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Abstract

We consider an SIR (susceptible → infective → recovered) epidemic in a closed pop-
ulation of size n, in which infection spreads via mixing events, comprising individuals
chosen uniformly at random from the population, which occur at the points of a Poisson
process. This contrasts sharply with most epidemic models, in which infection is spread
purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and
an approximating branching process are constructed on a common probability space via
embedded random walks. We show that under suitable conditions the process of infec-
tives in the epidemic process converges almost surely to the branching process. This
leads to a threshold theorem for the epidemic process, where a major outbreak is defined
as one that infects at least log n individuals. We show further that there exists δ > 0,
depending on the model parameters, such that the probability that a major outbreak has
size at least δn tends to one as n → ∞.
Keywords: Branching process; coupling; random walk; SIR epidemic; size of epidemic;
threshold theorem
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1. Introduction

A key component of any epidemic model is the assumption made concerning transmission
of infection between individuals. In almost all epidemic models it is assumed that infection
spreads via interactions of pairs of individuals, one of whom is infective and the other suscep-
tible. In some epidemic models, such as network models (e.g. Newman [15]), this assumption
is explicit, whereas in others, such as the so-called general stochastic epidemic (e.g. Bailey
[1, Chapter 6]) and many deterministic models, it is implicit. In the general stochastic epi-
demic, the process of the numbers of susceptible and infective individuals, {(S(t), I(t)) : t ≥ 0},
is modelled as a continuous-time Markov chain with infinitesimal transition probabilities

P((S(t +�t), I(t +�t)) = (s − 1, i + 1)|(S(t), I(t)) = (s, i)) = βsi�t + o(�t),

P((S(t +�t), I(t +�t)) = (s, i − 1)|(S(t), I(t)) = (s, i)) = γ i�t + o(�t),

and with all other transitions having probability o(�t). Here, β is the individual-to-individual
infection rate and γ is the recovery rate. However, it is probabilistically equivalent to a model
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in which the infectious periods of infectives follow independent exponential random variables
having mean γ−1 and contacts between distinct pairs of individuals occur at the points of
independent Poisson processes, each having rate β.

In real-life epidemics, people often meet in groups of size larger than two; in many coun-
tries, one of the most significant control measures in the COVID-19 pandemic was to impose
limits on the size of gatherings outside of the home. In Cortez [8] and Ball and Neal [5], the
authors independently introduced a new class of SIR (susceptible → infective → recovered)
epidemic model, in which mixing events occur at the points of a Poisson process, with the
sizes of successive mixing events being independently distributed according to a random vari-
able having support contained in {2, 3, . . . , n}, where n is the population size. Mixing events
are instantaneous, and at a mixing event of size c, each infective present contacts each sus-
ceptible present independently with probability πc; a susceptible becomes infected if they are
contacted by at least one infective. Such an infected susceptible immediately becomes infec-
tive, although they cannot infect other susceptibles at the same mixing event, and remains so
for a time that follows an exponential distribution with mean γ−1. In Cortez [8] and Ball and
Neal [5], the temporal behaviour of epidemics with many initial infectives is studied, with [8]
considering the mean-field limit of the stochastic epidemic process. In Ball and Neal [5], the
focus is on a functional central limit theorem for the temporal behaviour of epidemics with
many initial infectives and on central limit theorems for the final size of (i) an epidemic with
many initial infectives and (ii) an epidemic with few initial infectives that becomes established
and leads to a major outbreak. A branching process which approximates the early stages of
an epidemic with few initial infectives is described in [5], though no rigorous justification is
provided. A key result required in the proof of the central limit theorem for the final size in
Case (ii) above is that there exists δ > 0 (which depends on model parameters) such that the
probability that an epidemic infects at least a fraction δ of the population, given that it infects
at least log n individuals, converges to one as the population size n → ∞. This result is simply
stated without a proof in [5]. The aim of the present paper is to fill these gaps for a model that
allows more general transmission of infection at mixing events than that considered in [5].

Approximation of the process of infectives in an epidemic model by a branching process has
a long history that goes back to the pioneering work of Bartlett [7, pp. 147–148] and Kendall
[12], who considered approximation of the number of infectives in the general stochastic epi-
demic by a linear birth-and-death process, with birth rate βN and death rate γ , where N is
the initial number of susceptibles. This leads to the celebrated threshold theorem (Whittle [17]
and Williams [18]), arguably the most important result in mathematical epidemic theory. The
approximation was made fully rigorous by Ball [2] (cf. Metz [13]), who defined realisations
of the general stochastic epidemic, indexed by N, with the Nth epidemic having infection rate
βN−1 and recovery rate γ , and the limiting birth-and-death process on a common probability
space and used a coupling argument to prove almost sure convergence, as N → ∞, of the epi-
demic process to the limiting branching process over any finite time interval [0, t]. The method
was extended by Ball and Donnelly [3] to show almost sure convergence over suitable intervals
[0, tN], where tN → ∞ as N → ∞.

The key idea of Ball [2] is to construct a realisation of the epidemic process for each N from
the same realisation of the limiting branching process. Moreover, this coupling is done on an
individual basis, in that the behaviour of an infective in the Nth epidemic model is derived
from the behaviour of a corresponding individual in the branching process. The method is very
powerful and applicable to a broad range of epidemic models. However, it cannot be easily
applied to epidemics with mixing groups, because the mixing groups induce dependencies
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between different infectives. Thus instead, we generalise the method of Ball and O’Neill [6],
which involves constructing sample paths of the epidemic process, indexed by the population
size n, and the limiting branching process (more precisely, the numbers of infectives in the
epidemic processes and the number of individuals in the branching process) via a sequence of
independent and identically distributed (i.i.d.) random vectors. The generalisation is far from
straightforward, since Ball and O’Neill [6] consider only epidemics in which the number of
infectives changes in steps of size 1, as in the general stochastic epidemic, whereas in the
model with mixing events, although the number of infectives can only decrease in steps of
size 1, it can increase in steps of any size not greater than the population size n. We improve
on the coupling given in [6] by coupling the time of events in the limiting branching process
and epidemic processes, so that the event times agree with high probability, tending to 1 as the
population size n → ∞, rather than having the event times in the epidemic processes converge
in the limit, as the population size n → ∞, to the event times of the branching process. Finally,
we use the coupling to prove the above-mentioned result concerning epidemics of size at least
log n, which was not addressed in [6].

The remainder of the paper is structured as follows. The model with mixing groups E (n)

is defined in Section 2. The approximating branching process B and the main results of the
paper are given in Section 3. The branching process B is described in Section 3.1, where some
of its basic properties are presented. The offspring mean of B yields the basic reproduction
number R0 of the epidemic E (n). The extinction probability and Malthusian parameter of B
are derived. The main results of the paper are collected together in Section 3.2. Theorem 3.1
shows that the number of infectives in the epidemic process E (n) converges almost surely to
the number of individuals alive in the branching process B on [0, tn) as n → ∞, where tn = ∞
in the case the branching process goes extinct and tn = ρ log n for some ρ > 0 otherwise. A
major outbreak is defined as one that infects at least log n individuals. Theorem 3.2(a) shows
that the probability of a major outbreak converges to the survival probability of B as n → ∞.
Theorem 3.2(b) shows that if R0 > 1, so a major outbreak occurs with non-zero probability in
the limit n → ∞, then there exists δ > 0 such that the probability that a major outbreak infects
at least a fraction δ of the population tends to one as n → ∞. Moreover, we show that there
exists δ′ > 0 such that the fraction of the population infectious at the peak of the epidemic
exceeds δ′ with probability tending to one as n → ∞. The proofs of Theorems 3.1 and 3.2 are
given in Sections 4 and 5, respectively. Brief concluding comments are given in Section 6.

2. Model

We consider the spread of an SIR epidemic in a closed population of n individuals, with
infection spread via mixing events which occur at the points of a homogeneous Poisson pro-
cess having rate nλ. The sizes of mixing events are i.i.d. according to a random variable C(n)

having support {2, 3, . . . , n}. If a mixing event has size c then it is formed by choosing c indi-
viduals uniformly at random from the population without replacement. Suppose that a mixing
event of size c involves i susceptible and j infective individuals, and hence c − i − j recovered
individuals. Then the probability that w new infectives are created at the event is πc(w; i, j). The
only restrictions we impose on πc(w; i, j) are the natural ones that, for w> 0, πc(w; i, 0) = 0;
infections can only occur at a mixing event if there is at least one infective present; and for
w> i, πc(w; i, j) = 0: the maximum number of new infectives created at a mixing event is the
number of susceptibles involved in the event. Mixing events are assumed to be instantaneous.
The infectious periods of infectives follow independent Exp(γ ) random variables, i.e. expo-
nential random variables having rate γ and hence mean γ−1. There is no latency period, so
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newly infected individuals are immediately able to infect other individuals. (The possibility
of their being able to infect other susceptibles during the mixing event at which they were
infected can be incorporated into the πc(w; i, j).) All processes and random variables in the
above model are mutually independent. The epidemic starts at time t = 0 with mn infective and
n − mn susceptible individuals, and terminates when there is no infective left in the population.
Denote this epidemic model by E (n).

2.1. Special cases

2.1.1. General stochastic epidemic. If all mixing groups have size 2, i.e. P(C(n) = 2) = 1, and
πc(0; 1, 1) = πc(1; 1, 1) = 1

2 , then the model reduces to the general stochastic epidemic, with
individual-to-individual infection rate β = λ

n−1 and recovery rate γ .

2.1.2. Binomial sampling. The models studied in Cortez [8] and Ball and Neal [5] make the
Reed–Frost-type assumption that at a mixing event of size c, each infective present has prob-
ability πc of making an infectious contact with any given susceptible present, with all such
contacts being independent. This corresponds to

πc(w; i, j) =
(

i

w

) (
1 − (1 − πc) j)w (1 − πc) j(i−w) (w = 0, 1, . . . , i).

3. Approximating branching process and main results

3.1. Approximating branching process

We approximate the process of infectives in the early stages of the epidemic E (n) by a
branching process B, which assumes that every mixing event which includes at least one infec-
tive consists of a single infective in an otherwise susceptible group. In the epidemic E (n), the
probability that a given mixing event of size c involves a specified individual, i∗ say, is c

n , so
mixing events that include i∗ occur at rate

λn
n∑

c=2

p(n)
C (c)

c

n
= λμ

(n)
C , (3.1)

where p(n)
C (c) = P

(
C(n) = c

)
(c = 2, 3, . . . , n) and μ(n)

C =E[C(n)]. Furthermore, the probability
that a given mixing event is of size c given that it includes i∗ is

p(n)
C (c) c

n∑n
c′=2 p(n)

C (c′) c′
n

= cp(n)
C (c)

μ
(n)
C

(c = 2, 3, . . . , n).

Suppose that C(n) D−→ C as n → ∞ (where
D−→ denotes convergence in distribution),

pC(c) = P(C = c) (c = 2, 3, . . . ), and μ
(n)
C →μC =∑∞

c=2 cpC(c), which we assume to be
finite. Thus in the limit as n → ∞, mixing events involving i∗ occur at rate λμC, and the
size of such a mixing event is distributed according to C̃, the size-biased version of C, having
probability mass function

pC̃(c) = P(C̃ = c) = cpC(c)

μC
(c = 2, 3, . . . ). (3.2)

We assume that the initial number of infectives mn = m for all sufficiently large n, so the
branching process B has m ancestors.
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In B, a typical individual, i∗ say, has lifetime L ∼ Exp(γ ), during which they have birth
events at rate λμC. Let Z̃1, Z̃2, . . . denote the number of offspring i∗ has at successive birth
events. A birth event corresponds to a mixing event involving a single infective in an otherwise
susceptible group in the epidemic. Thus, Z̃1, Z̃2, . . . are i.i.d. copies of a random variable Z̃,
with P(Z̃ = w) = ϕw (w = 0, 1, . . . ), where

ϕw =
∞∑

c=w+1

pC̃(c)πc(w; c − 1, 1) = 1

μC

∞∑
c=w+1

cpC(c)πc(w; c − 1, 1), (3.3)

using (3.2). Note that an individual may produce no offspring at a birth event. The number of
birth events a typical individual has during their lifetime, G say, has the geometric distribution

P(G = k) = γ

γ + λμC

(
λμC

γ + λμC

)k

(k = 0, 1, . . . ). (3.4)

Let R be the total number of offspring a typical individual has during their lifetime. Then

R =
G∑

i=1

Z̃i, (3.5)

where G, Z̃1, Z̃2, . . . are independent and the sum is zero if G = 0.
The basic reproduction number R0 =E[R]. Hence, using (3.5) and (3.4),

R0 =E[G]E[Z̃] = λμC

γ

∞∑
w=1

w

μC

∞∑
c=w+1

cpC(c)πc(w; c − 1, 1)

= λ

γ

∞∑
c=2

cpC(c)
c−1∑
w=1

wπc(w; c − 1, 1)

= λ

γ
E[Cν(C)], (3.6)

where

ν(c) =
c−1∑
w=1

wπc(w; c − 1, 1) (3.7)

is the mean number of new infectives generated in a mixing event of size c with one infec-
tive and c − 1 susceptibles. Again using (3.5) and (3.4), the offspring probability generating
function for the branching process B is

fR(s) =E[sR] = γ

γ + λμC
(
1 − fZ̃(s)

) ,
where fZ̃(s) =∑∞

w=0 ϕwsw. By standard branching process theory, the extinction probability z
of B, given that initially there is one individual, is given by the smallest solution in [0, 1] of
fR(s) = s. Furthermore, z< 1 if and only if R0 > 1.

Let r denote the Malthusian parameter of B; see Jagers [11, p. 10] for details. The mean rate
at which an individual produces offspring t time units after their birth is P(L> t)λμCE[Z̃1] =
γ e−γ tR0 (t> 0), so r is the unique solution in (0,∞) of∫ ∞

0
e−rtγ e−γ tR0 dt = 1,

https://doi.org/10.1017/apr.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.29


Strong convergence of an epidemic model with mixing groups 435

whence
r = γ (R0 − 1). (3.8)

Note that r depends on the parameters of the epidemic model only through (R0, γ ). Thus,
if R0 and γ are held fixed, then the Malthusian parameter is the same for all corresponding
choices of the distribution of C and {πc(w; i, j)}. In particular, under these conditions, the early
exponential growth of an epidemic that takes off is the same as that of the general stochastic
epidemic.

3.2. Strong convergence of epidemic processes

In this section we consider a sequence of epidemics (E (n)), in which mn = m for all suffi-
ciently large n, and state results concerned with convergence of the process of infectives in the
epidemic process E (n) to the branching process B as n → ∞ that are proved in Section 4. The
usual approach to proving such results is based upon that of Ball [2] and Ball and Donnelly
[3], in which the sample paths of the epidemic process for each n are constructed from those
of the limiting branching process, B. As noted in the introduction, that approach is not easily
implemented in the present setting, because the mixing groups induce dependencies between
different infectives. We therefore generalise the method in Ball and O’Neill [6] and construct
sample paths of the epidemic processes and the limiting branching process, B, from a sequence
of i.i.d. random vectors defined on an underlying probability space (�,F , P). The construction
is described in Section 4.

For t ≥ 0, let S(n)(t) and I(n)(t) be the numbers of susceptibles and infectives, respectively,
at time t in E (n). Let T (n) = n − S(n)(∞) be the total size of the epidemic E (n), i.e. the total
number of individuals infected during its course, including the initial infectives. For t ≥ 0, let
I(t) be the number of individuals alive at time t in B, and let T be the total size of the branching
process B, including the m ancestors. Note that whereas T (n)(ω)<∞ for all ω ∈�, T(ω) = ∞
if the branching process B(ω) does not go extinct.

Throughout the remainder of the paper we assume that mn = m and μ
(n)
C ≤μC for all

sufficiently large n. The assumption μ(n)
C ≤μC simplifies the presentation of certain results,

in particular, Lemma 4.2, and holds in the most common cases: (i) C has finite sup-

port {2, 3, . . . , n0}, and for n ≥ n0, C(n) = C; (ii) C(n) = min{C, n}; and (iii) C(n) D= C|C ≤ n.

We also assume throughout that C(n) D−→ C and E[(C(n))2] →E[C2]<∞ as n → ∞. For
Theorem 3.1(b) and Theorem 3.2, we require additional conditions on C(n) and C, namely
that

lim
n→∞ E

[
C(n)(C(n) − 1

)
ν
(
C(n))]=E[C(C − 1)ν(C)]<∞, (3.9)

and that there exists θ0 > 0 such that

lim
n→∞ nθ0

∞∑
c=2

c
∣∣∣p(n)

C (c) − pC(c)
∣∣∣= 0. (3.10)

Note that E[
(
C(n)

)3] →E[C3]<∞ as n → ∞ is a sufficient condition for (3.9) to hold. Also,
in the three common cases listed above for constructing C(n) from C, (3.10) holds for any
0< θ0 <α, for which E[C1+α]<∞. (For Case (i), this is immediate. For Cases (ii) and (iii),
the proof is similar to that of (A1) in the Supplementary Information of Ball and Neal [5].)

Theorem 3.1. Under the stated conditions on C(n), there exists a probability space (�,F , P)
on which are defined a sequence of epidemic models, E (n), indexed by n, and the approximating
branching process, B, with the following properties.
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Denote by Aext the set on which the branching process B becomes extinct:

Aext = {ω ∈� : T(ω)<∞} .

(a) Then, as n → ∞,

sup
0≤t<∞

∣∣I(n)(t) − I(t)
∣∣→ 0

for P-almost all ω ∈ Aext.

(b) Suppose that (3.9) holds and (3.10) holds for some θ0 > 0. Then, if there exists α ≥ 1
such that E[Cα+1]<∞, we have for

0<ρ <
1

r
min

{
αθ0

2(1 + α)
,

α

2 + 4α

}
, (3.11)

as n → ∞,

sup
0≤t≤ρ log n

∣∣I(n)(t) − I(t)
∣∣→ 0 (3.12)

for P-almost all ω ∈ Ac
ext.

The proof of Theorem 3.1 is presented in Section 4.
Note that ρ given in (3.11) satisfies ρ < (4r)−1, and thus Theorem 3.1(b) is weaker than

[3, Theorem 2.1, (2.2)], where (3.12) is shown to hold for ρ < (2r)−1 in the standard pairwise
mixing epidemic model. The following corollary of Theorem 3.1 concerns the final size of the
epidemic.

Corollary 3.1. For (�,F , P) defined in Theorem 3.1, we have, for P-almost all ω ∈�,

lim
n→∞ T (n)(ω) = T(ω).

Corollary 3.1 shows that for large n, the final size of the epidemic E (n) can be approximated
by the total size of B. This leads to a threshold theorem for the epidemic process E (n) by
associating survival (i.e. non-extinction) of the branching process B with a major outbreak in
the epidemic process E (n) (cf. Ball [2, Theorem 6], and Ball and Donnelly [3, Corollary 3.4]). It
then follows that a major outbreak occurs with non-zero probability if and only if R0 > 1, and
the probability of a major outbreak is 1 − zm. However, for practical applications it is useful to
have a definition of a major outbreak that depends on n. We say that a major outbreak occurs
if and only if T (n) ≥ log n.

Theorem 3.2. Suppose that (3.9) holds and (3.10) holds for some θ0 > 0.

(a) Then
P
(
T (n) ≥ log n

)→ 1 − zm as n → ∞. (3.13)

(b) If also R0 > 1 and there exists α > 1 such that E[C1+α]<∞, then there exists δ > 0
such that

P
(
T (n) ≥ δn|T (n) ≥ log n

)→ 1 as n → ∞. (3.14)

The proof of Theorem 3.2 is presented in Section 5.
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Theorem 3.2(b) implies that a major outbreak infects at least a fraction δ of the popula-
tion with probability tending to one as n → ∞. However, δ depends on the parameters of the
epidemic E (n) and can be arbitrarily close to 0. An immediate consequence of the proof of
Theorem 3.2(b) is Corollary 3.2, which states that, in the limit as n → ∞, there exists δ′ > 0
such that in the event of a major epidemic outbreak the proportion of the population infectious
at the peak of the epidemic exceeds δ′.

Corollary 3.2. Under the conditions of Theorem 3.2(b), there exists δ′ > 0 such that

P

(
sup
t≥0

∣∣∣∣ I(n)(t)

n

∣∣∣∣≥ δ′
∣∣∣∣∣ T (n) ≥ log n

)
→ 1 as n → ∞. (3.15)

A central limit theorem for the total size T (n) in the event of a major outbreak is given in
Ball and Neal [5], for the special case of binomial sampling (Section 2.1.2), by using the the-
ory of (asymptotically) density-dependent population processes (Ethier and Kurtz [10, Chapter
11] and Pollett [16]) to obtain a functional central limit theorem for a random time-scale
transformation of {(S(n)(t), I(n)(t)):t ≥ 0} and hence a central limit theorem for the number of
susceptibles when the number of infectives reaches zero, via a boundary-crossing problem. As
noted in the introduction, Theorem 3.2(b) is a key step in the proof of the above central limit
theorem, though the result was only stated in [5]. A similar central limit theorem for T (n) is
likely to hold for our more general model, although details will be messy unless πc(w; i, j)
takes a convenient form.

4. Proof of Theorem 3.2

4.1. Overview

We present an overview of the steps to prove Theorem 3.1. We construct on a common
probability space the Markovian branching process B and the sequence of epidemic processes
(E (n)), in which we equate infection and removal events in the epidemic process, E (n), with birth
and death events, respectively, in the branching process, B. Given that at time t ≥ 0 there are
the same number of infectious individuals in the epidemic process E (n) as there are individuals
alive in the branching process B, the removal rate in E (n) is equal to the death rate in B. For
k = 0, 1, . . ., the rate at which an infection event occurs which generates k new infections in
E (n) will depend upon the state of the population (number of susceptibles and infectives), and
during the early stages of the epidemic this rate will be close to, but typically not equal to,
the rate at which a birth event resulting in k new individuals occurs in B. Therefore, we look
to bound the difference between the infection rate in E (n) and the birth rate in B in order to
establish a coupling between the two processes.

A useful observation is that in the epidemic processes E (n) (the branching process B) the
number of infectives and susceptibles (the number of individuals alive) is piecewise con-
stant between events, where an event is either a mixing event or a recovery. Therefore, in
Section 4.2, we define embedded discrete-time jump processes for E (n) and B, for the number
of infectives (and susceptibles) and the number of individuals alive after each event. In the
case of B the embedded discrete-time jump process is a random walk. Then, in Section 4.3, we
provide a bound on the rate of convergence to 0 of the difference between the infection rate in
E (n) and the birth rate in B in Lemma 4.1, which is applicable during the early stages of the epi-
demic when only a few individuals have been infected. Lemma 4.1 enables us to construct the
embedded discrete-time jump processes defined in Section 4.2 on a common probability space

https://doi.org/10.1017/apr.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.29


438 F. BALL AND P. NEAL

(Section 4.4) and provide an almost sure coupling between the discrete-time processes dur-
ing the initial stages of the epidemic (Section 4.5). That is, we couple the outcomes of the
kth (k = 1, 2, . . . ) events in E (n) and B so that the types of event—birth (infection) and death
(removal)—match, and in the case of birth/infection, the same numbers of births and infec-
tions occur. Once we have established an almost sure agreement between the types of events
that have occurred in the epidemic and branching processes, it is straightforward to provide
an almost sure coupling of the timing of the events. The key couplings are drawn together in
Lemma 4.2, from which Theorem 3.1 follows almost immediately. Finally, we consider the
total sizes of the epidemic processes E (n) and the branching process B and provide a proof of
Corollary 3.1.

4.2. Embedded random walk

Let the random walk R be defined as follows. Let Yk denote the position of the random
walk after k steps, with Y0 = m> 0. For k = 1, 2, . . ., let Yk = Yk−1 + Zk, where Z1, Z2, . . . are
i.i.d. with probability mass function

P (Zk = w)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βϕw

γ + β
, w = 0, 1, . . . ,

γ

γ + β
, w = −1,

0 otherwise,

(4.1)

where β = λμC and ϕw is defined as in (3.3). Thus, upward (downward) steps in R correspond
to birth (death) events in B. Note that Zk = 0 is possible, corresponding to a step with no change
in the random walk (a birth event with no births in B). For k = 1, 2, . . ., let ηk denote the time
of the kth event in B with η0 = 0; then we can construct R from B by setting Yk = I(ηk),
where I(t) (t ≥ 0) is the size of the population of B at time t. Note that if I(ηk) = 0, then
the branching process has gone extinct and Yk = 0, i.e. the random walk has hit 0. We can
continue the construction of the random walk after the branching process has gone extinct using
Yk = Yk−1 + Zk, but our primary interest is in the case where the two processes are positive.
Conversely, we can construct B from R by using, in addition to {Yk} = {Yk:k = 0, 1, . . . }, a
sequence of i.i.d. random variables V1, V2, . . ., where Vk ∼ Exp(1). (Throughout the paper,
discrete-time processes are assumed to have index set Z+ unless indicated otherwise.) For
k = 1, 2, . . .,

ηk = ηk−1 + Vk

(γ + β)Yk−1
,

and for any ηk ≤ t<ηk+1, we set I(t) = Yk. Note that ηk = ∞ if Yk−1 = 0, corresponding to
the branching process going extinct with I(t) = 0 for all t ≥ ηk−1. Finally, note that E[Z1]< 0,
= 0, or > 0 if and only if R0 < 1, = 1, or > 1, respectively.

We turn to the sequence of epidemic processes, (E (n)), and for each E (n), an associated
discrete-time epidemic jump process S(n). Let Q(n)

c (i, j|x, y) denote the probability that a mix-
ing event of size c in a population of size n with x susceptibles and y infectives (and hence
n − x − y recovered individuals) involves i susceptibles and j infectives (and hence c − i − j
recovered individuals). Note that

Q(n)
c (i, j|x, y) =

(x
i

)× (yj)× (n−x−y
c−i−j

)
(n

c

) . (4.2)
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For w = 0, 1, . . ., let q(n)(x, y,w) be such that

q(n)(x, y,w)y = nλ
n∑

c=w+1

p(n)
C (c)

c−w∑
j=1

c−w−j∑
l=0

{
Q(n)

c (c − j − l, j|x, y)πc(w; c − j − l, j)
}
,

(4.3)

where the indices j and l refer to the numbers of infectives and recovered individuals, respec-
tively, involved in the mixing event. Thus, for w = 1, 2, . . . , x, q(n)(x, y,w)y denotes the rate of
occurrence of mixing events that create w new infectives within a population of size n having x
susceptibles and y infectives. Hence, q(n)(x, y,w) can be viewed as the rate at which an infec-
tious individual in a population of size n containing x susceptibles and y infectives generates w
new infectives. Note that q(n)(x, y, 0)y is the rate of occurrence of mixing events which involve
at least one infective and create no new infectives, in a population with x susceptibles and y> 0
infectives.

Recall that, for t ≥ 0, S(n)(t) and I(n)(t) denote respectively the numbers of susceptibles and
infectives at time t in E (n). Since the population is closed, for all t ≥ 0, n − S(n)(t) − I(n)(t)
denotes the number of recovered individuals, and we can describe the epidemic E (n) in
terms of

{
(S(n)(t), I(n)(t)) : t ≥ 0

}
, which is a continuous-time Markov chain on the state space

E(n) = {(x, y) ∈Z
2 : x + y ≤ n, 0 ≤ x ≤ n − mn, y ≥ 0

}
with transition probabilities

P

(
(S(n)(t +�t), I(n)(t +�t)) = (x − w, y + w)

∣∣∣ (S(n)(t), I(n)(t)) = (x, y)
)

= q(n)(x, y,w)y�t + o(�t) (w = 0, 1, . . . , x), (4.4)

P

(
(S(n)(t +�t), I(n)(t +�t)) = (x, y − 1)

∣∣∣ (S(n)(t), I(n)(t)) = (x, y)
)

= γ y�t + o(�t), (4.5)

and with all other transitions having probability o(�t). The events (4.4) and (4.5) correspond
to infection of w individuals and recovery of an individual, respectively. The function q(n)

is real-valued with domain a subset of Z+ ×Z+ ×N. We note that the epidemic process is
invariant to the choice of q(n)(x, y, 0) ≥ 0, so we can define q(n)(x, y, 0) to satisfy (4.3) with
w = 0. Similarly, the epidemic process is invariant to the choice of q(n)(x, 0,w), as no infec-
tions can occur if y = 0, but for coupling purposes it is useful to define q(n)(x, y,w) = βϕw for
y = 0,−1,−2, . . .. Finally, as noted in Section 4.1, we observe that the recovery rate (4.5)
coincides with the death rate of the branching process B, so to couple the number of infec-
tives in the epidemic process E (n) to the number of individuals in the branching process B, we
require that q(n)(x, y,w) ≈ βϕw and q(n)(x, y) =∑n−1

w=0 q(n)(x, y,w) =∑∞
w=0 q(n)(x, y,w) ≈ β

as n becomes large.
(

Note that for w> n − 1, q(n)(x, y,w) = 0.
)

We proceed by making this

precise after first describing the discrete-time epidemic jump process S(n).

For n = 1, 2, . . . and k = 0, 1, . . ., let
(

X(n)
k , Y (n)

k

)
denote the state of the jump process

S(n) after the kth event with
(

X(n)
0 , Y (n)

0

)
= (n − mn,mn). For k = 1, 2, . . ., (x, y) ∈ E(n), and

w = 0, 1, . . . , x, let

P

((
X(n)

k+1, Y (n)
k+1

)
= (x − w, y + w)

∣∣∣ (X(n)
k , Y (n)

k

)
= (x, y)

)
= q(n)(x, y,w)

γ + q(n)(x, y)
,

P

((
X(n)

k+1, Y (n)
k+1

)
= (x, y − 1)

∣∣∣ (X(n)
k , Y (n)

k

)
= (x, y)

)
= γ

γ + q(n)(x, y)
,
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with all other transitions having probability 0 of occurring. Letting η(n)
k denote the time of

the kth event in E (n), with η(n)
0 = 0, we can construct S(n) from E (n) by setting

(
X(n)

k , Y (n)
k

)
=(

S(n)
(
η

(n)
k

)
, I(n)

(
η

(n)
k

))
. As with the construction of R, we can continue the construction of S(n)

after the kth event with Y (n)
k = 0, using q(n)(x, y,w) = βϕw for y = 0,−1,−2, . . .. Conversely,

we can construct E (n) from S(n) by in addition using the sequence of i.i.d. random variables
V (n)

1 , V (n)
2 , . . ., where V (n)

i ∼ Exp(1). For k = 1, 2, . . ., set

η
(n)
k = η

(n)
k−1 + V (n)

k[
γ + q(n)

(
X(n)

k−1, Y (n)
k−1

)]
Y (n)

k−1

, (4.6)

then for any η(n)
k ≤ t<η(n)

k+1, set
(
S(n)(t), I(n)(t)

)= (X(n)
k , Y (n)

k

)
. Note that if Yn

k−1 = 0, η(n)
k = ∞

and for all t ≥ η(n)
k−1, the epidemic has died out with

(
S(n)(t), I(n)(t)

)= (X(n)
k−1, 0

)
.

We briefly discuss the choice of V (n)
k . A simple coupling with the branching pro-

cess B would be to set V (n)
k = Vk, which results in η

(n)
k ≈ ηk if η

(n)
k−1 ≈ ηk−1 and

Y (n)
k−1

[
γ + q(n)

(
X(n)

k−1, Y (n)
k−1

)]≈ Yk−1[γ + β]. This is the approach taken in [6] and leads to

a slight mismatch between the event times in E (n) and B, with the mismatch converging
to 0 as n → ∞. Therefore we take an alternative approach which results in there being
high probability of η(n)

k = ηk, if η(n)
k−1 = ηk−1 and Y (n)

k−1 = Yk−1, with the details provided in
Section 4.4.

4.3. Matching infection rate to birth rate

In this section, we provide bounds on the differences between the rate, q(n)
(
x(n), y(n),w

)
, at

which events creating w (w = 0, 1, . . .) new infectives occur in E (n) with x(n) susceptibles and
y(n) infectives present in the population, and the rate, βϕw, at which birth events creating w new
individuals occur in B. The bounds on the difference in rates are appropriate during the early
stages of the epidemic process where n − rn ≤ x ≤ n − mn (i.e. whilst fewer than rn individuals
have ever been in the infectious state), for a sequence (rn) satisfying rn → ∞ and rn/

√
n → 0

as n → ∞.
In the early stages of the epidemic, when x ≥ n − rn, it is unlikely that a mixing event will

involve more than one non-susceptible individual. Thus we split the double sum over j and l in
(4.3) into the case j = 1 and l = 0, a single infective in an otherwise susceptible group of size
c, and the case j + l ≥ 2, where there is more than one non-susceptible individual in a mixing
event. This gives, for y> 0,

q(n)(x, y,w) = nλ

y

n∑
c=w+1

p(n)
C (c)Q(n)

c (c − 1, 1|x, y)πc(w; c − 1, 1)

+ nλ

y

n∑
c=w+1

p(n)
C (c)

∑
j+l≥2

{
Q(n)

c (c − j − l, j|x, y)πc(w; c − j − l, j)
}

= q(n)
1 (x, y,w) + q(n)

2 (x, y,w), say. (4.7)

We consider the two terms on the right-hand side of (4.7). Note that for y ≤ 0, we
set q(n)

1 (x, y,w) = βϕw and q(n)
2 (x, y,w) = 0, which is consistent with q(n)(x, y,w) = βϕw
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(y = 0,−1, . . . ). Also, for w = n, n + 1, . . ., q(n)(x, y,w) = 0, which implies q(n)
h (x, y,w) = 0

(h = 1, 2). For h = 1, 2, let q(n)
h (x, y) =∑n−1

w=0 q(n)
h (x, y,w) =∑∞

w=0 q(n)
h (x, y,w), the sums over

w of the two components of q(n)(x, y,w) in (4.7). Hence q(n)(x, y) = q(n)
1 (x, y) + q(n)

2 (x, y).
Lemma 4.1 provides bounds on the rate of convergence to 0, as n → ∞, of the difference

between the infection rate in the epidemic process and the birth rate in the branching process,
in terms of the number of non-susceptibles in the population (rn) and the rate of convergence

of C(n) to C. Remember that throughout we assume that C(n) D−→ C and E[(C(n))2] →E[C2]
as n → ∞, with E[C2]<∞; see the conditions stated before Theorem 3.1 in Section 3.2.

Lemma 4.1. Let (rn) be a sequence of positive real numbers such that rn → ∞ and rn/
√

n → 0
as n → ∞.

Let (sn) be a sequence of positive real numbers such that snr2
n/n → 0 and

sn

n∑
c=2

c
∣∣∣p(n)

C (c) − pC(c)
∣∣∣→ 0 as n → ∞. (4.8)

Suppose that (x(n)) and (y(n)) are two sequences such that n − rn ≤ x(n) ≤ n − mn and
0< y(n) ≤ rn for all sufficiently large n. Then

sn

∞∑
w=0

∣∣∣q(n)
1 (x(n), y(n),w) − βϕw

∣∣∣→ 0 as n → ∞ (4.9)

and

∞∑
w=0

sn

∣∣∣q(n)
2

(
x(n), y(n),w

)∣∣∣= sn

n−1∑
w=0

∣∣∣q(n)
2 (x(n), y(n),w)

∣∣∣→ 0 as n → ∞. (4.10)

Consequently, if snr2
n/n → 0 as n → ∞, then

sn

∣∣∣q(n)(x(n), y(n)) − β

∣∣∣= sn

∣∣∣∣∣
∞∑

w=0

{
q(n)(x(n), y(n),w) − βϕw

}∣∣∣∣∣→0 as n → ∞.

(4.11)

Proof. First note that, for Q(n)
c
(
c − 1, 1|x(n), y(n)

)
defined in (4.2) and any c = 2, 3, . . .,

Q(n)
c

(
c − 1, 1|x(n), y(n))= c

y(n)

n

c−2∏
j=0

x(n) − j

n − 1 − j

= c
y(n)

n
+ y(n)ε(n)

c

(
x(n)), (4.12)

where

ε(n)
c

(
x(n))= c

n

⎧⎨
⎩
⎡
⎣c−2∏

j=0

x(n) − j

n − 1 − j

⎤
⎦− 1

⎫⎬
⎭ .
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For x(n) ≥ n − rn and c ≤ n/2, we have that

1 ≥
c−2∏
j=0

x(n) − j

n − 1 − j
=

c−2∏
j=0

(
1 − n − 1 − x(n)

n − 1 − j

)

≥ 1 − [n − 1 − x(n)]

{
1

n − 1
+ 1

n − 2
+ . . .+ 1

n − c + 1

}

≥ 1 − [rn − 1]

{
1

n − 1
+ 1

n − 2
+ . . .+ 1

n − c + 1

}

≥ 1 − [rn − 1]
c − 1

n − c + 1
≥ 1 − 2rn(c − 1)

n
.

Therefore, for x(n) ≥ n − rn and c ≤ n/2,

− c

n
× 2rn(c − 1)

n
≤ ε(n)

c (x(n)) ≤ 0. (4.13)

Note that p(n)
C (c) = 0 for c> n. Also, using (3.3) and recalling that β = λμC, we have

λ

∞∑
c=w+1

cpC(c)πc(w; c − 1, 1) = λμCϕw = βϕw (w = 0, 1, . . . ).

Hence, for w = 0, 1, . . .,

q(n)
1

(
x(n), y(n),w

)= nλ

y(n)

n∑
c=w+1

p(n)
C (c)Q(n)

c

(
c − 1, 1|x(n), y(n))πc(w; c − 1, 1)

= nλ

y(n)

n∑
c=w+1

p(n)
C (c)

{
cy(n)

n
+ y(n)ε(n)

c (x(n))

}
πc(w; c − 1, 1)

= λ

n∑
c=w+1

cp(n)
C (c)πc(w; c − 1, 1)

+ λ

n∑
c=w+1

p(n)
C (c)nε(n)

c (x(n))πc(w; c − 1, 1)

= λ

∞∑
c=w+1

cpC(c)πc(w; c − 1, 1)

+ λ

∞∑
c=w+1

c
[
p(n)

C (c) − pC(c)
]
πc(w; c − 1, 1)

+ λ

n∑
c=w+1

p(n)
C (c)nε(n)

c (x(n))πc(w; c − 1, 1)

= βϕw + λ

∞∑
c=w+1

c
[
p(n)

C (c) − pC(c)
]
πc(w; c − 1, 1)

+ λ

n∑
c=w+1

p(n)
C (c)nε(n)

c (x(n))πc(w; c − 1, 1).
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It follows that

∞∑
w=0

sn

∣∣∣q(n)
1

(
x(n), y(n),w

)− βϕw

∣∣∣
≤ sn

∞∑
w=0

∣∣∣∣∣∣λ
∞∑

c=w+1

c
[
p(n)

C (c) − pC(c)
]
πc(w; c − 1, 1)

∣∣∣∣∣∣
+ sn

∞∑
w=0

∣∣∣∣∣∣λ
n∑

c=w+1

p(n)
C (c)nε(n)

c (x(n))πc(w; c − 1, 1)

∣∣∣∣∣∣
≤ λsn

∞∑
w=0

∞∑
c=w+1

c
∣∣p(n)

C (c) − pC(c)
∣∣πc(w; c − 1, 1)

+ λsn

∞∑
w=0

n∑
c=w+1

p(n)
C (c)

∣∣∣nε(n)
c (x(n))

∣∣∣ πc(w; c − 1, 1)

= λsn

∞∑
c=2

c
∣∣p(n)

C (c) − pC(c)
∣∣ c−1∑

w=0

πc(w; c − 1, 1)

+ λsn

n∑
c=2

p(n)
C (c)

∣∣∣nε(n)
c (x(n))

∣∣∣ c−1∑
w=0

πc(w; c − 1, 1)

= λsn

∞∑
c=2

c
∣∣p(n)

C (c) − pC(c)
∣∣+ λsn

n∑
c=2

p(n)
C (c)

∣∣∣nε(n)
c (x(n))

∣∣∣ . (4.14)

The first term on the right-hand side of (4.14) converges to 0 by (4.8). Using (4.13) and
Markov’s inequality, the second term on the right-hand side of (4.14) satisfies

λsn

n∑
c=2

p(n)
C (c)

∣∣∣nε(n)
c (x(n))

∣∣∣
≤ λ

⎧⎨
⎩

�n/2∑
c=2

snp(n)
C (c)

(
2c(c − 1)rn

n

)
+

n∑
c=�n/2+1

snp(n)
C (c)c

⎫⎬
⎭

≤ λ
{

2
snrn

n
E

[
C(n)(C(n) − 1)

]
+ snnP

(
C(n) > �n/2 + 1

)}
≤ λ

{
2

snrn

n
E

[
C(n)(C(n) − 1)

]
+ snn × 4

n2
E

[(
C(n))2]}

→ 0 as n → ∞.

Hence (4.9) is proved.
The probability that a pair of individuals, chosen uniformly at random, are both non-

susceptible is (n − x(n))(n − x(n) − 1)/[n(n − 1)]. In a group of c individuals there are
c(c − 1)/2 pairs, so

∑
j+l≥2

Q(n)
c

(
c − j − l, j|x(n), y(n))≤ c(c − 1)

2
× (n − x(n))(n − x(n) − 1)

n(n − 1)
. (4.15)
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For x(n) ≥ n − rn, the right-hand side of (4.15) is bounded above by [c(c − 1)/2] × [rn/n]2.
Therefore, since q(n)

2

(
x(n), y(n),w

)= 0 for w = n, n + 1, . . ., we have that

∞∑
w=0

sn

∣∣∣q(n)
2

(
x(n), y(n),w

)∣∣∣= n−1∑
w=0

sn

∣∣∣q(n)
2

(
x(n), y(n),w

)∣∣∣
= snn

y(n)
λ

n−1∑
w=0

n∑
c=w+1

p(n)
C (c)

∑
j+l≥2

{
Q(n)

c

(
c − j − l, j|x(n), y(n))πc(w; c − j − l, j)

}

= snn

y(n)
λ

n∑
c=2

p(n)
C (c)

∑
j+l≥2

⎧⎨
⎩Q(n)

c

(
c − j − l, j|x(n), y(n)) c−j−l∑

w=0

πc(w;c − j − l, l, j)

⎫⎬
⎭

≤ λ snr2
n

n

n∑
c=2

p(n)
C (c)

c(c − 1)

2

= λ
snr2

n

2n
E

[
C(n)(C(n) − 1)

]
→ 0 as n → ∞,

and (4.10) is proved.
Finally, (4.11) follows from (4.9) and (4.10) by the triangle inequality. �
Note that if C has finite support {2, 3, . . . , n0}, then for all n ≥ n0, C(n) ≡ C, and (4.8) holds

for any sequence {sn}.

4.4. Construction of the event processes

Lemma 4.1 implies that the difference between the transition probabilities of R and S(n)

tends to 0 as n → ∞, provided the number of non-susceptible individuals remains sufficiently
small. We proceed by constructing R and S(n) on a common probability space (�,F , P),

with Y0 = m and, for all sufficiently large n,
(

X(n)
0 , Y (n)

0

)
= (n − mn,mn) = (n − m,m). For

k = 1, 2, . . ., let Uk = (Uk,1,Uk,2,Uk,3) be i.i.d. random vectors defined on (�,F , P), with
Uk,i ∼ U(0, 1) (i = 1, 2, 3) being independent, where U(0, 1) denotes a random variable that is
uniformly distributed on [0, 1].

We construct R as follows. Suppose that for some k = 1, 2, . . ., Yk−1 = y. The kth step in
R is a downward step (of size 1) with Yk = y − 1 if Uk,1 ≤ γ /(γ + β). Otherwise the random
walk has an ‘upward’ step of size ak with Yk = y + ak, where ak satisfies

ak−1∑
l=0

ϕl <Uk,2 ≤
ak∑

l=0

ϕl.

Note that all sums are equal to 0, if vacuous; ak = 0 is possible and the probability that ak = i
is ϕi.

Similarly, we construct S(n) as follows. Suppose that for some k = 1, 2, . . .,
(

X(n)
k−1, Y (n)

k−1

)
=(

x(n)
k , y(n)

k

)
. The kth event in S(n) is a recovery with

(
X(n)

k , Y (n)
k

)
=
(

x(n)
k , y(n)

k − 1
)

if Uk,1 ≤
γ /
[
γ + q(n)

(
x(n)

k , y(n)
k

)]
. Otherwise the kth event in S(n) is an infection event of size a(n)

k with(
X(n)

k , Y (n)
k

)
=
(

x(n)
k − a(n)

k , y(n)
k + a(n)

k

)
, where a(n)

k satisfies
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P
(
a(n)

k = i
)= q(n)

(
x(n)

k , y(n)
k , i

)
q(n)
(

x(n)
k , y(n)

k

) = ϕ
(n)
i

(
x(n)

k , y(n)
k

)
, say.

To enable an effective coupling between R and S(n), we obtain a(n)
k as follows. For

i = 0, 1, . . ., let � (n)
i

(
x(n)

k , y(n)
k

)
= min

{
ϕi, ϕ

(n)
i

(
x(n)

k , y(n)
k

)}
and let

D(n)
2

(
x(n)

k , y(n)
k

)
=

∞⋃
w=0

(
w−1∑
l=0

ϕl +� (n)
w

(
x(n)

k , y(n)
k

)
,

w∑
l=0

ϕl

]
, (4.16)

where (a, b] is the empty set if a = b. If Uk,2 �∈ D(n)
2

(
x(n)

k , y(n)
k

)
, then there exists i ∈Z+ such

that

i−1∑
l=0

ϕl <Uk,2 ≤
i−1∑
l=0

ϕl +�
(n)
i

(
x(n)

k , y(n)
k

)
, (4.17)

and we set a(n)
k = i. Therefore, if Uk,2 �∈ D(n)

2

(
x(n)

k , y(n)
k

)
, we have that a(n)

k = ak. Let

d(n)
k

(
x(n)

k , y(n)
k

)
= P

(
Uk,2 ∈ D(n)

2

(
x(n)

k , y(n)
k

))= 1 −
∞∑

v=0

� (n)
v

(
x(n)

k , y(n)
k

)
,

the total variation distance between (ϕ0, ϕ1, . . . ) and
(
ϕ

(n)
0

(
x(n)

k , y(n)
k

)
, ϕ

(n)
1

(
x(n)

k , y(n)
k

)
, . . .

)
.

If Uk,2 ∈ D(n)
2

(
x(n)

k , y(n)
k

)
, we set a(n)

k = i with probability

ϕ
(n)
i

(
x(n)

k , y(n)
k

)
−�

(n)
i

(
x(n)

k , y(n)
k

)
d(n)

k

(
x(n)

k , y(n)
k

) ,

which ensures that overall the probability that a(n)
k = i is ϕ(n)

i

(
x(n)

k , y(n)
k

)
. We do not need to be

more explicit about the choice a(n)
k when a(n)

k �= ak.
Given V1, V2, . . ., i.i.d. according to Exp(1), we can construct B from R as outlined in

Section 4.2. We conclude this section with a description of the construction of E (n) from S(n),
in order to couple the time of events in E (n) to the event times in B. Given that there are y(n)

infectives in the population, the probability that an individual chosen uniformly at random is
infectious is y(n)/n, so the probability that a mixing event of size c involves at least one infective
is bounded above by cy(n)/n. Therefore

q(n)(x(n), y(n))= n−1∑
w=0

q(n)(x(n), y(n),w
)≤ 1

y(n)
nλ

n∑
c=2

cy(n)

n
× p(n)

C (c)

= λμ
(n)
C . (4.18)

Hence, under the assumption μ(n)
C ≤μC, we have that q(n)

(
x(n), y(n)

)≤ β( = λμC). Therefore,
letting

d̃(n)(x(n), y(n))= β − q(n)
(
x(n), y(n)

)
γ + β

≥ 0, (4.19)
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we have, if
(

X(n)
k−1, Y (n)

k−1

)
= (x(n), y(n)

)
, that

γ + β

γ + q(n)
(

X(n)
k−1, Y (n)

k−1

)Vk ∼ Exp
(

1 − d̃(n)(x(n), y(n)))= Ṽ (n)
k

(
x(n), y(n)), say.

For z ≥ 0, let

f̃V
(
z; x(n), y(n))= {1 − d̃(n)(x(n), y(n))} exp

(
−z
{
1 − d̃(n)(x(n), y(n))}) (4.20)

denote the probability density function of Ṽ (n)
k

(
x(n), y(n)

)
. Similarly, let fV (z) = exp (−z)

(z ≥ 0) denote the probability density function of V1. It follows from (4.20), for all z ≥ 0, that

f̃V
(
z; x(n), y(n))≥ {1 − d̃(n)(x(n), y(n))} exp (−z)

= {1 − d̃(n)(x(n), y(n))} fV (z).

Therefore, we can construct a realisation of Ṽ (n)
k

(
x(n), y(n)

)
by setting Ṽ (n)

k

(
x(n), y(n)

)= Vk if

Uk,3 ≤ 1 − d̃(n)
(
x(n), y(n)

)
, and if Uk,3 > 1 − d̃(n)

(
x(n), y(n)

)
, we draw Ṽ (n)

k

(
x(n), y(n)

)
from a

random variable with, for z ≥ 0, probability density function

f ∗(z; x(n), y(n))= 1 − d̃(n)
(
x(n), y(n)

)
d̃(n)

(
x(n), y(n)

) [
exp

(
−z
{
1 − d̃(n)(x(n), y(n))})− exp (−z)

]
.

(4.21)

Finally, we set

V (n)
k = Ṽ (n)

k

(
x(n), y(n))γ + q(n)

(
x(n), y(n)

)
γ + β

, (4.22)

which ensures that V (n)
k ∼ Exp(1). Also, if η

(n)
k−1 = ηk−1, Y (n)

k−1 = Yk−1, and Uk,3 ≤ 1 −
d̃(n)

(
X(n)

k−1, Y (n)
k−1

)
, then Ṽ (n)

k

(
X(n)

k−1, Y (n)
k−1

)
= Vk, and substituting V (n)

k into (4.6) and using

(4.22) gives

η
(n)
k = η

(n)
k−1 + V (n)

k

Y (n)
k−1

[
γ + q(n)

(
X(n)

k−1, Y (n)
k−1

)]

= ηk−1 + 1

Yk−1

[
γ + q(n)

(
X(n)

k−1, Y (n)
k−1

)] ×
γ + q(n)

(
X(n)

k−1, Y (n)
k−1

)
γ + β

Ṽ (n)
k

(
X(n)

k−1, Y (n)
k−1

)

= ηk−1 + Vk

Yk−1(γ + β)
= ηk. (4.23)
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4.5. Coupling of the epidemic and branching processes

A mismatch occurs at event k whenever the kth events in the epidemic process, E (n) (discrete
epidemic jump process S(n)), and branching process, B (random walk R), are either a removal
(E (n)) and a birth (B), or an infection (E (n)) and a birth (B) where the number of new infections
(E (n)) and the number of births (B) differ. The first type of mismatch occurs in Ball and O’Neill
[6], where also mismatches of the type with an infection (E (n)) and a death (B) are permissible.
Owing to (4.18) and the assumption that μ(n)

C ≤μC for all sufficiently large n, an infection
in (E (n)) and a death (B) is not possible for such n in the current setup, but the arguments
can easily be modified to allow for this situation. The second type of mismatch comes from
allowing multiple infections/births.

Since q(n)
(
x(n), y(n)

)≤ β, a type-1 mismatch occurs at event k, where after event k − 1 there
are x(n) susceptibles and y(n) infectives, if and only if

Uk,1 ∈ D(n)
1

(
x(n), y(n))≡

(
γ

β + γ
,

γ

q(n)
(
x(n), y(n)

)+ γ

]
, (4.24)

with

P

(
Uk,1 ∈ D(n)

1

(
x(n), y(n)))= γ

[
β − q(n)

(
x(n), y(n)

)]
[
γ + q(n)

(
x(n), y(n)

)]
[γ + β]

. (4.25)

Let Z̃1, Z̃2, . . . be i.i.d. according to Z̃ with probability mass function P(Z̃ = i) = ϕi (i =
0, 1, . . . ). We construct Z̃1, Z̃2, . . . from U1,2,U2,2, . . . by setting Z̃k to satisfy

Z̃k−1∑
i=0

ϕi <Uk,2 ≤
Z̃k∑

i=0

ϕi. (4.26)

Thus Z̃k is the number of births (size of the ‘upward step’) occurring in B (R) if the kth event
is a birth event.

A third type of mismatch occurs in coupling the event times in E (n) and B. Conditionally
upon there being no mismatches of the first two types in the first k events and η(n)

k−1 = ηk−1, we

have by (4.23) that a mismatch occurs and η(n)
k �= ηk only if Uk,3 > 1 − d̃(n)

(
X(n)

k−1, Y (n)
k−1

)
.

The following lemma gives conditions under which the processes B (R) and E (n) (S(n)) can
be constructed on a common probability space (�,F , P), so that for P-almost all ω ∈� they
coincide over the first un events for all sufficiently large n, where un → ∞ as n → ∞.

Lemma 4.2. Suppose that (3.9) holds and (3.10) holds for some θ0 > 0. Suppose that there
exists α ≥ 1 such that E[Cα+1]<∞, which in turn implies that E[Z̃α]<∞.

Let (un) be any non-decreasing sequence of integers such that there exists

0< ζ <min

{
αθ0

2(1 + α)
,

α

2 + 4α

}
, (4.27)

so that for all sufficiently large n, un ≤ �Knζ  for some K ∈R
+.

Then there exists a probability space (�,F , P), on which are defined the branching pro-
cess, B, the random walk, R, and the sequence of epidemic processes and discrete epidemic
processes, (En, Sn), such that for P-almost all ω ∈�,
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(
Y (n)

1 (ω), Y (n)
2 (ω), . . . , Y (n)

un
(ω)
)

= (Y1(ω), Y2(ω), . . . , Yun (ω)) (4.28)

and (
η

(n)
1 (ω), η(n)

2 (ω), . . . , η(n)
un

(ω)
)

= (η1(ω), η2(ω), . . . , ηun(ω)
)

(4.29)

for all sufficiently large n.

Proof. Without loss of generality, we prove the lemma by taking un = �Knζ  for some
K ∈ (0,∞) and ζ satisfying (4.27). It follows from (4.27) that θ and δ can be chosen so that
θ, δ > 0, 2(1+α)

α
ζ < θ ≤ θ0, and θ + 2ζ + 2δ < 1. (Note that (4.27) implies 2ζ (1 + α)/α < θ0.

Furthermore,

inf
θ>2(1+α)ζ/α

{θ + 2ζ } = 2 + 4α

α
ζ < 1,

by (4.27).) Set sn = nθ , rn = Knζ+δ , an = �nθ/(α+1), and, for convenience, εn = 1/sn. Note
that snr2

n/n → 0 as n → ∞, satisfying the conditions of Lemma 4.1.

For h, n = 1, 2, . . ., let x(n)
h =

(
x(n)

0 , x(n)
1 , . . . , x(n)

h

)
and define y(n)

h similarly. Let

Ãn,0 =
{(

x(n)
un
, y(n)

un

)
: min{1≤h≤un}

x(n)
h = x(n)

un
≥ n − rn, max{1≤h≤un}

y(n)
h ≤ rn

}

and An,0 =
{
ω ∈�:

(
X(n)

un
(ω),Y(n)

un
(ω)
)

∈ Ãn,0

}
. Note that if ω ∈ An,0 for all sufficiently large

n, then
{(

X(n)
k (ω), Y (n)

k (ω)
)}

satisfies the conditions of Lemma 4.1.

Let Hn denote the event at which the first mismatch occurs between Sn and R. Then, for
ω ∈�, (4.28) holds if and only if Hn(ω)> un. Note that the first mismatch occurs at event k

with
(

X(n)
k−1, Y (n)

k−1

)
=
(

x(n)
k−1, y(n)

k−1

)
, if

Uh,1 ∈ D(n)
1

(
x(n)

k−1, y(n)
k−1

)
or Uh,2 ∈ D(n)

2

(
x(n)

k−1, y(n)
k−1

)
,

where D(n)
1

(
x(n), y(n)

)
and D(n)

2

(
x(n), y(n)

)
are defined in (4.24) and (4.16), respectively.

Similarly, let H̃n denote the event at which the first mismatch occurs between the times
of corresponding events in En and B. Then (4.29) holds if and only if H̃n(ω)> un. Note that if

Hn(ω)> un then the first mismatch in the time of events occurs at event k with
(

X(n)
k−1, Y (n)

k−1

)
=(

x(n)
k−1, y(n)

k−1

)
, if

Uh,3 ∈ D(n)
3

(
x(n)

k−1, y(n)
k−1

)
≡
(

1 − d̃(n)(x(n), y(n)), 1
]
,

where d̃(n)
(
x(n), y(n)

)
is defined in (4.19).

By Lemma 4.1, we have for any � > 0, for all sufficiently large n and
(

x(n)
un , y(n)

un

)
∈ Ãn,0,

that
∑∞

w=0

∣∣q(n)
(
x(n), y(n),w

)− βϕw
∣∣< �εn and

∣∣q(n)
(
x(n), y(n)

)− β
∣∣< �εn. The first inequality

implies that for all w ∈Z+, ∣∣∣q(n)(x(n), y(n),w
)− βϕw

∣∣∣< �εn.
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Therefore, since q(n)
(
x(n), y(n)

)
>β/2 for all sufficiently large n, we have by the triangle

inequality that

∣∣∣� (n)
w

(
x(n), y(n))− ϕw

∣∣∣ =
∣∣∣∣∣q

(n)
(
x(n), y(n),w

)
q(n)
(
x(n), y(n)

) − βϕw

β

∣∣∣∣∣
≤ 1

q(n)
(
x(n), y(n)

) ∣∣∣q(n)(x(n), y(n),w
)− βϕw

∣∣∣
+ βϕw

∣∣∣∣∣ 1

q(n)
(
x(n), y(n)

) − 1

β

∣∣∣∣∣
≤ 2

β

∣∣∣q(n)(x(n), y(n),w
)− βϕw

∣∣∣+ 2ϕw

β

∣∣∣q(n)(x(n), y(n))− β

∣∣∣
≤ 4

β
�εn.

Setting �= β
5 , we have that for all sufficiently large n,

∣∣∣� (n)
w
(
x(n), y(n)

)− ϕw

∣∣∣≤ εn

(w = 0, 1, . . . ).
Thus we can define sets D̃(n)

i (i = 1, 2, 3) such that for all sufficiently large n, if
(
x(n), y(n)

) ∈
Ãn, then D(n)

i

(
x(n), y(n)

)⊆ D̃(n)
i (i = 1, 2, 3), where

D̃(n)
1 =

(
γ

β + γ
,

γ

β − εn + γ

]
,

D̃(n)
2 =

an⋃
w=0

(
w∑

l=0

ϕl − min{ϕw, εn},
w∑

l=0

ϕl

]
∪
( an∑

l=0

ϕl, 1

]
,

and
D̃(n)

3 = (1 − εn, 1] .

Since εn is decreasing in n, we have that for all n, D̃(n+1)
i ⊆ D̃(n)

i (i = 1, 2, 3).
For i = 1, 2, 3, let

An,i =
un⋂

h=1

{
Uh,i �∈ D̃(n)

i

}
.

We observe that if un+1 = un, then An,i ⊆ An+1,i (i = 0, 1, 2, 3). Therefore, following Ball and
O’Neill [6, Lemma 2.11], we define Q= {n ∈N:�Knζ  �= �K(n − 1)ζ } and note that, for i =
0, 1, 2, 3, to show that

P
(
Ac

n,i occurs for infinitely many n
)= 0,

it is sufficient to show that

P
(
Ac

n,i occurs for infinitely many n ∈Q)= 0. (4.30)

Given that (4.30) holds for i = 0, 1, 2, 3, we have that there exists �̃⊆� such that P(�̃) = 1
and for every ω ∈ �̃, there exists n(ω) ∈N such that for all n ≥ n(ω), Hn(ω)> un and H̃n(ω)>
un. Thus (4.28) and (4.29) hold, and the lemma follows.
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We complete the proof of the lemma by proving (4.30) for i = 0, 1, 2, 3. Suppose that, for
i = 0, 1, 2, 3, there exist Li <∞ and χi > 1 such that, for all sufficiently large n,

P
(
Ac

n,i

)≤ Lin
−ζχi . (4.31)

Following the proof of Ball and O’Neill [6, Lemma 2.10], we have that∑
n∈Q

P
(
Ac

n,i

)≤∑
n∈Q

Lin
−ζχi <∞,

so by the first Borel–Cantelli lemma, (4.30) holds.
Let us prove (4.31). Recall that μC =E[C], E[Z̃] =E[Cν(C)]/μC, and E[C(C − 1)ν(C)]

<∞, where ν(c), defined at (3.7), is the mean number of new infectives created in a mixing
event of size c with 1 infective and c − 1 susceptibles. Since un ≤ �Knζ  and rn = Knζ+δ , by
Chebyshev’s inequality, we have that, for all sufficiently large n,

P
(
Ac

n,0

)= P

⎛
⎝ un∑

j=1

Z̃j > rn − m

⎞
⎠

≤ P

⎛
⎝
∣∣∣∣∣∣

un∑
j=1

Z̃j − unE[Z̃]

∣∣∣∣∣∣>
rn

2

⎞
⎠

≤ 4

r2
n

Var

⎛
⎝ un∑

j=1

Z̃j

⎞
⎠≤ 4un

r2
n
E[Z̃2

1]

= 4un

r2
n

∞∑
w=0

w2 1

μC

∞∑
c=w+1

cpC(c)πc(w; c − 1, 1)

= 4un

r2
n

× 1

μC

∞∑
c=2

cpC(c)
c−1∑
w=0

w2πc(w; c − 1, 1)

≤ 4un

r2
n

× 1

μC

∞∑
c=2

c(c − 1)pC(c)
c−1∑
w=0

wπc(w; c − 1, 1)

≤ 4un

r2
n

× E[C(C − 1)ν(C)]

μC
≤ 4E[C(C − 1)ν(C)]

KμC
n−ζ (1+2δ/ζ ). (4.32)

Hence (4.31) holds for i = 0.
Since θ − 2(1 + α)ζ/α > 0, we have that for all sufficiently large n,

P
(
Ac

n,1

)= P

( un⋃
h=1

{
Uh,1 ∈ D̃(n)

1

})

≤
(

2γ

(β + γ )2

)
unεn

≤
(

2γ

(β + γ )2

)
Knζ n−θ

≤
(

2γ

(β + γ )2

)
Kn−ζ (1+2/α). (4.33)
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Hence (4.31) holds for i = 1.
Similarly, since P(Ac

n,3) ≤ unεn, we have that (4.31) holds for i = 3.
Finally, let δ1 = α

ζ (1+α)θ − 2> 0. For all sufficiently large n, we have that aαn , sn/an ≥
1
2 nθα/(1+α). Thus, recalling that εn = 1/sn, we have that for all sufficiently large n,

P
(
Ac

n,2

)= P

( un⋃
h=1

{
Uh,2 ∈ D̃(n)

2

})

≤ un
{
anεn + P(Z̃ > an)

}
≤ un

{
an

sn
+ E[Z̃α]

aαn

}

≤ 2(1 +E[Z̃α])Knζn−θα/(1+α)

= 2(1 +E[Z̃α])n−ζ (1+δ1). (4.34)

Hence (4.31) holds for i = 2. Thus (4.30) holds for i = 0, 1, 2, 3 and the lemma is proved. �
Lemma 4.2 ensures that the the processes E (n) (S(n)) and B (R) coincide for an increasing

number of events as n increases. For Theorem 3.1(a) we do not require as strong a result
as Lemma 4.2, and the following corollary, which can be proved in a similar fashion to
Lemma 4.2, suffices.

Corollary 4.1. For any K ∈N, we have, for (�,F , P) defined in Lemma 4.2, that for P-almost
all ω ∈�, (

Y (n)
1 (ω), Y (n)

2 (ω), . . . , Y (n)
K (ω)

)
= (Y1(ω), Y2(ω), . . . , YK(ω))

and (
η

(n)
1 (ω), η(n)

2 (ω), . . . , η(n)
K (ω)

)
= (η1(ω), η2(ω), . . . , ηK(ω)),

for all sufficiently large n.

The coupling in Lemma 4.2 includes birth events where no births occur, that is, Z1 = 0.
Given that λ<∞ (β = λμC <∞) and γ > 0, it follows that P(Z1 �= 0)> 0. Since Z1, Z2, . . .

are i.i.d., the strong law of large numbers yields

1

p

p∑
i=1

1{Zi �=0}
a.s.−→ P(Z1 �= 0) as p → ∞, (4.35)

where
a.s.−→ denotes convergence almost surely. For k = 1, 2, . . ., let

Mk = min

{
p:

p∑
i=1

1{Zi �=0} = k

}
. (4.36)

Thus Mk is the kth event in B for which Zi �= 0. (If B goes extinct then Mk has this interpretation
for only finitely many k.) Theorem 3.1 now follows straightforwardly from Lemma 4.2.

Proof of Theorem 3.1. (a) Recall that T is the total size of the branching process B and
Aext = {ω ∈� : T(ω)<∞}.

Fix ω ∈ Aext and suppose that T(ω) = k<∞. Then there exists h = h(ω) ≤ 2k − m such
that YMh (ω) = 0. That is, there are at most k − m birth events (with a strictly positive number

https://doi.org/10.1017/apr.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.29


452 F. BALL AND P. NEAL

of births) and k death events in the branching process. By Corollary 4.1 there exists n2(ω) ∈N

such that for all n ≥ n2(ω) and l = 1, 2, . . . ,Mh(ω), Y (n)
l (ω) = Yl(ω) and η(n)

l (ω) = ηl(ω), and
hence, for all t ≥ 0, In(t, ω) = I(t, ω).

(b) Let ρ satisfy (3.11) and tn = ρ log n. Remembering from (3.8) that r = γ (R0 − 1) is the
Malthusian parameter (growth rate) of the branching process, we take ζ such that

ρr< ζ <min

{
αθ0

2(1 + α)
,

α

2 + 4α

}
,

so that ζ satisfies (4.27) in the statement of Lemma 4.2.
For t ≥ 0, let N(t) denote the total number of (birth and death) events in the branching

process B up to and including time t. Then, if N(tn, ω) ≤ un = �nζ  and
(
Y (n)

h (ω), η(n)
h (ω)

)=
(Yh(ω), ηh(ω)) (h = 1, 2, . . . , un), we have from Lemma 4.2 that

sup
0≤t≤tn

∣∣I(n)(t) − I(t)
∣∣= 0.

Give the initial ancestors the labels −(m − 1),−(m − 2), . . . , 0, and label the individuals
born in the branching process sequentially 1, 2, . . .. For i = 1, 2, . . ., let τi denote the time of
the birth of the ith individual, with the conventions that τi = ∞ if fewer than i births occur, and
τi = 0 for i = −(m − 1),−(m − 2), . . . , 0. For i = −(m − 1),−(m − 2), . . ., let G̃i(s) denote
the number of birth and death events involving individual i in the first s time units after their

birth, if s ≥ 0, and let G̃i(s) = 0 if s< 0. Note that G̃i(s) is non-decreasing in s and G̃i(∞)
D=

G + 1, where G is the number of birth events involving an individual and is a geometric random
variable given by (3.4). Therefore, for all t ≥ 0,

N(t) =
∞∑

i=−(m−1)

G̃i(t − τi). (4.37)

Note that N(t) satisfies the form of Nerman [14, (1.11)]. It is straightforward to show that the
conditions of Theorem 5.4 in Nerman [14] hold, since E[G̃(∞)] = (γ + λμC)/γ . Therefore,
by that theorem, there exists a positive, almost surely finite random variable W such that

lim
t→∞ exp (−rt)N(t, ω) = W(ω)> 0

for P-almost all ω ∈ Ac
ext. It is then straightforward to show, following the proof of Ball

and O’Neill [6, Lemma 2.9], that there exists some P-measurable set B1 ⊆ Ac
ext such that

P(B1) = P(Ac
ext) and for all ω ∈ B1,

lim
t→∞ n−crN(tn, ω) = W(ω).

Hence, for all sufficiently large n, N(tn, ω) ≤ 2W(ω)nρr ≤ un. Finally, by Lemma 4.2, for
P-almost all ω ∈ B1, (4.28) and (4.29) hold, so (3.12) follows. �

Finally, we consider the total size of the epidemic processes and branching processes, with
Corollary 3.1 following straightforwardly from Corollary 4.1.

Proof of Corollary 3.1. Let �̂⊆� be the set on which the convergence underlying
(4.35) holds, so P(�̂) = 1, and fix ω ∈ �̃∩ �̂. Suppose that T(ω) = k<∞. Then there exists
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h = h(ω) ≤ 2k − m such that YMh (ω) = 0. By Corollary 4.1, there exists ñ(ω) ∈N such that for

all n ≥ ñ(ω), Y (n)
i (ω) = Yi(ω) (i = 1, 2, . . . ,Mh(ω)). Thus, T (n)(ω) = T(ω) for all n ≥ ñ(ω).

Suppose instead that T(ω) = ∞. Choose any k1 ∈N and let nE(k1, ω) be the number of
events in B when the total size of B first reaches at least k1. Then arguing as above, with k
replaced by k1 and h replaced by nE(k1, ω), shows that T (n)(ω) ≥ k1 for all sufficiently large n.
This holds for all k1 ∈N, so T (n)(ω) → ∞ as n → ∞. �

5. Proof of Theorem 3.2

5.1. Overview

We present an overview of the steps to prove Theorem 3.2. In Section 5.2, we prove
Theorem 3.2(a), which states that as n → ∞, the probability of a major epidemic outbreak
in E (n) (the epidemic infects at least log n individuals) tends to the probability that the branch-
ing process, B, does not go extinct. In Section 5.3, we introduce a sequence of lower-bound
random walks, (L(n)), which is a key component in showing that a major epidemic in the dis-
crete epidemic jump process, S(n), and hence in the epidemic process E (n) infects at least δ∗n
individuals with probability tending to 1 as n → ∞. We provide an outline of the coupling
of S(n) and L(n), via an intermediary process G(n), and in (5.5) we identify the relationship
between the three processes with L(n) as a lower bound in terms of the number of infectives
in the epidemic, to establish Theorem 3.2(b). The details of L(n) are provided in Section 5.4,
along with Lemmas 5.1 and 5.2, which provide the main steps in establishing (5.5). Finally,
Section 5.4 concludes with the proof of Theorem 3.2(b), from which Corollary 3.2 follows
immediately.

5.2. Probability of a major epidemic

Under the conditions of Theorem 3.2, the conditions of Lemma 4.2 are satisfied with
α = 1 since E[C2]<∞. The proof of Theorem 3.2(a) then follows almost immediately from
the proof of Theorem 3.1 by considering the embedded random walk and discrete-time epi-
demic jump process. From Lemma 4.2, (4.28), we have that Yun = (Y1, Y2, . . . , Yun ) and
Y(n)

un
= (Y (n)

1 , Y (n)
2 , . . . , Y (n)

un

)
can be constructed so that

P
(
Y(n)

un
= Yun

)→ 1 as n → ∞, (5.1)

for un = �nζ  and ζ > 0 satisfying (4.27) with α= 1. Hence we can couple the process S(n) to
R over the first un steps, and Theorem 3.2(a) follows, as we now show.

Proof of Theorem 3.2(a). Since T is the total size of a branching process with m initial
ancestors, it follows that

P(T ≥ log n) → 1 − zm as n → ∞. (5.2)

Following the proof of Corollary 3.1, T < log n if there exists hn ≤ 2 log n − m such that
YMhn

= 0. Let �̃ and �̂ be as in the proofs of Lemma 4.2 and Corollary 3.1, respectively,

and note that P(�̃∩ �̂) = 1. Fix ω ∈ �̃∩ �̂. Then

M�2 log n(ω) ≤ 3

P(Z1 �= 0)
log n ≤ un
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for all sufficiently large n, where Mk is given in (4.36) and �̃ and �̂ are defined
in Lemma 4.2 and Corollary 3.1, respectively, with P(�̃∩ �̂) = 1. It follows using
Lemma 4.2 that 1{T(ω)<log n} = 1{T(n)(ω)<log n} for all sufficiently large n. Thus, 1{T<log n} −
1{T(n)<log n} converges almost surely (and hence in probability) to 0 as n → ∞. Therefore,

∣∣P(T (n) ≥ log n
)− P(T ≥ log n)

∣∣= ∣∣P(T (n) < log n
)− P(T < log n)

∣∣→ 0 as n → ∞,

and (3.13) follows immediately using (5.2). �

5.3. Coupling of the lower-bound random walk to the epidemic

We turn to the proof of Theorem 3.2(b) and note that we now need to consider the epidemic
process and any approximation over �δ1n events for some δ1 > 0. The couplings utilised thus
far do not extend to �δ1n events in the limit as n → ∞. However, we can still utilise the
couplings over the first un = �nζ  events. Hence, given that the embedded discrete epidemic
jump process S(n) reaches un events without hitting 0 (the epidemic process E (n) does not go
extinct), we can show, following the proof of Theorem 3.2(a), that, with probability tending to
1 as n → ∞, T (n) ≥ vn, where vn = P(Z1 �= 0)un/3. It immediately follows using the coupling
in Lemma 4.2 (see (5.1)) that P

(
T ≥ vn|T (n) ≥ vn

)→ 1 as n → ∞. We have that if T ≥ vn, then
mink≤vn{Yk}> 0, and by the weak law of large numbers,∣∣∣∣∣ 1

vn

vn∑
k=1

Zk −E[Z]

∣∣∣∣∣ p−→ 0 as n → ∞.

Hence, under the assumption R0 > 1, which is required for Theorem 3.2(b), we have that
E[Z]> 0 and, since Yvn = m +∑vn

k=1 Zk, that

P

(
Yvn >

vnE[Z]

2
,min

k≤vn
{Yk}> 0

∣∣∣∣ T ≥ vn

)
→ 1 as n → ∞. (5.3)

Now (5.3) implies that if the branching process B has at least vn individuals ever alive,
then the number of individuals alive in B (the position of the random walk R) after vn events
exceeds vnE[Z]/2 with probability tending to 1 as n → ∞. Combined with (5.1) the same holds
true for Y (n)

vn in E (n) and S(n).
The next step is to show that, given that the epidemic E (n) (S(n)) has not gone extinct in vn

events, there exists δ∗ > 0 such that, with probability tending to 1 as n → ∞, at least �δ∗n
events occur in S(n). In order to do this, we introduce a lower-bound random walk L(n) indexed
by the population size n. Lower-bound branching processes (random walks) for epidemic pro-
cesses go back to [17], and the main idea is along similar lines to [17], in that we set up the
lower-bound random walk so that the number of infectives in the discrete epidemic jump pro-
cess S(n) is at least the number of individuals alive in the branching process with embedded
random walk L(n) for the initial stages of the epidemic process.

The key features in setting up L(n) are as follows. Let L(n)
k denote the position of the random

walk L(n) after k steps. The random walk L(n) is set identical to the random walk R for the first
vn steps; that is, the distribution of steps is according to Z given in (4.1). Hence L(n)

0 = m, and

for k = 1, 2, . . . , vn, L(n)
k = Yk. For k = vn + 1, vn + 2, . . ., the steps in L(n) are i.i.d. according

to Ẑ(n) defined below in (5.9), with E[Ẑ(n)]> 0 so that the lower-bound random walk has
positive drift. Therefore we can show that, as n → ∞, if L(n) has not hit 0 in the first vn steps

https://doi.org/10.1017/apr.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.29


Strong convergence of an epidemic model with mixing groups 455

when it is coupled to R, and hence reached L(n)
vn = Yvn ≥ vnE[Z]/2 (cf. (5.3)), with probability

tending to 1 it will not hit 0 in the first �δ1n steps for δ1 > 0.
It is difficult to directly couple S(n) and L(n), owing to differences in the distribution of steps

caused by the changing rate of events in E (n) and hence the probability of events occurring
in S(n). Therefore we introduce an intermediary process G(n). The intermediary process G(n)

is a bivariate (epidemic) process, indexed by the population size n, whose steps are state-
dependent, with the dependence corresponding to the number of susceptibles and infectives in
the population. For k = 1, 2, . . ., let

(
A(n)

k ,G(n)
k

)
denote the state of G(n) after k steps (events),

with A(n)
k and G(n)

k denoting the numbers of susceptibles and infectives, respectively. For the

first vn steps, G(n) is set identical to S(n), so that for k = 1, 2, . . . , vn,
(
A(n)

k ,G(n)
k

)= (X(n)
k , Y (n)

k

)
.

After vn steps have occurred in both G(n) and S(n), we allow the two processes to differ as
follows. The process G(n) is associated with an epidemic-type process, E (n)

G , which has a higher
rate of events than the epidemic process E (n), but in such a way that the additional events in
E (n)

G , which do not occur in E (n), are infection events where no infections occur. In this way

we can construct E (n)
G from E (n) so that all events in E (n) occur in E (n)

G , but there are additional

ghost events which occur in E (n)
G where there is no change in state (no infection or removal

occurs); the only change is to increment the counter of the number of events. Similarly, we can
reverse this process and generate E (n) from E (n)

G by eliminating, with an appropriate probability,
some of the events where no change in state occurs. Therefore, for k = 1, 2, . . ., there exists
κn(k) ≤ k such that (

X(n)
κn(k), Y (n)

κn(k)

)
=
(

A(n)
k ,G(n)

k

)
. (5.4)

Note that for k = 1, 2, . . . , vn, κn(k) = k.
We couple G(n) and L(n) so that, with probability tending to 1 as n → ∞, we have G(n)

k ≥ L(n)
k

for k = 1, 2, . . . , �δ1n, where δ1 > 0 is given in (5.7). That is, for the first �δ1n events, the
number of infectives in the process G(n) is at least the number of individuals alive in the random
walk L(n). It then follows that, for k = 1, 2, . . . , �δ1n, we have

Y (n)
κn(k) = Gn

k ≥ L(n)
k (5.5)

with probability tending to 1 as n → ∞. The proof of Theorem 3.2(b) follows almost
immediately after we have established (5.5).

5.4. Lower bound for the size of a major epidemic outbreak

In this section we formally define the lower-bound random walk L(n). Then, in Lemma 5.1,
we show that L(n) has positive drift, so that after �δ1n steps we have, for some δ > 0 (defined
in (5.10)), that L(n)

�δ1n ≥ δn with probability tending to 1 as n → ∞. This is followed by the

construction of G(n). We show that whilst fewer than �δ1n events have occurred, the number
of susceptibles (with high probability) remains above (1 − ε1)n, where ε1 > 0 is given in (5.7),
which enables us to show, in Lemma 5.2, that the inequality in (5.5) holds with probability
tending to 1 as n → ∞. We then establish the equality in (5.5) through the coupling of S(n) and
G(n), with the proof of Theorem 3.2(b) following.

By (4.18), we have, for all
(
x(n), y(n)

)
, that q(n)

(
x(n), y(n)

)≤ λμ(n)
C = β(n), say. Since R0 > 1,

and by (3.9), E[C(C − 1)ν(C)]<∞, we can define

ε = (R0 − 1)γ

2λE[C(C − 1)ν(C)]
> 0. (5.6)
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We can then fix δ1 and ε1 < ε such that

0< δ1 < ε1
μC

E[C2]
. (5.7)

Throughout the remainder of the section we assume that δ1 and ε1 satisfy (5.7). For
n = 1, 2, . . . and w = 1, 2, . . . , n − 1, let

ψ (n)
w = max

⎧⎨
⎩ λ

β(n)

n∑
c=w+1

cp(n)
C (c)πc(w; c − 1, 1)[1 − 2ε1(c − 1)], 0

⎫⎬
⎭ (5.8)

and ψ (n)
0 = 1 −∑n−1

v=1 ψ
(n)
v . Note that there exists n0 ∈N such that for all n ≥ n0, 2ε1�n/2> 1,

and hence ψ (n)
w = 0 for all w> �n/2. We define

P(Ẑ(n) = w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(n)ψ
(n)
w

γ + β(n)
, w = 1, 2, . . . , n − 1,

β(n)

γ + β(n)

(
1 −∑n−1

i=1 ψ
(n)
i

)
, w = 0,

γ

γ + β(n)
, w = −1,

0 otherwise.

(5.9)

Let Ẑ(n)
vn+1, Ẑ(n)

vn+2, . . ., be i.i.d. according to Ẑ(n) given in (5.9). Then, given L(n)
vn = Yvn , for

vn + 1 ≤ k ≤ �δ1n we set

L(n)
k = L(n)

k−1 + Ẑ(n)
k .

Lemma 5.1. Let bn be any sequence of positive integers such that bn → ∞ as n → ∞. Let δ1
satisfy (5.7), and let δ satisfy

0< δ < δ1
(R0 − 1)γ − 2ε1λE[C(C − 1)ν(C)]

γ + λμC
, (5.10)

where ε1 < ε ensures that the right-hand side of (5.10) is positive. Then

P

(
L(n)

�δ1n ≥ �δn, min
k>vn

{
L(n)

k > 0
} ∣∣∣L(n)

vn
≥ bn

)
→ 1 as n → ∞, (5.11)

where vn = P(Z1 �= 0)un/3.

Proof. Using (5.9) and (5.8),

E[Ẑ(n)] = − γ

γ + β(n)
+

n−1∑
w=1

w
β(n)ψn

w

γ + β(n)

≥ 1

γ + β(n)

⎧⎨
⎩−γ +

n−1∑
w=1

w

⎡
⎣λ n∑

c=w+1

cp(n)
C (c)πc(w; c − 1, 1) [1 − 2ε1(c − 1)]

⎤
⎦
⎫⎬
⎭
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= 1

γ + β(n)

{
−γ + λ

n∑
c=2

cp(n)
C (c)

c−1∑
w=1

wπc(w; c − 1, 1)

−2ε1λ

n∑
c=2

c(c − 1)p(n)
C

c−1∑
w=1

wπc(w; c − 1, 1)

}

= 1

γ + β(n)

{
−γ + λE

[
C(n)ν

(
C(n))]− 2ε1λE

[
C(n)(C(n) − 1

)
ν
(
C(n))]} .

Recall the expression (3.6) for R0 and the fact that by (3.9), E[C(C − 1)ν(C)]<∞. Since
λE[C(n)ν

(
C(n)

)
] → R0γ and β(n) → β = λμC as n → ∞, we have that

lim inf
n→∞ E[Ẑ(n)] ≥ (R0 − 1)γ − 2ε1λE[C(C − 1)ν(C)]

γ + λμC
> 0,

where the final inequality follows from (5.10). It also follows from (5.8) that β(n)ψ
(n)
w ≤

λ
∑n

c=w+1 cp(n)
C (c)πc(w; c − 1, 1), for all w = 1, 2, . . . , n − 1, so

E[(Ẑ(n))2] ≤ γ

γ + β(n)
+ 1

γ + β(n)

n−1∑
w=1

w2λ

n∑
c=w+1

cp(n)
C (c)πc(w; c − 1, 1)

= 1

γ + λE[C(n)]

{
γ + λ

n∑
c=2

cp(n)
C (c)

c−1∑
w=1

w2πc(w; c − 1, 1)

}

≤ 1

γ + λE[C(n)]

{
γ + λ

n∑
c=2

c(c − 1)p(n)
C (c)

c−1∑
w=1

wπc(w; c − 1, 1)

}

= 1

γ + λE[C(n)]

{
γ + λE

[
C(n)(C(n) − 1

)
ν
(
C(n))]}

→ γ + λE[C(C − 1)ν(C)]

γ + λμC
as n → ∞, (5.12)

where E[C(C − 1)ν(C)]<∞ ensures that the right-hand side of (5.12) is finite.
Let zn be the probability that the random walk L(n) ever hits 0 given L(n)

vn = 1. Since
lim infn→∞ E[Ẑ(n)]> 0 and supn E[(Ẑ(n))2]<∞, it follows from Ball and Neal [4, Lemma
A.3] that lim supn→∞ zn < 1. Therefore, for any bn → ∞ as n → ∞, we have that zbn

n → 0 as
n → ∞. Moreover, for supn E[(Ẑ(n))2]<∞, it follows by the weak law of large numbers for
triangular arrays (e.g. Durrett [9, Theorem 2.2.4]) that∣∣∣∣∣∣

1

�δ1n − vn

�δ1n∑
l=vn+1

Ẑn
l −E[Ẑn]

∣∣∣∣∣∣
p−→ 0 as n → ∞.

Hence, for any bn → ∞ and δ satisfying (5.10), we have that (5.11) holds. �
Turning to the intermediary (ghost) process G(n), we define independent random vari-

ables W(n)
k

(
x(n), y(n)

)
(k = vn + 1, vn + 2, . . . ) to define the transitions given the current state

(A(n),G(n)) = (x(n), y(n)
)

after event vn. For k = vn + 1, vn + 2, . . ., let W(n)
k

(
x(n), y(n)

)
satisfy
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P
(
W(n)

k

(
x(n), y(n))= w

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(n)(x(n), y(n),w)

γ + β(n)
, w = 1, 2, . . . , n − 1,

β(n) −∑n−1
v=1 q(n)(x(n), y(n), v)

γ + β(n)
, w = 0,

γ

γ + β(n)
, w = −1,

0 otherwise.

(5.13)

Then for
(

A(n)
k−1,G(n)

k−1

)
= (x(n), y(n)

)
, we set

(
(A(n)

k ,G(n)
k

)
=
(

x(n) − W(n)
k

(
x(n), y(n))1{

W(n)
k (x(n),y(n))≥0

}, y(n) + W(n)
k

(
x(n), y(n))).

The continuous-time epidemic-type process E (n)
G is constructed from G(n) as follows. If G(n)

k =
y(n), then the time from the kth to the (k + 1)th event is drawn from Exp

(
(γ + β(n))y(n)

)
, regard-

less of A(n), the number of susceptibles. Therefore, if there are y(n) infectives in the population,
mixing events occur at rate β(n)y(n), with the number of individuals infected in such a mixing
event depending on the number of susceptibles, A(n).

We consider the coupling of G(n) and L(n) in Lemma 5.2 before finalising the coupling
between G(n) and S(n).

Lemma 5.2. There exists a coupling of G(n) and L(n) such that, for any δ1 satisfying (5.7),

P

⎛
⎝�δ1n⋂

k=1

{
G(n)

k ≥ L(n)
k

}⎞⎠→ 1 as n → ∞. (5.14)

Proof. By the construction of G(n) and L(n) and Lemma 4.2, (4.28), we have that with
probability tending to 1, G(n)

k = Yk = L(n)
k (k = 1, 2, . . . , vn).

The first step is to show that P
(

A(n)
�δ1n ≥ (1 − ε1)n

)
→ 1 as n → ∞, which, since A(n)

k is

non-increasing in k, implies that, for all k = 1, 2, . . . , �δ1n, A(n)
k ≥ (1 − ε1)n with probability

tending to 1 as n → ∞.
It is straightforward to show, for all

(
x(n), y(n)

)
, that W(n)

(
x(n), y(n)

)
is stochastically smaller

than (
st≤) a random variable W̃(n), where P(W̃(n) = −1) = γ /

(
γ + β(n)

)
and for k = 1, 2, . . .,

P(W̃(n) = k) = β(n)
P(C̃(n) = k + 1)/

(
γ + β(n)

)
, with

P(C̃(n) = c) =

⎧⎪⎨
⎪⎩

cp(n)
C (c)

μ
(n)
C

, c = 2, 3, . . . ,

0 otherwise.

Note that C̃(n) is the size-biased distribution of mixing group sizes, and for c ≥ 2, P(W̃(n) =
c − 1) is the probability that an event is a mixing event multiplied by the probability that a
mixing event involving a given infective is of size c. It is then assumed that a mixing group
of size c involving an infective produces c − 1 new infections, the maximum number of new
infections that can be produced from a mixing group of size c.
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The proof that W(n)
(
x(n), y(n)

) st≤ W̃(n) is as follows. Remember that Q(n)
c
(
l, i|x(n), y(n)

)
,

defined in (4.2), is the probability that a mixing group of size c in a population of size n
containing x(n) susceptibles and y(n) infectives contains l susceptibles and i infectives. Note
that for v> 0, the probability that such a mixing group results in v new infectives, πc(v; l, i), is
not equal to 0 only if i> 0 and v ≤ l. Given that there are y(n) infectives in the population, the
probability that a mixing group of size c includes at least one infective is at most cy(n)/n, and
therefore, for w = 0, 1, . . .,

P

(
W(n)(x(n), y(n))≥ w

)

= 1

γ + β(n)

n−1∑
v=w

q(n)(x(n), y(n), v
)

= 1

γ + β(n)

n−1∑
v=w

nλ

y(n)

n∑
c=v+1

p(n)
C (c)

∑
i,j

Q(n)
c

(
c − i − j, i|x(n), y(n))πc(v; c − i − j, i)

= 1

γ + β(n)

n∑
c=w+1

p(n)
C (c)

nλ

y(n)

∑
i,j

Q(n)
c

(
c − i − j, i|x(n), y(n)) {c−1∑

v=w

πc(v; c − i − j, i)

}

≤ 1

γ + β(n)

n∑
c=w+1

p(n)
C (c)

nλ

y(n)
× cy(n)

n

= λ

γ + β(n)

n∑
c=w+1

cp(n)
C (c)

= λμ
(n)
C

γ + β(n)

n∑
c=w+1

P(C̃(n) = c) = P

(
W̃(n) ≥ w

)
,

as required.

Hence we can couple
{

W(n)
k

(
A(n)

k−1,G(n)
k−1

)}
and

{
W̃(n)

k

}
so that, for all k = vn + 1, vn +

2, . . .,

W(n)
k

(
A(n)

k−1,G(n)
k−1

)
≤ W̃(n)

k .

Recall that E[(C(n))2] →E[C2] as n → ∞, where E[C2]<∞. By the weak law of large
numbers for triangular arrays, we have that

1

�δ1n − vn

�δ1n∑
k=vn+1

|W̃(n)
k | p−→ γ

γ + β
+ β

γ + β

E[C2]

μC
as n → ∞, (5.15)

where the right-hand side of (5.15) is less than E[C2]/μC. As noted at the start of the proof,
G(n)

k = Yk = L(n)
k (k = 1, 2, . . . , vn) with probability tending to 1 as n → ∞, where Yk = m +∑k

j=1 Z̃j. Therefore, for any ε2 satisfying δ1E[C2]/μC < ε2 < ε1, we have that
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P

(
A(n)

�δ1n > (1 − ε1)n
)
≥P

⎛
⎝
⎧⎨
⎩m +

vn∑
j=1

|Z̃j| ≤ (ε1 − ε2)n

⎫⎬
⎭∩

vn⋂
k=1

{
G(n)

k = Yk = L(n)
k

}⎞⎠

×P

⎛
⎝ �δ1n∑

k=vn+1

|W̃(n)
k | ≤ ε2n

⎞
⎠→ 1 as n → ∞.

In Section 4.3, we showed that, during the early stages of the epidemic, the contribution
to the spread of the disease from mixing events containing more than one non-susceptible
individual is negligible, and whilst the number of susceptibles remains above (1 − ε1)n we can
similarly bound the contribution from mixing events with multiple non-susceptible individuals.
Following the proof of Lemma 4.1, we have for w = 1, 2, . . . , [n/2] that q(n)

(
x(n), y(n),w

)≥
q(n)

1

(
x(n), y(n),w

)
, and using (4.12) and (4.13), for x(n) ≥ (1 − ε1)n, we have that

q(n)
1

(
x(n), y(n),w

)≥ nλ

y(n)

�n/2∑
c=w+1

p(n)
C (c)

cy(n)

n

[
1 − 2(c − 1)ε1n

n

]
πc(w; c − 1, 1)

= λ

�n/2∑
c=w+1

cp(n)
C (c) [1 − 2(c − 1)ε1] πc(w; c − 1, 1)

≥ β(n)ψ (n)
w

for all sufficiently large n, as, for such n, ψ (n)
w = 0 for all w> �n/2. Hence, for k = vn +

1, vn + 2, . . . , �δ1n, provided that A(n)
k−1 ≥ (1 − ε1)n, we can couple W(n)

k

(
A(n)

k−1,G(n)
k−1

)
and

Ẑ(n)
k , defined in (5.13) and (5.9) respectively, so that

Ẑ(n)
k ≤ W(n)

k

(
A(n)

k−1,G(n)
k−1

)

for all sufficiently large n. Specifically, we couple deaths (downward steps) in L(n) with
removals in G(n), so W(n)

k

(
A(n)

k−1,G(n)
k−1

)= −1 if and only if Ẑ(n)
k = −1. For w = 1, 2, . . ., if

W(n)
k

(
A(n)

k−1,G(n)
k−1

)= w then we set Ẑ(n)
k = w with probability ψ (n)

w /q(n)
(
x(n), y(n),w

)
and set

Ẑ(n)
k = 0 otherwise. Provided that A(n)

�δ1n ≥ (1 − ε1)n, it then immediately follows by induction
that for k = vn + 1, vn + 2, . . . , �δ1n,

G(n)
k = G(n)

k−1 + W(n)
k

(
A(n)

k−1,G(n)
k−1

)≥ L(n)
k−1 + Ẑ(n)

k = L(n)
k ,

and (5.14) holds. �
The final step is to couple S(n) to G(n). By definition, the processes S(n) and G(n) coincide for

the first vn events, so
(
X(n)

vn , Y (n)
vn

)= (A(n)
vn ,G(n)

vn

)
. Remember, for k = vn + 1, vn + 2, . . . , �δ1n,

that κn(k), defined in (5.4), denotes the number of events that have occurred in S(n) up to and
including the kth event in G(n), with κn(vn) = vn by definition. It is helpful to consider the epi-
demic processes E (n) (S(n)) and E (n)

G (G(n)) and to note that the rates at which events occur

are
{
γ +∑n−1

v=0 q(n)(x(n), y(n), v)
}

y(n) and
{
γ + β(n)

}
y(n), respectively. Therefore, the rate of

occurrence of an event which results in w = 1, 2, . . . , n − 1 infections, when the popula-
tion is in state

(
x(n), y(n)

)
, is q(n)

(
x(n), y(n),w

)
y(n) in both E (n) and E (n)

G . Similarly, the rate at
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which a removal occurs in state
(
x(n), y(n)

)
is γ y(n). Thus, the only difference in event rates

is for infection events which produce no infections where the rates are q(n)
(
x(n), y(n), 0

)
and

β(n) −∑n−1
v=1 q(n)

(
x(n), y(n), v

)
in E (n) and E (n)

G , respectively. Hence, if W(n)
k

(
A(n)

k−1,G(n)
k−1

)
�= 0,

we set κn(k) = κn(k − 1) + 1, and

X(n)
κn(k)= X(n)

κn(k−1) − W(n)
k

(
A(n)

k−1,G(n)
k−1

)
1{

W(n)
k (A(n)

k−1,G
(n)
k−1)
},

Y (n)
κn(k)= Y (n)

κn(k−1) + W(n)
k

(
A(n)

k−1,G(n)
k−1

)
.

(5.16)

That is, each event which leads to a change in the state of the population in E (n)
G (G(n))

has a corresponding event in E (n) (S(n)). Similarly, if W(n)
k

(
A(n)

k−1,G(n)
k−1

)
= 0, we set κn(k) =

κn(k − 1) + 1 with probability q(n)
(
x(n), y(n), 0

)
/
{
β(n) −∑n−1

v=1 q(n)(x(n), y(n), v)
}

and (5.16)

holds with
(

X(n)
κn(k), Yκn(k)

)
=
(

X(n)
κn(k−1), Y (n)

κn(k−1)

)
; otherwise we set κn(k) = κn(k − 1), cor-

responding to no event in E (n) (S(n)) and a ghost event in E (n)
G (G(n)). Thus there exists

κn(�δ1n) ≤ �δ1n such that

Y (n)
κn(�δ1n) = G(n)

�δ1n. (5.17)

Proof of Theorem 3.2(b). Let vn = �log n and un = �3vn/P(Z1 �= 0), so (un) satisfies the
conditions stated in Lemma 4.2. Let ε satisfy (5.6), and fix δ1 and ε1 < ε such that 0< δ1 <

ε1μC/E[C2] (i.e. satisfying (5.7)). It follows from (5.3) that, for R0 > 1, E[Z]> 0 and for
T (n) ≥ vn with probability tending to 1 as n → ∞, Yvn > vnE[Z]/2.

Given δ > 0 satisfying (5.10), it follows from (5.17) and Lemma 5.2 that, with probability
tending to 1 as n → ∞, for all k = vn + 1, vn + 2, . . . , �δ1n,

Y (n)
κn(k) = G(n)

k ≥ L(n)
k .

By setting bn = vnE[Z]/2 in Lemma 5.1, we have that, as n → ∞,

P

(
Y (n)
κn(�δ1n) ≥ �δn, min

vn≤k<κn(�δ1n)

{
Y (n)

k

}
> 0

∣∣∣∣ T (n) ≥ vn

)
→ 1. (5.18)

Given that T (n) ≥ Yκn(�δ1n), (3.14) follows immediately. �

Finally, note that Corollary 3.2 follows immediately from (5.18) as supt≥0 I(n)(t) ≥
Yκn(�δ1n).

6. Concluding comments

As noted in the introduction, the aims of this paper are to provide a rigorous justification
for the approximating branching process introduced in Ball and Neal [5] and a proof of a key
result (Theorem 3.2 of this paper) required for a central limit theorem in [5] for the size of a
major outbreak for epidemics with few initial infectives. The latter clearly requires a limit the-
orem. A limit theorem is also a common approach to rigorously justifying a branching process,
but for practical purposes it is often useful to have information concerning the accuracy of the
approximation for finite population size n, as given for example by a bound on the total vari-
ation distance between the epidemic E (n) in a population of size n and the limiting branching
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process B. A detailed analysis of such accuracy of approximation is beyond the scope of the
paper, so here we make a few very brief comments.

Recall from Section 4.5 that Hn denotes the first event at which a mismatch occurs between
the embedded discrete jump processes of E (n) and B. It follows immediately from results in the
proof of Lemma 4.2, using the notation in that lemma and its proof, that

P(Hn ≤ un) ≤ P
(
Ac

n,0

)+ P
(
Ac

n,1

)+ P
(
Ac

n,2

)
, (6.1)

thus yielding a bound on the total variation distance between E (n) and B over the first un events
for quantities that do not depend on the times of those events. The latter can be included
by adding P

(
Ac

n,3

)
to the right-hand side of (6.1). Bounds for P(Ac

n,i) (i = 0, 1, 2, 3) can be
obtained using results given in the proof of Lemma 4.2. For approximation purposes a source
of inaccuracy can be removed by using a branching process defined analogously to B but with
C replaced by C(n).
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