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Abstract 

Photosynthetically active radiation (PAR) at the ice-ocean interface is critical for primary production. The 
value of PAR is affected by the thickness of snow and sea ice, with additional absorbers (e.g., algae) further 
attenuating PAR. Sea ice algae exhibit a substantial geo-temporal variance in column-integrated 
concentration (0–500 mg chl-a m-2) and are typically present within the bottom 0.01–0.2 m of sea ice. PAR 
transmittance is affected by algae concentrations and vertical thicknesses of ice algal layers. Small column-
integrated concentrations of chl-a (< ~10 mg chl-a m-2) have a negligible effect on the value of  PAR 
transmittance, and large column-integrated concentrations of chl-a (> ~10 mg chl-a m-2) can significantly 
reduce the value of PAR transmittance. Large column-integrated concentrations of chl-a need consideration 
when calculating PAR transmittance in areas of high sea ice algae biomass (e.g., the ‘interior’ shelves of 
the Arctic Ocean, the Canadian Arctic, and Antarctica). 

1 Introduction 

Sea ice algae generate 10% of total marine-produced carbon and can cause sea ice to host the 
highest algal cell and chlorophyll concentrations of any marine environment (Arrigo, 2017; Tedesco and 
Vichi, 2014; Lund-Hansen and others, 2021). The presence of contaminants such as black carbon (e.g., 
Marks and King, 2013), sediment (e.g., Light and others, 1998; Gradinger and others, 2009), crude oil (e.g., 
Redmond Roche and King, 2022), or organisms (e.g., Fritsen and others, 1992, 2011) can affect the apparent 
optical properties of sea ice, including albedo, transmittance, absorption, and extinction of light. 
Photosynthetically active radiation (PAR, wavelength range 400–700 nm) is utilised by autotrophs for 
photosynthesis and is a critical component of the polar ecosystems, with ice algae being light-limited during 
the winter and later nutrient-limited once there is sufficient PAR (e.g., Cota and others, 1991; Duarte and 
others, 2015; Leu and others, 2015; Weckström and others, 2020); other factors such as temperature, 
salinity, and iron can also limit production. PAR at the ice-ocean interface is primarily controlled by snow 
thickness and, to a lesser extent, by sea ice thickness (e.g., Mundy, 2007). The transmittance of PAR (the 
fraction of incident light which is transmitted) to the ice-ocean interface can also be considerably affected 
by the presence of sea ice algae, with microalgae frequently being the principal absorbing material in sea 
ice and responsible for up to 25–90% of attenuation between 400–550 nm in first-year sea ice (Fritsen and 
others, 1992, 2011; Light and others, 2015). The presence of ice algae may also affect the physical 
properties of sea ice and heat the sea ice through increased light absorption (Zeebe and others, 1996). PAR 
availability at the ice-ocean interface is a fundamental constraint on marine primary production in the water 
column in the polar regions (Popova, 2010) and potentially even on celestial bodies (e.g., Reynolds and 
others, 1983; Hand and others, 2009; France and others, 2010). Therefore, parameterising the effect sea ice 
algae have on PAR transmittance may be important to understand how sea ice algae can affect the light 
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availability for primary production beneath the ice (e.g., Petrich and others, 2012; Ehn and Mundy, 2013 
Katlein and others, 2014; Hill and others, 2022).  

Columnar sea ice has a lamellar crystal structure to which inclusions (e.g., brine pockets, gas 
bubbles, contaminants) are usually aligned, resulting in sea ice scattering light anisotropically and 
predominantly downwards (Trodahl and others, 1987; Petrich and others, 2012; Katlein, 2014). Previous 
studies have utilised simple Beer-Lambert exponential decay to predict the propagation of PAR in sea ice 
and snow (e.g., Grenfell and Maykut, 1977; Tedesco and others, 2014; Stroeve and others, 2021; Lim and 
others, 2022); however, measurements (e.g., King and others, 2005; Light and others, 2015) have shown 
that this can provide an inaccurate attenuation profile for non-optically thick sea ice (see Warren, 2019 for 
a detailed description). Other studies (e.g., King and others, 2005; Redmond Roche and King, 2024a) have 
shown that dark layers in the base of the ice or present below the ice can affect the intensity of PAR 
throughout sea ice. Concentrations of sea ice algae exhibit substantial geo-temporal variance, with column-
integrated biomass concentrations from the bottom of ice-core sections ranging in chlorophyll a (chl-a, a 
proxy for ice algae biomass) between <2 mg chl-a m-2 in Greenlandic fjords, 7 mg chl-a m-2 in the Central 
Arctic, 53.8 mg chl-a m-2 in the European Arctic, and 340 mg chl-a m-2 in the Canadian Arctic during 
maximum bloom conditions (Søgaard and others, 2010, 2019; Leu and others, 2015, and references therein). 
In the Antarctic, up to 500 mg chl-a m-2 has been recorded in sea ice (Riaux-Gobin and others, 2000) and 
up to 1090 mg chl-a m-2 has been recorded in the sub-ice platelet layer (Arrigo and others, 2017). Sea ice 
algae can grow at extremely low light fluxes (0.17 µmol m-2 s-1) (Hancke and others, 2018) under thick 
snow cover and may begin growing as early as February in the Arctic Ocean (Stroeve and others, 2021). 
Sea ice algal blooms coincide with increasing PAR (~5 µmol m-2 s-1) between the end of winter and the 
beginning of sea ice melt when basal ice layers begin to slough off (Cota and Smith, 1991; Perovich and 
others, 1993; Hill and others, 2022). Blooms in the Arctic Ocean may also experience bimodal chl-a peaks 
in March and July (Melnikov and others, 2002). The highest chl-a concentrations are found in the basal 
layers of sea ice, from the skeletal layer extending vertically up to ~0.2 m. Typically, ~95% of algal biomass 
is located near the ice-ocean interface in the bottom 0.02 m (e.g., Welch and Bergmann, 1989; Perovich 
and others, 1993; Lavoie and others, 2005); however, different vertical distributions in biomass can occur 
in the base (0.2 m) and interior of sea ice. The effects of these varying distributions on PAR transmittance 
are poorly quantified in optical modelling studies (e.g., Lange and others, 2015; Cimoli and others, 2017). 

Therefore, whilst many studies have considered how specific measured concentrations of chl-a 
affect PAR transmittance (e.g., Arrigo and others, 1991; Perovich and others, 1993, 1998; Mundy and 
others, 2007), the work presented here aims to use a coupled atmosphere-sea ice/snow radiative-transfer 
model to parameterise how the variance in column-integrated concentration (0–500 mg chl-a m-2) in 
measured ice algal biomass can affect PAR transmittance to the ice-ocean interface during winter, spring, 
and summer sea ice and snow conditions. The study also aims to assess how different vertical distributions 
of sea ice algae in the base of sea ice (0.01–0.08 m thick layers) and in the middle of sea ice (0.02–0.04 m 
thick layers) affect PAR transmittance throughout sea ice whilst keeping the volumetric concentration of 
algae constant. A visual description of the structure will be shown later in Figure 4.  

2 Methods 

The radiative-transfer modelling was undertaken using the Tropospheric Ultraviolet-Visible 
Radiation Model (TUV-snow) (Madronich and Flocke, 1998; Lee-Taylor and Madronich, 2002), an eight-
stream DISORT algorithm (Stamnes and others, 1988) that calculates irradiance and photon flux parameters 
from the top of the atmosphere to the ice-ocean interface, similar to other publically available models (e.g., 
Flanner and others, 2021). The model is separated into 201 layers, comprising a 62-layer atmosphere (90 
km thick), 20-layer snowpack (0.2 m thick), and 119-layer ice pack (2 m thick). The layers are assumed to 

be horizontally homogeneous with a wavelength-dependent absorption cross-section, abs, wavelength-

independent scattering cross-section, scatt, asymmetry factor, g, for snow (0.89) and sea ice (0.98) (Mobley 

and others, 1998), and snow and sea ice densities, , listed in Table 1. The sea ice and snow matrix control 
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light scattering whilst the ice, a typical Arctic black carbon mass ratio for snow (10 ng g-1) and sea ice (5.5 
ng g-1) (Jiao and others, 2014; Warren, 2019), and the varying concentrations of chl-a control the absorption 
in the PAR wavelength range. Scattering from black carbon particles and algae is not considered here as 
they are very minor compared to the scattering from the snow and sea ice matrix (Perovich, 1996; Mobley 
and others, 1998). The TUV-snow model calculates the downwelling PAR for all layers in the model, and 
these are presented in this study as an integrated ‘flat plate’ PAR equal to an irradiance summed over 400–
700 nm. The transmittance of PAR, T, is the value of downwelling PAR at that ice-ocean interface, PARice-

ocean, relative to the value of downwelling PAR at the snow surface, PARsurf, (T = PARice-ocean/PARsurf). The 
TUV-snow model has previously been shown to reproduce light transmittance and reflectance in control 
laboratory-grown sea ice (e.g., Marks and others, 2017), and all modelling has been kept consistent with 
previous studies (Redmond Roche and King, 2022, 2024a), where a comprehensive description is provided. 

The sea ice and snow are separated into three layers: an interior ice layer below freeboard, a drained 
ice layer above freeboard, and a homogeneous overlying snowpack. The freeboard is calculated assuming 
the sea ice is in hydrostatic equilibrium with a sea ice density of 920 kg m-3, a snow density of 320 kg m-3, 
and a seawater density of 1027 kg m-3, consistent with previous studies (e.g., Alexandrov and others, 2010; 
Zhang and others, 2020; Redmond Roche and King, 2024a). The sea ice and snow are modelled under three 
scenarios: Winter (<<0 º C), Spring (<0º C), and Summer (≥0º C), consistent with Redmond Roche and 
King (2024a) and comparable with Phases 1, 2, and 3 described by Verin and others (2022). The density of 
sea ice can vary (700–950 kg m-3) (e.g., Perovich, 1990, 1996); however, here, it is 920 kg m-3 for all 
scenarios to be consistent with the freeboard approximation (Alexandrov and others, 2010; Zhang and 
others, 2020) and to allow for a direct comparison of the optical effects of the algae in different sea ice 

thicknesses. Whilst the value of scatt of sea ice can be variable (Grenfell and Maykut, 1977; Perovich, 1990, 
1996; King and others, 2005; Light and others, 2008, 2022; Stroeve and others, 2021), the three scenarios 
have been modelled in accordance with the average vertical scattering profiles presented in Figure 8 of 
Light and others (2015). Bare sea ice conditions are also considered in this study, however, melt ponds are 
not considered (e.g., Light and others, 2008, 2015, 2022; Lamare and others, 2023). The snow density and 

value of scatt differ between the three scenarios, with the Winter, Spring, and Summer scenarios being 
characterised by cold polar/fresh (0.1–0.5 mm grains), coastal windpack/windslab (0.5–2 mm grains), and 
melting/melt form snow types (2–5 mm grains), respectively (e.g., Grenfell and others, 2002; France and 
others, 2011; Marks and King, 2014; Lamare and others, 2016; Warren, 2019; Verin and others, 2022). 

The absorption spectrum of sea ice and snow (Warren and Brandt, 2008) is small at shorter 
wavelengths (~300–500 nm) and small inclusions of contaminants can considerably modify light absorption 
(e.g., Warren, 1982; Light and others, 2002; Doherty and others, 2010; Réveillet and others, 2022). Indeed, 
it is often necessary to include small concentrations of black carbon, which has a relatively wavelength-
independent absorption cross-section when using radiative-transfer models to increase attenuation 
coefficients to match natural measurements of sea ice and snow (e.g., Warren, 1982; Mundy and others, 
2007). The absorption spectrum of sea ice algae is dominated by the pigment chl-a, which has a strong 
wavelength dependence, with a broad peak typically centred at 440 nm and a narrow peak centred at 680 
nm (Arrigo and others, 1991). Fig. 1 shows the typical chl-a absorption cross-sections for sea ice algae 
from both the Arctic and Antarctic (Perovich, 1991; Arrigo and others, 1991, 2017; Mundy and others, 
2007, 2011; Fritsen and others, 2011; Wongpan and others, 2018), in addition to phytoplankton chl-a 
(Bricaud and others, 1995), and phytoplankton photoprotectant and photosynthetic carotenoid pigment 
(Bidigare and others, 1990). The absorption cross-section of sea ice algae is dependent on the ratio of 
pigments, which can lead to a packaging effect where the absorption may be flattened (e.g., Morel and 
Bricaud, 1981; Wang and others, 2020). Sea ice algae can increase or decrease their photosynthetic 
efficiency in response to changing PAR availability, which can lead to a packaging effect around 450–550 
nm as the ratio of accessory pigments increases (Lund-Hansen, 2000); however, chl-a is the dominant 
pigment present in sea ice algae (Wang and others, 2020). Consequently, it is complex to accurately 
quantify the absorption cross-section of sea ice algae (e.g., SooHoo 1987; Light and others, 2015) as it is 
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dependent on the concentration of pigments, so this study utilises the chl-a cross-section presented in 
Mundy and others (2007) as a representative spectrum and wavelength integrated PAR transmittance (T) is 
considered. Therefore, the study presented here will examine (i) the response of T to increasing chl-a 
column-integrated concentrations (0–500 mg chl-a m-2) in the bottom 0.02 m of sea ice and (ii) the response 
of T through sea ice under a fixed volumetric chl-a concentration vertically distributed in the basal 0.01, 
0.02, 0.04, and 0.08 m of the sea ice, in addition to 0.02 and 0.04 m thick internal layers at 1 m. 

3 Results and Discussion 

3.1 The response PAR transmittance to varying column-integrated concentrations of Chl-a 

 The transmittance of PAR through a 0.2 m thick snowpack and a 2 m thick sea ice is shown as an 
exemplar for the Summer (a), Spring (b), and Winter (c) scenarios in Fig. 2. The interior layer of the sea 
ice is 1.85 m thick, and the drained layer is 0.15 m thick, assuming that the sea ice is in hydrostatic 
equilibrium (Alexandrov and others, 2010; Zhang and others, 2020). When no algae is present, the PAR 
decreases with depth in the snow and sea ice layers, with maximum modelled values of 908 µmol m2 s-1, 
866 µmol m2 s-1, and 708 µmol m2 s-1 at the snow surface for the Winter, Spring, and Summer scenarios, 
respectively. The values of PAR decrease to 3 µmol m2 s-1, 6 µmol m2 s-1, and 26 µmol m2 s-1 at the ice-
ocean interface, respectively. Note, that the differences in surface values of PAR between the scenarios are 

due to the increased value of scatt in colder snow packs where the snow grain size is small. The values of 
T are 0.0033, 0.0069, and 0.037 for the Winter, Spring and Summer scenarios, respectively; as the snow 
layers are highly scattering relative to the sea ice, they are responsible for 99%, 98%, and 90% of the 
attenuation of surface radiation, respectively. 

 
 As chl-a concentrations increase in the bottom 0.02 m layers of the sea ice, the attenuation of PAR 
significantly increases, and the value of T decreases. Fig. 2 shows that as basal concentrations of chl-a 
increase, the transmittance value relative to the algae-free sea ice, TRel, decreases to between ~99.4% at 0.2 

mg and ~0.5% at 500 mg (𝑻𝑹𝒆𝒍 =
𝑻𝒄𝒉𝒍=𝒙

𝑻𝒄𝒉𝒍=𝟎
), where x is the column-integrated concentration of chl-a. The 

effect on TRel for the same chl-a relative to the algae-free sea ice is approximately invariant for the different 
seasonal scenarios (±1.2%). The values 1–10 mg chl-a m-2 have additionally been modelled and are 
presented in the supplementary material (Figure S1); each additional mg of chl-a appears to decrease TRel 
by 2–3% when columnar concentrations are ≥10 mg chl-a m-2.  The effect that different thicknesses of sea 
ice (0.5–3.5 m) and snow (0.05–1 m) representative for the Arctic Ocean (Kurtz and Harbeck, 2017) may 
have on TRel under typical Arctic Ocean peak basal column-integrated concentrations of chl-a (20 mg chl-
a m-2) (Leu and others, 2015; Lange and others, 2016) are also considered in Fig. 3; all data discussed in 
this manuscript are available in the online repository (Redmond Roche and King 2024b). The change in sea 
ice and snow thickness causes a minor variance in TRel: ~57–63% and ~52–61%, respectively. Therefore, 
typical column-integrated concentrations of sea ice algae (≤500 mg chl-a m-2) in the basal 0.02 m of the sea 
ice can significantly affect the value of TRel, with a minor variance due to changes in sea ice (±3.2%) and 
snow (±4.5%) thickness but general invariance (±1.2%) to seasonality. Bare ice was additionally modelled 
under cloudy conditions and clear sky conditions at a solar zenith angle of 60º; in general, there is a minor 
difference in the value of TRel ±0.06–3.7%. The values of TRel are presented in the supplementary material 
(Table S1 and Figure S2). Although it is improbable that the maximum chl-a values will occur during the 
Winter scenario, they have been modelled for completeness, owing to the possibility that bimodal peaks 
occur in March and July (Duarte and others, 2015) in the Arctic and because of the wide range in the day 
of year for maximum sea ice algae chl-a concentrations (Leu and others, 2015). Similarly, the maximum 
considered column-integrated concentrations (340 and 500 mg chl-a m-2) have only been recorded in 
Resolute, Canadian Arctic, and in the Antarctic, respectively, whereas all other column-integrated 
concentrations are more relevant for the Arctic Ocean, Greenland, and Labrador Seas. However, the 
fundamental aim of this study is to estimate the potential effects that sea ice algae can have on PAR 
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transmittance in sea ice, so they have been included in this study. Ultimately, the PAR available at the ice-
ocean interface is dependent on the concentration of sea ice algae in the basal layers.  When the column-
integrated concentration of chl-a is low (approximately < 10 mg chl-a m-2) (e.g., the central Arctic Ocean 
and Greenlandic fjords), the effect on TRel is small (TRel > 75%). However, as chl-a column-integrated 
concentrations increase (approximately > 10 mg chl-a m-2) (e.g., the ‘interior’ shelves of the Arctic Ocean 
(Williams and Carmack, 2015)), the effect on TRel becomes more significant (TRel < 75%), with the value of 
TRel decreasing considerably (TRel < 10%) when column-integrated concentrations exceed 150 mg chl-a m-

2 (e.g., the Canadian Arctic and Antarctica) (see supplementary material Figure S3). Consequently, when 
column-integrated concentrations of chl-a in sea ice exceed 10 mg chl-a m-2, they should be taken into 
account when calculating PAR transmittance at the ice-ocean interface using existing methodologies (e.g., 
Redmond Roche and King, 2024a); the values of TRel presented in Fig. 2 can be considered as empirical 
reduction factors for typical algal layers of typical thickness (~0.02 m), if the light transmittance through 
snow and sea ice and the algal concentration is known. The authors wish to stress that although the value 
of TRel is mostly invariant to snow and sea ice thickness and seasonality, the value of T is not; therefore, 
they must be accounted for when calculating T. 

3.2 Vertical variance in algal layers 

The effect that an algal layer of variable thickness can have on the value of TRel for a 0.2 m thick 
snowpack and 2 m thick sea ice is shown in Fig. 4 for the Spring scenario. Note, that having the same 
vertically integrated (columnar) algal concentration for a small change in depth will not have a large effect 
on the value of T. However, increasing the thickness of the algal layer and the vertically integrated chl-a 
concentration but maintaining the volumetric concentration will affect the value of T, which is explored in 
this section. Therefore, the modelled vertically integrated algae concentration varies between 10 mg chl-a 
m-2 when 0.01 m thick and 80 mg chl-a m-2 when 0.08 m thick, consistent with typical Arctic Ocean peak 
basal chl-a concentrations examined in Section 3.1 (Leu and others, 2015; Lange and others, 2016). Basal 
ice communities extend vertically as high as 0.2 m (e.g., Arrigo and Sullivan, 1992; Arrigo, 2017); however, 
brine salinity increases and nutrient availability decreases with distance from the ice-ocean interface, 
whereas the ’rule of five’ (i.e., brine volume ≥ 5%, ice temperature ≥ -5º C, bulk salinity ≥ 5) is permanently 
fulfilled in the basal ~0.01 m (Golden and others, 1998; Leu and others, 2015). Consequently, the bottom 
~0.02 m of sea ice hosts ~95% of algal biomass, and higher basal ice communities will typically have an 
order of magnitude lower biomass (e.g., Perovich and others, 1993; Duarte and others, 2015), although 
there are exceptions to this (e.g., Meiners and others, 2012). Previous literature has shown that neglecting 
algae throughout the ice column can lead to substantial underestimations in net primary production (e.g., 
Duarte and others, 2015); however, aside from a study focusing on algal absorption heating sea ice (Zeebe 
and others, 1996), the effect on PAR transmittance remains poorly constrained. Therefore, as Fig. 2 
considered 0.02 m thick algal layers, the aim is to assess the sensitivity of  PAR transmittance to varying 
algal layer thicknesses in a one-dimensional vertically resolved model representative of typical basal sea 
ice algal communities (0.01–0.08 m), comparable to the Biologically Active Layer used in previous studies 
(e.g., Leu and others, 2015; Tedesco and others, 2010, 2012; Tedesco and Vichi, 2014; Duarte and others, 
2015; Lange and others, 2015; Lund-Hansen and others, 2020).  

As the basal algal layer increases in thickness, the value of T decreases to 0.0054, 0.0042, 0.0028, 
and 0.0014 when 0.01 m, 0.02 m, 0.04 m, and 0.08 m thick, respectively (Fig. 4). The value of TRel decreases 
approximately linearly to 75.2%, 59%, 38.5%, and 18.9% of the algae-free sea ice, respectively. Whilst the 
varying thickness of the basal algae layer can affect the value of T at the base of the sea ice, it appears 
inconsequential on the light field near the top of the sea ice and the reflectivity of the sea ice and snow 
surfaces. Consequently, it may be challenging to remotely sense basal chl-a from wavelength-integrated 
reflectivity measurements of sea ice or snow. There can also be relatively high abundances of chl-a of 
varying thickness in the middle of sea ice cores, particularly in multiyear ice where annual layers (i.e., 
bottom and melt pond communities) have been preserved (Lange and others, 2015) or in areas where thick 
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snow has caused negative freeboards and surface flooding has occurred (Arrigo, 2017). Whilst surface 
flooding from negative freeboards is unusual in the Arctic, it occurs in up to 30% of Antarctic sea ice 
(Wadhams and others, 1987; Leu and others, 2015). Thus, a 0.02 m thick basal algae layer is modelled with 
a 0.02 m and 0.04 m thick internal algae layer at 0.98–1 m and 0.96–1 m in the sea ice, respectively (Fig. 
4). The presence of the middle algae layer causes the value of TRel to decrease to 62.3% and 41.8% from 
the top to the bottom of the 0.02 m and 0.040 m layers, respectively. The decrease in the value of TRel in the 
mid-ice algal layers is analogous to the decrease from the top to bottom with basal algal layers of the same 
thickness: 60.7% and 39.7%, respectively. The value of T also appears to be largely unaffected by the 
vertical position of the algae layers in the ice, with the 0.04 m thick basal layer yielding a very similar value 
of T (0.0028) to the combined 0.02 m basal and 0.02 m middle layers combined (0.0024). 

4 Conclusions 

 Sea ice algae can considerably affect the transmittance of PAR, T, from the snow surface to the ice-
ocean interface. The value of T will decrease as the column-integrated concentration of sea ice algae within 
the ice increases: when a 0.02 m thick sea ice algae layer is modelled in the base of the ice, the transmittance 
value relative to the algae-free sea ice, TRel, decreases to between 99.4% (0.2 mg chl-a m-2) and 0.5% (500 
mg chl-a m-2). The basal concentration of algae does not affect the wavelength-integrated reflectivity of sea 
ice or snow above it, leading to potential challenges in remotely sensing chl-a from on top of the ice or 
snow. The decrease in T is also dependent on the thickness of the ice algae layer. When the volumetric chl-
a concentration in the ice algae layer is fixed and the layer thickness is doubled, the decrease in  TRel is 
approximately linear: e.g., 59%, 38.5%, and 18.9%, at 0.02, 0.04, and 0.08 m thickness, respectively. 
However, the bottom ~0.01 m of sea ice permanently fulfils the ‘rule of five’; consequently, 95% of ice 
algae biomass is usually present in the basal ~0.02 m. Therefore, when a typical 0.02 m thick algae layer 
has a low column-integrated concentration of chl-a (approximately < 10 mg chl-a m-2) (e.g., the central 
Arctic Ocean and Greenlandic fjords), the effect on the value of TRel is small (TRel > 75%). At higher column-
integrated concentrations (approximately > 10 mg chl-a m-2) (e.g., the ‘interior’ shelves of the Arctic Ocean, 
the Canadian Arctic, and Antarctica), the effect can be significant (TRel <75%), and chl-a should be taken 
into account when predicting T. 

Data. All modelled data are available at https://doi.org/10.5281/zenodo.10680681 
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Figure 1. Ice algal chlorophyll-a biomass (Perovich, 1991; Arrigo and others, 1991, 2014; Mundy and others, 2007, 2011; Fritsen and others, 2011; 
Wongpan and others, 2018), phytoplankton chlorophyll-a biomass (Bricaud et al., 1995) and phytoplankton photoprotectant and photosynthetic 
carotenoid (Bidigare and others, 1990) mass absorption cross sections, taken from the literature. The spectral absorption cro ss-section from Mundy 

and others (2007) (thick black line) has been utilised in this study. Congel. = congelation ice, Platel. = platelet ice, MS = McMurdo Sound, 
Antarctica, DS = Davis Station, Antarctica, Slush = surface slush, Top = top of the ice core, Bottom = bottom of the ice core , Photop. = 
photoprotectant carotenoid, Photosyn. = photosynthetic carotenoid. 
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Figure 2. Modelled values of PAR through snow (0.2 m) and sea ice (2 m) layers for the Summer (a), Spring (b), and Winter (c) scenarios. The 
column-integrated concentrations of sea ice algae in the basal 0.02 m of the ice increase from 0.2–500 mg chl-a m-2. The change in TRel as column-

integrated concentrations of chl-a increase relative to the algae-free sea ice (𝑻𝑹𝒆𝒍 =
𝑻𝒄𝒉𝒍=𝒙

𝑻𝒄𝒉𝒍=𝟎
) is shown for each seasonal scenario in the boxes. At the 

smallest column-integrated concentrations of chl-a, the effect on TRel is negligible; however, as column-integrated concentrations increase (> 20 mg 
chl-a m-2), the value of TRel is significantly reduced. The effect on TRel for the same column-integrated concentrations of chl-a is approximately 

invariant for the different seasonal scenarios (±1.2%). 
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Figure 3. Changes in TRel when 20 mg chl-a m
-2

 are present at different (a) sea ice (0.5–3.5 m) and (b) snow (0.05–1 m) thickness for the Winter, 
Spring, and Summer scenarios. The change in sea ice and snow thickness causes a minor variance in TRel: ~57–63% and ~52–61%, respectively. 

 

 

Figure 4. Modelled values of PAR transmittance through snow (0.2 m) and sea ice (2 m) layers for the Spring scenario with fixed volumetric chl-
a concentrations and increasing vertically integrated chl-a concentrations. The vertical extent of the basal algal thickness varies between 0.01, 0.02, 
0.04, and 0.08 m; two scenarios have a 0.02 m thick basal layer and a 0.02 m and 0.04 m thick middle algal layer at 0.98–1 m and 0.96–1 m, 

respectively. A schematic of the different sea ice and snow layers is presented on the right. As the algal layer doubles in thickness, there is an 
approximately linear decrease in the value of PAR at the ice-ocean interface. 
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Table 1. Scattering cross-section (scatt) and density () values for all modelled sea ice and snow layers. (Grenfell and Maykut, 1977; Perovich, 
1990, 1996; Grenfell and others, 2002; King and others, 2005; Light and others, 2008, 15, 2022; France and others, 2011; Marks and King, 2014; 
Lamare and others, 2016; Warren, 2019; Stroeve and others, 2021; Verin and others, 2022).  

 Winter scenario Spring scenario Summer scenario 

 scatt / m
2 kg-1  / kg m-3 scatt / m

2 kg-1  / kg m-3 scatt / m
2 kg-1  / kg m-3 

Snow Layer 20 300 7.5 400 1.25 500 

Drained Layer 0.3 920 0.3 920 0.3 920 
Interior Layer 0.03 920 0.03 920 0.03 920 
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