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In this note, we provide an explicit formula for computing the quasiconvex envelope
of any real-valued function W : SL(2) → R with W (RF ) = W (FR) = W (F ) for all
F ∈ SL(2) and all R ∈ SO(2), where SL(2) and SO(2) denote the special linear
group and the special orthogonal group, respectively. In order to obtain our result,
we combine earlier work by Dacorogna and Koshigoe on the relaxation of certain
conformal planar energy functions with a recent result on the equivalence between
polyconvexity and rank-one convexity for objective and isotropic energies in planar
incompressible nonlinear elasticity.

Keywords: quasiconvexity; rank-one convexity; polyconvexity; quasiconvex envelopes;
nonlinear elasticity; incompressibility; hyperelasticity; relaxation;
microstructure

2010 Mathematics subject classification: Primary: 26B25; 26A51; 49J45; 74B20

1. Introduction

A classical task in nonlinear hyperelasticity is to minimize an energy functional of
the form

I : W 1,p(Ω; Rn) → R, I(ϕ) =
∫

Ω

W (∇ϕ(x)) dx (1.1)

under certain boundary conditions, where Ω ⊂ R
n represents the reference configu-

ration of an elastic body. The elastic behaviour of the body is completely determined
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Quasiconvex relaxation in isotropic incompressible planar hyperelasticity 2621

by the choice of a particular energy density W depending on the deformation gradi-
ent F = ∇ϕ. In the compressible case, since the exclusion of (local) self-intersection
implies detF > 0, the domain of the energy W is restricted to the group GL+(n) of
n× n–matrices with positive determinant. Modeling deformations of incompress-
ible materials [14], on the other hand, requires the stronger constraint detF = 1;
in this case, the natural domain of the energy is given by the special linear group
SL(n).

In order to ensure the existence of minimizers for functionals of the form (1.1),
it is necessary to pose additional conditions on the energy density W . The most
common requirements for this purpose are certain generalized convexity properties:
Since classical convexity of W leads to physically unreasonable material behaviour
[29], weakened notions of convexity are usually considered, the most important
ones being rank-one convexity, quasiconvexity and polyconvexity.

Compared to functions defined on the full matrix space R
n×n, the restricted

domain of the energy W poses additional challenges with respect to these convexity
properties (a number of which were famously addressed and solved by John Ball
in his seminal 1977 paper [4,5]), but also allow for obtaining some significantly
simplified criteria. In particular, under the additional assumptions of objectivity and
isotropy, a large number of necessary and sufficient criteria for rank-one convexity
and polyconvexity of energy functions on GL+(n) and SL(n) have been given in the
literature [1,3,11,13,20,21,23,25,28,29].

In the two-dimensional case of planar elasticity, the above generalized convexity
properties can be simplified even further. In addition to the well-known observation
that polyconvexity and convexity1 of a function W : SL(2) → R are equivalent,2 it
was recently demonstrated that in the planar incompressible case, these properties
are in turn equivalent to the (generally weaker) rank-one convexity and quasi-
convexity for isotropic and objective energy functions [16]. Based on these earlier
results, this note provides an explicit relaxation result which allows for a direct
computation of the quasiconvex envelope of any isotropic and objective function
W : SL(2) → R.

2. Generalized convexity properties of incompressible energy functions

Apart from classical convexity, we will consider the following weakened convexity
properties of planar energy functions with values in R ∪ {+∞}.

Definition 2.1. Let W : R
2×2 → R ∪ {+∞}. Then W is called

• rank-one convex if for all F ∈ R
2×2, t ∈ [0, 1] and H ∈ R

2×2 with rank(H) = 1,

W ((1 − t)F + t(F +H)) � (1 − t)W (F ) + tW (F +H);

1A function W : M → R on a non-convex domain M ⊂ R
n×n, e.g. on M = GL+(n) or M =

SL(n), is called convex if there exists a convex function W̃ : R
n×n → R ∪ {+∞} with W̃ (F ) =

W (F ) for all F ∈ M , cf. definition 2.2.
2Under the constraint det F = 1, any polyconvex representation W (F ) = P (F, det F ) can be

reduced to a convex function in terms of F , cf. [16, lemma B.1].
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• quasiconvex if for every bounded open set Ω ⊂ R
2 and all smooth functions

ϑ ∈ C∞
0 (Ω) with compact support,

∫
Ω

W (F0 + ∇ϑ) dx �
∫

Ω

W (F0) dx = W (F0) · |Ω| ;

• polyconvex if

W (F ) = P (F,detF ) for some convex function

P : R
2×2 × R ∼= R

5 → R ∪ {+∞}.

For an incompressible planar energy, i.e. a finite-valued function W : SL(2) → R

defined on the domain SL(2) only, we will employ the following definitions.

Definition 2.2. Let W : SL(2) → R. Then W is called rank-one convex [quasicon-
vex/polyconvex] if the function

Ŵ : R
2×2 → R ∪ {+∞} , Ŵ (F ) =

{
W (F ) : F ∈ SL(2),
+∞ : F /∈ SL(2).

is rank-one convex [quasiconvex/polyconvex] in the sense of definition 2.1. Further-
more, W is called convex if there exists a convex function W̃ : R

2×2 → R ∪ {+∞}
such that W̃ (F ) = W (F ) for all F ∈ SL(2).

Defining quasiconvexity for functions which may attain the value +∞ is often
avoided completely since, in this case, it no longer implies the weak lower semi-
continuity of the associated energy functional [4,9]. Furthermore, a quasiconvex
function with values in R ∪ {+∞} is not necessarily rank-one convex in general [9].
However, for the incompressible case considered here (i.e. W (F ) = +∞ if and only
if F /∈ SL(2)), quasiconvexity of W does indeed imply rank-one convexity, as was
shown by Conti [7].

Note also that for W : SL(2) → R, the existence of a polyconvex representation
W (F ) = P (F,detF ) can be reduced to the case where P (F, d) = +∞ if and only
if d 	= 1. Thereby, P is reduced to a (convex) function in terms of F , which implies
that W is polyconvex if and only if W (or rather an extension of W to the domain
R

2×2) is convex (cf. [16, lemma B.1]).

2.1. Generalized convex envelopes

For each of the convexity properties considered in the previous section, we can
define a corresponding envelope of an arbitrary function on R

2×2.

Definition 2.3. Let W : R
2×2 → R ∪ {+∞} be bounded below. Then the rank-one

convex, quasiconvex, polyconvex and convex envelopes RW,QW,PW,CW : R
2×2 →
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R ∪ {+∞} of W are respectively defined by

RW (F ) = sup{w(F ) |w : R
2×2 → R ∪ {+∞} rank-one convex,

w(X) � W (X) for all X ∈ R
2×2},

QW (F ) = sup{w(F ) |w : R
2×2 → R ∪ {+∞} quasiconvex,

w(X) � W (X) for all X ∈ R
2×2},

PW (F ) = sup{w(F ) |w : R
2×2 → R ∪ {+∞} polyconvex,

w(X) � W (X) for all X ∈ R
2×2},

CW (F ) = sup{w(F ) |w : R
2×2 → R ∪ {+∞} convex,

w(X) � W (X) for all X ∈ R
2×2}.

Again, these definitions can be applied to functions defined on SL(2) via the
natural extension of the domain to R

2×2.

Definition 2.4. Let W : SL(2) → R. Then the rank-one convex, quasiconvex,
polyconvex and convex envelope of W are defined by

RW = (RŴ )
∣∣
SL(2)

, QW = (QŴ )
∣∣
SL(2)

,

PW = (PŴ )
∣∣
SL(2)

, CW = (CŴ )
∣∣
SL(2)

in the sense of definition 2.3, where

Ŵ : R
2×2 → R ∪ {+∞}, Ŵ (F ) =

{
W (F ) : F ∈ SL(2),
+∞ : F /∈ SL(2).

Remark 2.5. The implications

W convex =⇒ W polyconvex =⇒ W quasiconvex

=⇒ W rank-one convex,

which hold for any function W : SL(2) → R (cf. [7,9]), immediately imply the
inequalities

CW (F ) � PW (F ) � QW (F ) � RW (F ) for all F ∈ SL(2).

The quasiconvex envelope, in particular, plays an important role in relaxation
approaches to non-quasiconvex minimization problems: If, for an energy of the form
(1.1), the existence of minimizers under boundary conditions cannot be ensured,
then the infimum of the attained energy values might in many cases be obtained
instead by minimizing the relaxed functional [9, Chapter 9]

I : W 1,p(Ω; Rn) → R, I(ϕ) =
∫

Ω

QW (∇ϕ(x)) dx.

Such relaxation methods are used, for example, in the modelling of materials with
complex microstructures [8,19].
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In general, computing the quasiconvex envelope of a given energy W is a rather
difficult problem, with explicit representations being available only for a small num-
ber of special cases [11,22]. The main result of this note (theorem 3.5), however,
shows that in the objective and isotropic case of planar incompressible energies,
this task can be accomplished by simple analytical methods.

3. The quasiconvex envelope of objective and isotropic functions on
SL(2)

It is well known that any objective and isotropic function W : GL+(n) → R can
be expressed in terms of singular values,3 i.e. there exists a symmetric function
q : (0,∞)n → R such that W (F ) = q(λ1, . . . , λn) for all F ∈ GL+(n) with singular
values λ1, . . . , λn. The corresponding representation W (F ) = q(λ1, λ2) of a planar
incompressible energy W can be simplified even further.

Lemma 3.1. Let W : SL(2) → R be an objective and isotropic function. Then there
exist uniquely determined functions q : (0,∞) × (0,∞) → R, φ : [0,∞) → R and
φ̃ : R → R such that for all F ∈ SL(2) with singular values λ1, λ2,

W (F ) = q(λ1, λ2) = φ̃(λ1 − λ2) = φ

(
λmax(F ) − 1

λmax(F )

)
, (3.1)

where λmax(F ) = max{λ1, λ2}.

Note that q(x, y) = q(y, x) for all x, y > 0 and φ̃(−t) = φ̃(t) for all t ∈ R due to
the isotropy of W . Furthermore, it is easy to see that for any real-valued function
φ : [0,∞) → R or any φ̃ : R → R with φ̃(−t) = φ̃(t) for all t ∈ R, an objective and
isotropic energy W : SL(2) → R is defined by (3.1).

Different representations, for example, in terms of the squared Frobenius matrix
norm ‖F‖2 =

∑2
i,j=1 F

2
ij , have been considered in the literature as well [1] (cf.

[13]). However, expressing W in the form (3.1) allows for stating convexity criteria
in particularly simple terms (cf. theorem 3.4).

In view of lemma 3.1, the equality

|λ1 − λ2| =
√

‖F‖ − 2 =
√
‖F‖ − 2 detF , (3.2)

which holds for any F ∈ SL(2), suggests a direct connection between the notion
of convex envelopes in the incompressible case and an earlier relaxation result by
Dacorogna and Koshigoe [11].

3In nonlinear elasticity, the singular values of the deformation gradient F ∈ GL+(n), which
coincide with the eigenvalues of both the material stretch tensor U =

√
F T F and the spatial

stretch tensor V =
√

FF T , are also called principal stretches.

https://doi.org/10.1017/prm.2019.35 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.35


Quasiconvex relaxation in isotropic incompressible planar hyperelasticity 2625

Proposition 3.2 [11, proposition 5.1], cf. [30]. Let W : R
2×2 → R be of the form

W : R
2×2 → R, W (F ) = g(

√
‖F‖2 − 2 detF ) (3.3)

for some g : [0,∞) → R. Then

RW (F ) = QW (F ) = PW (F ) = CW (F ) = g̃∗∗
(√‖F‖2 − 2 detF

)
, (3.4)

where g̃∗ is the Legendre-transformation of the extended function

g̃ : R → R , g̃(x) =

{
g(x) : x � 0

g(−x) : x < 0

and g̃∗∗ = (g̃∗)∗.

Remark 3.3. Since g̃ is finite valued on R, the equality g̃∗∗ = Cg̃ between the
biconjugate and the convex envelope of g̃ holds if g̃ is bounded below [9, theorem
2.43].

Due to (3.2), the restriction W = W
∣∣
SL(2)

of any function W : R
2×2 → R of the

form (3.3) to SL(2) can be written as

W (F ) = W (F ) = g(|λ1 − λ2|) = g̃(λ1 − λ2)

for F ∈ SL(2), i.e. in the form (3.1) with φ = g and φ̃ = g̃. Similarly, any objective
and isotropic W : SL(2) → R can be uniquely extended to a function W : R

2×2 → R

of the form (3.3) by letting g = φ or, equivalently, g̃ = φ̃.
However, despite this striking connection, proposition 3.2 is not immediately

applicable to the case of functions defined on SL(2): Note carefully that the con-
vex envelopes in equation (3.4) take into account not only the value of W on
SL(2), but also the value of a specific extension Ŵ of W to R

2×2. The underlying
difference is that the notion of (generalized) convexity on a subset of R

2×2 (cf.
definition 2.2) requires W to have any extension to R

2×2 satisfying the respective
convexity property, which is, a priori, not necessarily of the form (3.3).

On the other hand, proposition 3.2 can be used to obtain lower bounds for the
envelopes of incompressible energies; particularly,

CW (F ) = sup{w(F ) |w : R
2×2 → R convex,

w(X) � W (X) for all X ∈ R
2×2}

� sup{w(F ) |w : R
2×2 → R convex,

w(X) � W (X) for all X ∈ SL(2)}
= sup{w(F ) |w : R

2×2 → R convex,

w(X) � W (X) for all X ∈ SL(2)} = CW (F )

(3.5)

for any objective and isotropic function W : SL(2) → R and all F ∈ SL(2), where
W : R

2×2 → R denotes the extension of W described above. Again, note carefully
that it is not immediately obvious whether equality holds in (3.5).
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In order to fully establish a result similar to proposition 3.2 in the incompressible
case, we will require the following criteria for generalized convexity properties.

Theorem 3.4 [16]. Let W : SL(2) → R be an objective and isotropic function. Then
the following are equivalent:

(i) W is rank-one convex,

(ii) W is polyconvex,

(iii) the function φ̃ : R → R with W (F ) = φ̃(λ1 − λ2) for all F ∈ SL(2) with
singular values λ1, λ2 is convex,

(iv) the function φ : [0,∞) → R with

W (F ) = φ(
√
‖F‖2 − 2) = φ

(
λmax(F ) − 1

λmax(F )

)
is nondecreasing and convex.

The characterization of polyconvex energies on SL(2) by criterion (iv) in theorem
3.4 is originally due to Mielke [25]. A criterion for the rank-one convexity of a twice
differentiable energy in terms of the representation W (F ) = Ψ(‖F‖2) = Ψ(λ2

1 + λ2
2)

has previously been given by Abeyaratne [1].
Using theorem 3.4, it is possible to find an explicit representation of the gener-

alized convex envelopes RW , QW , PW and CW for any isotropic and objective
function on SL(2).

Theorem 3.5. Let W : SL(2) → R be objective, isotropic and bounded below. Then

RW (F ) = QW (F ) = PW (F ) = CW (F ) = Cφ̃(λ1 − λ2) (3.6)

= Cmφ

(
λmax(F ) − 1

λmax(F )

)
for all F ∈ SL(2) with singular values λ1, λ2, where λmax(F ) = max{λ1, λ2} and
Cmφ : [0,∞) → R denotes the monotone-convex envelope of φ, given by

Cmφ(t) := sup
{
p(t) | p : [0,∞) → R monotone increasing and convex

with p(s) � φ(s) ∀ s ∈ [0,∞)
}
,

i.e. the largest monotone and convex function bounded above by φ.

Proof. Since φ̃(−t) = φ̃(t) = φ(t) for all t � 0, it is easy to see (cf. [11]) that
Cmφ(t) = Cφ̃(t) = Cφ̃(−t) for all t � 0 and thus, in particular,

Cφ̃(λ1 − λ2) = Cmφ(|λ1 − λ2|) = Cmφ

(
λmax(F ) − 1

λmax(F )

)
for all F ∈ SL(2) with λ1, λ2 > 0. Furthermore, remark 2.5 establishes the
inequalities CW (F ) � PW (F ) � QW (F ) � RW (F ), thus it remains to show that
RW (F ) � Cφ̃(λ1 − λ2) � CW (F ).
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According to lemma 3.1, there exists a uniquely determined function ψ̃ : R →
R such that RW (F ) = ψ̃(λ1 − λ2) for all F ∈ SL(2) with singular values λ1, λ2.4

Moreover, due to the rank-one convexity of RW and theorem 3.4, the function ψ̃
is convex. Since

ψ̃(t) = RW
(
diag

(√
4+t2+t

2 ,
√

4+t2−t
2

))
� W

(
diag

(√
4+t2+t

2 ,
√

4+t2−t
2

))
= φ̃(t)

as well, we find ψ̃(t) � Cφ̃(t) for all t ∈ R and thus

RW (F ) = ψ̃(λ1 − λ2) � Cφ̃(λ1 − λ2)

for all F ∈ SL(2).
Now, in order to establish the remaining inequality Cφ̃(λ1 − λ2) � CW (F ), let

W : R
2×2 → R , W (F ) = φ̃(

√
‖F‖ − 2 detF )

denote the unique extension of W to R
2×2 of the form (3.3). Then using (3.5) and

remark 3.3, we find

CW (F ) � CW (F ) = φ̃∗∗(
√

‖F‖ − 2 detF ) = φ̃∗∗(λ1 − λ2) = Cφ̃(λ1 − λ2)

for all F ∈ SL(2) with singular values λ1, λ2. �

Another result similar to theorem 3.5 has previously been obtained [24] for
the so-called conformally invariant functions on GL+(2), i.e. any W : GL+(2) → R

satisfying

W (AF B) = W (F ) for all A,B ∈ {aR ∈ GL+(2) | a ∈ (0,∞), R ∈ SO(2)},

where SO(2) denotes the special orthogonal group. In addition to being objective
and isotropic, such a function is isochoric, i.e. invariant under (purely volumetric)
scaling of the deformation gradient F .

Remark 3.6. Due to equation (3.6), the problem of finding the quasiconvex (as
well as the rank-one convex and the polyconvex) envelope of W reduces to the task
of computing the convex envelope of a scalar function. This latter problem can, for
example, be solved by using Maxwell’s equal area rule [29, p. 319] and often admits
a direct analytical solution.

Combining theorem 3.5 with proposition 3.2 also yields the following relation
between the envelopes of incompressible energies and their extensions to R

2×2 of
the form (3.3); recall from remark 3.3 that Cφ̃ = φ̃∗∗ if φ̃ : R → R is bounded below.

4Note that the rank-one convex envelope of an objective and isotropic function is itself objective
and isotropic [6].
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Corollary 3.7. Let W : SL(2) → R be objective, isotropic and bounded below.
Define

W : R
2×2 → R , W (F ) = φ̃(

√
‖F‖2 − 2 detF ),

where φ̃ : R → R is the uniquely determined function with W (F ) = φ̃(λ1 − λ2) for
all F ∈ SL(2) with singular values λ1, λ2. Then

RW = QW = PW = CW = Cφ̃(λ1 − λ2) = φ̃∗∗(
√
‖F‖2 − 2 detF )

= (RW )
∣∣
SL(2)

= (QW )
∣∣
SL(2)

= (PW )
∣∣
SL(2)

= (CW )
∣∣
SL(2)

. �

As a simple example, we consider the restriction of the classical Alibert–
Dacorogna–Marcellini energy [2,12]

WADM : R
2×2 → R, WADM(F ) = ‖F‖2 (‖F‖2 − 2γ detF ), γ ∈ R

to the special linear group SL(2), i.e.

W : SL(2) → R, W (F ) = ‖F‖4 − 2γ ‖F‖2, γ ∈ R,

where ‖.‖ denotes the Frobenius norm. It was shown by Alibert, Dacorogna and
Marcellini [2,12] that different convexity properties hold for WADM depending on
the exact value of γ, which strictly distinguishes convexity (|γ| � 2

√
2/3), polycon-

vexity (|γ| � 1) and rank-one convexity (|γ| � 2/
√

3); the question whether WADM

is not quasiconvex for some |γ| � 2/
√

3 is still open [10].
In the incompressible case, of course, the energy is simplified considerably; in

particular, W is convex for any γ � 2 as the composition of a monotone and convex
function with the convex mapping F �→ ‖F‖. In general, since (using the equality
λ1λ2 = 1) we find

W (F ) = (λ2
1 + λ2

2)
2 − 2γ (λ2

1 + λ2
2)

= (λ1 − λ2)4 + (4 − 2 γ) · (λ1 − λ2)2 + 4 − 4 γ

for all F ∈ SL(2) with singular values λ1, λ2, the function W can be expressed as
W (F ) = φ̃(λ1 − λ2) with

φ̃(t) = t4 + (4 − 2 γ) · t2 + 4 − 4 γ.

Then φ̃′′(t) = 12 t2 + 8 − 4 γ is nonnegative for all t � 0 if and only if γ � 2, thus
according to theorem 3.4, W is rank-one convex, quasiconvex polyconvex and/or
convex on SL(2) only if γ � 2. For γ > 2, we can explicitly compute the convex
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Figure 1. The convex envelope Cφ̃ of φ̃ : R → R with φ̃(t) = t4 + (4 − 2 γ) · t2 + 4 − 2 γ.

envelope (cf. figure 1)

Cφ̃(t) =

{
φ̃(t) : t2 � γ − 2 ,
−γ2 : t2 < γ − 2 .

of φ̃ and use theorem 3.5 to find the generalized convex envelopes of W , which are
given by

RW (F ) = QW (F ) = PW (F ) = CW (F ) = Cφ̃(λ1 − λ2)

=

{
W (F ) : (λ1 − λ2)2 � γ − 2
−γ2 : (λ1 − λ2)2 < γ − 2

=

{
W (F ) : ‖F‖2 � γ

−γ2 : ‖F‖2 < γ

for any F ∈ SL(2) with singular values λ1 and λ2 = 1
λ1

.
A further classical example of an elastic energy applicable to the incompressible

case is given by the logarithmic Hencky strain energy [15,17,18,26,27]

WH : SL(2) → R, WH(F ) = ‖log V ‖2 = ‖log
√
FFT ‖2 = log2(λ1) + log2(λ2),

where log V = log
√
FFT denotes the principal matrix logarithm of the stretch

tensor V =
√
FFT . Note that for detF = 1, WH can equivalently be expressed

as

‖dev log V ‖2 = ‖log((detV )−1/2 V )‖2 = ‖log((detF )−1/2 V )‖2 = ‖log V ‖2 = WH(F ),

where devX = X − (trX/2)1 is the deviatoric part of X ∈ R
2×2 and 1 denotes

the identity matrix. Since

WH(F ) = log2(λ1) + log2(λ2) = 2 log2(λmax(F ))

= 2 log2

(
|λ1 − λ2| +

√
4 + (λ1 − λ2)2

2

)
,
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the representation WH(F ) = φ̃(λ1 − λ2) of the Hencky energy is given by

φ̃(t) = 2 log2

(
|t| + √

4 + t2

2

)
.

Due to the sublinear growth of φ̃, we find Cφ̃ ≡ 0 and thus, using theorem 3.5,

RWH = QWH = PWH = CWH ≡ 0.
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29 M. Šilhavỳ. The mechanics and thermodynamics of continuous media. Texts and Mono-
graphs in Physics (Berlin, Germany: Springer, 1997).
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