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Abstract

Brazil et al. [*Maximal subgroups of infinite symmetric groups’, Proc. Lond. Math. Soc. (3) 68(1) (1994),
77-111] provided a new family of maximal subgroups of the symmetric group G(X) defined on an infinite
set X. It is easy to see that, in this case, G(X) contains subsemigroups that are not groups, but nothing is
known about nongroup maximal subsemigroups of G(X). We provide infinitely many examples of such
semigroups.
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1. Introduction

Throughout this paper, X is an infinite set and /(X) denotes the symmetric inverse semi-
group on X, that is, the semigroup (under composition) consisting of all one-fo-one
partial transformations whose domain, dom «, and range, ran @, are subsets of X (see
[2, Volume 1, page 29]). In addition, if @ € I(X), we write

gl@)=1X\dom a|, d(a)=|X\ranc|

and refer to these cardinal numbers as the gap and defect of a, respectively.
In [11], the authors studied some algebraic properties of the semigroup defined by

AX) = {a € I(X) : g(a) = d(a)}.

In particular, for uncountable X, they described all maximal subsemigroups of A(X),
some of which involve a maximal subsemigroup of G(X), the symmetric group on X.
However, little seems to be known about such semigroups of permutations.
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2 S. Mendes-Gongalves and R. P. Sullivan [2]

In [4], Hotzel describes many different types of maximal subsemigroups of
BL(p, q), the Baer-Levi semigroup defined on X, when |X|=p > q >N, (for the
definition, see [2, Section 8.1]). In addition, in [4, page 157], he remarks that
{mr e G(X) : |Am \ A| < |A|} is a maximal subsemigroup of G(X) if and only if |A| = 1 or
No < |A] < |X \ A] (see [2, Section 3]). However, Hotzel does not prove this assertion
in [4], albeit a tour-de-force in many other ways, even though he often uses the
assumption that 8y < |A| < |X \ A in [4, Section 3] (see Corollary 3.10 and elsewhere).
Furthermore, we cannot find any statement like Hotzel’s assertion anywhere else in the
literature.

In [4, page 154], Hotzel gives a brief summary of what was known about maximal
subgroups of G(X) in 1995. In fact, maximal subgroups of G(X) have been extensively
studied, particularly when X is infinite. For later developments, see [1, 3] and the
references therein. In [4, page 153], Hotzel remarks that some maximal subgroups
of G(X) are also maximal as subsemigroups of G(X). In [3, Section 10], the authors
provide several examples of such maximal subsemigroups of G(X). However, here we
focus on nongroup maximal subsemigroups of G(X), since that is what is needed to
support the main result in [11, Section 4].

In Section 2, we prove Hotzel’s assertion (as quoted above) and, in Section 4, we
prove a linear version of it (for interest, and to support a linear version of [11, Section 4]
which naturally arises from [8]). In Section 3, we observe that, in many cases, G(X)
is not isomorphic to G(V), the general linear group on an infinite-dimensional vector
space, even though their algebraic properties are similar, for example, the description
herein of some of their maximal subsemigroups. This is akin to work in [10, 11] (see
Section 3 for more details).

2. Infinite symmetric group

In what follows, ¥ = AU B means that Y is a disjoint union of A and B, and we let
idyx denote the identity of G(X). Also, following standard practice in transformation
semigroup theory, we compose mappings from left to right.

We adapt the convention introduced in [2, Volume 2, page 241]: namely, if
a € G(X), then we write

“= ()

and take as understood that the subscript i belongs to some (unmentioned) index set /,
that the abbreviation {g;} denotes {a; : i € I}, and that X = {g;} = {x;} and x;a' = a; for
each i. In addition, if X = AUB = CU D, where |A| = |C| and |B| = |D|, we often write

_(A B)
*=\c p)

to indicate that @ € G(X) consists of some (unspecified) bijection from A to C, together
with a bijection from B to D.
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For all other notation and terminology in semigroup theory, we refer the reader to
[2,5].

Clearly, G(X) contains subsemigroups that are not groups. For example, if X = Z
and na = n + 1 for all n € Z, then the cyclic semigroup (@) is a subsemigroup of G(X)
but ! ¢ (a), and this idea can be extended to any infinite X. The next result provides
infinitely many examples of nongroup maximal subsemigroups of G(X).

PROPOSITION 2.1. Let Y be a subset of X such that 8¢ < |Y| < |X \ Y|. Then the set
HY)={neGX): |Yn\ Y| <|Y]}
is a maximal subsemigroup of G(X) that is not a group.
PROOF. Let|Y|=m < n =X\ Y|and write X = Y UZ. Clearly,
HY)={neGX):|YnNZ| <m}.
Suppose that @, € H(Y). Since Ya = (Ya N Y) U (Ya N Z), we have
YopnZ c (YBNZ)U(YanZ)BNZ).

So, [YapNZ| <|YBNZ|+|YanZ <m+m=mand af € H(Y).
Write Y = {a;} U{a;} = {b;} U{c;} and Z = {x;} U {x;} = {yx} U{y;}, where |K| < m =
|[/] and |I| = n. Define @ € G(X) by

_ [k 4 Xj X
‘= (Yk bj ¢ )’i)' 2D

Clearly, YanY ={b;} and YanZ={y}, so @ € HY). But Yo' NZ = {x;}, so
a~' ¢ H(Y). That is, H(Y) is a subsemigroup of G(X) that is not a group.

To show that H(Y) is maximal, we let h € G(X)\ H(Y) and show that every
g € G(X)\ H(Y) belongs to (H(Y), h), the semigroup generated by H(Y) U {h}: in other
words, G(X) = (H(Y), h). To do this, we consider four cases.

First, note that if h,g¢ H(Y), then |YhnZ >m and |YgNZ| >m. But
|Yh| = |Yg| = |Y| = m, and so |Yh N Z| = m = |Yg N Z|. In addition, /& can be written as

b (Y Nzt Ynyn' Znzn' Zn Yh—l)
YhnZ YhnY ZhnNZ ZhnNY )
By this, we mean that, for each set in the first row, there is a bijection (determined by
the permutation /) between it and the set below it. Note that, in general, one or more
of the intersections may be empty. However, if Zh N'Y = 0, then Zh = Zh N Z, and so
Z=ZnZh ' and Y = Y N Yh, and likewise for other possibilities.

Case 1. Suppose that |Z N Yg~!'| < m and |Z N YA~'| < m. Since |Z| = n > m, we have
1ZNZg'=n=1ZNnZh7"|. Also, |Yg~!| = |[Yh~!| = |Y| = m implies that |[Y N Yg~!| =
m =Y N Yh~'|. Write

YNYe ' =B UB,, [Bil=m, |Bs=1ZNYR,
YNYR ' =CUC, |Cil=m, |Col=ZNYe "],
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and consider 1, 1, € G(X), defined as follows:

_(YmZg-1 B, ZnYe! Znzg! B, )
M=\ynzn! ¢ C  Znzh' zZnyi')

h_(YmZh-1 C, C ZnZn! Zth—l)
“\YhnZ Ch Ch ZhnZ ZhnY )

_(Yhmz Cith  Ch  ZhnZ thY)
™ =\YenZ Big ZgnY ZgNZ Brg )

Clearly, 71 and m, are well-defined permutations of X (this depends, in part, on our
choice of sets and their cardinals). Now Y7, N Z = Z N Yh~!, which has cardinal less
than m by supposition, so m; € H(Y). Also, Ym, N Z =, so m, € H(Y). Moreover,
g = mhm, provided we define m, as follows. If, for example, x € By, then m, maps
Chto B;g via xm h — xg, and likewise for each set in the first row of ;.

Case 2. Suppose that [ZNYg™!|<m and |ZN Yh~'| = m. Then |Y N Yg~'| = m and
|ZNZg™'| = n, but now |Y N Yh~!| and |Z N Zh~!| may be unequal and less than m and
n, respectively. In fact, this case is more complicated than the others. Clearly, if m < n,
then |Z N Zh™'| = n. On the other hand, if m = n, then |ZNZg '\ =m > |Zn Zh™'|.

Write
YNYe ! =B, UB,, Bi| = m, |B| = Y N YR,
ZNnZg = UG, ICil = m, |Gl =1ZnZh™",
ZNYh ' =E UE;, |E\|=m, |[Es| =1ZNnYg!,
YNZzh' =Dy UD,, IDi| = |Ds| = m,

=FIUF,UFs3, [|F| =|F| =m, |F3| = |E3|.
Now define 71, 12, 13 € G(X) as follows:
_(YnZg—l B B, C, Ci Zan—l)
m=\"p, D, YnYh' Znzh' E, E )
h_(02 Dy YnYh!' ZnzZn!' E E3)
“\D.h D\ YhnY  ZhnZ  E\h Esh)
_(Dzh Dih YhnyY ZhnNZ Eh E3/’l)
m=\F, zavw' Yovh! zZnzk' F, F)
h_(F2 ZnYh' YnYR' Znzh' F F3)
“\Fh ZhnY  YhnY ZhnZ Fih Fsh)

_(th ZhnNY YhNY ZhNnZ Fh F3h)
" \gnz Big  Bg Cg Cig zgny/

Clearly, 71,1, and 73 are well-defined permutations of X. Note that Y7; N Z = 0, so
m € H(Y). Also, E1h C Y and F; C Y (and likewise for E3h and F3),so Yo NZ =0
and 7, € H(Y). In addition, F;h C Z and Bjg C Y fori = 1,2,3 and j = 1, 2. Therefore,
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Y3 N Z = 0 and 3 € H(Y). Furthermore, by defining 75 in a suitable manner, we have
g = mihmyhms.

Case 3. Suppose that |Z N Yg~!| =mand |Z N YA~!| < m. In this event, |Y N YA~!| =m
and |ZN Zh™'| = n, whereas |ZNZg~'| and |Y N Yg~!| are unknown. As before, if
m < n,then |ZNZg ' =n;if m=n, then |ZNZh™'| =m > |Z N Zg™"|. Write

ZNnYg ' =BiUB,UBs, |Bil =Bl =m, |Bs|=1ZNYh|,

YNZh' =C UG, ICil=m, |Col =Y nYg |,

ZNnZh ' =D, U D, Dyl =m, |Dy| =1ZnZg™\.

Now define 7y, 1, € G(X) as follows:
i (YmZg—l YnYyg! 3 B, ZnZg! B; )
1 = 2

C C, Ynyn! D, D, ZNnynt!

h_(cl C, YnYn' D, D Zth—l)
“\Cih Ch  YhnY Dh Dih ZhOY )

_( Cih Coh YhnY D>h Dih ZhﬂY)

=\venzZ YenY Big Bwg ZsNZ Bsg

Clearly, m; and m, are permutations of X. Also, YmiNZ=0=YmNZ, so
ny,mr € H(Y). As before, g = m hmy if , is defined suitably.

Case 4. Suppose that |ZNYg™'|=m and |ZN Yh~!| = m. In this case, each of the
cardinals |Y N Yg~!|,|1Z N Zg~'| and |Y N Yh~'|,|Z N Zh™!| is unknown. If m = n, write

ZNYg ' =B UB,UBs, Bl =YY, |Bal =1ZNZh7", |Bs| = m,
YﬂZh_l =C UCQUC3, |C1| =m, |C2| = |Ym Yg_ll, |C3| = |ZﬂZg_1|9

and define 7y, m, € G(X) as follows:

_(YmZg—l Ynyg' zZnzg! B, B, Bs )
=l g G, C; YNk zZnzw' znvyw')

h_(cl G, G YnYh!' zZnZzn! Zth—l)
“\Cth Cyh Cih YhnY ZhnNZ Zhny )

_(Clh Ch  Csh  YhnY ZhnZ thY)
=\venz YenY ZgnZ Big Bg Byg )

On the other hand, if m < n, then |Z N Zg™'| = |Z N Zh™!| = n. In this case, write

ZNYg ' =BUB,y, |Bil=m, |Bl=|Y YR,
YNZh'=C UG, [Cil=m, |G =Y NnY¥g"),
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and define 71, 1, € G(X) as follows:
B (YmZg—l Ynys!' zZnzg! B, B, )
=l g G  ZNZh' ZnYh' Ynvr')

h_(cl C ZnzZh' Znyn! Yth—l)
“\Cih Gh ZhnZ  ZhnY  YhNY )

_(Clh Ch  ZhnZ ZhnY YhmY)
m=\YenZ YenY ZgnZ Big Bg )

In both cases, 71,1 € G(X)and Ynry NZ =0 = Y, N Z. Hence, 1,1, € H(Y) and, as
before, g = myhm, for a suitably defined ;. O

We note that the « defined in (2.1) belongs to H(Y) but
a¢ HZ)={Be GX):|ZBNY]| < n},

even when n = m. Also, there are 2" subsets of X with cardinal n, and hence there are
2" partitions of X into two subsets, each with cardinal n. Consequently, there are at
least 2" distinct nongroup subsemigroups of G(X) that are maximal.

Hotzel’s claim follows easily from Proposition 2.1.

THEOREM 2.2. Let A be a subset of X. Then the set
H(A) = {r e GX) : |Ar \ A| < |Al|}

is a maximal subsemigroup of G(X) if and only if |A| = 1 or 8y < |A| < |X \ Al

PROOF. First, suppose that |A| = m for some m € N \ {1}, and write A ={a;, ay, . . ., a,}.
Let X\ A = {x1,x2,..., %, U{y;}, with [I| = n > 8y > m, and define o, 8 € G(X) by

_ (a1 a ... A, X X2 ... Xy y,-)

ay X2 ... Xp X\ ay ... Gy Vil

B = (a1 a ... QGu X X3 ... Xp yi)
X1 dy ... Gy ap X2 ... Xy Vi

It is easy to verify that |Aw \ A|=m —1 and |AB\ A| = 1, and hence «,8 € H(A).
But |A(efB) \ Al = m, and so af8 ¢ H(A). Therefore, H(A) is not a semigroup when
2 < JA] < Np.

On the other hand, if A is infinite but |[A| > |[X \ A|, then |A| = |X|. Given that
meGX), Ar\A C X\ A. Therefore, |[Anr\ Al <|X\ A| <|A], and so H(A) = G(X).
Thus, we have just proved that |[A| = 1 or 8y < |A| < |X \ A] when H(A) is a maximal
subsemigroup of G(X).

Conversely, assume that |A| = 1 and write A = {a}. Clearly,

HA) ={reGX) :An\A =0} = {mr e GX) : ar = a}.
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It is not difficult to see that H(A) is a subsemigroup of G(X). In fact, it is a subgroup
of G(X). Next, we prove that H(A) is a maximal subsemigroup. To do this, we let
he G(X)\ HA) and we show that g € (H(A), h) for every g € G(X) \ H(A). Since
h,g ¢ H(A), it follows that ah = b and ag = ¢ for some b, ¢ € X \ {a}. Also, there exist
d,e € X\ {a} such that dh = a and eg = a. Write X = {a, e} UY = {a,d} U Z and define

my, my in G(X) by
_ (a e Y) _ (a b Zh)
Mm=a d z) ™7\ ¢ Y/

Clearly, 7y, m, € H(A) and g = 7y hm, if 7 is suitably defined. Thus, H(A) is a maximal
subsemigroup of G(X) if |A] = 1. By Proposition 2.1, this is also true if 8y < |A| <
X\ Al O

3. An isomorphism problem

In [9], the authors proved that the Baer—Levi semigroup BL(p,q) of type (p,q)
defined on an infinite set is never isomorphic to its linear counterpart GS(im, n) defined
on an infinite-dimensional vector space (for the definitions, see [9]). This is surprising
since BL(p,q) and GS(m,n) have many algebraic properties in common. Likewise,
in [10], the same authors showed that the symmetric inverse semigroup /(X) defined
on an arbitrary set is almost never isomorphic to the analogous semigroup /(V) defined
on an arbitrary vector space V over a field F. In Section 2, we provided a family
of nongroup maximal subsemigroups of G(X). Before we do the same for G(V) in
Section 4, we observe that, although G(X) and G(V) are similar in character, these
groups are almost never isomorphic. In fact, it is well known that the centre of G(X)
is {idx} and the centre of G(V) is {kidy : k € F'\ {0}}. Thus, G(X) and G(V) are never
isomorphic if [F| > 2.

THEOREM 3.1. Any semigroup S can be embedded in T(V), the semigroup of all linear
transformations of some vector space V with dimension |S|, if S contains an identity (or
IS| + 1 if S does not contain an identity).

PROOF. Write S = {a;}. Let F be any field and let F; be a copy of F for each i € I. As
in [6, page 182, Remark (c)], we let V be the vector space ) F; over F' whose basis
can be identified in a natural way with {a;}: that is, ) F; is the set of all (#;);e;, where
r; € F; and at most finitely many r; are nonzero.

Foreachx € S, let p, : S' — S', a; — a;x, be a mapping of the basis {g;} into itself
(note that p, may not be injective). Hence, p, can be extended by linearity to an element
of T(V) that we also denote by p,. Clearly, for each x,y € S, p,, and p, o p, agree on
the basis {a;}, and hence they agree on all of V. That is, the mapping p : S — T(V),
X — Py, is a homomorphism. Moreover, since 1 € {a;}, px = p, implies that x = y, so p
is injective and the result follows. |

It is well known that, if |X| = m > Ny, then |G(X)| = 2 (compare [9, page 479]). To
determine the cardinal of G(V) when dim V = n > N, we first recall [7, Volume II,
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page 245]: if V is a vector space over a field F and dim V = n > 8y, then |V| = n X |F|.
From this, we deduce (as in [9, page 480]) that |T(V)| = |V|" and thus

2" if |[F| < n,

(V)| =
v {IFI” if |[F| > n.

LEMMA 3.2. Ifdim V = n > N, then the cardinal of G(V) is |V|".

PROOF. Suppose that {a;} is a basis for V and |F| > 3. In this case, if k; € F'\ {0, 1} for
each i, then {k;a;} is a basis for V that differs from {a;}. Now each bijection k;a; — a;
extends by linearity to some m; € G(V), and 7y, # m for k # k’. Note that there are |F|"
bases for V of the form {k;a;}. Since |G(A)| = 2" for each basis A of V,

IGV)I = 2" |F|" = (n.|FI)" = [VI".

But |V|" = |T(V)| = |G(V)|, and equality follows. Now suppose that |F| = 2. For each
fixed iy € I, write I’ = I \ {ip} and choose jo € I’. Then {g; : i € I'} U{aj, + aj;,} is a basis
for V and so the number of bases for V is at least n. Hence,

IG(V)| = n2" = (n2)" =|V[",
and thus we also have equality in the case |F| = 2. ]

In passing, we observe that, if [F| = 2 and 2" # 2", where m,n > Ny as above, then
G(X) is not isomorphic to G(V).

4. General linear group

In Section 2, we provided a family of nongroup maximal subsemigroups of the
symmetric group G(X) on an infinite set X. Here, we do the same for G(V), the general
linear group on an infinite-dimensional vector space V. When « € G(V), we take the
notation displayed at the start of Section 2 to mean that « is the extension by linearity
to the whole of V of a bijection between bases {a;} and {x;} for V. The subspace U of
V generated by a linearly independent subset {u;} of V is denoted by (u;), and we write
dim U = |I|. Observe that, given that € G(V) and U < V,

U = (u;) ®<u;y if and only if Ua = (u;a) ® (uj).

Our next result is the linear analogue of Proposition 2.1. In the set case, the
complement of Y in X is unique and this makes the definition of appropriate mappings
in G(X) and the proof of maximality simpler. But the problem here is that, given a
subspace W of V, we may not fix a complementary subspace U of W in V and define
all linear mappings in G(V) necessary for the proof of our result by considering the
images of W and of the fixed U. The concept of quotient space plays an important role,
since it simplifies the task, given all possible choices of complementary subspaces. In
fact, we are mainly concerned with codimensions of subspaces in a vector space, and
we know that codim W = dim V/W.
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PROPOSITION 4.1. Let W be a subspace of V with Xy < dim W = m < codim W. If
HW) ={a € G(V) : dim Wa/(Wa N W) < m},
then H(W) is a maximal subsemigroup of G(V) that is not a group.

PROOF. Suppose that @,8 € H(W) and let Wa N'W = {g;). Write Wa = (a;) ® (b)),
where |J| = dim Wa/(Wa N W) < m. Since a € G(V), there exist unique w;, w; in
W such that a; = w;a and b; = wja for every i and every j. It is not difficult to see
that W = (w;) ® (w;). On the other hand, (a;) € W and we may write W = (a;) © {(a).
Moreover, {a;} U {ac} U {b;} is a linearly independent subset of V and

V = {(a) ®{ae) ® (b)) & (by),

where T may be empty. Also, if v¢, v, € V are such that v, = a; and v, = b,, for each
¢ and each 7, then V = (w;) ® (w;) ® (v¢) @ (v;). Note that

_(wi W Ve v
@ (ai b; ae b,)‘
Write {(a;5) "W ={c,) and (a;8) = {c,) ®{cs). Similarly, let (b;8) " W = (d,) and
(bjB) = (d,) ® (d,). Then

WB = (aiB) ® (aiB) = (cr) & {cs) © (arB)

and

Wap = (ai) ® (bjB) = (c) & (cs) ® (dx) ® (dy).

Since {(c¢,) ® (d,) C W, we have dim WaB/(WaB N W) < |S| + |Y|. But we also have
|[J| = dim Wa/(Wa N W) < mand |Y| < |J]. Also,

S| = dim {a;8)/((a;B) N W) < dim WB/(WB N W) < m.

Thus, |S| + |Y| < m +m = m, and o8 € H(W).
Now write W=(wi) ® (w;)=(v;) ®(u;) and V=W & (a;) ®(a;) =W & (by) ® (b;),
where |K| < |[J| = m < n =|I| = codim W. Define @ € G(V) by

W W a; a;
@= (bk V; Ltj' bl)
Clearly, Wa = (by) @ (v;) and so dim Wa/(Wa N W) = |K| < m. Thus, @ € H(W). But
Wa™' = (w;) ®{(a;), and hence dim Wa™'/(Wa™' " W) =|J| =m and o' ¢ H(W).
In other words, we have just shown that H(W) is a subsemigroup of G(V) that is not a
group.

To show that H(W) is maximal, we let 4 € G(V) \ H(W) and we show that, for
every g € G(V)\ H(W), we have g € (H(W), h). Given that h,g € G(V) \ HW), we
have dim Wh/(Wh N W) > m and dim Wg/(Wg N W) > m. But dim Wh = dim Wg =
dim W = m, since h, g € G(V). Therefore,

dim Wh/(Whn W) = dim Wg/(Wg N W) = m.
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Write Wg™! N W = (a;g”!) and Wg™! = (a;g”") ® (beg™"). Then W = (a;) ® (by).
Also, we may write W = (a;g")® (ujg‘l) and V ={(aig")® (ujg_l) ®bgHe
(urg™"y. Clearly, |L| + |K| = codim W and |I| + |J| = |I| + |L| = m. Since W = {a;) ® (b;)
and Wg = ((aig™")g) @ ((uig™")g) = (ai) ® (u)),

m = dim Wg/(WgN W) < |J| < dim Wg = m,

and hence |J| = m.
Proceeding similarly, write Wh™'nW = (c,,h‘l), Wh! = (cph_l) ® (dqh‘1> and
W = (c,h"") @ (v,h™!). Then W = (c,) @ (d,) and we may write

V=A(c,h Yo h Yo dn "y e ().

As before, we may conclude that |P| + |Q| = |P| + |R| = m, |Q| + |S| = codim W and
|R| = m.

Case 1. Suppose that dim Wh™!/(Wh™' 0N W) < m and dim Wg~!/(Wg~!' N W) < m.
Then |L| = dim Wg™'/(Wg™! n W) < m < codim W, so |K|=codimW and |I| = m.
Since |J| = |I|, we may write {u;g”"} as {u;g'}.

Analogously, |Q| <m = |P|=|R| and |S| = codim W. Therefore, we may write
{cph™Y, {v,h™ '} and {vsh™'} as {c;h™'), {(vih ™'} and {vih™!), respectively. Since |Q] < 1],
IL| < |I| and |[I| = m = Ny, we may write

(aig™y = wig Yo w,g™, (ch™y =i e ).

Now define 7y, m, in G(V) by

-1 o=l po! -1 -1
m:(u,g wig 8 W& W8 ) .

(Vi Yi Yo Vi dq)
vih™t oyt oyt vkt dgh! :

ui wi br w wy

Clearly, g = m1hmy. It is not difficult to see that Wry = (vh™') @ (y;h ™'y @ (d,h7").
But (vA™Y® (y;h~'Y C W, and so dim Wr,/(Wr; N W) <|Q| <m. On the other
hand, Wry = (w;) ® (be) ®{(wy) € W, and so dim Wrny/(Wr, N W) =0 < m. Thus,
m, T € HW).

Case 2. Suppose that dim Wh™!/(Wh™' N W) = m and dim Wg~'/(Wg™' n W) < m.
Then |Q| = m, |L| < m, and this inequality implies that |/| = m < codim W = |K|, but
|P| is unknown (at most m). Also, |Q| + |S| = |I| + |S| = codim W and we may write
{ujg‘l}, {v,h~'} and {dqh‘l} as {u;g™ "}, {vih™'} and {d;h"}, respectively. Also, let

(aig™) = (wig™H @ (wpg ™),

g™y = igH @ (g™,

(dih™"y = ™"y @ (xeh™"),

W™y = (@Gh Y ey = ChT Y e h Y e (g hTh,

https://doi.org/10.1017/5S0004972723001375 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972723001375

[11] Infinite symmetric groups 11

and define 7y, my, 3 in G(V) by

i :(uig‘l wig™h wpg™h ygTh g™ bcg‘l)
! Z;‘h_l zih™! cph_l veh ' xihl xeh7)
_( Z? Zi Cp Vs Xi Xe )
S e N N I S/

7 ’ 17
3 = (Zi di ¢, vy Z 7 )
up wi Wp ys i be

T

Clearly, g = m1hmyhms. Also,
Wry = (Zih™ Y & (zh™ ) @ (cph™"),
Wy = (c,h Y@ (Zh™ Y@ &/ h,
Wrs = (w;) & (wp),
and so, fori = 1,2,3, Wr; € W and dim Wr;/(Wn; N W) = 0 < m, that is, m; € H(W).

Case 3. Suppose that dim Wh™'/(Wh™' " W) < m and dim Wg~!/(Wg™' N W) = m.
In this event, |I| <m = |J| = |L| £ codim W = |L| + |K|. On the other hand, |Q| < m =
|P| = |R| < codim W = |S]. Thus, we may write {b;g"'}, {c,h™'} and {v,h™'} as {bjg~"},
{c;h™"} and {v;h™'}, respectively. Also, write
(big™y = (wig™Y e (g™ Y @ (weg ™),
Wiy = oY @ (uh ",
(vh™) = (k™Y @ (yeh™),
and define 7y, m, in G(V) by
. (ujg‘l aig™ wig™ zg™ wg™! qu_l)
P \ght ot gt oyt ekt dptt)
My = (Xj Xi Cj yj Yk dq )
u a; wj Zj Uy Wg
Clearly, g = mhm,. Also,
Wry = (gh™hy @ (uhh,
Wy = (w;j) & (wy),
and hence dim Wa/(Wr N W) =dim Wn,/(Wra, N W) =0 < m. In other words,
w1, € HW).

Case 4. Suppose that dim Wh™'/(Wh™' " W) = m and dim Wg~!/(Wg™' n W) = m.
Then |[|<m=|Ll=J|<|L|+|K|=codimW and |[P|<m=|0|=|R|<|Q|+]|S|=
codim W. Thus, we may write {b;g™'}, {d,h™'} and {v,h"'} as {b;g™'}, {d;h~"} and
{v;h™ "'}, respectively.

If m < codim W, then |K| = codim W = |S|. Write {v;h~'} as {vih~!} and

(hig™"y =wig e w,g™"), kY= ke (k).

https://doi.org/10.1017/5S0004972723001375 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972723001375

12 S. Mendes-Gongalves and R. P. Sullivan [12]

Now define 7y, in G(V) by

- :(ujg_l a,'g_1 ukg_1 wpg_l ng_l)
P\t kTt vkt bt antt)

ﬂzz(xj Xi Ve ¢ dj)
u a; U wp Wwj

If m = codim W, then |K| < m and |S| < m. Write
(big™y = wpg Y@ (wg™ Y@ (wig™,
Wih™y = h™Y e ™) @ (™",
and define 7y, 7, in G(V) by
o (ujg" aig” wg wygT wg™! wjg’l)
U \ght ot owht bt vkt dihtt)

ﬂz_(xj X Xk Cp Vg dj)
uj a; up wWp Wws Wj.

It is easy to see that, in both cases, Wrry, Wnr, € W, and so 7y, m, € H(W). Moreover,
g = mhm;. O

As for the set case, it is not difficult to see that H(W) is a nongroup maximal
subsemigroup of G(V) if and only if 8y < dim W < codim W. In fact, as we prove
in our next result, the linear version of Hotzel’s claim holds.

THEOREM 4.2. Let W be a subspace of V. Then the set
HW) ={ne G(V) :dim Wrn/(Wnrn W) <dim W}

is a maximal subsemigroup of G(V) if and only if dim W =1 or 8y < dim W <
codim W.

PROOF. By Proposition 4.1, if 8y < dim W < codim W, then H(W) is a maximal
subsemigroup of G(V). Now assume that dim W =1 and let W = (w), with w # 0.
Since dim Wr =1 for each 7 € G(V), it follows that dim Wr/(Wx N W) < 1 if and
only if Wr = W, and hence

HW) ={n e G(V) : wr = kn for some k € F \ {0}}.

It is easy to see that H(W) is a subsemigroup of G(V) that is a group. Given h, g €
G(V)\H(W),

WhAW = {0} = Wgn W.

Therefore, there exist nonzero u,v,a, b ¢ (w) such that wh = u, wg = v, ah = w and
bg =w. Write V = (w) & (a) ® (a;) = (w) ® (b) ® (b;), and define |, 1, € G(V) by

_(w b bi) _(w u aih)
=\ a a;) =\ oy big)
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Clearly, m|, 7, € H(W), since wr; = w for i = 1,2. Also,

w b b,‘
)=+

ﬂ]hﬂ'z:(v W big

Thus, if dim W = 1, then H(W) is a maximal subsemigroup of G(V).

Conversely, suppose thatdim W = m withm € N\ {1}, and write W = (w, ..., wy).
Since V is infinite-dimensional, we may write V = (W, ..., Wy,) ® (uy, ..., Un) ® (v;),
where |I| = dim V. Now define a, 8 € G(V) by

(w1 Wy .. Wy UL Uy ... Uy v,-)

a =

Wi Uz ... Uy UL W2 ... W, Vi)

B= (w1 Wy ... Wy UL Uy ... Uy vi)
Uy Wy ... Wy Wi Uy ... Uy Vi)

Clearly, dim Wa/(Wa N W) =dim u,...,u,) =m—1 and dim WB/(WEN W) =
dim{u;) =1, so a,8 € H(W). But

aﬂ—(wl Wy ... Wy UL Uy ... Uy v,-)
Uy Uy ... Uy Wi Wr ... w, Vi)

and hence dim WaB/(WaB N W) = dim(uy, uy, ..., u,) = m. Therefore, o ¢ H(W)
and H(W) is not a semigroup. Next, assume that W is infinite-dimensional and
dim W > codim W. Given that 7 € G(V), dim Wa/(Wa N W) < codim W < dim W.
Thus, H(W) = G(V). In other words, we have just proved that H(W) is not a
maximal subsemigroup of G(V) when dim W € N\ {1} or W is infinite-dimensional
but dim W > codim W. ]
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