +
√

5
2

±

√
5 −
√

5
2

1 +
√

5
2

−1 +
√

5
2

−1 −
√

5
2

1 −
√

5
2

Therefore, the set of all quartic irrational values of 2 cos(rπ), for r ∈ Q, is

{
± α1,±α2,±α3,±α4,±

√
2 ±
√

2,±
√

2 ±
√

3,±

√
5 ±
√

5
2

}
.

EXAMPLE 4.5. For D = 5, we can factorise

f (5)(x) − x = (x − 2)(x + 1)(x5 + x4 − 4x3 − 3x2 + 3x + 1) · g(x) · h(x),
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where g(x) and h(x) are irreducible polynomials with deg g = 10 and deg h = 15. Let
α1 < α2 < α3 < α4 < α5 be the roots of the quintic factor of f (5)(x) − x. Then we have
the following digraphs:

−α1 α5 −α5

α1 α4

−α4−α3

α3 α2

−α2

0 −2 2

1 −1

Therefore, {±α1,±α2,±α3,±α4,±α5} is the set of all quintic irrational values of
2 cos(rπ), where r ∈ Q.

5. Closing remarks

The dynamical properties of the map fc(x) = x2 + c have been studied extensively
over the past few decades, yet many related problems still remain open. For c = −2,
this map turns out to be closely related to a classical result in number theory, namely
Niven’s theorem and its extensions. This relation can be seen directly from Theorem
1.5. We can then apply Theorem 1.6 to systematically classify all preperiodic points of
f−2(x) in any number field K. It should be remarked that our proof of Theorem 1.6 relies
crucially on the known result [20] about factorisation of the dynatomic polynomials
associated to f−2(x), so it should not be expected that this theorem holds for fc(x) in
general. As a concrete example, consider f−1(x) = x2 − 1. It is clear that 0 is a periodic
point of f−1(x) with minimal period 2, so 0 is not a fixed point of f−1(x). To determine
all values of c ∈ Q for which fc(x) satisfies the property in Theorem 1.6, one might
start from those in [16, Figure 1] which correspond to digraphs containing no cycles of
length greater than 1; that is, c ∈ {1, 1/4, 0,−2,−3/4,−10/9}. For each of these values,
it is also an interesting problem to interpret the preperiodic points of fc(x) as special
values of some function.
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