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Abstract
The existence of Ulrich modules for (complete) local domains has been a difficult and elusive open question. For
over thirty years, it was unknown whether complete local domains always have Ulrich modules. In this paper, we
answer the question of existence for both Ulrich modules and weakly lim Ulrich sequences – a weaker notion
recently introduced by Ma – in the negative. We construct many local domains in all dimensions 𝑑 ≥ 2 that do not
have any Ulrich modules. Moreover, we show that when 𝑑 = 2, these local domains do not have weakly lim Ulrich
sequences.
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1. Overview

The question of whether Ulrich modules exist for complete local domains has been open for over three
decades. In the first half of the paper, we construct the first known counterexamples to the existence of
Ulrich modules for (complete) local domains. In fact, the construction gives many counterexamples in
all dimensions 𝑑 ≥ 2 and with minimal modification; it can also be used to give counterexamples that
are essentially of finite type over fields.

In the second half of the paper, we show that our counterexamples for the existence of Ulrich modules
in dimension 2 are counterexamples to the existence of weakly lim Ulrich sequences for (complete)
local domains. This is a rather surprising turn of events, given that 1) lim Cohen–Macaulay sequences
exist for complete local domains of positive characteristic with F-finite residue fields [BHM] and 2)
weakly lim Ulrich sequences (and, in fact, lim Ulrich sequences) exist for standard graded rings over
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infinite F-finite fields of positive characteristic [M]. Note that our counterexamples are fairly simple
affine nonstandard graded algebras.

2. Introduction

Ulrich modules were introduced by Bernd Ulrich in 1984 as a means to study the Gorenstein property
of Cohen-Macaulay rings [U]. Since then, the theory of Ulrich modules has become a very active area
of research in both commutative algebra and algebraic geometry. Ulrich modules have many powerful
and broad applications, ranging from the original purpose of giving a criteria for when a local Cohen-
Macaulay ring is Gorenstein [U] to new methods of finding Chow forms of a variety [ES] to longstanding
open conjectures in multiplicity theory.

One of the major applications of Ulrich modules is Lech’s conjecture on Hilbert–Samuel multiplic-
ities, where the existence of Ulrich modules or Ulrich-like objects has been the main approach for the
majority of established cases. More specifically, the existence of Ulrich modules for complete local
domains implies the following conjecture:

Conjecture 2.1 (Lech’s Conjecture [L1]). Let 𝜑 : (𝑅,𝔪, 𝑘) → (𝑆, 𝔫, 𝑙) be a flat local map between
local rings. Then 𝑒𝔪 (𝑅) ≤ 𝑒𝔫 (𝑆).

Historically, the existence of Ulrich modules has been a challenging question. The existing literature is
sparse and has mainly explored positive existence results (i.e., classes of rings for which Ulrich modules
exist). The major existence results are that Ulrich modules exist for the following classes of rings:

1. strict complete intersection rings [HUB]
2. generic determinantal rings [BRW]
3. projective 1-dimensional schemes over arbitrary fields [ES]

◦ The subcase of two-dimensional, standard graded Cohen-Macaulay domains was proved earlier in
[BHU].

4. some Veronese subrings of degree d of a polynomial ring in n variables:
◦ 𝑛 = 3 with d arbitrary and 𝑛 = 4 with 𝑑 = 2ℓ in arbitrary characteristic [Ha99]
◦ arbitrary n and d in characteristic 0 [ES]
◦ arbitrary n and d for characteristic 𝑝 ≥ (𝑑 − 1)𝑛 + (𝑛 + 1) [Sa]

Beyond these results, there has been limited progress. In particular, for over 30 years, it has been
unknown whether complete local domains always have Ulrich modules. In the first half of the paper, we
resolve the question of existence of Ulrich modules in the negative.

Theorem A. Ulrich modules do not always exist for complete local domains.

We prove Theorem A by constructing complete local domains R of all dimensions 𝑑 ≥ 2 whose 𝑆2-
ification S is a regular local ring. The key ingredient to proving that our counterexamples do not have
Ulrich modules is Lemma 4.1, which states that any MCM module over R is an MCM module over S.
This yields the following intermediary theorem:

Theorem B. Let (𝑅,𝔪, 𝑘) be a local domain. Suppose R has an 𝑆2-ification S such that S is a regular
local ring. Then every MCM module of R has the form 𝑆⊕ℎ . Consequently, R has Ulrich modules if and
only if S is an Ulrich module of R.

In the second half of the paper, we consider the existence of (weakly) lim Ulrich sequences. To give
some context, MCM modules (or small Cohen–Macaulay modules) and Ulrich modules (a special type
of MCM module) are central to the main approaches to several major conjectures in multiplicity theory
such as Serre’s positivity and Lech’s conjecture, respectively. However, existence results for MCM
modules and Ulrich modules have been sparse and difficult to obtain. For example, the existence of
MCM modules is open in dimension 3. As such, the weaker notions of lim Cohen–Macaulay sequences
by Bhatt, Hochster and Ma [BHM] and (weakly) lim Ulrich sequences by Ma [M] were introduced as
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suitable replacements for small Cohen–Macaulay modules and Ulrich modules in the current approaches
to Serre’s positivity and Lech’s conjecture respectively. Lim Cohen–Macaulay sequences and (weakly)
lim Ulrich sequences have been shown to exist in much more general contexts.

In an earlier draft of [M] (prior to the results of this paper), Ma posed the following question:

Question 2.2 [M]. Does every complete local domain of characteristic 𝑝 > 0 with an F-finite residue
field admit a lim Ulrich sequence, or at least a weakly lim Ulrich sequence?

Given that lim Cohen–Macaulay sequences exist for completely local domains of positive character-
istic with F-finite residue fields [BHM, M], it is reasonable to ask if (weakly) lim Ulrich sequences exist
for these rings. However, we answer the question in the negative in this paper.

Theorem C. Weakly lim Ulrich sequences do not always exist for complete local domains.

To prove Theorem C, we establish important characterizations of (weakly) lim Cohen–Macaulay
sequences and (weakly) lim Ulrich sequences for local domains of dimension 2.

3. Preliminaries

In this section, we review the relevant definitions and properties of Ulrich modules and (weakly) lim
Ulrich sequences. Throughout this paper, all rings are commutative with a multiplicative identity. All
local rings (𝑅,𝔪, 𝑘) include the Noetherian condition. For simplicity, we assume that k is infinite unless
explicitly stated otherwise. In particular, we assume the existence of a minimal reduction generated by
d elements for the maximal ideal 𝔪 of a local ring R of dimension d.

Notation

Let (𝑅,𝔪, 𝑘) be a local ring of dimension d. Let M be a finitely generated module over R. Throughout
the paper, we use the following notation:

◦ 𝑥 = 𝑥1, . . . , 𝑥𝑑
◦ ℓ𝑅 (𝑀) is the length of M as a module over R. We write ℓ(𝑀) when it is clear from the context which

R is being used.
◦ 𝐻𝑖 (𝑥; 𝑀) is the i-th Koszul homology of the module M with respect to 𝑥.
◦ ℎ𝑅𝑖 (𝑥; 𝑀) = ℓ𝑅 (𝐻𝑖 (𝑥; 𝑀))

◦ 𝜒(𝑥; 𝑀) =
∑𝑑

𝑖=0(−1)𝑖ℓ(𝐻𝑖 (𝑥; 𝑀)) =
∑𝑑

𝑖=0(−1)𝑖ℎ𝑖 (𝑥; 𝑀).

◦ 𝜒1 (𝑥; 𝑀) =
∑𝑑

𝑖=1(−1)𝑖−1ℓ(𝐻𝑖 (𝑥; 𝑀)) =
∑𝑑

𝑖=1(−1)𝑖−1ℎ𝑖 (𝑥; 𝑀).
◦ 𝜈𝑅 (𝑀) is the minimal number of generators of M.
◦ 𝑒𝑅 (𝑀) is the multiplicity of M with respect to the maximal ideal 𝔪. When 𝑀 = 𝑅, we write 𝑒(𝑅).

3.1. Ulrich modules

Definition 3.1 (Hilbert-Samuel Multiplicity). Let (𝑅,𝔪, 𝑘) be a local ring of dimension d. Let M be a
finitely generated module over R. The Hilbert-Samuel multiplicity of M with respect to 𝔪 is

𝑒𝑅 (𝑀) � 𝑑! lim
𝑛→∞

ℓ(𝑀/𝔪𝑛𝑀)

𝑛𝑑
.

Definition 3.2 (MCM). Let M be a finitely generated module over (𝑅, 𝑚, 𝑘). Then M is maximal Cohen-
Macaulay (or MCM) module of R if depth𝑅 (𝑀) = dim(𝑅).

We review some useful facts.

Proposition 3.3. Let (𝑅,𝔪, 𝑘) be a local domain of dimension d. Let M be an MCM module over R.
Then we have
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(a) 𝑒𝑅 (𝑀) = rank𝑅 (𝑀) · 𝑒(𝑅),
(b) 𝑒𝑅 (𝑀) = ℓ(𝑀/𝐼𝑀), where 𝐼 ⊆ 𝔪 is a minimal reduction of 𝔪, and
(c) 𝑒𝑅 (𝑀) ≥ 𝜈𝑅 (𝑀).

The statements in Proposition 3.3 are standard in the literature. For example, proofs can be found in
[Ha99] and [U].

Definition 3.4. Let (𝑅,𝔪, 𝑘) be a local ring of dimension d. Let M be an MCM module over R. Then
M is an Ulrich module if 𝑒𝑅 (𝑀) = 𝜈𝑅 (𝑀). Equivalently, M is an Ulrich module if 𝔪𝑀 = 𝐼𝑀 for any
minimal reduction 𝐼 ⊆ 𝔪.

Lemma 3.5. Let (𝑅,𝔪, 𝑘) be a local domain containing k. Let L be a finite algebraic extension of k.
Then 𝑆 = 𝐿 ⊗𝑘 𝑅 is a local ring with maximal ideal 𝔪𝑆, and S has an Ulrich module if and only if R
has an Ulrich module.

The proof of Lemma 3.5 is standard. We include it below for completeness.

Proof. Observe that S is a free module-finite extension of R and that 𝔪𝑆 is the maximal ideal of S. So
any system of parameters for R is a system of parameters for S.

Now suppose N is an Ulrich module over S. It is clear that any MCM module over S is an MCM module
over R. We have 𝑒(𝑅) = 𝑒(𝑆) because the length of 𝑆/(𝔪𝑆)𝑡 = 𝐿 ⊗𝑅 (𝑅/𝔪𝑡 ) over S is the same as the
length of 𝑅/𝔪𝑡 over R. Let [𝐿 : 𝑘] be the degree of the field extension. Then 𝜈𝑅 (𝑁) = [𝐿 : 𝑘]𝜈𝑆 (𝑁)

and we have

𝑒𝑅 (𝑁) = rank𝑅 (𝑁)𝑒(𝑅) = [𝐿 : 𝑘]rank𝑆 (𝑁)𝑒(𝑅) = [𝐿 : 𝑘]rank𝑆 (𝑁)𝑒(𝑆) = [𝐿 : 𝑘]𝑒𝑆 (𝑁).

Then

𝑒𝑅 (𝑁)

𝜈𝑅 (𝑁)
=

𝑒𝑆 (𝑁)

𝜈𝑆 (𝑁)
= 1.

So N is an Ulrich module of R.
Conversely, if M is an MCM module of R, then 𝑆 ⊗𝑅 𝑀 is an MCM module of S, and we have

𝑒𝑅 (𝑀) = 𝑒𝑆 (𝑆 ⊗𝑅 𝑀) and 𝜈𝑅 (𝑀) = 𝜈𝑆 (𝑆 ⊗𝑅 𝑀). So if M is an Ulrich module of R, then 𝑆 ⊗𝑅 𝑀 is
an Ulrich module of S. �

3.2. (Weakly) lim Cohen–Macaulay sequences and (weakly) lim Ulrich sequences

We review the definitions and relevant properties of (weakly) lim Cohen-Macaulay sequences and
(weakly) lim Ulrich sequences. (Weakly) lim Cohen-Macaulay sequences were introduced by Bhatt,
Hochster and Ma [BHM]. See [Hoc17]. (Weakly) lim Ulrich sequences were introduced by Ma [M].

Definition 3.6. Let (𝑅,𝔪, 𝑘) be a local ring of dimension d. A sequence of finitely generated nonzero
R-modules {𝑀𝑛} of dimension d is called lim Cohen–Macaulay if there exists a system of parameters
𝑥 such that for all 𝑖 ≥ 1, we have

lim
𝑛→∞

ℎ𝑖 (𝑥; 𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 0.

A sequence of finitely generated R-modules {𝑀𝑛} of dimension d is called weaky lim Cohen–
Macaulay if there exists a system of parameters 𝑥 such that

lim
𝑛→∞

𝜒1(𝑥; 𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 0.
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Definition 3.7. Let (𝑅,𝔪, 𝑘) be a local ring of dimension d. A sequence of finitely generated nonzero
R-modules {𝑀𝑛} of dimension d is called lim Ulrich (respectively, weakly lim Ulrich) if {𝑀𝑛} is lim
Cohen–Macaulay (respectively, weakly lim Cohen–Macaulay) and

lim
𝑛→∞

𝑒𝑅 (𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 1.

Throughout the paper, we use the following proposition due to [BHM] and [M].

Proposition 3.8 [BHM][M]. Let (𝑅,𝔪, 𝑘) be a local ring of dimension d.

(a) [BHM](See [IMW, Lemma 5.7]) If {𝑀𝑛} is a lim Cohen–Macaulay sequence of R, then for every
system of parameters 𝑥 = 𝑥1, . . . , 𝑥𝑑 , we have

lim
𝑛→∞

ℎ𝑖 (𝑥; 𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 0,

where 𝑖 ≥ 1.
(b) [M, Prop. 2.6] If {𝑀𝑛} is a weakly lim Cohen–Macaulay sequence of R, then for every system of

parameters 𝑥 = 𝑥1, . . . , 𝑥𝑑 , we have

lim
𝑛→∞

𝜒1(𝑥; 𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 0.

4. Ulrich modules do not always exist for local domains

Lemma 4.1. Let (𝑅,𝔪, 𝑘) be a local domain. If R has an 𝑆2-ification S that is a local ring, then any
MCM module M of R is an MCM module of S.

Proof. Let M be an MCM module over R. We want to show that for any 𝑓 ∈ 𝑆 − 𝑅 and any 𝑚 ∈ 𝑀 ,
there is a well-defined element 𝑓 · 𝑚 ∈ 𝑀 . Let 𝑊 = 𝑅 − {0}. Since M is MCM, it is torsion-free over
R and embeds in 𝑊−1𝑀 . It suffices to show that 𝑓 · (𝑚/1) ∈ 𝑀 . Since any element in the 𝑆2-ification
of R is multiplied back into R by an ideal in R of height at least 2 (see [HH, (2.3)]), the height of the
ideal 𝑅 :𝑅 𝑓 is at least two. Thus, there exist u and v in 𝑅 :𝑅 𝑓 such that the sequence 𝑢, 𝑣 is a part of
a system of parameters for R. Since M is MCM, the sequence 𝑢, 𝑣 is a regular sequence on M. Then
𝑣 · ((𝑢 𝑓 ) · (𝑚/1)) = 𝑢 · ((𝑣 𝑓 ) · (𝑚/1)) ∈ 𝑣𝑀 implies that (𝑣 𝑓 ) · (𝑚/1) ∈ 𝑣𝑀 . Since M is torsion-free
over R, we have 𝑓 · (𝑚/1) ∈ 𝑀. �

Theorem 4.2. Let (𝑅,𝔪, 𝑘) be a local domain. Suppose R has an 𝑆2-ification S such that S is a regular
local ring. Then every MCM module of R has the form 𝑆⊕ℎ . Consequently, R has Ulrich modules if and
only if S is an Ulrich module of R if and only if 𝐼𝑆 = 𝔪𝑆 for any minimal reduction I of 𝔪.

Proof. By Lemma 4.1, any MCM module M over R is MCM over S. But S is regular. Hence, 𝑀 � 𝑆⊕ℎ

by the Auslander–Buchsbaum formula. The second statement follows immediately because 𝑆⊕ℎ is an
Ulrich module of R if and only if S is an Ulrich module of R. �

Theorem 4.3. Let 𝑆 = 𝑘 [[𝑥]] = 𝑘 [[𝑥1, . . . , 𝑥𝑑]], where 𝑑 ≥ 2. Let 𝑢 = 𝑢1, . . . , 𝑢𝑑 be a system for
parameters of S such that 𝐼 = (𝑢)𝑆 is not integrally closed. Let 𝐼 be the integral closure of I in S. Let
{𝑔𝜆}𝜆∈Λ be an arbitrary collection of elements in 𝐼 and 𝑓 ∈ 𝐼 − 𝐼 . For 1 ≤ 𝑗 ≤ 𝑑, let 𝑣 𝑗 , 𝑤 𝑗 be elements
of the maximal ideal of 𝑘 [[𝑢]] that generate a height 2 ideal in 𝑘 [[𝑢]] (e.g., one can take powers of
distinct elements in {𝑢1, . . . , 𝑢𝑑}). Define R to be the domain

𝑅 � 𝑘 [[𝑢]] [ 𝑓 ] [𝑣 𝑗𝑥 𝑗 , 𝑤 𝑗𝑥 𝑗 ]1≤ 𝑗≤𝑑 [𝑔𝜆]𝜆∈Λ.

Then R has no Ulrich modules.
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Proof. First, notice that 𝑘 [[𝑢]] ⊂ 𝑘 [[𝑥]] is a module-finite extension. Then R is (Noetherian) local and
𝑅 ⊂ 𝑘 [[𝑥]] is a module-finite extension.

Let 𝔪𝑅 be the maximal ideal of R. From the construction of R, it is clear that 𝑢 = 𝑢1, . . . , 𝑢𝑑 is
a system for parameters for R and, in fact, a minimal reduction of 𝔪𝑅 because all the other adjoined
elements are integral over (𝑢)𝑆 in S and thus integral over (𝑢)𝑅 in R. Then for all 1 ≤ 𝑗 ≤ 𝑑, the element
𝑥 𝑗 is multiplied into R by 𝑣 𝑗 and 𝑤 𝑗 which generate a height 2 ideal in R. Thus 𝑥 𝑗 is in the 𝑆2-ification
of R for all 1 ≤ 𝑗 ≤ 𝑑. But this means that 𝑆 = 𝑘 [[𝑥]] is the 𝑆2-ification of 𝑅.

By Theorem 4.2, it suffices to show that S is not an Ulrich module of R. But (𝑢)𝑆 ≠ 𝔪𝑅𝑆 because
𝑓 ∉ (𝑢)𝑆. Thus, R has no Ulrich modules. �

Remark 4.4. Similar constructions can be used to generate counterexamples that are essentially of finite
type over fields. For example, see Counterexample 4.6.
Remark 4.5. In [IMW], Iyengar, Ma and Walker consider rings of the form𝑇 = 𝑘+𝐽, where 𝑆 = 𝑘 [[𝑥, 𝑦]]
and 𝐽 ⊆ 𝑆 is an ideal primary to (𝑥, 𝑦)𝑆. If J has a minimal reduction 𝐼 = (𝑢, 𝑣)𝑆, then the rings T have
the form in Theorem 4.3. Thus, 𝑇 = 𝑘 + 𝐽 has no Ulrich modules if 𝐽 ≠ 𝐼𝑆.

In the case where J does not have a minimal reduction, we can reduce to the previous case by taking
a finite algebraic field extension of k so that J has a minimal reduction and then apply Lemma 3.5.
Counterexample 4.6. This is the first counterexample we found, which led to the general construction
in Theorem 4.3. The local domain

𝑅 = 𝑘 [𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛𝑦, 𝑦𝑛, 𝑦𝑛+1, 𝑥𝑦𝑛, 𝑥𝑦]𝔪,

where 𝔪 is the maximal ideal (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛𝑦, 𝑦𝑛, 𝑦𝑛+1, 𝑥𝑦𝑛, 𝑥𝑦), and its completion

𝑅 = 𝑘 [[𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛𝑦, 𝑦𝑛, 𝑦𝑛+1, 𝑥𝑦𝑛, 𝑥𝑦]]

do not have Ulrich modules for 𝑛 ≥ 2.
We can show that R and 𝑅 do not have Ulrich modules directly. The argument is essentially the same

for R and 𝑅. We will work with R. The 𝑆2-ification of R is 𝑆 = 𝑘 [𝑥, 𝑦](𝑥,𝑦) , and the ideal (𝑥𝑦, 𝑥𝑛 − 𝑦𝑛)𝑅
is a minimal reduction for 𝔪𝑅. But

(𝑥𝑦, 𝑥𝑛 − 𝑦𝑛)𝑆 ≠ (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛𝑦, 𝑦𝑛, 𝑦𝑛+1, 𝑥𝑦𝑛, 𝑥𝑦)𝑆

as ideals in S.
We can recover this counterexample from the general construction in Theorem 4.3 by setting

𝑥 = 𝑥, 𝑦

𝑢 = 𝑥𝑦, 𝑥𝑛 − 𝑦𝑛

𝑓 = 𝑥𝑛

𝑣 𝑗 = (𝑥𝑦)𝑛 and 𝑤 𝑗 = 𝑥𝑛 − 𝑦𝑛 1 ≤ 𝑗 ≤ 2
𝑔1 = 𝑥𝑛+1 and 𝑔2 = 𝑦𝑛+1.

Remark 4.7. We can use R in Counterexample 4.6 to give a new counterexample to the localization of
Ulrich modules (i.e., a local ring (𝑇, 𝔫, ℓ) that has an Ulrich module M and a prime ideal 𝔭 ⊆ 𝑇 such
that 𝑀𝔭 is not an Ulrich module over 𝑇𝔭). Although a counterexample to localization was first given by
Hanes in [Ha99], the following counterexample is stronger in the sense that T localizes to a ring that
has no Ulrich modules, whereas Hanes’s counterexample localizes to a ring that does have an Ulrich
module. Note that Ulrich modules are called linear MCM modules in [Ha99].
Counterexample 4.8 (Localization). Consider the ring

𝑇 = 𝑘 [𝑠𝑛+1, 𝑠𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛𝑦, 𝑠𝑦𝑛, 𝑦𝑛+1, 𝑥𝑦𝑛, 𝑠𝑛−1𝑥𝑦]𝔫 ,
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where 𝔫 = (𝑠𝑛+1, 𝑠𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛𝑦, 𝑠𝑦𝑛, 𝑦𝑛+1, 𝑥𝑦𝑛, 𝑠𝑛−1𝑥𝑦) and 𝑛 ≥ 2. Let

𝜑 : 𝑇 ↩→ 𝑘 [𝑠, 𝑥, 𝑦](𝑠,𝑥,𝑦)

be the inclusion map and 𝔭 = 𝜑−1((𝑥, 𝑦)). Then the localization 𝑇𝔭 is the ring

𝑘 (𝑠𝑛+1)
[( 𝑥

𝑠

)𝑛
,
( 𝑥
𝑠

)𝑛+1
,
( 𝑥
𝑠

)𝑛 ( 𝑦
𝑠

)
,
( 𝑦
𝑠

)𝑛
,
( 𝑦
𝑠

)𝑛+1
,
( 𝑥
𝑠

) ( 𝑦
𝑠

)𝑛
,
( 𝑥
𝑠

) ( 𝑦
𝑠

)]
localized at the obvious maximal ideal. But 𝑇𝔭 has no Ulrich modules by Counterexample 4.6.

It remains to show that T has an Ulrich module. Let S be the localization of the (𝑛 + 1)th Veronese
subring of 𝑘 [𝑠, 𝑥, 𝑦] at the homogeneous maximal ideal. One can compute 𝑒𝑇 (𝑇) = (𝑛 + 1)2 = 𝑒𝑆 (𝑆).
The rings T and S have the same fraction field and so rank𝑇 (𝑆) = 1. Now S has an Ulrich module M by
Proposition 3.6 in [Ha04]. Then M is MCM over T and rank𝑇 (𝑀) = rank𝑆 (𝑀). Then

(𝑛 + 1) · rank𝑇 (𝑀) = 𝑒𝑇 (𝑀) ≥ 𝜈𝑇 (𝑀) ≥ 𝜈𝑆 (𝑀) = 𝑒𝑆 (𝑀) = (𝑛 + 1) · rank𝑇 (𝑀).

Thus, 𝑒𝑇 (𝑀) = 𝜈𝑇 (𝑀) and M is Ulrich over 𝑇.

5. (Weakly) lim Cohen–Macaulay and (weakly) lim Ulrich sequences over domains of dimension 2

Definition 5.1. Let (𝑅,𝔪, 𝑘) be a local ring. Let M = {𝑀𝑛} be a sequence of nonzero finitely generated
R-modules. Let 𝜈𝑅 (𝑀𝑛) be the minimal number of generators of 𝑀𝑛. Let {𝑎𝑛} and {𝑏𝑛} be a sequence
of positive integers. We define ∼M to be the equivalence relation ∼M, where {𝑎𝑛} ∼M {𝑏𝑛} if

lim
𝑛→∞

𝑎𝑛 − 𝑏𝑛
𝜈𝑅 (𝑀𝑛)

= 0.

For the sake of simplicity, we write 𝑎𝑛 ∼M 𝑏𝑛 instead of {𝑎𝑛} ∼M {𝑏𝑛}.

Lemma 5.2. Let (𝑅,𝔪, 𝑘) be a local ring. Let M = {𝑀𝑛} and N = {𝑁𝑛} be two sequences of nonzero
finitely generated R-modules. Let {𝑎𝑛} and {𝑏𝑛} be a sequence of non-negative integers. Suppose
𝜈𝑅 (𝑁𝑛) ∼M 𝜈𝑅 (𝑀𝑛). If 𝑎𝑛 ∼M 𝑏𝑛, then 𝑎𝑛 ∼N 𝑏𝑛. In particular, 𝜈𝑅 (𝑀𝑛) ∼N 𝜈𝑅 (𝑁𝑛).

Proof. Since 𝜈𝑅 (𝑁𝑛) ∼M 𝜈𝑅 (𝑀𝑛), we have lim𝑛→∞
𝜈𝑅 (𝑀𝑛)
𝜈𝑅 (𝑁𝑛)

= 1. Then

0 = lim
𝑛→∞

𝑎𝑛 − 𝑏𝑛
𝜈𝑅 (𝑀𝑛)

=

(
lim
𝑛→∞

𝑎𝑛 − 𝑏𝑛
𝜈𝑅 (𝑀𝑛)

) (
lim
𝑛→∞

𝜈𝑅 (𝑀𝑛)

𝜈𝑅 (𝑁𝑛)

)
= lim

𝑛→∞

(
𝑎𝑛 − 𝑏𝑛
𝜈𝑅 (𝑀𝑛)

·
𝜈𝑅 (𝑀𝑛)

𝜈𝑅 (𝑁𝑛)

)

= lim
𝑛→∞

𝑎𝑛 − 𝑏𝑛
𝜈𝑅 (𝑁𝑛)

.
�

Theorem 5.3. Let (𝑅,𝔪, 𝑘) be a local domain of dimension 2. Let {𝑀𝑛} be a weakly lim Cohen–
Macaulay (resp. weakly lim Ulrich) sequence over R. Let 𝐶𝑛 ⊆ 𝑀𝑛 be a torsion submodule such that
the quotient 𝑀𝑛 � 𝑀𝑛/𝐶𝑛 has no finite length submodules. Then the sequence {𝑀𝑛} is a lim Cohen–
Macaulay (resp. lim Ulrich) sequence over R.

Proof. Let M � {𝑀𝑛} be a weakly lim Cohen–Macaulay sequence over R. Let 𝐼 = (𝑥) be a system of
parameters of the maximal ideal 𝔪. Recall that 𝜈𝑅 (𝑀𝑛) denotes the minimal number of generators of
𝑀𝑛. First, we check that

𝜈𝑅 (𝑀𝑛) ∼M 𝜈𝑅 (𝑀𝑛).

Consider the short exact sequence

0 → 𝐶𝑛 → 𝑀𝑛 → 𝑀𝑛 → 0.
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We know that 𝜈𝑅 (𝑀𝑛) ≤ 𝜈𝑅 (𝑀𝑛) ≤ 𝜈𝑅 (𝑀𝑛) + 𝜈𝑅 (𝐶𝑛). So it suffices to show that

𝜈𝑅 (𝐶𝑛) ∼M 0.

From the short exact sequence, we get the long exact sequence of Koszul homology

0 → 𝐻2 (𝑥;𝐶𝑛) → 𝐻2 (𝑥; 𝑀𝑛) → 𝐻2 (𝑥; 𝑀𝑛)

→ 𝐻1 (𝑥;𝐶𝑛) → 𝐻1 (𝑥; 𝑀𝑛) → 𝐻1 (𝑥; 𝑀𝑛) → 𝐻0 (𝑥;𝐶𝑛) → 𝐻0 (𝑥; 𝑀𝑛) → 𝐻0 (𝑥; 𝑀𝑛) → 0.

Now 𝑀𝑛 has no finite length torsion submodules, so 𝐻2 (𝑥; 𝑀𝑛) = 0. We observe the following:

(a) 𝐻2(𝑥;𝐶𝑛) � 𝐻2(𝑥; 𝑀𝑛)

(b) ℎ1(𝑥;𝐶𝑛) ≤ ℎ1 (𝑥; 𝑀𝑛)

(c) 𝜒1(𝑥; 𝑀) ≥ 0 for any finitely generated R-module M [S, Corollary on pg. 90]
(d) 𝜒(𝑥;𝐶𝑛) = 𝑒(𝑥;𝐶𝑛) = 0, where 𝑒(𝑥;𝐶𝑛) is the multiplicity of 𝐶𝑛 with respect to (𝑥), and the first

equality is by [S, Theorem 1 on pg. 57]
(e) 0 ≤ ℎ0(𝑥; 𝑀𝑛) − ℎ0 (𝑥; 𝑀𝑛) ≤ ℎ0 (𝑥;𝐶𝑛)

From (a), (b) and (c), it follows that

0 ≤ 𝜒1(𝑥;𝐶𝑛) ≤ 𝜒1(𝑥; 𝑀𝑛),

and because M is weakly lim Cohen–Macaulay, we have

𝜒1(𝑥;𝐶𝑛) ∼M 0. (1)

But 𝜒(𝑥;𝐶𝑛) = 0 and so, 𝜒1(𝑥;𝐶𝑛) = ℎ0 (𝑥;𝐶𝑛) = ℓ(𝐶𝑛/(𝑥)𝐶𝑛). Then the inequality

𝜈𝑅 (𝐶𝑛) = ℓ(𝐶𝑛/𝔪𝐶𝑛) ≤ ℓ(𝐶𝑛/(𝑥)𝐶𝑛)

yields

𝜈𝑅 (𝐶𝑛) ∼M 0.

Next, we show that {𝑀𝑛} is a lim Cohen-Macaulay sequence over R. We already know that
ℎ2 (𝑥; 𝑀𝑛) = 0. It remains to show

lim
𝑛→∞

ℎ1 (𝑥; 𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 0.

By Lemma 5.2, it is enough to show that

lim
𝑛→∞

ℎ1 (𝑥; 𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 0

because 𝜈𝑅 (𝑀𝑛) ∼M 𝜈𝑅 (𝑀𝑛). Take the alternating sum of the lengths of the Koszul homology in the
exact sequence

0 → 𝐻1 (𝑥;𝐶𝑛) → 𝐻1 (𝑥; 𝑀𝑛) → 𝐻1 (𝑥; 𝑀𝑛) → 𝐻0 (𝑥;𝐶𝑛) → 𝐻0 (𝑥; 𝑀𝑛) → 𝐻0 (𝑥; 𝑀𝑛) → 0.

This is the sum

ℎ1 (𝑥;𝐶𝑛) − ℎ1 (𝑥; 𝑀𝑛) + ℎ1 (𝑥; 𝑀𝑛) − ℎ0 (𝑥;𝐶𝑛) + ℎ0 (𝑥; 𝑀𝑛) − ℎ0 (𝑥; 𝑀𝑛) = 0.
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Then

ℎ1 (𝑥; 𝑀𝑛) = −ℎ1 (𝑥;𝐶𝑛) + ℎ0 (𝑥;𝐶𝑛) + ℎ1(𝑥; 𝑀𝑛) − ℎ0 (𝑥; 𝑀𝑛) + ℎ0 (𝑥; 𝑀𝑛)

= −ℎ2 (𝑥;𝐶𝑛) + ℎ1 (𝑥; 𝑀𝑛) − ℎ0(𝑥; 𝑀𝑛) + ℎ0 (𝑥; 𝑀𝑛)

= −ℎ2 (𝑥; 𝑀𝑛) + ℎ1 (𝑥; 𝑀𝑛) − ℎ0 (𝑥; 𝑀𝑛) + ℎ0 (𝑥; 𝑀𝑛)

= 𝜒1(𝑥; 𝑀𝑛) − (ℎ0 (𝑥; 𝑀𝑛) − ℎ0 (𝑥; 𝑀𝑛)).

Now we know that

𝜒1(𝑥; 𝑀𝑛) ∼M 0,

and by (e) and (1) above, we have

0 ≤ ℎ0 (𝑥; 𝑀𝑛) − ℎ0 (𝑥; 𝑀𝑛) ≤ ℎ0 (𝑥;𝐶𝑛) = 𝜒1 (𝑥;𝐶𝑛) ∼M 0.

Thus,

lim
𝑛→∞

ℎ1 (𝑥; 𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 0,

and the sequence {𝑀𝑛} is lim Cohen–Macaulay.
In the case where {𝑀𝑛} is a weakly lim Ulrich sequence, it remains to check that

lim
𝑛→∞

𝑒𝑅 (𝑀𝑛)

𝜈𝑅 (𝑀𝑛)
= 1.

But 𝑒𝑅 (𝑀𝑛) = 𝑒𝑅 (𝑀𝑛) and 𝜈𝑅 (𝑀𝑛) ∼M 𝜈𝑅 (𝑀𝑛), so the condition immediately follows, and thus,
{𝑀𝑛} is a lim Ulrich sequence of R. �

Definition 5.4. Let (𝑅,𝔪, 𝑘) be a local domain and let M be finitely generated torsion-free R-module.
Let (𝑆, 𝔫, ℓ) be a local module-finite extension domain of R. Suppose K = 𝑓 𝑟𝑎𝑐(𝑅) = 𝑓 𝑟𝑎𝑐(𝑆). Then
we define 𝑀𝑆 to be the S-module generated by M in 𝑀 ⊗𝑅 K.

Remark 5.5. In the case where R is a local domain with a 𝑆2-ification S that is local, if M is an MCM
module of R, then 𝑀𝑆 = 𝑀 by Lemma 4.1.

Lemma 5.6. Let (𝑅,𝔪, 𝑘) be a local domain of dimension 2 and let M be a finitely generated torsion-
free R-module. Let (𝑆, 𝔫, ℓ) be a local module-finite extension domain of R. Suppose 𝑆 ⊆ frac(𝑅) and
𝑆/𝑅 has finite length. Choose a fixed constant t such that 𝔪𝑡𝑆 ⊆ 𝑅. Let 𝑥, 𝑦 be a system of parameters
for R. Then

(a) 𝑀𝑆 ⊆ 𝑀 :K⊗𝑅𝑀 (𝑥𝑡 , 𝑦𝑡 )𝑅,
(b) (𝑀 :𝑀 ⊗𝑅K (𝑥𝑡 , 𝑦𝑡 ))/𝑀 � 𝐻1(𝑥

𝑡 , 𝑦𝑡 ; 𝑀),
(c) ℓ𝑅 (𝑀𝑆/𝑀) ≤ ℎ1 (𝑥

𝑡 , 𝑦𝑡 ; 𝑀).

Proof. Part (a) is clear by the choice of t. Part (c) follows immediately from parts (a) and (b). It remains
to prove part (b). Define

𝜑 : 𝐻1 (𝑥
𝑡 , 𝑦𝑡 ; 𝑀) → (𝑀 :𝑀 ⊗𝑅K (𝑥𝑡 , 𝑦𝑡 ))/𝑀

to be the map

[(𝑢, 𝑣)] ↦→
[ 𝑢
𝑦𝑡

]
=
[−𝑣
𝑥𝑡

]
,
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where the equality follows from the relation 𝑢𝑥𝑡 + 𝑣𝑦𝑡 = 0. This map is well-defined. If [(𝑢, 𝑣)] is
trivial, then there exists 𝑤 ∈ 𝑀 such that [(𝑢, 𝑣)] = [𝑦𝑡𝑤,−𝑥𝑡𝑤]. But [𝑦𝑡𝑤,−𝑥𝑡𝑤] is mapped to
[(𝑦𝑡𝑤)/𝑦𝑡 ] = [𝑤/1] = 0.

For the map going the other direction, define

𝜓 : (𝑀 :𝑀 ⊗𝑅K (𝑥𝑡 , 𝑦𝑡 ))/𝑀 → 𝐻1(𝑥
𝑡 , 𝑦𝑡 ; 𝑀)

to be the map

[ 𝑓 ] ↦→ [(𝑦𝑡 𝑓 ,−𝑥𝑡 𝑓 )] .

This is clearly well-defined. The maps 𝜑 and 𝜓 are inverses, so we are done. �

Theorem 5.7. Let (𝑅,𝔪, 𝑘) be a local domain of dimension 2. Let (𝑆, 𝔫, ℓ) be a local module–finite
extension domain of R such that 𝑆 ⊆ frac(𝑅) and 𝑆/𝑅 has finite length. Let M = {𝑀𝑛} be a lim Cohen–
Macaulay (resp. lim Ulrich) sequence of torsion-free R-modules. Then the sequence N = {𝑀𝑛𝑆} is a lim
Cohen–Macaulay (resp. lim Ulrich) sequence of R-modules and also a lim Cohen–Macaulay sequence
of S-modules.

Proof. We first prove that

𝜈𝑅 (𝑀𝑛) ∼M 𝜈𝑅 (𝑀𝑛𝑆).

Let 𝑄𝑛 = 𝑀𝑛𝑆/𝑀𝑛. Note that 𝑄𝑛 has finite length because 𝑆/𝑅 has finite length. The short exact
sequence

0 → 𝑀𝑛 → 𝑀𝑛𝑆 → 𝑄𝑛 → 0

yields the long exact sequence

. . . → Tor𝑅1 (𝑄𝑛, 𝑘) → 𝑀𝑛 ⊗𝑅 𝑘 → 𝑀𝑛𝑆 ⊗𝑅 𝑘 → 𝑄𝑛 ⊗𝑅 𝑘 → 0.

Then

𝜈𝑅 (𝑀𝑛) ≤ 𝜈𝑅 (𝑀𝑛𝑆) + ℓ(Tor𝑅1 (𝑄𝑛, 𝑘)) ≤ 𝜈𝑅 (𝑀𝑛) + 𝜈𝑅 (𝑄𝑛) + ℓ(Tor𝑅1 (𝑄𝑛, 𝑘)),

and so it suffices to show that

ℓ(Tor𝑅1 (𝑄𝑛, 𝑘)) ∼M 0 and 𝜈𝑅 (𝑄𝑛) ∼M 0.

Let 𝑥 = 𝑥1, 𝑥2 be a system of parameters for R. By Lemma 5.6, we know that ℓ(𝑄𝑛) ≤ ℎ1 (𝑥
𝑡
1, 𝑥

𝑡
2; 𝑀𝑛)

for some fixed t. But M is a lim Cohen-Macaulay sequence, so ℎ1 (𝑥
𝑡
1, 𝑥

𝑡
2; 𝑀𝑛) ∼M 0 and

ℓ(𝑄𝑛) ∼M 0.

Then

𝜈𝑅 (𝑄𝑛) = ℓ(𝑄𝑛/𝔪𝑄𝑛) ∼M 0.

Next, by taking a prime cyclic filtration of 𝑄𝑛, one can observe that

ℓ(Tor𝑅1 (𝑄𝑛, 𝑘)) ≤ ℓ(𝑄𝑛)ℓ(Tor𝑅1 (𝑘, 𝑘)).

Then it immediately follows that

ℓ(Tor𝑅1 (𝑄𝑛, 𝑘)) ∼M 0.
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We now show that N = {𝑀𝑛𝑆} is a lim Cohen–Macaulay sequence of R-modules. It is enough to
show that

ℎ1 (𝑥; 𝑀𝑛𝑆) ∼M 0.

Because 𝑀𝑛 and 𝑀𝑛𝑆 are torsion-free over R, we have the long exact sequence

0 → 𝐻2 (𝑥;𝑄𝑛) → 𝐻1(𝑥; 𝑀𝑛) → 𝐻1 (𝑥; 𝑀𝑛𝑆) → 𝐻1(𝑥;𝑄𝑛)

→ 𝐻0 (𝑥; 𝑀𝑛) → 𝐻0(𝑥; 𝑀𝑛𝑆) → 𝐻0(𝑥;𝑄𝑛) → 0.
(2)

Next we show that for all 𝑖 ≥ 0,

ℎ𝑖 (𝑥;𝑄𝑛) ∼M 0.

We see that

ℎ2 (𝑥;𝑄𝑛) ∼M 0

because 𝐻2 (𝑥;𝑄𝑛) injects into 𝐻1(𝑥; 𝑀𝑛). We already proved that ℓ(𝑄𝑛) ∼M 0. It immediately follows
that

ℎ0 (𝑥;𝑄𝑛) = ℓ(𝑄𝑛/𝑥𝑄𝑛) ∼M 0.

Then it follows from 𝜒(𝑥;𝑄𝑛) = 0 that

ℎ1 (𝑥;𝑄𝑛) ∼M 0.

From the long exact sequence (2), we have

ℎ1(𝑥; 𝑀𝑛𝑆) ≤ ℎ1 (𝑥; 𝑀𝑛) + ℎ1 (𝑥;𝑄𝑛).

But ℎ1 (𝑥; 𝑀𝑛) ∼M 0 and ℎ1 (𝑥;𝑄𝑛) ∼M 0. Therefore, N = {𝑀𝑛𝑆} is a lim Cohen–Macaulay sequence
over R.

If M is lim Ulrich, it immediately follows that N is lim Ulrich because 𝑒𝑅 (𝑀𝑛) = 𝑒𝑅 (𝑀𝑛𝑆) and
𝜈𝑅 (𝑀𝑛) ∼M 𝜈𝑅 (𝑀𝑛𝑆). It remains to check that N = {𝑀𝑛𝑆} is a lim Cohen–Macaulay sequence for 𝑆.

For any i, the Koszul homology 𝐻𝑖 (𝑥; 𝑀𝑛𝑆) does not change whether we think of 𝑀𝑛𝑆 as an
R-module or an S-module. We also have

𝜈𝑅 (𝑀𝑛𝑆) ≤ 𝜈𝑅 (𝑆)𝜈𝑆 (𝑀𝑛𝑆),

which yields

𝜈𝑅 (𝑀𝑛𝑆)

𝜈𝑅 (𝑆)
≤ 𝜈𝑆 (𝑀𝑛𝑆).

Then

lim
𝑛→∞

ℎ𝑆1 (𝑥; 𝑀𝑛𝑆)

𝜈𝑆 (𝑀𝑛𝑆)
≤ lim

𝑛→∞

𝜈𝑅 (𝑆)ℎ
𝑅
1 (𝑥; 𝑀𝑛𝑆)

𝜈𝑅 (𝑀𝑛𝑆)
= 𝜈𝑅 (𝑆) lim

𝑛→∞

ℎ𝑅1 (𝑥; 𝑀𝑛𝑆)

𝜈𝑅 (𝑀𝑛𝑆)
= 0.

Thus, N = {𝑀𝑛𝑆} is a lim Cohen-Macaulay sequence over S. �

https://doi.org/10.1017/fms.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.68


12 F. C. Yhee

Theorem 5.8. A sequence of finitely generated nonzero torsion–free modules {𝑁𝑛} over a regular local
ring S of dimension 2 is lim Cohen–Macaulay if and only if for the minimal free resolution

0 → 𝑆𝑏𝑛 → 𝑆𝑎𝑛 → 𝑁𝑛 → 0

we have lim𝑛→∞ 𝑏𝑛/𝑎𝑛 = 0. Such a sequence is always lim Ulrich.

Proof. Let 𝑥, 𝑦 be a regular system of parameters for S. We have

𝑎𝑛 = 𝜈𝑆 (𝑁𝑛) = ℎ0 (𝑥, 𝑦; 𝑁𝑛)

and

𝑏𝑛 = ℎ1 (𝑥, 𝑦; 𝑁𝑛).

Then {𝑁𝑛} is lim Cohen–Macaulay over S if and only if

lim
𝑛→∞

ℎ1 (𝑥, 𝑦; 𝑁𝑛)

𝜈𝑆 (𝑁𝑛)
= lim

𝑛→∞

𝑏𝑛
𝑎𝑛

= 0.

Moreover, we have

lim
𝑛→∞

𝑒𝑆 (𝑁𝑛)

𝜈𝑆 (𝑁𝑛)
= lim

𝑛→∞

𝑎𝑛 − 𝑏𝑛
𝑎𝑛

= 1.

Note that 𝑒𝑆 (𝑁𝑛) = 𝑎𝑛−𝑏𝑛 by [S, Theorem 1 on pg. 57]. Thus, {𝑁𝑛} is a lim Ulrich sequence for 𝑆. �

6. Weakly lim Ulrich sequences do not always exist for local domains

Theorem 6.1. Let (𝑅,𝔪, 𝑘) be a local domain of dimension 2. Suppose R has an 𝑆2-ification S that is
a regular local ring. The following are equivalent:

(a) R has a weakly lim Ulrich sequence.
(b) R has an Ulrich module.
(c) S is an Ulrich module of R.
(d) For any minimal reduction I of 𝔪, we have 𝐼𝑆 = 𝔪𝑆.

Proof. First, (c) and (d) are equivalent by definition. Next (b) and (c) are equivalent by Theorem 4.2. It
is clear that (b) implies (a). It remains to show that (a) implies (b).

Suppose R has a weakly lim Ulrich sequence. Then by Theorems 5.3 and 5.7, there exists a lim
Ulrich sequence M = {𝑀𝑛} of torsion-free R modules that are also S modules. Consider the minimal
free resolution

0 → 𝑆𝑏𝑛 → 𝑆𝑎𝑛 → 𝑀𝑛 → 0,

where 𝑎𝑛 = 𝜈𝑆 (𝑀𝑛). Now

𝜈𝑅 (𝑆
𝑏𝑛 ) = 𝑏𝑛𝜈𝑅 (𝑆)

and

𝑒𝑅 (𝑆
𝑏𝑛 ) = 𝑏𝑛𝑒𝑅 (𝑆).
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Then Theorem 5.8 yields

lim
𝑛→∞

𝜈𝑅 (𝑆
𝑏𝑛 )

𝜈𝑅 (𝑀𝑛)
= lim

𝑛→∞

𝜈𝑅 (𝑆)𝑏𝑛
𝜈𝑅 (𝑀𝑛)

≤ lim
𝑛→∞

𝜈𝑅 (𝑆)𝑏𝑛
𝜈𝑆 (𝑀𝑛)

= lim
𝑛→∞

𝜈𝑅 (𝑆)𝑏𝑛
𝑎𝑛

= 0,

and

lim
𝑛→∞

𝑒𝑅 (𝑆
𝑏𝑛 )

𝜈𝑅 (𝑀𝑛)
= lim

𝑛→∞

𝑒𝑅 (𝑆)𝑏𝑛
𝜈𝑅 (𝑀𝑛)

≤ lim
𝑛→∞

𝑒𝑅 (𝑆)𝑏𝑛
𝜈𝑆 (𝑀𝑛)

= lim
𝑛→∞

𝑒𝑅 (𝑆)𝑏𝑛
𝑎𝑛

= 0.

Consequently, by the minimal free resolution above, we have

𝜈𝑅 (𝑀𝑛) ∼M 𝜈𝑅 (𝑆
𝑎𝑛 ) = 𝜈𝑅 (𝑆)𝑎𝑛, (3)

and

𝑒𝑅 (𝑀𝑛) ∼M 𝑒𝑅 (𝑆
𝑎𝑛 ) = 𝑒𝑅 (𝑆)𝑎𝑛. (4)

Combining equivalences 3 and 4, we have

𝑒𝑅 (𝑆)

𝑣𝑅 (𝑆)
= lim

𝑛→∞

𝑒𝑅 (𝑆)

𝑣𝑅 (𝑆)
= lim

𝑛→∞

𝑒𝑅 (𝑀𝑛)

𝑣𝑅 (𝑀𝑛)
= 1.

Thus, S is an Ulrich module of R. �

Theorem 6.2. Weakly lim Ulrich sequences do not always exist for (complete) local domains.

Proof. This is immediate by Theorem 4.3 by taking 𝑑 = 2 and applying Theorem 6.1. �

Corollary 6.3 (Localization). Weakly lim Ulrich sequences do not always localize for local domains.
More precisely, there exist local domains (𝑅,𝔪, 𝑘) that have a weakly lim Ulrich sequence {𝑀𝑛} and
a prime ideal 𝔭 such that {(𝑀𝑛)𝔭} is not a weakly lim Ulrich sequence for 𝑅𝔭 . Moreover, there exist
local domains that have weakly lim Ulrich sequences and a prime ideal 𝔭 such that 𝑅𝔭 has no weakly
lim Ulrich sequences.

Proof. This is immediate by taking k to be perfect and char(𝑘) > 0 in Counterexample 4.8 and applying
Theorem 6.1. �
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