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A Homotopy of Quiver Morphisms with
Applications to Representations
Edgar E. Enochs and Ivo Herzog

Abstract. It is shown that a morphism of quivers having a certain path lifting property has a decomposition
that mimics the decomposition of maps of topological spaces into homotopy equivalences composed with
fibrations. Such a decomposition enables one to describe the right adjoint of the restriction of the represen-
tation functor along a morphism of quivers having this path lifting property. These right adjoint functors
are used to construct injective representations of quivers. As an application, the injective representations of
the cyclic quivers are classified when the base ring is left noetherian. In particular, the indecomposable in-
jective representations are described in terms of the injective indecomposable R-modules and the injective
indecomposable R[x, x−1]-modules.

Let Q be a quiver and R a ring. In this paper, we shall study the category (Q, R-Mod)
of representations of Q by left R-modules. As in the work of Riedtmann [7] and Bongartz
and Gabriel [1], we will be interested in representations induced by morphisms of quivers.
More precisely, we shall refine an argument of Jensen [4] to construct, using adjoint pairs
of functors, injective objects of (Q, R-Mod) with specific features. Our first result is rem-
iniscent of the decomposition theorem [8, Theorem II.8.9] for maps of topological spaces
which asserts that every continuous function is a homotopy equivalence composed with a
fibration. It relates the following two properties of quiver morphisms:

• A morphism f : Q→ Q ′ of quivers is said to have the (right) unique path lifting property
if for every vertex v of Q and path p ′ of Q ′ such that t(p ′) = f (v), there is at most one
path p of Q such that f (p) = p ′ and t(p) = v.
• A morphism f : Q → Q ′ of quivers is said to be a (right) covering if for every vertex v

of Q and path p ′ of Q ′ such that t(p ′) = f (v), there is a unique path p of Q such that
f (p) = p ′ and t(p) = v.

To state this result recall that a quiver T is called a tree if there exists a vertex v of T,
called the terminal vertex of T, with the property that for every vertex w of T, there exists a
unique path from w to v. An inclusion Q ⊂W of quivers is said to be a forest over Q if W
is gotten by amalgamating to Q some set of trees along their terminal vertices.

Theorem 2.1 A morphism f : Q→ Q ′ of quivers has the unique path lifting property if and
only if there is a forest W over Q and an extension f̄ : W → Q ′ of f which is a covering
morphism.

If R is a ring and f : Q → Q ′ is a morphism of quivers, then a restriction functor
f ∗ : (Q ′,R-Mod) → (Q,R-Mod) is induced on the respective categories of R-representa-
tions.
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Because this functor is exact, its right adjoint f∗ : (Q,R-Mod)→ (Q ′,R-Mod) preserves
injective objects. Our main result (Theorem 4.1) uses the decomposition theorem above to
explicitly describe the right adjoint f∗ for a morphism f : Q → Q ′ with the unique path
lifting property. Let Q be the cyclic quiver Ãn with n + 1 vertices v0, . . . , vn and n + 1 arrows
ai : vi → vi+1 for 0 ≤ i < n and an : vn → v0. When the ring R is left noetherian, our
methods suffice to give a complete description of the injective representations of Q over
R. To state the result we need the following notation: Given a left R[x]-module R[x]M and
an arrow a of Ãn, denote by Fa(M) the representation of that assigns to every vertex the
restricted R-module RM and where

Fa(M)(ai) =

{
x if ai = a

1M otherwise.

Theorem 6.5 Let R be a left noetherian ring. Every injective representation of Ãn over R has
a decomposition, unique up to isomorphism, of the form

⊕
a∈Ãn

Fa(Ea[x−1])⊕ Fa0 (Ē)

where each Ea is an injective left R-module and Ē is an injective left R[x, x−1]-module.

In the final section, a torsion theory is developed for the representations of a cyclic quiver
Ãn over a ring R. According to this theory, the last summand of the typical injective rep-
resentation displayed in Theorem 6.5 is torsion free, while the first n + 1 summands are
torsion. Theorem 6.5 also allows us to list (Theorem 6.6) completely and without repeti-
tion the indecomposable injective representations of Ãn over R as follows:

Torsion Given an indecomposable injective left R-module E and an arrow a of Ãn, the
representation Fa(E[x−1]) is an indecomposable injective.

Torsion free Given an indecomposable injective left R[x, x−1]-module Ē, the representa-
tion Fa0 (Ē) is an indecomposable injective.

This says that the spectrum of (Ãn, R-Mod) consists of n + 1 copies of the left spectrum
of R and one copy of the left spectrum of R[x, x−1].

1 Preliminaries

By a quiver Q we mean a directed graph. The directed edges are called arrows. We let
a : v1 → v2 indicate that a is an arrow from the vertex v1 to the vertex v2. In this case
we also write i(a) = v1 and t(a) = v2. By a path p of Q we mean a sequence an · · · a2a1

of arrows such that i(a2) = t(a1), . . . , i(an) = t(an−1). We then write i(p) = i(a1) and
t(p) = t(an). If p and q are paths of Q such that i(q) = t(p), we say qp is defined and let
qp denote the obvious path. We extend the definition of a path and allow any vertex v of
Q to be a (trivial) path with i(v) = v = t(v). If i(p) = v1, t(p) = v2 for a path p of Q,
we let pv1 = p and v2 p = p. With these conventions any quiver Q is naturally a category.
The objects are the vertices of Q and a path p is a morphism from i(p) to t(p). So if p is
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a path, p : v1 → v2 just means i(p) = v1 and t(p) = v2. A quiver is said to be discrete if it
has no arrows. Following [2] we let Ãn denote the cyclic quiver with n + 1 vertices and n + 1
arrows. A quiver T will be called a tree if T has a vertex v such that for every vertex w there
is a unique path p with p : w→ v. Such a v is unique and will be called the terminal vertex
of T. By a subtree of a quiver we mean a subquiver which is a tree. A quiver each of whose
connected components is a tree will be called a forest. If Q ⊂W and W is the amalgamation
of Q with a forest along the discrete quiver of terminal vertices of the trees of this forest, W
is said to be a forest over Q. Since a trivial quiver {v} is a tree, every quiver is a forest over
itself. If T is a tree and T ⊂ W is a forest over T, then W is a tree. If W is a forest over Q
and W ′ is a forest over W then W ′ is a forest over Q. If Q is a quiver, by the (right) path
space of Q we mean the quiver P(Q) whose vertices are the paths p of Q and whose arrows
are the pairs (pa, p) : pa → p where p is a path of Q and a an arrow of Q such that pa is
defined. It is clear then that P(Q) is a forest and that the terminal vertices of the connected
components of P(Q) are the vertices of Q. If v is a vertex of Q we let P(Q)v denote the
subtree of P(Q) containing all paths of Q with terminal vertex v. If p and q are paths of Q
such that pq is defined, we extend the notation and let (pq, p) : pq → p denote a path of
P(Q). Note that there is also an obvious definition of a left path space of Q. However, we
will not use this quiver and so say path space instead of right path space. We will observe a
similar convention with other terminology in this paper. For example, if Q is a quiver and R
a ring then the path ring of Q over R, denoted RQ, is the free (left) R-module with base the
paths p of Q and multiplication qp as usual if i(q) = t(p) and with qp = 0 if i(q) 6= t(p).
A morphism f : Q → Q ′ of quivers is usually defined to be a map of the respective sets of
vertices and arrows such that a : v1 → v2 implies f (a) : f (v1)→ f (v2). We deviate slightly
from this standard by allowing f (a) to be the vertex f (v) if a : v → v. For p a path of Q,
we extend the notation and define f (p) so that f is a functor between categories. Hence
if p : v1 → v2 in Q then f (p) : f (v1) → f (v2) in Q ′. If f : Q → Q ′ is a morphism and
f−1(v ′) is a discrete quiver for each vertex v ′ of Q ′, then f (a) must be an arrow of Q ′ for
each arrow a of Q. If f : Q → Q ′ is a morphism of quivers, P( f ) : P(Q) → P(Q ′) will
denote the obvious morphism of the associated path quivers. For any quiver Q there is a
unique morphism i : P(Q)→ Q which maps any vertex p of P(Q), i.e., any path p of Q, to
i(p) and which maps the arrow (pa, p) to a.

2 Factoring Morphisms of Quivers

A morphism f : Q → Q ′ of quivers is said to have the (right) unique path lifting property
if for every vertex v of Q and path p ′ of Q ′ such that t(p ′) = f (v), there is at most one
path p of Q such that f (p) = p ′ and t(p) = v (see [8, p. 68]) for the topological version
of this property). If f : Q → Q ′ has the unique path lifting property then for any arrow
a of Q, f (a) is an arrow of Q ′ (i.e., cannot be a vertex). Any embedding e : Q ⊂ Q ′ of
quivers satisfies the unique path lifting property. A morphism f : Q→ Q ′ is called a (right)
covering morphism if for every vertex v of Q and path p ′ of Q ′ such that t(p ′) = f (v), there
is a unique path p of Q such that f (p) = p ′ and t(p) = v (see [8, p. 62]).

Theorem 2.1 A morphism f : Q → Q ′ of quivers has the unique path lifting property if
and only if there is a forest W over Q and an extension f̄ : W → Q ′ of f which is a covering
morphism.
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Proof If f̄ : W → Q ′ is such an extension, then f = f̄ ◦ e where e : Q ⊂ W is the
embedding morphism. Since both e and f̄ have the unique path lifting property, so does
f . Now suppose f : Q → Q ′ has the unique path lifting property. For each vertex v of Q,
consider the unique subtree Tv of P(Q ′) whose vertices are the trivial paths f (v) and the
paths of the form a ′p ′ where a ′ is an arrow of Q ′ such that t(a ′) = f (v) and such that
there is no arrow a of Q with t(a) = v and f (a) = a ′. We will say such a path a ′p ′ is a path
that we cannot begin lifting to a path terminating at v. We amalgamate each Tv with Q by
identifying v ∈ Q with f (v) ∈ Tv. Let W be the resulting forest over Q and f̄ : W → Q ′ the
unique morphism such that f̄ |Q = f and such that f̄ |Tv agrees with i : P(Q ′)→ Q ′. Since
i
(

f (v)
)
= f (v) there is no problem with compatibility. Next we verify that the extension

f̄ : W → Q ′ is a covering. It is enough to prove that for every vertex x ∈W , the morphism
of trees

P( f̄ )|P(W )x : P(W )x → P(Q ′) f̄ (x)

is an isomorphism. But a morphism of trees is an isomorphism if it is a bijection on the
vertices. Suppose first that x ∈ Tv \ {v} for some vertex v ∈ Q. Then x = p ′ where p ′

is a path in Q ′ terminating at f (v) which cannot begin to be lifted to a path terminating
at v. We have that f̄ (x) = i(p ′). Now it is clear that the paths in Q ′ terminating at i(p ′)
are in bijective correspondence with paths of W , that is of Tv, terminating at p ′. In fact
the bijection is given by q ′ 7→ (p ′q ′, p ′). Now consider the case x = v ∈ Q. A path
p in W which terminates at v may be factored p = p1 p2 where p1 is the maximal end
segment of p still in Q. Since W is a forest over Q, p2 is a path in Ti(p1) and so is of the form(
q ′1, f i(p1)

)
where q ′1 is a path of Q ′ terminating at f i(p1) which cannot begin to be lifted

to a path terminating at i(p1). Also f̄ (p) = f̄ (p1) f̄ (p2) = f (p1)i
(

q ′1, f i(p1)
)
= f (p1)q ′1.

Let s ′ be a path in Q ′ terminating at f (v). Factor s ′ = s1s2 where s1 is the maximal end
segment of s ′ which lifts to a path p1 terminating at v, s1 = f (p1). By maximality, s2 cannot

begin to be lifted to a path terminating at i(p1). Thus s2 ∈ Ti(p1) and f̄
(

p1

(
s2, f i(p1)

))
=

f (p1)i
(

s2, f i(p1)
)
= f (p1)s2 = s showing that P( f̄ )|P(W )v is onto P(Q ′) f (v). It remains

to be shown that P( f̄ )|P(W )v is an injection, that is, that p1

(
s2, f i(p1)

)
above is the unique

lifting of s ′ to a path terminating at v. So let q be another such lifting. We have f̄ (q) = s ′

and t(q) = v. Write q = q1

(
q2, f i(q1)

)
where q1 is a maximal end segment still in Q and q2

is a path in Q ′ terminating at f i(q1) which cannot begin to be lifted to a path terminating
at i(q1). Now s ′ = f̄ (q) = f (q1)q2 = s1s2. By the definition of s1, f (q1) is an end segment
of s1 = f (p1) and by the unique path lifting property of f , q1 is an end segment of p1. Now
q2 cannot begin to be lifted so it must be that f (q1) = s1 and q2 = s2. But then q1 = p1

and so we are done.

3 Representation of Quivers

Let Q be a quiver and R a ring. Let R-Mod denote the category of left R-modules. By a
representation X of Q over R we mean a functor X : Q → R-Mod. A representation X is
specified by giving a module X(v) for each vertex v of Q and a linear map X(a) : X(v1) →
X(v2) for each arrow a : v1 → v2 of Q. If X, Y : Q → R-Mod are two representations
of Q over R, by a morphism σ : X → Y we mean a natural transformation. Such a σ is
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determined by an R-morphism σ(v) : X(v) → Y (v) for each vertex v of Q such that for
each arrow a : v1 → v2 of Q the diagram

X(v1)
X(a)
−−−−→ X(v2)yσ(v1)

yσ(v2)

Y (v1)
Y (a)
−−−−→ Y (v2)

is commutative. The representations of Q over R then form a category denoted (Q, R-Mod).
Clearly (Q, R-Mod) is an abelian category. If Q is a quiver with a finite number of vertices,
then the path ring RQ has an identity 1 = v1 + · · · + vn where v1, . . . , vn are the distinct
vertices of Q. The categories (Q, R-Mod) and RQ-Mod are in that case equivalent. In fact,
if M is a left RQ-module, construct a representation X so that X(v) = vM for any vertex v
and for any arrow a : v1 → v2, X(a) : v1M → v2M is just scalar multiplication by a. This
construction gives an equivalence. Let f : Q→ Q ′ be a morphism of quivers. Associated to
the morphism f is the restriction functor f ∗ : (Q ′,R-Mod) → (Q, R-Mod) which assigns
to an object X the composition of functors X ◦ f . Hence f ∗(X)(v) = X

(
f (v)
)

for each
vertex v of Q and f ∗(X)(a) = X

(
f (a)
)

for each arrow a of Q. The representation f ∗(X) is
called the restriction of X along f . Our concern is to describe, for certain f : Q → Q ′, the
right adjoint f∗ : (Q,R-Mod) → (Q ′,R-Mod) of the restriction functor f ∗. This means
that for every Y ∈ (Q ′,R-Mod) and X ∈ (Q,R-Mod) we have a natural isomorphism

Hom
(

f ∗(Y ),X
)
∼= Hom

(
Y, f∗(X)

)
.

Recall that if f : Q → Q ′ and g : Q ′ → Q ′′ are quiver morphisms and if f ∗ and g∗ have
right adjoints f∗ and g∗, then the right adjoint of f ∗ ◦g∗ = (g ◦ f )∗ is g∗ ◦ f∗, i.e., (g ◦ f )∗ =
g∗ ◦ f∗. We will use this observation to describe the right-adjoint of f ∗ for a morphism
f : Q → Q ′ having the unique path lifting property. Using Theorem 2.1 and its notation,
we only need find the right adjoints of g∗ for g : Q ⊂W where W is a forest over Q and of
( f̄ )∗ where f̄ : W → Q ′ is a covering morphism.

Example 3.1 Let Q be a quiver and c : Q → {v} the unique morphism from a quiver
Q to the trivial discrete quiver {v}. Then ({v},R-Mod) ∼= R-Mod, so we identify these
categories. The restriction functor

c∗ : R-Mod→ (Q,R-Mod)

is such that c∗(M) is a constant functor for every left R-module M. We have c∗(M)(v) = M
for each vertex v and c∗(M)(a) = 1M for each arrow a. By the definition of inverse limit
(see [9, p. 99]), there is a natural isomorphism

HomR(M, lim
←

X) ∼= Hom
(
c∗(M),X

)
.

Hence the right adjoint c∗ : (Q,R-Mod)→ R-Mod of c∗ is given by

c∗(X) = lim
←

X.
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Similarly, the left adjoint of c∗ is the functor X 7→ lim
→

X. If T is a tree with terminal vertex

v and if e : {v} ⊂ T is the embedding morphism, then clearly

e∗(X) = X(v) ∼= lim
→

X

for any representation X of T. But by the above, the right adjoint e∗ of e∗ is then the
restriction functor c∗ along c : T → {v}. We admit this is easy to see directly.

Now let W be a forest over Q and let e : Q ⊂W be the inclusion morphism. Considering
e as a functor, we see that its left adjoint d : W → Q is the retraction of e, i.e., d◦e = 1Q, that
collapses each amalgamated tree to its terminal vertex. The next proposition then follows
from [9, p. 112, Exercise 29].

Proposition 3.2 Let W be a forest over Q and e : Q ⊂W the inclusion morphism. The right
adjoint of the restriction functor e∗ is the restriction functor d∗ (with d as above).

This proposition implies that if X is a representation of Q over R and T is one of the
trees of W amalgamated to Q along its terminal vertex v, then e∗(X) restricted to T is the
constant representation associated with the module X(v).

4 The Right Adjoint

In order to facilitate the proof of the next theorem we recall the notion of a coordinate-wise
function: Let (Xi)i∈I and (Y j) j∈ J be indexed families of sets. A function

h :
∏
i∈I

Xi →
∏
j∈ J

Y j

is said to be coordinate-wise if there is a function c : J → I of the index sets and for each j ∈
J a function hc( j) : Xc( j) → Y j such that h

(
(xi)i∈I

)
=
(
hc( j)(xc( j))

)
j∈ J

. Such a coordinate-

wise function is denoted h =
∏

j∈ J hc( j). The following diagram is then commutative:

∏
i∈I Xi

∏
j∈ J hc( j)

−−−−−→
∏

j∈ J Y jyπ(c( j))
yπ( j)

Xc( j)
hc( j)
−−−−→ Y j

where π(v) denotes projection onto the v-component. If c is onto, then h is the unique
function for which this diagram commutes. Let c : J → I be a function of index sets. The
coordinate-wise function h =

∏
j∈ J hc( j) has the property that if g : X → Y is a function

and pi : X → Xi and q j : Y → Y j are families of functions such that the diagrams

X
g

−−−−→ Yypc( j)

yq j

Xc( j)
hc( j)
−−−−→ Y j
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commute for every j ∈ J, then, thinking of X and Y as trivial cartesian products, the
diagram

X
g

−−−−→ Yy∏ pi

y∏ q j∏
i∈I Xi

h
−−−−→

∏
j∈ J Y j

also commutes.
Let f : Q→ Q ′ be a covering morphism of quivers. For a ring R, define a functor

f∗ : (Q,R-Mod)→ (Q ′,R-Mod)

as follows (we shall verify presently that this is the adjoint of the restriction functor f ∗): Let
X ∈ (Q,R-Mod).

Vertices If v ′ ∈ Q ′ is a vertex, then

f∗(X)(v ′) :=
∏

f (v)=v ′

X(v).

If v ′ is not in the image of f , this means that f∗(X)(v ′) = 0.

Arrows If a ′ : v ′ → w ′ is an arrow of Q ′, let

f∗(X)(a ′) :
∏

f (v)=v ′

X(v)→
∏

f (w)=w ′

X(w)

be the coordinate-wise function
∏

f (w)=w ′ hc(w) where

c : {w | f (w) = w ′} → {v | f (v) = v ′}

is defined by the rule w 7→ i(a) where f (a) = a ′ and t(a) = w, and hc(w) : X
(

i(a)
)
→ X(w)

is just X(a). In short, f∗(X)(a ′) :=
∏

f (a)=a ′ X(a).

Theorem 4.1 Let f : Q → Q ′ be a covering morphism of quivers. The right adjoint of the
restriction functor f ∗ (with respect to representations over a ring R) is the functor f∗ defined
above.

Proof Given representations X of Q and Y of Q ′ we need to exhibit a natural isomorphism

Hom
(
Y, f∗(X)

)
∼= Hom

(
f ∗(Y ),X

)
.
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Let v ′ ∈ Q ′ be a vertex. We have

HomR

(
Y (v ′), f∗(X)(v ′)

)
= HomR

(
Y (v ′),

∏
f (v)=v ′

X(v)
)

[1]

=
∏

f (v)=v ′

HomR

(
Y (v ′),X(v)

)

=
∏

f (v)=v ′

HomR

(
f ∗(Y )(v),X(v)

)
.

If σ : Y → f∗(X) is a morphism (and so σ(v ′) : Y (v ′) → f∗(X)(v ′)) we may de-
fine σ̄ : f ∗(Y ) → X such that for each v with f (v) = v ′, σ̄(v) is the v-component of
σ(v ′) ∈ HomR

(
Y (v ′), f∗(X)(v ′)

)
thought of as the product above. We will verify that this

is a morphism of representations. Inversely, if τ : f ∗(Y ) → X is a morphism of represen-
tations, then for each vertex v ∈ Q, τ (v) : f ∗(Y )(v) → X(v). So we define τ̄ : Y → f∗(X)
for a vertex v ′ ∈ Q ′ as the element τ̄(v ′) =

(
τ (v)
)

f (v)=v ′
. We will also verify that this also

gives a morphism of representations. Since the operations σ 7→ σ̄ and τ 7→ τ̄ are mutual
inverses, we then will get the desired natural isomorphism. Let σ : Y → f∗(X) be a mor-
phism and let a0 : v0 → w0 be an arrow in Q. If a ′ = f (a0), v ′ = f (v0) and w ′ = f (w0),
then by hypothesis

Y (v ′)
Y (a ′)
−−−−→ Y (w ′)yσ(v ′)

yσ(w ′)

f∗(X)(v ′)
f∗(X)(a ′)
−−−−−→ f∗(X)(w ′)

(1)

is a commutative diagram. From the definitions, this is the same as

f ∗(Y )(v0)
f ∗(Y )(a0)
−−−−−→ f ∗(Y )(w0)yσ(v ′)

yσ(w ′)

∏
f (v)=v ′ X(v)

f∗(X)(a ′)
−−−−−→

∏
f (w)=w ′ X(w).

(1)

By the definition of f∗(X)(a ′) =
∏

f (a)=a ′ X(a), we have the commutativity of the diagram

∏
f (v)=v ′ X(v)

f∗(X)(a ′)
−−−−−→

∏
f (w)=w ′ X(w)yπ(v0)

yπ(w0)

X(v0)
X(a0)
−−−−→ X(w0)

(2)

Putting the diagram (1) on top of (2) gives the commutative diagram that asserts that σ̄
is a morphism. Now to prove that τ̄ as defined above is a morphism, let a ′ : v ′ → w ′ be
an arrow in Q ′. For each vertex w ∈ Q with f (w) = w ′ let aw be the unique arrow of Q
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with f (aw) = a ′ and t(aw) = w. Then a morphism τ : f ∗(Y ) → X gives a commutative
diagram

f ∗(Y )
(

i(aw)
) f ∗(Y )(aw)
−−−−−→ f ∗(Y )(w)yτ (i(aw))

yτ (w)

X
(
i(aw)

) X(aw)
−−−−→ X(w)

for every vertex w ∈ Q with f (w) = w ′. This is just the diagram

Y (v ′)
Y (a ′)
−−−−→ Y (w ′)yτ (i(aw))

yτ (w)

X
(
i(aw)

) X(aw)
−−−−→ X(w).

Now
∏

X(aw) =
∏

f (a)=a ′ X(a) has the property that the diagram

Y (v ′)
Y (a ′)
−−−−→ Y (w ′)yτ̄ (v ′)

yτ̄ (w ′)∏
f (v)=v ′ X(v)

∏
X(aw)

−−−−→
∏

f (w)=w ′ X(w)

also commutes. But that just means that τ̄ : Y → f∗(X) is a morphism of representations.

Let Q ⊂ Q ′ be a subquiver of Q ′ satisfying the condition that whenever a ′ ∈ Q ′ is an
arrow such that t(a ′) ∈ Q, then a ′ ∈ Q. The embedding morphism e : Q ⊂ Q ′ is then a
covering. If X is a representation of Q, then by the construction above f∗(X) is defined on
the vertices of Q ′ by

f∗(X)(v ′) =

{
X(v ′) if v ′ ∈ Q

0 if v ′ /∈ Q

and for arrows a ′ ∈ Q by

f∗(X)(a ′) =

{
X(a ′) if a ′ ∈ Q

0 if a ′ /∈ Q.

Thus f∗(X) is just X extended to Q ′ by 0.
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5 Injective Representations of Cyclic Quivers

Let R be a ring and f : Q → Q ′ a morphism of quivers. Then the restriction functor
f ∗ : (Q ′,R-Mod) → (Q,R-Mod) is exact. If f∗ is the right adjoint of f ∗ and X is an
injective representation of Q, the natural isomorphism

Hom
(
−, f∗(X)

)
∼= Hom

(
f ∗(−),X

)
shows that f∗(X) is an injective representation of Q ′. Let v ∈ Q be a vertex and consider the
embedding e : {v} ⊂ Q. If E is an injective left R-module (so an injective representation of
{v}) then e∗(E) is an injective representation of Q. If X is a representation of Q, then e∗(X)
is just the module X(v). We have the natural isomorphism

HomR

(
X(v), E

)
= HomR

(
e∗(X), E

)
∼= Hom

(
X, e∗(E)

)
.

From this it can be seen that as v ranges over the vertices of Q and we allow E to be any
injective left R-module (or some specified cogenerator of R-Mod) then the e∗(E) cogen-
erate (Q,R-Mod). In the next examples, recall that by Theorem 2.1, e : {v} → Q has the
factorization

Tx ē

{v}
e

−−−−→ Q

where ē is a covering and T ⊂ P(Q) is the subtree of paths terminating at v.

Examples Let Q = Ã0 be the quiver with one vertex v and one arrow a. In the factorization
above we see that T = A−∞ (i.e., T is a line, infinite to the left). The embedding e : {v} ⊂ Q
decomposes according to Theorem 2.1 as a composition e = ēe ′ where e ′ : {v} → T and
ē : T → Ã0. Let E be an injective left R-module, so a representation of v. By Example 3.1,
(e ′)∗(E) is the constant representation on A−∞ determined by E. But then by Theorem 4.1,
e∗(E) = (ē)∗

(
(e ′)∗(E)

)
is such that e∗(E)(v) = E × E × E × · · · and e∗(E)(a) is just the

shift operator, namely

(z0, z1, z2, . . . ) 7→ (z1, z2, z3, . . . ).

This suggests we use Northcott’s notation [6] and denote E × E × E × · · · by E[[x−1]] (so
(z0, z1, z2, . . . ) corresponds to z0 + z1x−1 + z2x−2 + · · · ) and then the shift operator above
is denoted by x. So

x(z0 + z1x−1 + · · · ) = z1 + z2x−1 + · · · .

Since RÃ0 is just the polynomial ring R[a] (or changing notation, R[x]), we recover North-
cott’s observation in [6] that E[[x−1]] is an injective R[x]-module when E is an injective
left R-module. In fact when R is left noetherian, E[x−1] ⊂ E[[x−1]] is also an injective left
R-module.
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Let us now consider the cyclic quiver Ã1, represented as • � • with vertices v0 and v1.
According to Theorem 2.1, the embedding e0 : {v0} ⊂ Ã1 decomposes as {v0} → A−∞ →
Ã1 with the obvious maps. If a left R-module E is considered as a representation of {v0},
then (e0)∗(E) is the representation

E × E × · · ·� E × E × E × · · ·

where the right arrow denotes the identity map and the left arrow the shift operator. In the
notation above, this representation can be written

E[[x−1]]
id
�

x
E[[x−1]].

If E is an injective left R-module, then each of these is an injective representation of Ã1 over
R. Recall from [2] that the cyclic quiver Ãn is the quiver with n + 1 vertices v0, . . . , vn and
n + 1 arrows ai : vi → vi+1 for 0 ≤ i < n and an : vn → v0. If R[x]M is a left R[x]-module
and a an arrow of Ãn, denote by Fa(M) the representation of Ãn over R that assigns to every
vertex the restricted R-module RM and where

Fa(M)(ai) =

{
x if ai = a

1M otherwise.

As above, the representation Fa(E[[x−1]]) is injective for every arrow of Ãn. We want to
argue that if R is left noetherian and E is an injective left R-module, then for every arrow a
of Ãn the representation Fa(E[x−1]) is also an injective representation of Ãn over R. For this
we need the next result which was observed by Matlis [5] when the f below is given by scalar
multiplication. The more general version we need was noted in [3, p. 198, Proposition 4.2].
We include a proof here for completeness.

Lemma 5.1 Let R be a left noetherian ring and M ⊂ E(M) the injective envelope of a left
R-module M. If φ : E(M) → E(M) is an R-morphism such that φ(M) = 0, then φ is locally
nilpotent on E(M), i.e., for any x ∈ E(M), φn(x) = 0 for some n ≥ 1.

Proof As R is left noetherian, E(M⊕M⊕· · · ) = E(M)⊕E(M)⊕· · · . The endomorphism
of E(M)⊕ E(M)⊕ · · · defined by

(x1, x2, . . . ) 7→
(
x1, x2 − φ(x1), x3 − φ(x2), . . .

)
is the identity on M⊕M⊕· · · and is therefore surjective. So if x ∈ E(M) and (x1, x2, x3, . . . )
is mapped onto (x, 0, 0, . . . ), it is easy to see that x1 = x, x2 = φ(x), x3 = φ

2(x), . . . . Since
the envelope is a direct sum, eventually xn+1 = 0 and we get φn(x) = 0.

Any representation X of Ã1, say M0

φ

�
ψ

M1, has an obvious turning endomorphism,
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given by the commutative diagram

M0

φ

�
ψ

M1

ψ◦φ
y y φ◦ψ

M0

φ

�
ψ

M1

We shall denote this endomorphism by TX . For a representation X of Ãnover R, the turning
endomorphism TX : X → X is defined by

TX(vi) := X(ai−1) · · ·X(a0)X(an) · · ·X(ai+1)X(ai).

Proposition 5.2 Let R be a left noetherian ring and E an injective left R-module. For every
arrow a of Ãn, the representation Fa(E[x−1]) is injective.

Proof We shall freely use the equivalence of the category of left RÃn-modules and of
(Ãn,R-Mod). This means that every representation of Ãn will be considered as a left module
over RÃn. Note that RÃn is left noetherian. Consider the subrepresentation Fa(E) of the in-
jective representation Fa(E[[x−1]]). The turning endomorphism of Fa(E[[x−1]]) is clearly
0 on Fa(E). Now Fa(E[[x−1]]) contains an injective envelope of Fa(E) and, by the lemma
above, the turning endomorphism is locally nilpotent on this envelope. This means the
injective envelope is contained in Fa(E[x−1]). But (as a module), Fa(E[x−1]) is an essential
extension of Fa(E), and hence Fa(E[x−1]) is the injective envelope.

Given a vertex v ∈ Ãn and an R-module M, denote by Cv(M) the representation defined
by

Cv(M)(vi) =

{
M if vi = v

0 otherwise.

If E = E(M) is the injective envelope of M and a is the arrow with initial vertex v, then
Cv(M) ⊆ Fa(E) ⊆ Fa(E[x−1]) is an essential extension of representations and hence the in-
jective envelope of Cv(M). Because the representation Cv(E) is clearly uniform, its injective
envelope Fa(E[x−1]) is indecomposable. This proves the following.

Proposition 5.3 Let R be a left noetherian ring and E an indecomposable injective left R-
module. For every arrow a of Ãn, the injective representation Fa(E[x−1]) is indecomposable.

Suppose that n ≥ 1 and that u
a
−→ v

b
−→ w is a subquiver of Ãn where possibly u = w.

For an R-module M, we have the equation

Fb(M[x−1])/Cv(M) = Fa(M[x−1]).

If M = E is an injective indecomposable R-module, this shows there is a nontrivial mor-
phism η : Fb(E[x−1]) → Fa(E[x−1]) though the two indecomposable injective representa-
tions are not isomorphic.
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6 The Torsion Free Case

We now classify the remaining indecomposable injective representations of Ãn. We say
that the turning endomorphism TX of a representation X is locally nilpotent on X if when
we view X as an RÃn-module, the corresponding endomorphism of the module is locally
nilpotent. In this case, we say that X is a torsion representation. If a representation Y has
no non-trivial torsion subrepresentations, we say that Y is torsion free. Given a represen-
tation X of Ãn over R define C(X) to be the maximal subrepresentation of X of the form⊕

v∈Ãn
Cv(Mv). Then Y is torsion free iff C(Y ) = 0 and X is torsion iff it is an essential

extension of C(X). Let X be the class of torsion representations and Y the torsion free
representations of Ãn over R. For the terminology in the next result see [9, Chapter VI].

Proposition 6.1 If R is left noetherian, then (X,Y) is a hereditary and stable torsion theory
on the category of representations of Ãn over R.

Proof It is straight-forward to see that (X,Y) is a hereditary torsion theory. The theory is
called stable if the injective envelope of a torsion X is torsion. But if X 6= 0 is torsion, then
it is an essential extension of a subrepresentation of the form

⊕
v∈Ãn

Cv(Mv).

The injective envelope of X is then the direct sum of the envelopes of the respective sum-
mands Cv(Mv): ⊕

a∈Ãn

Fa

(
E(Mi(a))[x−1]

)
.

We have already noted that this representation is torsion.

The proof of Proposition 6.1 also shows the following.

Proposition 6.2 Let R be a left noetherian ring. Every injective torsion representation of Ãn

over R has the form ⊕
a∈Ãn

Fa(Ea[x−1])

where each Ea is an injective left R-module.

Proposition 6.3 Let R be a ring and Z is an injective representation of Ãn. For every arrow
a ∈ Ãn, the R-morphism Z(a) is surjective.

Proof We noted at the beginning of the previous section how the category of representa-
tions is cogenerated by objects of the form Fa

(
E
[
[x−1]

])
, each of which has the desired

property. Since the property is preserved when taking products or summands, the result
follows.
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Theorem 6.4 Let R be a left noetherian ring and a an arrow of the cyclic quiver Ãn. Every
torsion-free injective representation of Ãn over R has the form Fa(Ē) where Ē is an injective
R[x, x−1]-module. Conversely, if Ē is an injective R[x, x−1]-module, then Fa(Ē) is an injective
representation of Ãn over R. The injective representation Fa(Ē) is indecomposable if and only
if Ē is an indecomposable injective left R[x, x−1]-module.

Proof Let Z be an indecomposable, injective, torsion-free representation of Ãn. By Propo-
sition 6.3, Z(b) is surjective for every arrow b of Ãn. Since Z is torsion-free, all the R-
morphisms Z(b) are in fact isomorphisms and there is no loss of generality in assuming
that for all vertices v ∈ Ãn, Z(v) = Ē for some R-module Ē and that Z(b) is the identity
map for all arrows b 6= a of Ãn. The action of x := Z(a) on Ē gives it the structure of
an R[x]-module. In fact, as Z is torsion free, Ē has the structure of an R[x, x−1]-module
and as such, we see that Z ∼= Fa(Ē). Let us note that Ē is an injective R[x, x−1]-module.
For if Ē is a submodule of the R[x, x−1]-module N , then Fa(Ē) ⊂ Fa(N) is an extension
of representations. As Z = Fa(Ē) is injective, it is a summand of Fa(N) and hence Ē is a
summand of N . Conversely, let Ē be an injective R[x, x−1]-module. The injective envelope
of Fa(Ē) is torsion free so, without loss of generality, has the form Fa(Ē) ⊂ Fa(N) where
x := Fa(N)(a) : N → N is an isomorphism. In this way N becomes an R[x, x−1]-module.
As an R[x, x−1]-module Ē ⊂ N is a retract of N . Thus Fa(Ē) is a summand of Fa(N) and
is therefore injective. If Ē is furthermore an indecomposable R[x, x−1]-module, then it is
obvious that Fa(Ē) is also indecomposable. The converse follows from the observation that
Fa(M ⊕ N) = Fa(M)⊕ Fa(N).

For example, if R = C, the field of complex numbers, then there are n + 1 torsion
indecomposable injective representations of Ãn over C, arising from the injective indecom-
posable C. If a0 : v0 → v1 (where possibly 1 = 0) is the “first” arrow of Ãn, the torsion
free indecomposable injectives correspond to Fa0 (C[(x − c)−1] for each nonzero c ∈ C,
and there is a generic one Fa0

(
C(x)
)

. Let us summarize the results of this and the previous
section.

Theorem 6.5 Let R be a left noetherian ring and Ãn the cyclic quiver on n + 1 vertices
v0, . . . , vn and n + 1 arrows a0, . . . , an with i(a j) = v j . Every injective representation X of Ãn

over R has a decomposition, unique up to isomorphism, of the form

X ∼=
(⊕

a∈Ãn

Fa(Ea[x−1])
)
⊕ Fa0 (Ē)

where each Ea is an injective left R-module and Ē is an injective left R[x, x−1]-module.

Proof It remains to prove the uniqueness of the decomposition. The injective R-modules
Ea may be recovered (up to isomorphism) from the equation

C(X) =
⊕
a∈Ãn

Ci(a)(Ea)

and because the torsion representation of an injective splits, the R[x, x−1]-module Ē is also
unique up to isomorphism.
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Theorem 6.6 Let R be a left noetherian ring. The following is a complete list, without repe-
tition, of the indecomposable injective representations of Ãn over R:

1. Fa(Ea[x−1]) where a is an arrow of Ãn and Ea is an indecomposable injective left R-module.
2. Fa0 (Ē) where Ē is an indecomposable injective left R[x, x−1]-module.

Theorem 6.6 asserts that the spectrum of

(Ãn,R-Mod) ∼= RÃn-Mod

consists of n + 1 copies of the left spectrum of R (corresponding to the indecomposable
injective torsion representations) and one copy of the left spectrum of R[x, x−1].
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