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Abstract

We consider the phase-locked solutions of the differential equation governing pla-
nar motion of a weakly damped pendulum driven by horizontal, periodic forcing
of the pivot with maximum acceleration eg and dimensionless frequency w . An-
alytical solutions for symmetric oscillations at smaller values of e are continued
into numerical solutions at larger values of e . A wide range of stable oscillatory
solutions is described, including motion that is symmetric or asymmetric, down-
ward or inverted, and at periods equal to the forcing period T = 2n/a> or integral
multiples thereof. Stable running oscillations with mean angular velocity pco/q ,
where p and q are integers, are investigated also. Stability boundaries are calcu-
lated for swinging oscillations of period 7", 27" and 47"; 37" and 67"; and for
running oscillations with mean angular velocity to. The period-doubling cascades
typically culminate in nearly periodic motion followed by chaotic motion or some
independent periodic motion.

1. Introduction

We consider a pendulum that is forced by a horizontal acceleration eg sin cot
of its pivot. The equation of motion is

d+ 236 +sind = ecosdsincot, (1.1)

where 6 is the angular displacement from the downward vertical, 6 is the
damping ratio (actual/critical), co is the ratio of the forcing frequency to the
natural frequency, and the unit of time is the inverse natural frequency. We
assume 8 < 1, e = O{\) and co — 0(1) in the analytical formulation based
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24 Peter J. Bryant and John W. Miles [2]

on a sinusoidal approximation for 6, and set 8 — 1/8 in the numerical

calculations. Resonance curves are denned as plots of {Ey vs co, where

£ = < ? 2 / 2 + l - c o s 0 (1.2)

is a measure of the energy of oscillation. This investigation follows one
into the phase-locked solutions of a weakly damped pendulum forced by a
periodic torque [1], and precedes another into forcing by vertical periodic
acceleration of the pendulum pivot [2].

The ^-periodic, symmetric solutions of (1.1) may be approximated by

0 = a sin(cof -<£), (1.3)

where the amplitude a = a[a>; 8, e) and the phase (j> — (f>(co; S, e) are
to be determined through an appropriate averaging, and one of our aims
is to find the domain of validity of this approximation (it turns out to be
roughly e < 0.8 ). We also aim to illustrate the richness and variety of phase-
locked solutions of (1.1) that lie outside of the domain of (1.3), or any other
simple analytical approximation, and require numerical analysis for their
elucidation. This is based on numerical collocation applied to truncated
Fourier expansions for 6(t) [1]. A systematic numerical search was made of
the asymptotic solutions in time of (1.1), using step-by-step integration with
a local error tolerance of 10~10 , to complement the Fourier series method.
The chaotic solutions of (1.1) were not investigated further, since our primary
focus is on the bifurcation structure.

We begin, in Section 2, by calculating the resonance curves for T-periodic,
symmetric solutions of (1.1) through both the analytical approximation (1.3)
and numerical analysis. If e > ec(S) [ec(l/8) = 0.516] the resonance curve
is triple-valued between two turning points, co± ( co+ > co_), at which the
gradient is vertical, and the part that connects the turning points comprises
only unstable states. If e < ex = 4.63<J the resonance curve is of the con-
ventional type, tilted to the left with a single maximum (see Figure la), but
if e > ex the curve crosses itself near w = 0.80 and executes a closed loop
(see Figures lb,c). This crossing does not appear to have been previously
reported, and is a point where two distinct solutions have the same values of
e, co and (E)'.

The symmetric solutions lose stability through either a turning-point
(saddle-node) or a symmetry-breaking (pitchfork) bifurcation, but were not
found to lose stability through period-doubling or Hopf bifurcations [10].
The turning-point bifurcations, which appear at 0)± (see above) and are
associated with the well known tuning hysteresis of a nonlinear oscillator,
typically imply a transition between symmetric states, and are implicit in the
symmetric solution. The symmetry-breaking bifurcations appear in pairs for
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FIGURE la. The resonance curve for symmetric oscillations with S = 1/8 and e = 0.4 . The
analytically and numerically calculated curves coincide.

e > es(S) [e^(l/8) = 1.022], and we determine the symmetry-breaking lo-
cus in the e, co plane. The T-periodic, asymmetric solutions are obtained
through an analytical approximation in which a constant 60 is added to
the right of (1.3), and through numerical analysis with both odd and even
harmonics admitted in the Fourier series. The resulting analytical approxi-
mation is only qualitatively valid, and all subsequent calculations are based
on numerical analysis.

The r-periodic, asymmetric solution loses stability to a 2r-periodic,
asymmetric solution through a period-doubling bifurcation, which is followed
by a 4 T-periodic, asymmetric solution through a second period-doubling bi-
furcation, and so on through a period-doubling cascade to chaos (or to in-
dependent, stable, periodic oscillations). We calculate the period-doubling,
quadrupling, and octupling loci in the e, co plane, and the resonance curves
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FIGURE lb. The resonance curves for symmetric oscillations with 8 = 1/8 and e = 0.8 . The
oscillations are stable on the solid sections and unstable on the dotted sections. The numerically
calculated curve is solid or dotted, and the approximate analytical curve is dashed.

for 2" T-periodic oscillations for n = 0, 1 , 2 , 3 and 4.
We find, as did D'Humieres et al [4] for the torque driven pendulum, and

as is to be expected for any nonlinear oscillator with a symmetric potential
(cf. [9]), that (1.1) also admits stable symmetric solutions of period 3 T (sim-
ilar oscillations of period 5T, IT, ... also occur in smaller intervals of e
and co). As e is increased these oscillations lose stability to 3r-periodic,
asymmetric oscillations through a symmetry-breaking bifurcation, which, in
turn, lose stability to 6r-periodic oscillations through a period-doubling bi-
furcation, and so on through a 127", 24T, . . . period-doubling cascade to
chaos (or to independent, stable, periodic oscillations). We report the details
in Section 3.

https://doi.org/10.1017/S0334270000008195 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008195


[5] On a periodically forced, weakly damped pendulum. Part 2: Horizontal forcing 27

Eps i 1 on = 1 .2
1.5

1 .4

1.3

1.2

1.1

.9

.8

.7

.6

.5 i I i I

. 3 . 4 . 5 . 6 . 7 . 8 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5

F r e q u e n c y

FIGURE lc. The numerically calculated rsonance curve for symmetric oscillations, with S =
1/8 and e = 1.2 . The oscillations are stable on the solid sections and unstable on the dotted
sections.

The torque-driven pendulum executes stable, T-periodic, inverted ((0) =
n) oscillations in a finite, e, co domain [ 1 , 8 ] , but the only T-periodic,
inverted oscillations that we find in the present case are unstable. We do,
however, find stable, 3r-periodic, inverted oscillations, which we report in
Section 3. These solutions follow a symmetry-breaking, period-doubling se-
quence similar to that described above for the normal (downward) oscilla-
tions, although the two families appear to be independent.

A large number of running oscillations with (0) = pco/q is possible, just as
for the torque-driven pendulum. Their stability domains typically decrease
with increasing p and q, but we did obtain one such solution for p = 3
and q = 46. The family with the largest stability domain is that for p = 1
and q = \ ({6} = co), which we examine in Section 4.
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We determined the stability of our oscillatory solutions through the nu-
merical integration of (1.1) with initial conditions in the neighbourhood of
the solution to be tested. We also attempted an analytical stability analysis
for the analytical approximations in Section 2, following the perturbation
procedure (leading to Hill's equation) that proved moderately successful for
the torque driven pendulum [7], but the results proved to be reliable only for
the turning-point changes of stability of the T-neriodiCj symmetric solutions.

The stability boundaries have a remarkable similarity in shape. In each
family of symmetry-breaking and period-doubling solutions, the boundaries
tend towards a common curve as a) decreases. As co increases from the
common curve, each member of the family passes through a minimum and
then increases, usually with positive curvature throughout. This similarity
suggests that there may be simple relations between the different stability
boundaries for each family of solutions, and also between corresponding sta-
bility boundaries for different families of solutions. No such simple relations
have been found yet.

The present problem is a much simplified model for the sloshing of a
fluid in a container that is subjected to periodic horizontal forcing. Miles [5,
6] used an averaged Lagrangian method to investigate the weakly nonlinear
resonant response of the free surface of a fluid in circular and in rectangular
horizontally oscillating containers. Planar and nonplanar oscillations of the
free surface can occur, and even with the planar case there is an infinite
sequence of possible resonating modes of fluid oscillation. One reason for
the present investigation into the planar oscillations of a forced pendulum is
that there is then only one resonant mode of oscillation, but as is indicated
above, a large variety of types of nonlinear oscillation is still possible even
for this simple model.

2. r-periodic oscillations and their descendants

We represent T-periodic solutions of (1.1) by the Fourier series

N

0 = ^2(ak cos kcot + bk sin kcot), (2.1)

where either aQ, ... , bN and N are determined numerically as described
above or the series is truncated at N = 1 and recast in the form

0 = 0o + a s i n t (-7T < 0o < n, a > 0), T = cot-<f>, (2.2a,b)

to determine analytical approximations. Substituting (2.2a,b) into (1.1) and
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taking moments with respect to 1, cos T , and sin T , we obtain

{J0 + eJlcostf>)s0 = 0, (2.3a)

Idaco = e(J0 + J2)c0 sin <f>, (2.3b)

^ (2.3c)

where, here and subsequently, Jn = Jn(a) is a Bessel function, c0 = cos0o,
and s0 = sin0o. We note that (2.3) may be derived through an average-
Lagrangian formulation (cf. [7]).

2.1 Symmetric oscillations
We obtain symmetric oscillations by setting a2 = b2. = 0, (j = 0, 1,

2 , . . . ) in (2.1) and dQ = 0 in (2.2) and (2.3). Eliminating <f> between
(2.3b,c) and solving for co2 , we obtain the resonance curve(s)

co2 = Q - 2S2X2 ± X [(eQ/a)2 - 4<J2Q + 46*X2} * (dQ = 0), (2.4)

where

Cl(a) = J0 + J2 = — = l - - a + J 9 2 + --- , (2.5)

and
v/ •. ^o ~ 2 a 1 i 2 a i f> £\
A (a) = — — = = 1 — —a — ̂ ^ + • • • . (•^•oj

The corresponding approximation to the mean energy, obtained through the
substitution of 6 = a s i n i into (1.2), is

(£)=aV/4+l-;0, (2.7)

and the resonance curves, {Ey vs co, are determined by (2.4) and (2.7).
The two branches (2.4) join at the smallest zero of the radical, a = am

which is a maximum of a vs co and is determined by

d2X2)*=e (a = aj. (2.8)

If am < a\ = 1.841, the smallest zero of /,' (and therefore of X), for which
a necessary and sufficient condition is e > 4.635 = ex , the two branches cross

at a = a\ and (o2 = il(a\) or, equivalently, co = 0.795 and (E)* = 1.104.
The crossing, which is common to all resonance curves for which e > ex,
differs significantly from that associated with the breaking of the resonance
curve for e > et (cf. [7]), where e, is the largest value of e for which the
radical in (2.4) admits a real zero for a = am and lies outside of the domain
of the present approximation.

The resonance curve for symmetric oscillations with d = 1/8 and e = 0.4
is plotted in Figure la. The analytical approximation implied by (2.4) and
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(2.7) coincides with the numerical result. The curve is single-valued in {Ey ,
and the corresponding symmetric oscillations are everywhere stable.

The approximate analytical (dashed) and numerical (solid or dotted) reso-
nance curves for symmetric oscillations with (5=1/8 and e = 0.8 are plotted
in Figure lb. The two curves differ at the larger values of (Ey , where the
neglect of the higher harmonics in (2.2b) becomes significant. The analytical
approximation also misses ihe super-harmonic resonance at w = i/3 , which
arises from the resonant forcing of the third harmonic. The resonance curve
is triple-valued in (E)* between the two turning points at co = co_ = 0.707
and co = co+ = 0.800, and the symmetric oscillations are unstable on the
dotted segment of the curve connecting the turning points. The symmetric
oscillations are stable on all solid segments of the curve.

The resonance curve for symmetric oscillations with d — \/S and e = 1.2
is plotted in Figure lc. As in Figure lb, symmetric oscillations are stable on
the solid segment to the lower turning point at co = co+ = 0.803 and then un-
stable on the dotted segment to the upper turning point at co = co_ = 0.533 .
However, in contrast to Figure lb, the symmetric oscillations in Figure lc
are stable only for a small solid section below the upper (co — co_) turning
point, are unstable for a much larger dotted section, and are again stable
as co increases further. Asymptotic solutions of (1.1) on the unstable sides
of the latter two stability boundaries show that both are symmetry-breaking
bifurcations, with the symmetric oscillations losing stability to asymmetric
oscillations. As e is increased from 1.2 to 2.0 the resonance curves for sym-
metric oscillations retain the same form as in Figure lc, with the short stable
section just below the upper turning point becoming vanishingly small, and
the unstable section following it increasing in length at both ends.

We determine analytical approximations to the turning points, co = co±

and a = a ± , where co+ > co_ and a+ < a_ , by calculating dco/da = 0

from (2.4). Invoking d2 <C 1, we obtain

2
 2 =e, co+ = n--—(a = a+), (2.9a,b)

JQ — 3J2 + a il a

wherein O(S2) error terms are implicit, for the determination of the lower
turning point. The upper turning point is determined by

(2.10a,b)
wherein 0(6 ) error terms are implicit, and the subscript m implies evalua-
tion at a — am , which is determined by (2.8). The loci of the turning points
are plotted in Figure 2, with the approximate analytical values from (2.9)
and (2.10) shown as dashed curves. The solid curve on the right of Figure
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2 .0

1 .8 -

Figure 2. The turning-point curves for symmetric oscillations with 8 = 1/8 . The solid
and dotted curves are the numerically calculated results; the dashed curves are the approximate
analytical results (2.9), (2.10).

2 is the numerically determined locus for co+ with which (2.9) shows good
agreement (presumably by virtue of the modest contributions of the higher
harmonics at the lower turning point). The curve on the left of Figure 2,
which is solid on the lower part and dotted on the upper part, is the numeri-
cally determined locus for co_ . The lower, solid part is a stability boundary
for symmetric oscillations in co > co_ in at least a small neighbourhood of
co_ . In the upper, dotted part the stable region for co > co_ has a width

less than 10~3 in co and is difficult to detect. The approximate analytical
result (2.10) for co_ is in good agreement with the exact numerical curve in
the lower part of Figure 2, but it deteriorates above e ~ 0.8 in consequence
of the increasing importance of higher harmonics on the higher parts of the
resonance curves. The turning points coincide for e — ec(d) and are absent
for e<ec [e (1/8) = 0.516].
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2.2 Asymmetric oscillations
If s0 / 0 , so that (2.3a) implies Jo + eJl cos<f> = 0, <p may be eliminated

among (2.3a,b,d) to obtain

-r + L Ji°>
Cn =
•° 2(a/,

for the determination of a and c0 for prescribed co and e . The symmetry-
breaking bifurcations (c0 = 1, a = as, <o = cos) are determined by

2a\2d a (aJ, + XJn) 2 2 2 ( Q / , + XJn)
7T-l = e • °>s = — ~ (a = as)-

a
(2.12a,b)

2 . 0

1.B -

1 . 6 -

1.4 -

Z 1 .2 -

1 .0 -

. 2

FIGURE 3. The symmetry-breaking curves for 5 = 1/8 . The solid and dotted curve is the
exact numerical result, and the dashed curve is the approximate analytical result (2.12).
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The symmetry-breaking curve is plotted in Figure 3, with the analytical ap-
proximation (2.12a,b) drawn as a dashed curve. The solid symmetry-breaking
curve is a stability boundary for symmetric oscillations when e > es(d)
[6^(1/8) = 1.022], with stable symmetric oscillations on the outside of the
curve and stable asymmetric oscillations on the inside of the curve; symme-
try breaking is absent if e < es. The symmetry-breaking curve is dotted
where the bandwidth of asymmetry stability becomes so small as to be diffi-
cult to detect. The agreement between the analytical approximation and the
numerical curve is reasonable at the larger values of co, but, as in Figure 2,
the analytical approximation is unsatisfactory for the smaller values of co,
where higher harmonics become significant. The failure is more pronounced
than in Figure 2 owing to the presence of the second harmonic (which van-
ishes for the symmetric oscillations). Resonance curves for the asymmetric
oscillations begin and end at symmetry-breaking bifurcation points on the
resonance curves for symmetric oscillations.

2.3 Period-doubling
We represent /nT-periodic oscillations by the Fourier series

N

6 = ^[ak cos(kcot/m) + bk sin(kcot/m)]. (2.13)

The first period-doubling locus is a stability boundary for T-periodic, asym-
metric oscillations with stable, T-periodic, asymmetric oscillations on the
outside of the curve and stable, 2r-periodic, asymmetric oscillations on the
inside of the curve. Resonance curves for the 2r-periodic, asymmetric os-
cillations begin and end at the period-doubling bifurcation points on the
resonance curves for the T-periodic, asymmetric oscillations. The second
period-doubling locus is a stability boundary for 2T-periodic oscillations,
with 4T-periodic oscillations being stable on the inside of the curve. This
sequence continues through a period-doubling cascade, with stable intervals
of decreasing bandwidth, followed by nearly periodic motion, then chaotic
motion or an independent stable oscillation.

The principal stability boundaries for swinging oscillations of periods T,
2T and 4T are summarised in Figure 4. The curves C_ and C+ are the
turning-point boundaries of Figure 2, while Cl is the symmetry-breaking lo-
cus of Figure 3. Stable symmetric oscillations are found everywhere to the
left of C+ , and to the right of C_ below C, . There are two independent
families of stable symmetric oscillations in the lower F-shaped region be-
tween C_ and C+, and a common family below the intersection of C_
and C+ . Stable, T-periodic, asymmetric oscillations are found between C,
and the first period-doubling locus C2 . Those with period IT occur be-
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FIGURE 4. Stability boundaries for oscillations of periods T, 2T and 4T , with 5 = 1/8 .
The stability boundaries Cs, ... , C^ are indistinguishable from C4 on the scale of the figure.
Note the coalescence of the several stability boundaries into a single curve on the left.

tween C2 and the second period-doubling locus C4. The period-doubling
loci C8, ... , C^ are indistinguishable from C4 on the scale of the figure.

The symmetry-breaking, period-doubling sequence is demonstrated more
explicitly in Figure 5 for S - 1/8 and e = 1.2 , where resonance curves are
drawn for the different forms of swinging oscillation from symmetric with
period T to asymmetric with period 8 7 \ The oscillations are stable on the
solid curves and unstable on the dotted curves. The upper curve is a portion
of the resonance curve for symmetric oscillations sketched in Figure lc. The
lower curve, beginning at the symmetry-breaking point, is a portion of the
resonance curve for r-periodic asymmetric oscillations. The resonance curve
labelled 2T for 2r-periodic oscillations begins at the first period-doubling
point. It bifurcates to the resonance curve labelled 4T for 4r-periodic oscil-
lations, then to the unlabelled resonance curve for 8 r-periodic oscillations.
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FIGURE 5. Resonance curves for the symmetry-breaking, period-doubling sequence of periods
1, 2, 4 and 8 times the forcing period, with 8 = 1/8 and e = 1.2.

The resonance curves appear to be leapfrogging towards a limiting curve as
the period multiplicity increases.

The bifurcation from 2r-periodic oscillations to 4r-periodic oscillations
in Figure 5 occurs at a) = 0.8733, that from 4r-periodic oscillations to &T-
periodic oscillations at co — 0.8712, and that from 8r-periodic oscillations
to 16r-periodic oscillations at co = 0.8708. The ratio of these two fre-
quency bandwidths is 5.25, in reasonable agreement with Feigenbaum's uni-
versal ratio S = 4.67 [3]. Feigenbaum's ratio is derived for one-parameter
systems, but ratios here can be calculated for either (y-bandwidths or e-
bandwidths in Figure 4. If the bandwidth ratio is applicable to the remain-
der of the period-doubling sequence, the sequence should terminate before
co - 0.8707. When co is reduced to 0.8707 and further to 0.870 or 0.869,
the oscillations remain nearly periodic in the neighbourhood of the exactly
periodic motion. This type of behaviour was observed by D'Humieres et al
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[4] for the torque-driven pendulum, but they interpreted it as an intermittent
movement between two unstable states. The present numerical evidence in-
dicates that period-doubling cascades do not culminate in a sharp transition
to chaos, but in nearly periodic motion followed by chaos (or by a transition
to some independent stable oscillation). The nature of this nearly periodic
motion over 500 forcing periods is unchanged when the local error tolerance
in the step-by-step integrations of (1.1) is reduced from 10~10 to 10~~n , but
even higher precision may be needed to investigate it fully.
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FIGURE 6. Poincare cross-sections in the (6,6) plane for the period-doubling sequence 47",
87", 167" and the nearly periodic oscillation after the end of the sequence, with S = 1/8 and
e = 1.2.
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The sequence described above is illustrated in Figure 6 by Poincare cross-
sections in the (6, 6) plane. The first cross-section, at co = 0.8714, shows
the locations in this plane of the 4r-periodic stable oscillation at times
0,T,2T,3T, ... . The second cross-section, at co = 0.8709, shows how
each of the locations of the previous 47'-periodic oscillation bifurcates into
two in an 8r-periodic stable oscillation. The same bifurcation occurs again
to the 167*-periodic stable oscillation at co = 0.8708, in the third cross-
section. The fourth cross-section, at co = 0.8707, illustrates the nearly peri-
odic motion over 100 forcing periods. The points lie in the neighbourhood
of those in the previous cross-sections, and the 100 points are not all distinct
(to the resolution of the figure), indicating a motion which is close to the
previous exactly periodic oscillations.

3. 3r-periodic oscillations and their descendants

We turn now to 3!T-periodic, symmetric oscillations of the form

6 = Z > 2 , - i C°S[(2; - 1)^/3] + V i s i nK2; - l)»'/3]). (3-D

Resonance curves for these oscillations have multiple turning and crossing
points, especially for larger e. The symmetric oscillations bifurcate to stable,
3r-periodic, asymmetric oscillations of the form (2.13) with m = 3 . Their
resonance curves begin and end at the symmetry-breaking bifurcation points
on the resonance curves for the symmetric oscillations, and may have both
turning points and crossing points.

The next stability boundary is a period-doubling boundary, across which
stable, 6T-periodic asymmetric oscillations may be found. The period-
doubling cascade then continues to 12T, and so on. The cascade culminates
in nearly periodic motion, with the local periodicity lying close to multiples
of 3T, followed by chaos (or some independent periodic oscillation), much
as in the scenario described in the last two paragraphs of Section 2.

The stability diagram for 3T-periodic downward oscillations is drawn in
Figure 7. The stability boundaries are of the same form as the corresponding
boundaries in Figure 4, with Co denoting the turning-point boundary, C3

the symmetry-breaking boundary, and C6 the first period-doubling bound-
ary. The stable, 3r-periodic, symmetric and asymmetric oscillations lie,
respectively, between Co and C3 and between C3 and C6 . The next period-
doubling boundary, C12 , is indistinguishable from C6 on the scale of Figure
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FIGURE 7. Stability boundaries for swinging and inverted oscillations of periods 3T,
6T, ... .with ^ = 1/8.

7. We remark that the regions of stability in Figure 7 overlap significantly
those in Figure 4. This implies that the asymptotic state—in particular both
period and symmetry—of the motion depends on the initial conditions. The
present numerical evidence implies that a sharp transition to chaos occurs
when the turning-point stability boundary Co in Figure 7 is crossed from
the stable side to the unstable side (in the absence of some independent sta-
ble oscillation there). This sharp transition to chaos does not occur in Figure
4 because the unstable side of the turning-point stability boundary for one
family of symmetric oscillations is a stable region for the other family of
symmetric oscillations.

We reported above that we could find no stable, inverted, r-periodic os-
cillations for the horizontally driven pendulum; however, we did find stable
inverted oscillations at higher odd multiples of T and describe those of 3T
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here. The symmetric oscillations have the form

N

2,_, cos[(2y - l)cot/3] + b2j_x sin[(2y - l)a>t/3]), (3.2)

while the asymmetric oscillations are given by (2.13) with a0 near n and
m = 3 . The stability diagram for inverted, 3r-periodic oscillations is in-
cluded in Figure 7, where the stability boundaries have the same significance
as for the downward oscillations.

The stable regions for the normal and inverted oscillations of period 2>T
overlap near co - 1.2 and e = 1.35. The two types of oscillation appear to
remain independent there, with the asymptotic state dependent on the initial
conditions. The mean (6) for asymmetric oscillations lies either near zero
for the downward oscillations or near n for the inverted oscillations, with
no stable solutions at intermediate values of (6).

4. Running oscillations

Running oscillatory solutions of (1.1) have the general form

N

6 = pcot/q + Yl^ak cos(kcotfq) + bk sin(kcotfq)], (4.1)
A:=0

where p and q are integers. We consider here only p = 1 and q = 1, for
which 6 is !T-periodic {periodic refers to 6 throughout this section).

The stability diagram for running oscillations with mean angular velocity
co {p = q = 1) is drawn in Figure 8, which extends over a much longer range
of co than the previous figures. The stability boundary C, is a turning-point
locus for F-periodic oscillations. The oscillatory part of the motion de-
creases when e is increased along C,, with 8 tending to co and a0 tending
to -n/2. The stability boundaries C2, C4, and Cg are all period-doubling
boundaries. Both C4 and Cg have been drawn, although they are almost in-
distinguishable in the figure. Comparison of Figure 8 with Figure 4 indicates
that a stable running oscillation of period T can be an alternative asymptotic
state to a stable swinging oscillation of period T, provided that the initial
angular velocity is sufficiently large.
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FIGURE 8. Stability boundaries for running oscillations of period T, 2T, AT, &T, with
mean angular velocity co and 6 = 1/8 .
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