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TESTING A CLASS OF SEMI- OR
NONPARAMETRIC CONDITIONAL
MOMENT RESTRICTION MODELS

USING SERIES METHODS

JESPER RIIS-VESTERGAARD SØRENSEN

University of Copenhagen

This paper proposes a new test for a class of conditional moment restrictions (CMRs)
whose parameterization involves unknown, unrestricted conditional expectation
functions. Motivating examples of such CMRs arise from models of discrete choice
under uncertainty including certain static games of incomplete information. The
proposed test may be viewed as a semi-/nonparametric extension of the Bierens
(1982, Journal of Econometrics 20, 105–134) goodness-of-fit test of a parametric
model for the conditional mean. Estimating conditional expectations using series
methods and employing a Gaussian multiplier bootstrap to obtain critical values,
the test is shown to be asymptotically correctly sized and consistent. Simulation
studies indicate good finite-sample properties. In an empirical application, the test
is used to study the validity of a game-theoretical model for discount store market
entry, treating equilibrium beliefs as nonparametric conditional expectations. The
test indicates that Walmart and Kmart entry decisions do not result from a static
discrete game of incomplete information with linearly specified profits.

1. INTRODUCTION

Econometric models are often stated in terms of conditional moment restrictions
(CMRs) in which a known function of observables as well as both finite- and
infinite-dimensional model parameters is said to have zero mean given known
conditioning variables. In many instances, the infinite-dimensional part of the
model parameterization corresponds to one or more conditional expectation func-
tions (CEFs). Examples are random-effects dynamic binary-response models for
panel data (Honoré and Kyriazidou, 2000; Honoré and Tamer, 2006), single-
agent discrete choice under uncertainty (Manski, 1991; Ahn and Manski, 1993),
and static games of incomplete information (Bajari et al., 2010; Ellickson and
Misra, 2011). Specifically, in random-effects dynamic binary-response models for
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panel data, CEFs arise from the initial conditions problem. In a model of discrete
choice under uncertainty, CEFs are introduced via the model assumption that the
agents’ beliefs are correct in the aggregate—a rational expectations hypothesis.
Moreover, in static games of incomplete information, CEFs appear under the
model assumption that beliefs are correct in a Bayesian Nash equilibrium (BNE).

In this paper, we propose a general method for constructing omnibus specifica-
tion tests for a wide class of semi-/nonparametric CMR models pararameterized in
part by CEFs. More precisely, the paper aims to test the model assertion that there
exists a finite-dimensional parameter β such that

E[ρ� (Z,β,E[Y�|W�])|X�] = 0 almost surely X� for all � ∈ {1, . . . ,L}, (1.1)

where the ρ�’s are known (residual) functions, each E[Y�|W�] is an unrestricted,
possibly vector, conditional expectation, each W� is a subvector of the conditioning
variables X�, and Z denotes all model observables (i.e., the union of distinct
elements of the X�’s and Y�’s). The alternative hypothesis is that (1.1) is violated.

The proposed test is an extension of the Bierens (1982) test given in the context
of parametric mean regression. The idea of Bierens’s method is to recast a CMR as
a collection of testable unconditional moment restrictions (UMRs), which are then
suitably integrated (or otherwise aggregated). Within the context of parametric
mean regression, a test of correct specification may be obtained by checking
whether the least-squares residuals correlate with any member of a suitably rich
family of transformations of the regressors. Bierens’s idea carries over to any
setting where one may speak of model residuals, including (1.1).1

The suggested test statistic is a Cramér–von Mises-type (CM-type) measure
of distance between the collection of residual-to-transformation correlations and
zero. One rejects the null hypothesis that the semi-/nonparametric model in (1.1)
is correctly specified whenever said distance is “unreasonably” large. Under the
null hypothesis, the proposed test statistic has a nonpivotal limiting distribution
and therefore cannot be tabulated. We propose and formally justify the use of a
multiplier bootstrap procedure for obtaining critical values. Calculation of the test
statistic and critical values requires estimation of CEFs. These are here estimated
using series methods and therefore boil down to linear regressions.

The resulting test is shown to have attractive theoretical properties in that it is
both asymptotically of correct size and consistent against any fixed alternative. To
illustrate these properties, we implement our procedure in a comprehensive simu-
lation study testing the specification of a binary-action simultaneous-move game
of incomplete information. The simulations by and large reproduce the asymp-
totic guarantees in relatively small samples. We also apply the specification test

1An alternative approach not pursued in this paper estimates the model under both the null and alternative and
contrasts the estimates according to some notion of distance (see, e.g., Härdle and Mammen, 1993; Zheng, 1996;
Kristensen, 2011). The Bierens approach is convenient in that it only requires estimation of the (potentially
substantially) simpler null model. However, the two approaches cannot be ranked in terms of their local power
properties and should be viewed as complementary (Fan and Li, 2000).
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developed in this paper to an entry game between Walmart and Kmart discount
stores using the Jia (2008) dataset. All implementations of the test considered result
in bootstrap p-values less than 1%, which indicates that Walmart and Kmart entry
decisions do not result from a simple static discrete game with linearly specified
profits.

Originating from Bierens (1982), there exists a vast literature on omnibus spec-
ification testing (i.e., tests consistent against any violation of the null hypothesis)
of both parametric, semiparametric and nonparametric models of features of i.i.d.
data. We here focus on Li, Hsiao, and Zinn (2003), Song (2010), Bravo (2012), and
the recent working paper Lapenta (2021), all of whom develop test statistics for a
class of semiparametric CMRs similar to (1.1), and to which this paper is closest
in content.

Lapenta (2021) provides a specification test for semiparametric models where
some variables are nonparametrically generated and studies a moment condition
involving a residual from a semiparametric regression with nonparametrically
generated variables. While the model structure is here different, in the present
paper, the unobserved but identified conditional expectations E[Y�i|W�i] are sim-
ilarly replaced with nonparametric estimates, and can therefore be considered as
nonparametrically generated variables. Loosely speaking, in Lapenta’s paper, the
residual function is itself nonparametric, whereas in the present work, each ρ� has
a known form. The bootstrap provided in Lapenta (2021) requires estimating the
finite-dimensional parameter at every bootstrap iteration, which might be compu-
tationally demanding. In contrast, the bootstrap provided here is computationally
convenient, in that it only involves a single round of estimation.

Li et al. (2003) provide a specification test for a semiparametric additive partially
linear model using a series approach. The main departures from their paper here
lie in the presence of generated variables and different methods of proofs. In Li
et al. (2003), the nonparametric components are identified within the moment
condition that is tested and, thus, cannot be considered as nonparametrically
generated variables. In comparison, in the present work, the nonparametric CEFs
are identified using auxiliary moment conditions, and may be viewed as generated
variables. Due to these differences, the Bahadur expansions of the empirical
processes at the basis of the test statistic are different from the one obtained in
Li et al. (2003). Another difference stands in the method of proofs, as the present
work is based on empirical process theory and employs maximal inequalities based
on bracketing entropy.

Song (2010) confines interest to the case where the nonparametric part of the
parameterization takes a composite-index form. His treatment of the nonparamet-
ric part rules out unrestricted CEFs, but does allow for single-index models not
nested in (1.1). Song’s framework is thus neither more nor less general. Unlike
the nonpivotal test statistic proposed in this paper, Song (2010) uses a conditional
martingale transform to obtain an asymptotically distribution-free test statistic,
thus allowing for tabulation of critical values. However, since the martingale
transform is generally unknown, pivotality comes at the cost of additional steps of
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nonparametric estimation. In addition, as indicated by Song’s simulation studies
(and remarked by Song), the martingale transform approach appears more sensitive
to the choice of tuning parameters than the bootstrap—the latter approach being
the one taken in this paper.

Bravo (2012) uses a generalized empirical likelihood approach to obtain specifi-
cation tests similar in spirit to classical Kolmogorov–Smirnov (KS) and Cramér–
von Mises goodness-of-fit statistics. As in this paper, Bravo’s test statistic has a
nonpivotal limit distribution and a multiplier bootstrap procedure is used to obtain
critical values. His framework is broader than (1.1) in that the residual function
may depend on arbitrary nonparametric components and in a functional manner.
Naturally, Bravo’s greater generality comes at the cost of relatively abstract con-
ditions. Specifically, Bravo’s treatment implicitly presumes that the adjustments
terms necessary to account for parametric and nonparametric estimation have
already been derived. (See also Remark 1.) These adjustments must be consistently
estimated in order to obtain valid critical values and therefore constitute crucial
elements of the implementation of his test. In contrast, by restricting attention to
a simpler setting with nonparametric CEFs (a type of mean-square projection),
we obtain the necessary adjustments for parametric and nonparametric estimation
in closed form (in (3.6)–(3.8)) under relatively primitive conditions, such as
(ordinary) differentiability, using arguments familiar from the two-step generalized
method of moments (GMM) literature with a nonparametric first step (see, e.g.,
Newey, 1994). We also provide explicit estimators thereof (in (3.20)–(3.22)) and
establish the validity of the resulting bootstrap procedure (Lemma 3). The added
CEF structure also allows us to tailor our assumptions to the nonparametric method
of estimation, here chosen to be series estimation.

The remainder of this paper is organized as follows. We define the testing prob-
lem and test statistic in Section 2. In Section 3, we analyze the limiting behavior
of the test statistic, construct critical values, and derive the limiting properties of
the resulting test, in turn. We conduct simulation studies in Section 4 and give an
empirical illustration in Section 5. Section 6 concludes. Proofs can be found in the
Appendix with further discussion, proof details, and supporting lemmas provided
in the Supplementary Material.

2. TESTING SEMI-/NONPARAMETRIC CMRS

Let {Zi}n
1 be n independent copies of Z, such that Zi is a random element

of Rdz composed of the distinct elements of X�i, thus subsuming W�i,2 and
Y�i,� ∈ {1, . . . ,L}. The support of Z is denoted by Z and that of X� by X� ⊆ Rdx,� .
Let B ⊆ Rdβ be a finite-dimensional parameter space.

2Here, W� need not be a literal subvector of X�; only X�-measurability is required.
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2.1. Testing Problem

The null hypothesis (H0) we wish to test is

H0 : For some β ∈ B, E
[
ρ�

(
Z,β,h∗

� (W�)
)∣∣X�

]= 0 a.s. X� for all � ∈ {1, . . . ,L},
(2.1)

where “a.s.” connotes “almost surely,” and we have abbreviated h∗
� (W�) :=

E[Y�|W�] for convenience. The null is pitted against the general alternative
hypothesis (H1),

H1 : For all β ∈ B, P
(
E
[
ρ�

(
Z,β,h∗

� (W�)
)∣∣X�

]= 0
)
< 1 for some � ∈ {1, . . . ,L},

(2.2)

under regularity conditions presented below. In this paper, we propose a procedure
for testing (2.1) versus (2.2) assuming the existence of some β0 ∈ B such that (a)
β0 is regularly estimable (in the sense of Assumption 1) and (b) equation (2.1) is
satisfied at β0 under H0. Due to property (b), β0 will be referred to as pseudo-true.3

2.2. Recasting the Problem

The presence of a pseudo-truth implies that H0 may be equivalently stated as

H0 : E
[
ρ�

(
Z,β0,h

∗
� (W�)

)∣∣X�

]= 0 a.s. X� for all � ∈ {1, . . . ,L} . (2.3)

Suppose for now that L = 1, abbreviate U := ρ1
(
Z,β0,h∗

1 (W1)
)
, and drop the �

subscripts. Then H0 means

E[U|X] = 0 a.s., (2.4)

which holds if and only if E[Ug(X)] = 0 for all “test functions” g ∈ L∞ (X ),L∞ (X )

denoting the space of bounded functions g : X → R. Following Bierens and
Ploberger (1997), Stute (1997), and Stinchcombe and White (1998), among others,
we construct a test of the CMR in (2.3) by testing the UMRs

E[Uω(t,X)] = 0 for FX-a.e. t ∈ X , (2.5)

where “a.e.” connotes “almost every,” and {g = ω(t,·) ;t ∈ X } denotes a weight
function family chosen so as to make (2.4) and (2.5) equivalent.4 Examples include
the exponential ω(t,x) = exp(t′x), logistic ω(t,x) = 1/[1 + exp(c − t′x)] with
c �= 0, and cosine–sine ω(t,x) = cos(t′x)+ sin(t′x) families.5

3In the context of the two-player, binary-action static games of incomplete information of Sections 4 and 5, expected
(pseudo) log-likelihood is presumed to have a unique maximizer (β0), and the parameters are estimated using two-step
(pseudo) maximum likelihood.
4We use FV to denote both V’s distribution and cumulative distribution function (CDF).
5See Bierens and Ploberger (1997) (with its Bierens (2017) addendum) and Stinchcombe and White (1998) for
detailed guidance on this choice. Strictly speaking, exponential weighting requires X bounded in order to ensure
ω(t,·) bounded. However, for unbounded X, one may replace X with any bounded, one-to-one transformation thereof.
See also the discussion following Assumption 2.
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In general, one chooses a weight function ω� for each �. Then H0 can be
written as

H0 : M� (t�) = 0 for FX�
-a.e. t� ∈ X� and all � ∈ {1, . . . ,L}, (2.6)

with M� : X� → R defined by M� (t�) := E[ρ�(Z,β0,h∗
� (W�))ω�(t�,X�)].

Aggregating the UMRs involved, we may express H0 and H1 as

H0 :
L∑

�=1

∫
X�

M� (t�)
2 dFX�

(t�) = 0, (2.7)

H1 :
L∑

�=1

∫
X�

M� (t�)
2 dFX�

(t�) > 0. (2.8)

This representation suggests the CM-type of statistic6

Tn := n
L∑

�=1

∫
X�

M̂� (t�)
2 dF̂X�

(t�) =
L∑

�=1

n∑
i=1

M̂� (X�i)
2 , (2.9)

where F̂X�
is the empirical distribution,

F̂X�
(t�) := 1

n

n∑
i=1

1(X�i � t�), � ∈ {1, . . . ,L}, (2.10)

and we estimate each M� by the plug-in method

M̂� (t�) := 1

n

n∑
i=1

ρ�(Zi,β̂,̂h� (W�i))ω� (t�,X�i), � ∈ {1, . . . ,L} . (2.11)

Formal requirements of the estimate β̂ of β0 are stated in Assumption 1. Each
coordinate m of ĥ� is a series estimator

ĥ�m (w�) := ĥ�m,k�m,n (w�) := p
k�m,n
� (w�)

′ π̂�m,k�m,n,

π̂�m,k :=
(

1

n

n∑
i=1

pk
� (W�i)pk

� (W�i)
′
)−(

1

n

n∑
i=1

pk (W�i)Y�im

)
,

where pk
�(w�) := (p�1(w�), . . . ,p�k(w�))

′ is based on a known dictionary
{
p�j
}k

1 of
approximating functions, each k�m,n is a sequence of positive integers growing
without bound as n → ∞, and (·)− indicates Moore–Penrose inversion.7

6One could alternatively use a KS-type statistic or base a test statistic on empirical likelihood as in Bravo (2012)
without affecting the limiting properties of the test. See Section S.1 of the Supplementary Material for details.
7The approximating functions could depend on m or even k, neither of which is reflected in our notation. Under

assumptions invoked in this paper, the matrix n−1∑n
i=1 p

k�m,n
� (W�i)p

k�m,n
� (W�i)

′ is nonsingular with probability
approaching one and the particular generalized inverse therefore asymptotically irrelevant. Detailed accounts of the
properties of least-squares series estimators can be found in Newey (1995, 1997), Chen (2007), and Belloni et al.
(2015).
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Under general conditions presented in Section 3, the stochastic processes {M̂�}L
1

all converge to the zero function in probability under H0, whereas at least one of
them converges to a nonzero probability limit under H1. A “large” realization of
Tn thus telegraphs a violation of H0.

3. THEORETICAL PROPERTIES

In this section, we first establish the limiting behavior of the test statistic Tn

(Section 3.1). Its limiting null distribution is generally nonpivotal and its depen-
dence on the data-generating process (DGP) involved. To tackle this problem,
we next introduce a multiplier bootstrap procedure and establish its asymptotic
validity (Section 3.2). These findings translate into limiting behavior of the
resulting test (Section 3.3).

3.1. Limiting Behavior of Test Statistic

Some regularity is required to derive the limiting behavior of the test statistic. To
control the influence of estimation of β0 on this limiting behavior, we invoke the
following assumption.

Assumption 1 (Parametric estimation). For each n ∈ N,β̂ is a random element
of B, a subset of Rdβ with nonempty interior, and, under both H0 and H1,β̂ →P β0

for some β0 interior to B. There exists a function s : Z → Rdβ such that ‖s(Z)‖2

is integrable and, if H0 is true, s(Z) is both centered and

√
n(β̂ −β0) = 1√

n

n∑
i=1

s(Zi)+oP(1). (3.1)

Assumption 1 is common in the specification testing literature involving a
finite-dimensional parameter estimated by nonlinear criteria (see, e.g., Horowitz,
2006, Assumption 3). Note that root-n asymptotic linearity (3.1) is only required
under H0.8 Example 1 shows how asymptotic linearity can arise from more
primitive assumptions.

Example 1 (Asymptotic linearity in two-step GMM). Let β0 be the unique
solution to E[m(Z,β,h∗ (W))] = 0, where h∗ (W) gathers the unique elements of
{h∗

� (W�)}L
1, and m(Z,β,h∗ (W)) is a dm(� dβ)-vector arising from interacting one

or more ρ�

(
Z,β,h∗

� (W�)
)

with (transformations of) the corresponding X� and then
stacking. Let β̂ minimize m̂(β)′ Ŵm̂(β), where m̂(β) := n−1∑n

i=1 m(Zi,β,̂h (Wi)),

ĥ is some nonparametric estimator of h∗, and Ŵ is a dm ×dm weight matrix consis-
tent for W positive definite and nonstochastic. Newey (1994, Lem. 5.3) provides
conditions under which such a two-step GMM estimator based on a nonparametric
first step is

√
n-asymptotically normal as well as tools for calculating its asymptotic

variance. Inspection of his proof reveals that the same set of conditions actually

8Under H1, the pseudo-truth β0 need not even be root-n estimable (cf. Hall and Inoue, 2003; Chen and Pouzo, 2015;
Hong and Li, 2022).
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yields (the slightly stronger) asymptotic linearity

√
n(β̂ −β0) = −(M′WM

)−1
M′W

1√
n

n∑
i=1

{
m
(
Zi,β0,h

∗ (Wi)
)+α (Zi)

}+oP (1),

(3.2)

where M := E[(∂/∂β ′)m(Z,β0,h∗ (W))] is a Jacobian term, and α is an adjustment
due to estimation of h∗. Because h∗ involves CEFs, Newey (1994, Proposition 4
and p. 1357) shows that, irrespective of the choice of nonparametric estimator,

α (z) =
L∑

�=1

δ� (w�)
{
y� −h∗

� (w�)
}
, δ� (W�) := E

[
∂

∂h′
�

m
(
Z,β0,h

∗ (W)
)∣∣∣∣W�

]
,

(3.3)

where ∂/∂h′
� denotes (ordinary) differentiation with respect to the h∗

� (W�)

arguments.

Assumption 1 leaves freedom in choice beyond the two-step GMM estimation
outlined in Example 1. For example, (3.1) allows for other or more general two-
or multistep estimation procedures, such as two-step extremum estimation. Such
procedures typically estimate the nonparametric components in a first step, use
their estimates to construct a criterion function, and maximize or minimize over β

in order to produce a second-step estimator β̂. Specifically, one may let β̂ be a sieve
minimum distance estimator (Ai and Chen, 2003) or a penalized sieve minimum
distance estimator (Chen and Pouzo, 2009, 2012, 2015).

We impose the following conditions on the choice of weight functions.

Assumption 2 (Weight function). Each X� ⊂ Rdx,� is compact. Each weight
function ω� : X� ×X� → R is continuous, has the property that (2.4) if and only
if (2.5), and satisfies the Lipschitz condition: for all t1,t2,x� ∈ X� and some finite
constant C�, |ω� (t1,x�)−ω� (t2,x�)| � C� ‖t1 − t2‖.

Weight functions examples satisfying Assumption 2 and references giving
detailed discussion of the equivalence between (2.4) and (2.5) were provided in
Section 2.2.

For the moment, drop the � subscript. If X is not bounded, one may replace
it with X̃ := 
(X) using a known bounded transformation 
. Provided 
 is
also one-to-one, such a transformation entails no loss in generality in the sense
that E[U|X] = E[U|
(X)] a.s. The compactness “assumption” thus only acts
as a reminder to conduct such a preliminary transformation, if necessary. In the
simulations (Section 4) and empirical application (Section 5), we use an element-
wise arctan transform to reduce otherwise unbounded conditioning variables to a
bounded set prior to calculating weights.

To impose conditions on the residual functions, let d� be the number of elements
in Y� (hence h∗

� (W�)), let W� be the support of W�, and write ‖f ‖D := supx∈D |f (x)|.
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Assumption 3 (Residual). For each � ∈ {1, . . . ,L}, the following holds:

1. For each z ∈ Z,v� ∈ Rd�,β �→ ρ� (z,β,v) is continuous on B and continu-
ously differentiable on an open neighborhood N� of β0. Moreover, there exist
c� ∈ (0,1] and a� :Z → R+ integrable such that for each z ∈Z,β ∈N�,v� ∈ Rd�,∥∥∥∥ ∂

∂β
ρ� (z,β,v�)− ∂

∂β
ρ�

(
z,β,h∗

� (w�)
)∥∥∥∥� a� (z)

∥∥v� −h∗
� (w�)

∥∥c� .

2. For each z ∈ Z,v� �→ ρ� (z,β0,v�) is continuously differentiable on Rd� . More-
over, there exists γ� ∈ (0,1] and R� :Z → R+, such that for each z ∈Z,v� ∈ Rd�,

∥∥∥∥ ∂

∂h�

ρ� (z,β0,v�)− ∂

∂h�

ρ�

(
z,β0,h

∗
� (w�)

)∥∥∥∥� R� (z)
∥∥v� −h∗

� (w�)
∥∥γ� , (3.4)

and E[R� (Z)]
√

nmax1�m�d�
‖̂h�m −h∗

�m‖1+γ�

W�
→P 0.

3. The following are integrable:
∣∣ρ�

(
Z,β0,h∗

� (W�)
)∣∣, ‖(∂/∂h)ρ�(Z,β0,h∗

� (W�))‖2,
and supβ∈N�

‖(∂/∂β)ρ�(Z,β,h∗
� (W�))‖.

Assumptions 3.1 and 3.2 are smoothness conditions facilitating a linearization
around (β0,h∗) in order to extract the dominant component of the processes {M̂�}L

1
used in constructing the test statistic (2.9).9 Assumption 3.2 generally requires each
element of ĥ� to converge to the corresponding element of h∗

� uniformly over W�

at a sufficiently fast rate.10 Such a rate requirement often boils down to assuming
that the estimand is sufficiently smooth relative to its number of arguments.

While the previous assumptions allow for general nonparametric estimation
methods, the following three are tailored to series estimation.

Assumption 4 (Variance). var(Y�m|W�) is bounded for all m ∈ {1, . . . ,d�},
� ∈ {1, . . . ,L}.

Assumption 5 (Eigenvalues). The eigenvalues of E[pk
� (W�)pk

� (W�)
′] are

bounded from above and away from zero uniformly over k ∈ N for all
� ∈ {1, . . . ,L}.

Assumption 6 (Approximation). Each h∗
�m is bounded. Moreover, for each

� ∈ {1, . . . ,L},m ∈ {1, . . . ,d�} and each k ∈ N, there exist constants α�m ∈
(0,1),C�m ∈ (0,∞), and π̃�m ∈ Rk such that ‖pk′

� π̃�m −h∗
�m‖W�

� C�mk−α�m .

Assumption 4 is prevalent in the series estimation literature (see, e.g., Stone,
1985; Newey 1994, 1997; Belloni et al., 2015). Assumption 5 imposes regularity
conditions on the approximating functions and implies that, loosely speaking,
the technical regressors pk

�(W�) cannot be too co-linear. See Belloni et al. (2015,
Proposition 2.1) for more primitive sufficient conditions. While Assumptions 4

9Differentiability may likely be relaxed at the cost of longer proofs. We leave such an extension to future research.
10A notable exception occurs when the residual is linear in h∗

� (w). In this case, R� may be taken as the zero function,

and E[R� (Z)]
√

nmax1�m�d�
‖̂h�m −h∗

�m‖1+γ�

W�
→P 0 becomes vacuous.
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and 5 are used to control the variance of the series estimators, Assumption 6
concerns the approximation error relative to the supremum metric. While the latter
assumption is high level, it is satisfied in many cases. The exponent α�m usually
depends on the smoothness of the estimand h∗

�m and its number of arguments d�.
When the estimand can be viewed as a member of some smooth class of functions,
this exponent is typically available from the approximation theory literature.11

Assumption 5 is a normalization that restricts the magnitude of the series terms.
The theory to follow will also require that the size of each pk

� does not grow too
fast relative to the sample size, where “size” is quantified by

ζ�,k := sup
w�∈W�

∥∥pk
� (w�)

∥∥. (3.5)

For specific choices of approximating functions pk
�, bounds on the corresponding

ζ�,k are readily available. For example, under suitable conditions, ζ�,k � C�k for
power series, and ζ�,k �C�

√
k for regression splines (cf. Newey, 1997). See Belloni

et al. (2015, Sect. 3) for a comprehensive list.
The probabilistic behavior of the test statistic Tn in (2.9) depends crucially on

that of the stochastic processes {√nM̂�}L
1 in (2.11). A linearization argument (cf.

Lemma 1) shows that, under H0, each
√

nM̂� is asymptotically equivalent to a
stochastic process X�  t� �→ n−1/2∑n

i=1 g� (t�,Zi), where

g� (t�,z) := ρ�

(
z,β0,h

∗
� (w�)

)
ω� (t�,x�)+b� (t�)

′ s(z)+ δ� (t�,w�)
′ {y� −h∗

� (w�)
}
,

(3.6)

b� (t�) := E

[
ω� (t�,X�)

∂

∂β
ρ�

(
Z,β0,h

∗
� (W�)

)]
, (3.7)

δ� (t�,W�) := E

[
ω� (t�,X�)

∂

∂h�

ρ�

(
Z,β0,h

∗
� (W�)

)∣∣∣∣W�

]
, (3.8)

with s provided by Assumption 1. Here, b� (t�)
′ s(z) and δ� (t�,w�)

′ {y� −h∗
� (w�)

}
are adjustments to the moment function z �→ ρ�

(
z,β0,h∗

� (w�)
)
ω� (t�,x�) due to

estimation of β0 and h∗
� , respectively. The form of the β-adjustment follows from

a mean-value expansion with b� (t�) being a Jacobian term. The form of the
h-adjustment is akin to the adjustment (3.3) to the influence function in two-step
GMM estimation with a nonparametric first step as summarized in Example 1. The
main difference is that, while two-step semiparametric GMM estimation requires
adjustment of a finite number of moments used in defining the GMM criterion
function, we here need to adjust a possibly infinite collection of moment functions{
z �→ ρ�

(
z,β0,h∗

� (w�)
)
ω� (t�,x�) ;t� ∈ X�

}
for estimation of h∗

� .

11For example, if h∗
�m belongs to a Hölder ball with Hölder exponent s�m (often referred to as h∗

�m being “s�m-
smooth”), then Assumption 6 holds with α�m = s�m/d�, provided pk

� is constructed using either power series (see,
e.g., Timan, 1963, Sect. 5.3.2; Lorentz, 1966, Thm. 8) or splines (see, e.g., DeVore and Lorentz, 1993; Schumaker,
2007).
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To state the next assumption, define the mean-square projection coefficients

πh�m,k := argmin
π∈Rk

E
[{

pk
� (W�)

′ π −h∗
�m (W�)

}2
]
, (3.9)

πδ�m,k (t�) := argmin
π∈Rk

E
[{

pk
� (W�)

′ π − δ�m (t�,W�)
}2
]
, (3.10)

and their induced mean-square errors

r2
h�m,k := min

π∈Rk
E
[{

pk
� (W�)

′ π −h∗
�m (W�)

}2
]
, (3.11)

r2
δ�m,k (t�) := min

π∈Rk
E
[{

pk
� (W�)

′ π − δ�m (t�,W�)
}2
]
, (3.12)

R2
δ�m,k := E

[
sup

t�∈X�

{
pk

� (W�)
′ πδ�m,k (t�)− δ�m (t�,W�)

}2

]
, (3.13)

where � ∈ {1, . . . ,L},t� ∈ X�, and m ∈ {1, . . . ,d�}. Assumption 7 contains
rate conditions sufficient to show that the difference between

√
nM̂� and

n−1/2∑n
i=1 g�(·,Zi) is asymptotically negligible under H0,� ∈ {1, . . . ,L}.

Assumption 7 (Rate conditions). For all � ∈ {1, . . . ,L} and m ∈ {1, . . . ,d�},

ζ�,k�m,n rh�m,k�m,n → 0,
ζ 2
�,k�m,n

k�m,n ln
(
k�m,n

)
n

→ 0, nr2
h�m,k�m,n

‖rδ�m,k�m,n‖2
X�

→ 0,

Rδ�m,k�m,n → 0, Rδ�m,k�m,n

√
ln

(
k�m,n

Rδ�m,k�m,n

)
→ 0,

and for α�m provided by Assumption 6,⎛⎝k�m,n∑
j=1

∥∥p�j

∥∥2
W�

⎞⎠1/2(√
k�m,n

n
+ k−α�m

�m,n

)
→ 0.

In discussing the rate conditions, consider the scalar case and drop the � and
m subscripts. Given that ζk � (

∑k
j=1

∥∥pjk

∥∥2
W)1/2, the last rate condition ensures

that ζkn(
√

kn/n + k−α
n ) → 0, which we use to argue uniform consistency of the

series estimators. While the presence of ζk in the rate conditions formally requires
one to use bounded approximating functions, the simulations in Section 4—where
we construct approximating functions based on power series with unbounded
conditioning variables—suggest that this requirement can be relaxed.

Rate conditions involving mean-square projection errors such as a finite number
of rδ,kn(t)’s appear in, e.g., Newey (1994, Assumption 6.6). The new part of
Assumption 7 lies in the (stronger) assumptions placed on the uniform error arising
from such projections, as captured by Rδ,kn .

Observe that the mean-square projection error rh,kn resulting from approximat-
ing h∗ by linear forms is not required to go to zero at a rate faster than n−1/2.
Such a condition would otherwise require choosing kn larger than what would
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optimize the rate of convergence, sometimes referred to as “undersmoothing.”
Instead, Assumption 7 requires the product of rh,kn and the maximal approximation
mean-square error ‖rδ,kn‖X to be o(n−1/2). This (weaker) requirement arises from
the orthogonality property of mean-square projections. Specifically, for the projec-
tions hk (·) = pk (·)′ πh,k and δk (t,·) = pk (·)′ πδ,k (t) of h∗ and δ (t,·), respectively,
the bias term E[δ(t,W){hk(W) − h∗(W)}] equals E[{δk(t,W) − δ(t,W)}{hk(W) −
h∗(W)}] for each t ∈ X . Consequently, if the family {δ (t,·) ;t ∈ X } can be suf-
ficiently well approximated by linear forms, there is no need to undersmooth.12

Newey (1994) shows that a similar feature arises in the context of two-step GMM
estimation with a first step based on series estimation of projection functionals,
such as CEFs.

The previous assumptions suffice for the asymptotic equivalence posited above.

Lemma 1 (Asymptotic equivalence). If Assumptions 1–7 hold and H0 is true,
then for {M̂�}L

1 in (2.11) and {g�}L
1 in (3.6), we have

max
1���L

∥∥∥∥∥√nM̂� (·)− 1√
n

n∑
i=1

g� (·,Zi)

∥∥∥∥∥
X�

P→ 0.

Lemma 1 implies that the probabilistic behavior of ‖√nM̂�‖ under H0 may
be approximated by that of ‖n−1/2∑

i g(·,Zi)‖ for any norm ‖·‖ weaker than the
supremum norm, such as the empirical L2-norms implicit in the definition of Tn.

Remark 1 (Comparing with Bravo, 2012). The asymptotic equivalence
established in Lemma 1 is directly assumed in Bravo (2012, Assumption
2.1(e)), which in his paper is invoked under the null hypothesis. Implicit in
Bravo’s assumption is the presumption that the user is both willing and able
to derive the dominant part (his

∑n
i=1 li(θ0,h0,·)/n1/2) of a stochastic process (his∑n

i=1 vi(θ̂,̂h,·)/n1/2) as well as suitably estimate it. Knowledge of the dominant
process is crucial for implementation as estimates thereof (his l̂i) figure in his
bootstrap procedure. The derivations needed to arrive at the dominant process as
well as construct suitable estimators thereof are elegantly illustrated by Bravo’s
examples. However, these derivations are case specific and may be quite involved
(as illustrated by the same examples). In contrast, in (3.6)–(3.8) and (3.20)–(3.22),
we give explicit formulas for the g�(t�,z)’s and estimators thereof, respectively,
and we establish the validity of these estimates in Lemma 3.

Recall that a class F of real-valued functions is called Donsker (van der
Vaart and Wellner, 1996, pp. 81–82), if the sequence of empirical processes
{n−1/2∑n

i=1{ f (Zi)−E[ f (Z)]};f ∈F} induced byF—viewed as random elements
of L∞(F)—converges weakly to a centered Gaussian process {G( f ) ;f ∈ F}

12While undersmoothing may not be necessary to achieve the claimed asymptotic approximation, it may be optimal
in the sense of minimizing the remainder resulting from this approximation as remarked by Donald and Newey (1994)
in the context of partially linear regression.
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with covariance kernel ( f1,f2) �→ E[G ( f1)G ( f2)] = E[ f1 (Z) f2 (Z)] − E[ f1 (Z)]
E[ f2 (Z)] .13 Define function classes G� := {g� (t�,·) : Z → R;t� ∈ X�},� ∈
{1, . . . ,L}, and G := ×L

�=1G�. The same set of assumptions then also establishes the
following result.

Lemma 2 (Donsker class). If Assumptions 1–7 hold, then G is Donsker.

Under H0, each t� �→ E[g� (t�,Z)] vanishes. Since we may identify each G� with
the corresponding X�, Lemma 2 then means that the L-variate stochastic process

Gn (t) := 1√
n

n∑
i=1

g(t,Zi), t ∈ T , T := ×L
�=1X�,

converges weakly in ×L
�=1L∞ (X�) to an L-variate zero-mean Gaussian process G0

indexed by T with (matrix) covariance kernel

C0
(
t,t′
)

:= E[g(t,Z)g
(
t′,Z
)′

], t,t′ ∈ T . (3.14)

Under H1, each M̂� converges uniformly in probability to M�, and at least one M�

is nonvanishing. The behavior of the test statistic follows.

Theorem 1 (Asymptotic behavior of test statistic). If Assumptions 1–7 hold,
then

Tn
d→

L∑
�=1

∫
X�

G0� (t�)
2 dFX�

(t�) =: T0 under H0,

Tn

n
P→

L∑
�=1

∫
X�

M� (t�)
2 dFX�

(t�) > 0 under H1.

The proof of Theorem 1 invokes a (second-order) functional delta method
argument to show that the limiting null behavior is unaffected by the use of
empirical distributions in place of their (unknown) population counterparts. The
first claim then follows from Lemmas 1 and 2 via the continuous mapping theorem.
The second claim of Theorem 1 implies that Tn →P ∞ at the rate n under the
alternative, which is key to establishing consistency (Theorem 2).

The limit results in Theorem 1 cannot be operationalized without appropriate
critical values. For this purpose, we rely on a multiplier bootstrap procedure.

3.2. Bootstrap Critical Values

The limiting law of Tn under H0 is given by that of T0 =∑L
�=1

∫
X�

G0� (t�)
2 dFX�

(t�)
(cf. Theorem 1). To obtain a consistent bootstrap, it is therefore necessary to
estimate the law of the Gaussian process G0. To this end, let {ξi}∞1 be i.i.d.

13A sequence Xn of stochastic processes taking values in a metric space D are said to converge weakly to X if
E[h(Xn)] → E[h(X)] for all h : D → R continuous and bounded.
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standard normal random variables independent of the stream of data {Zi}∞1 and
let ξ := n−1∑n

i=1 ξi.14

To fix ideas, consider first the multiplier process G∗
n := (G∗

1n, . . . ,G
∗
Ln

)′
defined by

G∗
n (t) := 1√

n

n∑
i=1

(
ξi − ξ

)
g(t,Zi), t ∈ T . (3.15)

By independence, the summands of G∗
n are centered even if one or more of the

g� (t�,Z)’s are not, i.e., even when H0 is false. The demeaning aims for less
conservative critical values in finite sample by correctly accounting for sample
variation.

The multiplier process G∗
n is said to converge weakly in probability to G∗ in

×L
�=1L∞ (X�), written G∗

n �P,ξ G∗, if G∗
n converges weakly to G∗ conditional on

the data, in probability.15 Given that G is Donsker (Lemma 2), Kosorok (2008,
Thm. 10.4) shows that G∗

n �P,ξ G in ×L
�=1L∞ (X�), where G is a centered Gaussian

process with covariance kernel

C
(
t,t′
)

:= E
[{g(t,Z)−E[g(t,Z)]}{g(t,Z)−E[g(t,Z)]}′], t,t′ ∈ T . (3.16)

Under H0,E[g(·,Z)] ≡ 0 on T , and the covariance kernels C and C0 coincide.
Since both G and G0 are Gaussian, the two must then be identically distributed.
This observation suggests the (1−α)-quantile of

∑L
�=1

∫
X�

G∗
�n (t�)

2 dFX�
(t�),

calculated conditional on {Zi}n
1, as an approximation to

cT (α) := (1−α) -quantile of T, where T :=
L∑

�=1

∫
X�

G� (t�)
2 dFX�

(t�) . (3.17)

While the g�’s and FX�
’s are generally unknown, endowed with an estimator ŝ of

the (null influence) function s from Assumption 1, one may estimate g and define
the bootstrap process Ĝ := (Ĝ1, . . . ,ĜL)

′ as the feasible version of G∗
n. Specifically,

we let

Ĝ(t) := 1√
n

n∑
i=1

(
ξi − ξ

)
ĝ(t,Zi), t ∈ T , (3.18)

ĝ(t,z) := ( ĝ1 (t1,z), . . . ,̂gL (tL,z))
′ , (3.19)

ĝ� (t�,z) := ρ�(z,β̂,̂h� (w�))ω� (t�,x�)+ b̂� (t�)
′ ŝ(z)+ δ̂� (t�,w�)

′ {y� − ĥ� (w�)},
(3.20)

14Standard normality of the multipliers is chosen mainly for the sake of concreteness. The limiting behavior of the
test introduced below remains the same if one instead uses any zero mean and unit variance distribution, provided it
has a finite weak second moment. The latter requirement is implied by E[|ξ |2+ε ] < ∞ for some ε > 0. See, e.g., van
der Vaart and Wellner (1996, Sect. 2.9) for details.
15That is, suph∈BL1

(×L
�=1L∞(X�)

)|E[ h
(
G∗

n

)∣∣{Zi}n
1

]− E
[
h(G∗)

]| →P 0, where BL1 (D) denotes the space of func-
tionals h : D → R defined on the metric space (D,d) whose Lipschitz norm is bounded by one, i.e., ‖h‖D � 1 and
|h( f )−h(g)| � d ( f,g) for all f,g ∈ D.
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where

b̂� (t) := 1

n

n∑
i=1

ω� (t�,X�i)
∂

∂β
ρ�(Zi,β̂,̂h� (W�i)), (3.21)

δ̂�m (t�,w�) := p
k�m,n
� (w�)

′
(

1

n

n∑
i=1

p
k�m,n
� (W�i)p

k�m,n
� (W�i)

′
)−

× 1

n

n∑
i=1

p
k�m,n
� (W�i)ω� (t�,X�i)

∂

∂h�m
ρ�(Zi,β̂,̂h� (W�i)). (3.22)

Based on the above process, we get the feasible bootstrap test statistic,

T̂ :=
L∑

�=1

∫
X�

Ĝ� (t�)
2 dF̂X�

(t�) = 1

n

L∑
�=1

n∑
i=1

Ĝ� (X�i)
2 , (3.23)

and a feasible critical value as follows:

cT̂ (α) := (1−α) -quantile of T̂ conditional on {Zi}n
1 . (3.24)

The test rejects H0 in favor of H1 if and only if Tn > cT̂ (α) for some prespecified
significance level α ∈ (0,1), where the test statistic is defined in (2.9) and the
critical value in (3.24). For any α, cT̂ (α) can be obtained through simulation
holding the data constant. In practice, this simulation is terminated after a finite but
large number of draws. In the empirical illustration of Section 5, we use 250,000.

Remark 2 (Additively separable residuals). If a residual function is additively
separable in the conditioning variables, in the sense that ρ�(z,β0,h∗

�(w�)) =
φ�(y�,β0) + ϕ�(x�,β0,h∗

�(w�)), then (∂/∂h�)ρ�(z,β0,h∗
�(w�)) = (∂/∂h�)ϕ�(x�,β0,

h∗
�(w�)) depends on z through x� alone. If, in addition, X� and W� (measurably)

coincide, then the term ω�(t�,X�)(∂/∂h�)ρ�(Z,β0,h∗
�(W�)) is conditionally known

given W� (up to β0 and h∗
�) and hence equal to δ� (t�,W�). For such models,

one may therefore drop the projection element of the estimator in (3.22) and
replace it by the simpler δ̂� (t�,W�i) = ω� (t�,X�i)(∂/∂h�)ϕ�(X�i,β̂,̂h� (W�i)). This
simplification is utilized in both the simulations (Sections 4) and the empirical
illustration (Section 5).

Remark 3 (Alternative nonparametric estimators). The test proposed in this
paper is based on series estimation of the CEFs h∗

� and δ� (t�,·),t� ∈ W�,� ∈
{1, . . . ,L} . From a theoretical point of view, series estimation has the advantage
that no undersmoothing is required, which follows from the built-in orthogonality
of mean-square projections (cf. the discussion following Assumption 7). While the
theory in this paper is tailored to series estimation (in particular, Assumptions 4–7),
in practice, one may replace the series estimators with alternative nonparametric
estimation techniques, such as kernel regression. Note, however, that the orthog-
onality property of mean-square projections is not shared by kernel estimators,
which typically require undersmoothing to eliminate the relevant bias terms.

https://doi.org/10.1017/S0266466622000615 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000615


842 JESPER RIIS-VESTERGAARD SØRENSEN

A potentially difficult step in this bootstrap procedure is constructing ŝ. One
strategy to estimation involves first obtaining an analytic formula for s and then
replacing any unknowns with consistent estimates. This approach can be taken
in the case of two-step GMM estimators (Example 1). However, at the level of
generality for estimation of the parametric component considered in this paper, it
does not appear possible to give primitive conditions under which ŝ is consistent
for s. Letting ‖ f ‖n,2 := {n−1∑n

i=1 f (Zi)
2}1/2, we invoke the following assumption.

Assumption 8 (Bootstrap conditions).

1. n−1∑n
i=1 ‖ ŝ(Zi)− s(Zi)‖2 →P 0.

Moreover, for each � ∈ {1, . . . ,L}, the following holds.

2. For each z ∈ Z,v� ∈ Rd�,β �→ ρ� (z,β,v�) is continuously differentiable on N�.
Moreover, there exists a′ : Z → R+ such that for each z ∈ Z,β ∈ N�,v� ∈ Rd�,∥∥∥∥ ∂

∂β
ρ� (z,β,v�)− ∂

∂β
ρ�

(
z,β0,h

∗
� (w�)

)∥∥∥∥� a′
� (z)

(‖β −β0‖+‖v� −h∗
� (w�)‖

)
,

where E
[
a′

� (Z)
]√

n‖β̂ −β0‖max{‖β̂ −β0‖, max1�m�d�
‖̂h�m −h∗

�m‖W�
} →P 0.

3. For each z ∈ Z,β ∈ N�,v� �→ ρ� (z,β,v�) is continuously differentiable on Rd� .
Moreover, there exists R′

� : Z → R+ such that for each z ∈Z,β ∈N�,v� ∈ Rd�,∥∥∥∥ ∂

∂h�

ρ� (z,β,v�)− ∂

∂h�

ρ�

(
z,β0,h

∗
� (w�)

)∥∥∥∥� R′
� (z)

(‖β −β0‖+‖v� −h∗
� (w�)‖

)
,

where E
[
R′

� (Z)
]

max1�m�d�
‖̂h�m −h∗

�m‖2
W�

→P 0.
4. For all m ∈ {1, . . . ,d�} and α�m’s provided by Assumption 6,{

E
[
R′

� (Z)2]}1/2
ζ�,k�m,n

√
k�m,n max

{
‖β̂ −β0‖, max

1�m′�d�

‖̂h�m′ −h∗
�m′ ‖n,2

}
P→ 0,⎛⎝k�m,n∑

j=1

‖p�j‖2
W�

⎞⎠1/2

max
1�m′�d�

(√
k�m′,n/n+ k

−α�m′
�m′,n

)
→ 0.

With the addition of Assumption 8, we obtain the following result.

Lemma 3 (Bootstrap equivalence). If Assumptions 1–8 hold, then
max1���L‖Ĝ� −G∗

�n‖X�
→P 0.

Lemma 3 establishes that the unknown character of g is asymptotically irrele-
vant. Given that G∗

n converges weakly in probability to G, by the lemma, so must
the feasible analog Ĝ.

The limit T in (3.17) is a nonnegative random variable arising from applying a
convex functional (the sum of squares of L2-type norms) to a Gaussian process G.
Since G is centered and indexed by T , the function t �→ 0L×1 identically zero on T
is in the support of G. It follows from Davydov et al. (1998, Thm. 11.1 and Prob.
11.3) that its CDF FT is everywhere continuous, except possibly at the point of
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separation—here zero. We explicitly rule out mass at separation by invoking the
following assumption.

Assumption 9 (Continuity). FT (0) = 0.

More primitive conditions may be used to satisfy Assumption 9. For example,
using the continuity of sample paths of G, FT (0) = 0 may be obtained under the
“nondegeneracy” assumption that var [g� (t�,Z)] > 0 for some t� ∈ X� and some
� ∈ {1, . . . ,L}, when combined with an assumption that the corresponding distri-
bution FX�

is absolutely continuous with density bounded away from zero.
From the (now) continuous nature of the weak in-probability limit T of T̂ ,

convergence of quantiles essentially follows.

Lemma 4 (Quantile consistency). If Assumptions 1–9 hold, and FT is increasing
at its (1−α)-quantile cT (α), then cT̂ (α) →P cT (α) ∈ (0,∞).

3.3. Limiting Behavior of Test

Theorem 2 contains the main results of this paper, namely that the test which rejects
H0 if and only if Tn > cT̂ (α) is: (1) asymptotically correctly sized and (2) consistent
against any fixed alternative.

Theorem 2 (Asymptotic properties of test). If Assumptions 1–9 hold, and FT is
increasing at its (1−α)-quantile, then

P
(
Tn > cT̂ (α)

)→
{

α, under H0,

1, under H1.

As pointed out by a referee, Assumptions 1–9 alone actually suffice for the
(weaker) size control limsupn→∞ P(Tn > cT̂ (α)) � α under H0. This result essen-
tially follows from the (uniform) validity of the bootstrap (under H0), which does
not hinge on FT being increasing at its (1−α)-quantile.

4. SIMULATIONS

To demonstrate the usefulness of the proposed testing procedure and assess
its finite-sample properties, we carry out a simulation experiment in a game-
theoretical econometric model (Sections 4.1–4.3). We also numerically compare
with the existing literature using a partially linear model (Section 4.4).

4.1. Setup: A Two-by-Two Game of Incomplete Information

A potential application of the test lies in testing for correct specification of static
binary choice models with social and/or strategic interactions.16 Such models may

16Static discrete-choice models with social and/or strategic interactions have been applied in numerous contexts
including firm entry (Seim, 2006), the timing of radio commercials (Sweeting, 2009), labor force participation (Bjorn
and Vuong, 1984), and teen sex (Card and Giuliano, 2013).

https://doi.org/10.1017/S0266466622000615 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000615


844 JESPER RIIS-VESTERGAARD SØRENSEN

be conveniently estimated in two steps. In the first step, the conditional choice
probabilities (CCPs) are estimated in a nonparametric manner. The estimated
CCPs are then employed in the second step to estimate the structural parameters
of the model (see, e.g., Bajari et al., 2010). Construction of the test follows along
the same lines.17

We use a two-player, binary-action game of incomplete information as the
DGP.18 Two players, indexed j ∈ {1,2}, simultaneously choose one out of two
alternatives yj ∈ {0,1}. Utility of the players is parameterized as

u
(
yj,y−j,xj,εj (0),εj (1) ;θ)=

{
Axj +Cx2

j +γ0y−j + εj (1), yj = 1,

Bxj +Dx2
j +γ0

(
1− y−j

)+ εj (0), yj = 0,

where y−j denotes the action of the other player, xj is a player-specific public payoff
shock, and

(
εj (0),εj (1)

)
is a vector of i.i.d. (over both players and alternatives)

payoff shocks private to player j drawn from a commonly known distribution. In
a BNE, both players maximize their expected utility given their beliefs, and their
beliefs turn out correct, thus leading to the decision rule

Yj = 1
(
α0Xj + δ0X2

j +γ0
(
2E
[

Y−j

∣∣X]−1
)
� εj

)
, (4.1)

where we abbreviate α0 := A−B,δ0 := C −D,X := (X1,X2), and εj := εj (0)−εj (1).
The εj

(
yj
)
’s are here taken to be Type 1 Extreme Value distributed independent of

the Xj’s. Correctness of beliefs therefore leads to the CCPs

E
[

Yj

∣∣X]= �
(
α0Xj + δX2

j +γ0
(
2E
[

Y−j

∣∣X]−1
))

, j ∈ {1,2}, (4.2)

with �(t) = 1/(1+ e−t) being the logistic CDF.
Let {{(Yij,Xij)}2

j=1}n
i=1 denote data from n independent games. We wish to test

the hypothesis

∃β := (α,γ ) s.t. E
[

Yj −�
(
αXj +γ

(
2E
[

Y−j
∣∣X]−1

))∣∣X]= 0 a.s. for both j ∈ {1,2} .

To generate data from the model, we first draw conditioning variables X =
(X1,X2), which are taken to be bivariate normal with unit variances and correlation
ρ (specified below). We then solve the two equations

σj = �
(
α0Xj + δ0X2

j +γ0
(
2σ−j −1

))
, j ∈ {1,2}, (4.3)

17Implicit in this two-step estimation approach is an assumption of equilibrium uniqueness. See Hahn, Moon, and
Snider (2017) for a test, which can be used to test for equilibrium multiplicity.
18The DGP considered here is a slight modification of the one in Hahn et al. (2017) with the addition of continuous
conditioning variables. When conditioning variables are discrete, the CEFs may be represented by a finite set of
values, and the estimation problem becomes parametric.
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Figure 1. Equilibrium beliefs of Player 1 as a function of public information.

in the unknowns (σ1,σ2) to obtain beliefs consistent with a BNE. Outcomes are
subsequently generated using the decision rules in (4.1).19 Throughout, we set
α0 = γ0 = 1. To generate data consistent with H0, we set δ0 = 0. To generate data
under H1, we set δ0 = −0.5. The resulting equilibrium beliefs from the perspective
of Player 1 as a function of the public signals are depicted in Figure 1. (Player
2’s beliefs follow from symmetry.) In both cases, equilibrium beliefs are analytic
functions in public information (cf. the analytic implicit function theorem).

To allow for different parts of the equilibrium belief surface to be likely
to be explored, we allow for different levels of public information correlation,
ρ ∈ {0,.1, . . . ,.5}.

4.2. Construction of Test

To construct the test statistic, we first take a series approach to estimating the
equilibrium beliefs h∗

j (·) := E
[

Yj

∣∣X = ·] of both players. For both estimands, we
employ the power series approximating functions pk

�
:= pk defined as the tensor

product

pk (x)′ := (1,x1, . . . ,x
√

k−1
1 )⊗ (1,x2, . . . ,x

√
k−1

2 )

of the monomials in each argument up to the same order. The formal results of
this paper are developed under the assumption that the series length k = kn grows

19Depending on the value of X, the nonlinear system (4.3) may in principle have multiple solutions resulting in
different equilibria. The notation employed in (4.1) and (4.2) implicitly assumes uniqueness of equilibrium beliefs.
The parameter values are here selected to guarantee a unique solution to this nonlinear system of equations no matter
the realization of X, thus ensuring equilibrium uniqueness.
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with n at a suitable rate. However, for a given sample size, one must settle on a
particular k. In order to investigate the sensitivity of the test with respect to this
(user) choice, we carry out our procedure for each series length k ∈ {4,9,16}.

Next, based on the logit CCPs,

f
(

yj

∣∣x,(α,γ ),h
)= �

(
αxj +γ (2h−j −1)

)yj
[
1−�

(
αxj +γ (2h−j −1)

)]1−yj ,

we formulate a (pseudo) maximum likelihood estimator,

β̂ := argmax
β∈R2

n∑
i=1

2∑
j=1

ln f (Yij

∣∣Xi,β,̂h (Xi)).

Following Bierens (1990), we use exponential weighting ω(t̃,x̃) = exp(t̃′x̃) com-
bined with a preliminary arctan transformation X̃j := tan−1

(
Xj
)

of each (otherwise
unbounded) conditioning variable. We use the same weights for both residuals.20

The test statistic then follows from (2.9)–(2.11) using

ρ� (z,β,h) := y� −�(αx� +γ (2h−� −1)), � ∈ {1,2},
as residual functions,21 and integration is understood to be against the empirical
distribution of the transformed conditioning variables.

We obtain a critical value using (3.18)–(3.24). Given that the argument of the
CEFs coincides with the conditioning variables and that (∂/∂h−�)ρ�(z,β0,h∗(x)) =
−2γ0�

′(α0x� + γ0(2h∗
−�(x) − 1)) depends on z only through x, we construct the

δ̂�,−�’s defined in (3.22) without projections, i.e.,

δ̂�,−�(t̃,Xi) := −2γ̂ ω(t̃,X̃i)�
′(̂αXi� + γ̂ [2̂h−�(Xi)−1]).

(See also Remark 2.) The δ̂�,�’s are zero. To obtain the ŝ(Zi) estimates needed
in (3.20) to adjust for estimation of β0, we first derive the influence function of√

n(β̂ −β0) as outlined in Example 1 for general two-step GMM estimation with
a nonparametric first step, using the (pseudo) scores

∑2
j=1(∂/∂β) ln f (yj|x,β,h) as

moment functions m(z,β,h). We then replace unknowns (including the moment
Jacobian) with sample analogs.

We consider sample sizes n ∈ {100,200,400} and 10,000 Monte Carlo (MC)
replications. We use a 5% nominal level (α = 5%) and approximate the critical
value cT̂ (.05) in (3.24) using 1,000 Gaussian multiplier draws within each repli-
cation.

20Given that the arctan function is close to constant for arguments far from zero, prior to applying the transformation,
Bierens (1990) advocates centering and scaling the conditioning variables by their sample means and variances,
respectively. This centering and scaling is strictly speaking not allowed for in our notation, which treats the weight
function as known.
21For simplicity, the test only makes use of the CMRs arising from the marginal distributions of the Yj’s (given X).
Three additional CMRs may be deduced from their joint distribution (given X).
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Figure 2. Size estimates (±2 MC standard errors).

When using a tensor-product basis of monomials, the (mean-square) optimal
series length k∗

n grows at the rate nα/(2α+1), where α denotes the number of
continuous derivatives of the target relative to its number of arguments (see, e.g.,
Newey, 1997, p. 151). Since each target is here analytic and bivariate, k∗

n is of order
n1/2. The series length set {4,9,16} allows such sequences. Consider, for example,
the formula k = �√Cn1/2�2, where �a� is the largest integer less than or equal
to a. Then C = 1

2 produces k = 4,4, and 9 for n = 100,200, and 400, respectively,
whereas C = 1 leads to k = 9,9, and 16.

4.3. Results

Figure 2 shows the size estimates of the test for each sample size and series length
as a function of the public information correlation level. The test is oversized by
1–1.5 percentage points for n = 100. For this (limited) sample size, the amount of
overrejection may depend on the choice of series length by about half a percentage
point. However, as the sample size increases, the size estimates appear to converge
toward the nominal level across all series lengths and all correlation levels, except
perhaps ρ = 0.5.

Figure 3 plots the power of the test when δ0 = −0.5. The power may depend
on the choice of series length by upward of 10 percentage points. As the sample
size increases, the power appears to converge to one for all series lengths and all
correlations. This convergence is expected, since the test is consistent against all
deviations from the null.

Lastly, we briefly explore the local power of the test developed in this paper.
While the proposed test is not formally proved to exhibit nontrivial local power,
in Figure 4, we depict estimates of its local power for the sequence of alternatives
resulting from the now n-dependent δ0 = −5/

√
n. The test does have nontrivial

local power (of 20%–40%), at least against this particular sequence of alternatives.
Moreover, its local power appears stable across correlations as well as series
lengths, at least for n = 400.
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Figure 3. Global power estimates (±2 MC standard errors).
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Figure 4. Local power estimates (±2 MC standard errors).

4.4. Partially Linear Model

To facilitate numerical comparison with existing tests, we also consider the model
in Song (2010) as reported in Bravo (2012, Sect. 4.3). The DGP is here

Y = r (X1,γ )+ τ (X2)+ εi,

where τ (x2) = 2
(x2)−1,
 being the standard normal CDF, Xj = X̃j + .8ζj +ζ0,

j ∈ {1,2}, X̃j ∼ U(−1,1), j ∈ {1,2}, ζj ∼ N(0,1), j ∈ {0,1,2}, ε ∼ N(0,.25), and
the random variables (X̃1,X̃2,ζ0,ζ1,ζ2,ε) are mutually independent. The function
r (x1,γ ) = γ a(x1) + (1−γ )x1 with a being the nonlinear function a(x1) =
4φ (x1) − 2, where φ is the N(0,.25) probability density function (PDF) (Song,
2010, p. 80). The null hypothesis of partial linearity (in X1) holds when γ = 0.
When γ �= 0, the data are generated under the alternative. As in Bravo (2012,
p. 16), we use γ ∈ {.05,.15}.

Partial linearity E[Y|X] = βX1 + τ(X2) implies the CMR E[ρ(Z,β,

h∗(X2)|X] = 0 for ρ(z,β,h(x2)) = y − hY (x2)−β{x1 − hX1 (x2)}, where h∗
Y (X2) :=

E[Y|X2] and h∗
X1

(X2) := E[X1|X2]. The pseudo-truth, here available in closed
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form, is

β0 =
E
[{

X1 −h∗
X1

(X2)
}{

Y −h∗
Y (X2)

}]
E

[{
X1 −h∗

X1
(X2)

}2
] ,

which we estimate using Robinson’s (1988) two-step procedure, except that we
use series (instead of kernel) estimation for the nonparametric first step. As in
Section 4.2, we use exponential weighting combined with a preliminary arctan
transformation of each (otherwise unbounded) conditioning variable. Differentia-
tion shows that

g(t,Zi) = {ω(t,Xi)−E[ω(t,X)|X2i]}ρ
(
Zi,β0,h

∗ (X2i)
)

−E
[
ω(t,X)

{
X1 −h∗

X1
(X2)

}] {X1i −h∗
X1

(X2i)
}
ρ (Zi,β0,h∗ (X2i))

E

[{
X1 −h∗

X1
(X2)

}2
] ,

each of which is plug-in estimated and then fed the bootstrap. For series estimation,
we here use the monomial basis, i.e., pk (x2) = (1,x2,x2

2, . . . ,x
k−1
2 )′. To compare

with Bravo (2012) and Song (2010), we consider sample sizes n ∈ {100,300}. We
again use α = 5%, 10,000 MC replications, and 1,000 Gaussian multiplier draws.

Table 1 shows the finite-sample size and size-adjusted power of the test proposed
in this paper resulting from series lengths k ∈ {2,4, . . . ,10}, which contains the
range of k-values in Song (2010). Here, DKS

GEL and DCM
GEL,GEL ∈ {EL,EU,ET} are

Bravo’s (2012, eqn. (4.1)) generalized empirical likelihood statistics of the KS
and CM forms, respectively, and the KS- and CM-type statistics KS� and CM�

are defined in his equation (2.8). Finally, KSADF and CMADF are the asymptoti-
cally distribution-free KS and CM statistics based on Song’s (2010) conditional
martingale transform.

The table shows that, unlike the existing tests, the test proposed in this paper is
here correctly sized at n = 300, at least for large enough k. (For k = 2, the resulting
linear approximations to CEFs are insufficient.) However, no test stands out in
terms of (size-corrected) power. Specifically, the test proposed here has slightly
lower power for n = 100 but generally (and in some cases much) greater power for
n = 300.

5. EMPIRICAL ILLUSTRATION: ENTRY OF DISCOUNT STORES

As a proof of concept, we apply the specification test developed in this paper to
an entry game between Walmart (W) and Kmart (K) discount stores using the
Jia (2008) dataset. The setup is similar to Ellickson and Misra (2011, Sect. 4),
who focus on the nuts and bolts of estimation. As in their paper, we consider a
(much) simplified version of Jia’s model, in which the two chains j ∈ {W,K} make
independent entry decisions yj = 1 (“enter”) or = 0 (“do not”) across a collection

https://doi.org/10.1017/S0266466622000615 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000615


850 JESPER RIIS-VESTERGAARD SØRENSEN

Table 1. Partially linear model: Size and size-adjusted power
(in percent)

n 100 300

γ 0 .05 .15 0 .05 .15

DKS
EL 7.2 13.0 48.4 6.2 18.0 64.0

DKS
EU 7.2 13.8 49.1 6.4 18.0 62.8

DKS
ET 7.2 13.4 48.7 6.3 17.7 61.9

KS� 7.4 11.2 42.8 6.7 16.4 56.0

KSADF 7.2 9.2 40.1 6.2 14.0 53.0

DCM
EL 7.0 15.2 50.9 6.2 19.2 64.1

DCM
EU 7.0 15.2 51.2 6.2 18.6 64.3

DCM
ET 7.1 14.8 50.6 6.2 18.7 62.6

CM� 7.0 13.4 49.4 6.3 18.3 62.2

CMADF 6.9 11.0 45.0 6.1 20.1 59.7

k = 2 7.6 8.1 31.9 9.0 13.7 73.4

k = 4 6.9 9.5 46.2 6.1 20.0 91.0

k = 6 6.7 10.0 48.1 5.4 21.6 93.4

k = 8 7.2 9.8 47.5 5.3 22.0 93.8

k = 10 7.2 10.0 47.7 5.4 21.8 93.6

Notes: Columns correspond to finite-sample size (γ = 0) and size-adjusted
power (γ �= 0). Rows DKS

EL to CMADF are imported from Bravo (2012, Table 9)
(PDF alternative) and rounded to nearest decimal. The nominal level is 5%.

of counties (markets). Like Jia, we consider the n = 2,065 counties in which both
Walmart and Kmart operate at most one store. Akin to the Section 4 simulations,
player profits are parameterized as

uj
(
yj,y−j,xc,zj,εj;β

)= yj
(
x′

cβc + z′
jβj +γ y−j + εj

)
, j ∈ {W,K},

where market characteristics common to both firms enter through xc, firm
characteristics through zW/zK , and (βc,βW,βK,γ ) =: β are model parameters.
Firm-specific profit functions accommodate asymmetric players, such as the
here more dominant Walmart and relatively weak Kmart (present in 47 and
17 pct. of the counties, respectively). We include three market characteristics:
population (pop), retail sales per capita (spc), and fraction of urban population
(urban). On top of firm-specific intercepts, we include the distance to
Benton County, Arkansas (dBenton; the location of Walmart headquarters)
and a dummy for the southern region (south) as Walmart characteristics,
and a dummy for the Mid-West (midwest) as Kmart characteristics.22

Here (pop,spc,urban,dBenton,south,midwest) is treated as public

22See Jia (2008) for a detailed discussion of the industry, market definition, and covariate relevance.
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Table 2. Bootstrap p-values (in percent) for correct specification of discount
store market entry decisions

Transform Description rankP p-value (%)

Linear Constant, levels 7 .007

Interaction Constant, levels, pairwise interactions 21 .022

Pure Quadratic Constant, levels, squares 11 .004

Quadratic At most second-order terms 25 .012

Cubic At most third-order terms 65 .140

Quartic At most fourth-order terms 140 .054

information (X), whereas εj is treated as private to Player j and unobserved by
the econometrician. The εj’s are here taken independent standard Logistic, which
in a BNE leads to a decision rule akin to (4.1) and CCPs similar to (4.2) with some
player-specific coefficients allowed.

The construction of the test runs parallel to Section 4.2.23 To show the impact
of the choice of approximating functions, we consider various transformations of
the original conditioning variables as described in Table 2. Since some powers
and/or interactions of elements of X are redundant, for series estimation, we use
Moore–Penrose inversion, and report the rank of the matrix [pk(Xi)

�] =: P of
approximating functions, which one may think of as the “effective k.” Table 2
shows the p-values resulting from 250,000 bootstrap repetitions and each of the
options for approximating functions considered. The null of correct specification
is rejected at a 1% significance level across the board, which indicates that entry
decisions do not result from the simple static discrete game with linearly specified
profits considered here.24 These model rejections may also stem from chain stores
not making market-independent decisions, an observation which motivated the
network structure in Jia (2008).

6. CONCLUSION AND DISCUSSION

In this paper, we develop an omnibus specification test for a class of semi- or
nonparametric CMRs in part parameterized by CEFs. The test is a suitable semi-
/nonparametric extension of the Bierens (1982) goodness-of-fit test of a parametric
model for the conditional mean. Estimating conditional expectations using series
methods, we construct a bootstrap-based test which is proved both asymptotically
correctly sized and consistent against any fixed alternative. We implement our

23In calculating weights of the exponential form, prior to conducting an arctan transform, we center and scale the
conditioning variables by their sample means and standard deviations so as to put them on the same scale, as advocated
by Bierens (1990).
24Using ω(t,x) = cos(t′x)+ sin(t′x) instead of weights of the exponential form yields essentially all-zero p-values
(not reported), when studentizing (but not arctan transforming) the conditioning variables. All-zero p-values follow
from using weights 1(t � x), so this finding appears weight robust.
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procedure in a comprehensive simulation study testing the specification of a static
game of incomplete information. The simulations by and large reproduce the
asymptotic properties in small samples.

In an empirical application using data from Jia (2008), we study the validity
of a game-theoretical model for discount store market entry, treating equilibrium
beliefs of Walmart and Kmart as nonparametric conditional expectations. Our
findings indicate that Walmart and Kmart entry decisions do not result from
a simple static discrete game of incomplete information with linearly specified
profits.

Our simulations also indicate that the test has nontrivial power versus root-n-
local alternatives, although further effort is needed to investigate the local power
properties of the test in a formal manner. Future research might also consider
relaxing the assumption of root-n estimability of the parametric component under
the null hypothesis, relaxing the requirement of differentiability to allow for non-
smooth residual functions, and developing formally justified data-driven methods
for choosing the series length(s).

The test proposed in this paper involves estimation of the influence function
representation of the estimator of the parametric part of the model,

√
n(β̂ −β0).

One way to avoid influence function estimation is to use a correction of the weight-
ing function ω as proposed in Sant’Anna and Song (2019). For example, such a
correction can be applied when (i) ρ� is a residual from a regression and (ii) the
explanatory variables entering the regression function are a transformation of X�.
Both these conditions are satisfied for the game-theoretical model considered in
the simulations and empirical application. The present paper could be extended
so as to consider such correction of ω. However, a drawback of the Sant’Anna
and Song (2019) approach is that the resulting test would not have power against
some fixed specific alternatives, i.e., it would not be consistent.

A. APPENDIX

Appendix Abbreviations and Notation
To conserve space, we use the abbreviations CS, H, J, M, and T for the Cauchy–Schwarz,
Hölder, Jensen, Markov, and triangle inequalities, respectively. CMT, LOIE, MVE, and
MVT are short for the “continuous mapping theorem,” “law of iterated expectations,”
“mean-value expansion,” and “mean-value theorem,” respectively. We also abbreviate “with
probability approaching one” by wp → 1. We employ empirical process notation and write
En [ f ] := En [ f (Zi)] for the average n−1∑n

i=1 f (Zi) and Gn ( f ) for the centered and scaled
average Gn ( f ) := Gn [ f (Zi)] = √

n(En − E) [ f ]. If need be, we subscript the expectation
operator E to highlight which variables are integrated out (e.g., EZ). ‖f‖n,2 is short for

the empirical L2-norm (i.e., ‖f‖2
n,2 = En[ f 2]). The bracketing number N[ ](ε,F,L2 (P))

is defined as in van der Vaart and Wellner (1996, p. 83). Whenever F has a square-
integrable envelope F, we denote by J[ ](δ,Fj,L

2 (P)) the bracketing integral
∫ δ

0 {1 +
N[ ](ε‖F‖P,2,F,L2 (P))}1/2dε. ‖A‖op is the operator norm of a matrix A induced by the
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�2-norm for vectors. C,C1,C2, . . . denote positive and finite constants, the meaning of which
may change between appearances. a ∨ b means max{a,b}, and a ∧ b means min{a,b}. For
nonrandom sequences, the notation an � bn means that |an| � Cbn for C not depending on
n. For potentially random sequences, the relation Xn �P bn means Xn/bn = OP (1), where
OP (1) denotes stochastic boundedness.

A.1. Proofs for Section 3.1

Lemma A.1. If Assumption 3 holds, then for any z ∈ Z and any h� : W� → Rd� ,∣∣∣∣∣ρ� (z,h� (w�))−ρ�

(
z,h∗

� (w�)
)− ∂

∂h′
�

ρ�

(
z,h∗

� (w�)
)[

h� (w�)−h∗
� (w�)

]∣∣∣∣∣
� R� (z)d(1+γ�)/2

�
max

1�m�d�

‖h�m −h∗
�m‖1+γ�

W�
,

where ρ� (z,v�) := ρ� (z,β0,v�).

Proof. Let z ∈ Z,h� : W� → Rd� be arbitrary. Then h� (w) ∈ Rd� , so Assumption 3 and
an MVE of v� �→ ρ�(z,v�) at h�(w) around h∗

�
(w�) yield∣∣ρ� (z,h� (w�))−ρ�

(
z,h∗

� (w�)
)− (∂/∂h′

�

)
ρ�

(
z,h∗

� (w�)
)[

h� (w�)−h∗
� (w�)

]∣∣
=
∣∣∣∣∣
[

∂

∂h′
�

ρ�(z,̃h� (w�))− ∂

∂h′
�

ρ�

(
z,h∗

� (w�)
)][

h� (w�)−h∗
� (w�)

]∣∣∣∣∣
� R� (z) ‖̃h� (w�)−h∗

� (w�)‖γ�‖h� (w�)−h∗
� (w�)‖ � R� (z)‖h� (w�)−h∗

� (w�)‖1+γ�

� R� (z)d(1+γ�)/2
�

max
1�m�d�

‖h�m −h∗
�m‖1+γ�

W�
,

where h̃�(w�) lies on the line segment connecting h�(w�) and h∗
�
(w�), thus satisfying

‖̃h� (w�)−h∗
�
(w�)‖ � ‖h� (w�)−h∗

�
(w�)‖. �

The following result is crucial to proving Lemma 1 (Asymptotic equivalence).

Lemma A.2. If Assumptions 1–7 hold and H0 is true, then for each � ∈ {1, . . . ,L},
‖√nM̂� −√

nEn [g� (·,Zi)]‖X�

�P max
1�m�d�

{
E[R� (Z)]

√
n‖̂h�m −h∗

�m‖1+γ�

W�

+
(k�m,n∑

j=1

‖p�,j‖2
W�

)1/2(√
k�m,n/n+ k−α�m

�m,n

)
+√

nrh�m,k�m,n sup
t�∈X�

rδ�m,k�m,n (t�)+
√

ζ 2
�,k�m,n

k�m,n ln
(
k�m,n

)
/n

+Rδ�m,k�m,n

√
ln
(

k�m,n/Rδ�m,k�m,n

)
+ ζ�,k�m,n rh�m,k�m,n

}
+oP(1).

The proof of Lemma A.2 is long and technical in nature and has therefore been relegated
to the Supplementary Material.
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Proof of Lemma 1. The claim follows from Lemma A.2 and Assumption 7. �

Proof of Lemma 2. A multivariate central limit theorem (CLT) shows joint conver-
gence of all marginals of the sequences of processes {Gn [g� (t�,Zi)] ;t� ∈ X�},n ∈ N,

� ∈ {1, . . . ,L} . To show G is Donsker, it therefore suffices to show that each

G� := {z �→ g� (t�,z) ;t� ∈ X�}, � ∈ {1, . . . ,L},

is Donsker (cf. van der Vaart and Wellner, 1996, Prob. 1.5.3). In what follows, we therefore
omit the subscript �. Moreover, given that β0 and h∗ are held fixed throughout the argument,
we write ρ (z) := ρ(z,β0,h

∗ (w)), (∂/∂β)ρ (z) := (∂/∂β)ρ(z,β0,h
∗ (w)), and (∂/∂h)ρ (z) :=

(∂/∂h)ρ
(
z,β0,h

∗ (w)
)
. Let g1 = g(t1,·),g2 = g(t2,·) ∈ G be arbitrary. Then, by T and CS,

followed by J, CS, and Assumption 2,

|g(t1,z)−g(t2,z)| � |ω(t1,x)−ω(t2,x)| |ρ (z)|+‖b(t1)−b(t2)‖‖s (z)‖
+‖y−h∗ (w)‖‖δ (t1,w)− δ (t2,w)‖

� C
(
|ρ (z)|+E[‖(∂/∂β)ρ (Z)‖]‖s(z)‖

+‖y−h∗ (w)‖E[‖(∂/∂h)ρ (Z)‖|W = w]
)
‖t1 − t2‖,

with s stemming from Assumption 1. Write the right-hand side as G(z)‖t1 − t2‖. Then,
taking the expectation and using the inequality (a + b)2 � 2a2 + 2b2 repeatedly alongside
the integrability and boundedness parts of Assumptions 1 and 3, we see that G(Z)2 is
integrable. Given that T is compact (Assumption 2), hence bounded, the Donsker property
of G now follows from van der Vaart (2000, Example 19.7). �

Proof of Theorem 1. Under H0, E[g(·,Z)] ≡ 0, so Lemma 2 means that Gn =√
nEn [g(·,Zi)] � G0 in ×L

�=1L∞ (X�). Donsker’s theorem shows that
√

n(F̂X − FX) �
GFX in the Skorokhod space D([−∞,∞]dx ), where dx is the number of distinct elements
of the X�’s and GFX is a centered Gaussian process indexed by Rdx with covariance
kernel

(
x,x′) �→ P

(
X � x∩X � x′)− FX (x)FX

(
x′). A multivariate CLT establishes joint

convergence of the marginals of the above processes from which we may deduce joint
convergence in their product space (cf. van der Vaart and Wellner, 1996, Prob. 1.5.3).
A CMT therefore shows weak convergence of (

√
nEn [g(·,Zi)],{√n(F̂X�

− FX�
)}L

1) in

[×L
�=1L∞ (X�)] × [×L

�=1D([−∞,∞]dx,� )] to a 2L-variate centered Gaussian process.

Lemma 1 implies that (
√

nM̂,{√n(F̂X�
− FX�

)}L
1) has the same distributional limit.

Let BVK (A) be the set of real-valued functions on A which are nondecreasing in
each argument (holding the other arguments fixed) and of variation no more than
K ∈ (0,∞). Then the functional φ : [×L

�=1C (X�)]× [×L
�=1BV1 (X�)] ⊆ [×L

�=1L∞ (X�)]×
[×L

�=1D([−∞,∞]dx,� )] → R defined by φ({m�}L
1,{ f�}L

1) := ∑L
�=1
∫
X�

m2
�
df� is second-

order Hadamard differentiable at (0,{FX�
}L
1) ∈ [×L

�=1C (X�)] × [×L
�=1BV1 (X�)] with

vanishing first-order Hadamard derivative and second-order Hadamard derivative
φ′′

(0,{FX�
}L
1 )

: [×L
�=1C(X�)] × [×L

�=1BV1(X�)] → R given by φ′′
(0,{FX�

}L
1 )

(h1,h2) :=
2
∑L

�=1
∫
X�

h2
1�

dFX�
. The (second-order) functional delta method therefore produces
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Tn = n
L∑

�=1

∫
X�

M̂2
�dF̂X�

= n[φ(M̂,{F̂X�
}L
1)−φ(0,{FX�

}L
1)]

= 1
2φ′′

(0,{FX�
}L
1)

(
√

nM̂,{√n(F̂X�
−FX�

)}L
1))+oP (1)

=
L∑

�=1

∫
X�

(
√

nM̂�)
2dFX�

+oP (1) .

The claimed null distribution now follows from the CMT.
Arguments paralleling the proof of Lemma A.2 show that even under H1 (where β̂ is

consistent for β0 but not necessarily asymptotically linear), both max1���L ‖M�‖X�
< ∞

and max1���L ‖M̂� −M�‖X�
→P 0. Decompose Tn/n as

Tn

n
=

L∑
�=1

∫
X�

M2
�dF̂X�

+
L∑

�=1

∫
X�

(M̂� −M�)
2dF̂X�

+2
L∑

�=1

∫
X�

M�(M̂� −M�)dF̂X�
.

The calculations

L∑
�=1

∫
X�

(M̂� −M�)
2dF̂X�

� L max
1���L

‖M̂� −M�‖2
X�

P→ 0,

∣∣∣∣∣∣
L∑

�=1

∫
X�

M�(M̂� −M�)dF̂X�

∣∣∣∣∣∣� L max
1���L

‖M�‖X�
max

1���L
‖M̂� −M�‖2

X�

P→ 0,

show that Tn/n =∑L
�=1
∫
X�

M2
�

dF̂X�
+oP (1). The law of large numbers (LLN) then shows

that

L∑
�=1

∫
X�

M2
�dF̂X�

=
L∑

�=1

En

[
M� (X�i)

2
]

P→
L∑

�=1

E
[
M� (X�i)

2
]

=
L∑

�=1

∫
X�

M2
�dFX�

,

which is positive under H1 by the choice of weights (Assumption 2). �

A.2. Proofs for Section 3.2

The proof of Lemma 3 parallels that of Lemma A.2 with some added complexity due to the
parametric estimator not necessarily being asymptotically linear, the presence of multipliers,
and the error introduced from estimating the g�’s and recentering at the sample values. Like
the proof of Lemma A.2, we relegate the long and technical argument to the Supplementary
Material.

Proof of Lemma 4. Given that G is Donsker (Lemma 2), Kosorok (2008, Thm. 10.4(iv))
implies thatG′′

n �P,ξ G in ×L
�=1L∞ (G�), whereG′′

n (g) := n−1/2∑n
i=1 ξi{g(Zi)−E[g(Z)]}

and G is an L-variate zero-mean Gaussian process with covariance kernel E[g(Z)g′ (Z)′]−
E[g(Z)]E[g′ (Z)′],g,g′ ∈ ×L

�=1G�. Since we may identify each G� with X�, this result

is equivalent to G∗
n �P,ξ G in ×L

�=1L∞ (X�), where G is a centered Gaussian process
with covariance kernel C given in (3.16). Lemmas 3 and S.8 now imply Ĝn �P,ξ G in

×L
�=1L∞ (X�). An application of the (second-order) delta method for the bootstrap now

establishes that T̂ converges weakly in probability to T. Invoking continuity (Assumption 9),
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Kosorok (2008, Lem. 10.11) therefore shows that the FT̂ converges in probability to FT
pointwise on [0,∞). Fix ε > 0 and α ∈ (0,1). Since FT is continuous, by the hypothesis
that it is also increasing at cT (α), there exists r1 ∈ R such that cT (α)−ε < r1 < cT (α) and
FT (r1) < 1 −α. Then FT̂ (r1) < 1 −α wp → 1, which implies cT (α)− ε < r1 � cT̂ (α)

wp → 1. In particular, P(cT̂ (α) � cT (α)− ε) → 1. Similarly, there exists r2 ∈ R such that
cT (α) < r2 < cT (α)+ε and 1−α < FT (r2). Then 1−α < FT̂ (r2) wp → 1, which implies
cT̂ (α)� r2 < cT (α)+ε wp → 1. In particular, P(cT̂ (α) < cT (α)+ε) → 1. It follows that

limsup
n→∞

P(|cT̂ (α)− cT (α)| � ε)

� limsup
n→∞

P(cT̂ (α) � cT (α)+ ε)+ limsup
n→∞

P(cT̂ (α) � cT (α)− ε) = 0.

Since ε > 0 was arbitrary, the lemma follows. �

A.3. Proofs for Section 3.3

Proof of Theorem 2. Fix α ∈ (0,1). Under H0, Tn →d T0 (Theorem 1). Letting FT0
denote the CDF of T0, by FT0 being continuous on R (using Assumption 9) and increasing at
cT0 (α) (by hypothesis), it follows from Lemma 4 that cT̂ (α) →P cT0 (α) ∈ (0,∞). Slutsky’s
theorem then shows Tn − cT̂ (α) →d T0 − cT0 (α), which establishes the first claim.

Under H1, Tn/n →P
∑L

�=1
∫
X�

M2
�

dFX�
∈ (0,∞) (Theorem 1). Since FT is increasing

at cT (α), Lemma 4 yields cT̂ (α) →P cT (α) ∈ (0,∞) . In particular, cT̂ (α) �P 1, so for
any ε ∈ (0,1), there exists Kε ∈ (0,∞) such that limsupn→∞ P(cT̂ (α) > Kε) � ε. Letting
ε ∈ (0,1) be arbitrary, we see that

P
(
Tn � cT̂ (α)

)= P
(
Tn � cT̂ (α)∩ cT̂ (α) � Kε

)+P
(
Tn � cT̂ (α)∩ cT̂ (α) > Kε

)
� P(Tn � Kε)+P

(
cT̂ (α) > Kε

)
= P(Tn/n � Kε/n)+P

(
cT̂ (α) > Kε

)
,

which—by the preceding remarks—implies limsupn→∞ P(Tn � cT̂ (α)) � ε. The second
claim now follows from taking ε → 0+. �

SUPPLEMENTARY MATERIAL

To view supplementary material for this paper, please visit: https://doi.org/10.1017/
S0266466622000615.
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