
ELEMENTARY ALGEBRAIC TREATMENT OF THE 
QUANTUM MECHANICAL SYMMETRY PROBLEM 

H E R M A N N WEYL 

1. Stating the problem 

A function r\(ii, • • -, if) of / quantities i, varying over the finite range 
i = 1,2, . . ., n, is usually called an w-dimensional tensor of rank/. Any permu­
tation p: 1 > 1', . . . , / > / ' changes this tensor into a tensor pr\ according 
to the equation pij(ii, . . . , i/) = ij(ir , . . . , if). Thus the permutation p 
appears as a linear operator p in the w-dimensional space 2 = Sn , / of all 
^-dimensional tensors of rank/ , rj is symmetric ii prj = rj for all permutations 
£, it is antisymmetric if prj — ôp.rj where dp = + 1 for the even and — 1 for 
the odd permutations. Let a linear transformation A in 2, 
(1.1) if = i4r/, 77'(ii. . . if) = 2*a ( i i . . .if ; £ i . . . *,) • ij(*i. . . */) , 
be called symmetric x if 

a(ii / . . . if ; kr . . . kf) = a(ii. . . if ; ki. . . &/) 
for all permutations p. A is symmetric if and only if it commutes with all 
the permutation operators p. The symmetric transformations A form an 
algebra 21. The general symmetry problem posed by the quantum theory 
of an aggregate of / equal physical entities is this : 

(I) to decompose the tensor space S as far as possible into subspaces U that 
are invariant with respect to all symmetric transformations A. 

An epistemological principle basic for all theoretical science, that of 
projecting the actual upon the background of the possible, is here followed by 
asking what happens under any possible Schrôdinger law of dynamics 
h drj 
7~"r —At), before taking up the specific law involving the actual energy 
t at 
operator A = H. We have here ignored the further condition which physics 
imposes on all energy operators A, to wit their Hermitean nature, 

a{k\. . . kf ; i\. . . if) = a(i\. . . if ; ki. . . kf). 
Essential for the theory of eigenvalues (terms) and eigenfunctions, this 
condition is irrelevant for our purposes. For what is invariant under all 
Hermitean symmetric transformations stays so even when the Hermitean 
restriction is lifted. As algebraists we are glad to get rid of it. For we 
propose to carry our investigation through in any number field in which the 
equation f\a = 0 for a number a implies a = 0 (field of characteristic 0 or 
of a prime characteristic dividing none of the natural numbers 1, 2, . . . , / ) . 

Received February 28, 1948. 
HVe shall adhere to this terminology and not use the word symmetric in the sense presently 

to be mentioned -under the name Hermitean. 
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58 H E R M A N N WEYL 

It is no wonder that the complete solution of the above symmetry problem 
depends on the theory of representations of the symmetric group of all 
permutations and Young's symmetry operators.2 

Let 2 + , 2~ denote the linear manifolds of all symmetric or antisymmetric 
tensors respectively. Nature has most wisely put a stop to the breaking-up 
of 2 into isolated compartments II by letting but one of them, the invariant 
subspace 2"~, come into existence. Such at least is the case if the / entities 
of which the aggregate is composed are electrons (Pauli's exclusion principle). 
Thereby the symmetry problem (I) loses its significance for physics. Part 
of it, however, is restored, if the existence of the spin of the electron is taken 
into account but its dynamical influence disregarded—a procedure which is 
at least approximately permissible. The situation is then as follows. The 
argument i is replaced by a pair (ip) with the range i — 1, . . . , n for the 
"positional" variable i and the range p = 1, . . . , v for the "spin" variable p. 
(Actually v = 2 while the positional variable varies over the continuum of 
all possible positions in the physical three-dimensional space.) Set N = nv. 
The possible wave states of the aggregate of / electrons are described by the 
antisymmetric iV-dimensional tensors ^(iipi, . . . , i/pf) of rank / , forming 
the space 2"~#,/ = 0. Moreover we envisage the space 2 = 2 n , / of all 
w-dimensional tensors 7j(ii . . . if) of rank / , and the space P = 2„,/ of all 
j>-dimensional tensors #(pi, • • • > Pf) of rank / . Any symmetric trans­
formation A in 2, 

y'(ii. . .if) = S f ca(i i . . . if ; ki. . . kf) • ij(fei. . . kf) 

induces a transformation A* in 0, 

^'(iipi, . . . , ifpf) = 2 f ca(ii • • • if ; ki • • • kf) • \p(kipi, . . . , kfPf). 

The central problem is 
(II) to decompose 12 as far as possible into sub spaces that are invariant under 

the transformations A* thus induced in 0 by all symmetric transformations 
A in 2. 

These A* form an algebra 21*. It is also true that any symmetric trans­
formation B in P, 
(1.3) ^ ' (p i . . . pf) = 2,6(pi ' . . . pf ; <TI . . . o-f) • 4>(ci. . . 07), 
induces a corresponding transformation B* in 12, 

(1.4) ^'(iipi, . . ., ifPf) = Sff6(pi . . . p/ ; o- i . . . or/) • \Kii<ri, • • • » if*/)-
The B* form an algebra S3*. Every A* of §1* commutes with every B* of 33*. 

Not only the problem (I), but also this new symmetry problem (II) may 
be solved by means of Young's symmetry operators; cf. GQ, chap, v, § 12. 
However, as shall be discussed here in detail, a more elementary approach is 
available for the physically important case v — 2. Indeed the decomposition 
of the spin tensor space P = 22 , / into irreducible invariant subspaces under 
the algebra S3 of all its symmetric transformations B is readily derived from 

2Cf. H. Weyî, Gruppentheorie una Quantenmechanik (2nd ed. Leipzig, 1931) [quoted 
as GQ], chap. V, §§ 1-7 and 13-14. 
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the classical Clebsch-Gordan expansion. From the algebra 93 in P we may 
pass to its representation 93* in 12. Because of the commutability of the 
elements A* and 5 * of 21* and 93*, decomposition of the generic matrix of 
93* entails a "dual" decomposition for 31*. The deeper lying fact that vice 
versa any linear transformation in 0 that commutes with all J5* e 93* lies 
in SI* is needed in order to show that the latter decomposition is also one 
into irreducible parts. 

All linear transformations (matrices) in a g-dimensional vector space 2 
form an algebra Wig of order g2, the complete matric algebra of degree g. 
Throughout our investigation irreducibility for matric algebras will be 
sharpened to completeness. Decomposition of a matrix C into two matrices 
C1JC2 is defined by the equation 

Il Cl ° 
C = 

|| 0 C2| 
i°C, 2°C, 3°C, . . . are the abbreviations for C, C\C, C\C\C, . . . , and S *s 

the summation sign for the addition | of matrices. Let Ë be a matric algebra 
of order m in a g-dimensional vector space S. Suppose that, relative to a 
suitably chosen coordinate system for S, the generic matrix C of (£ 
decomposes into rai°Ci| w2°C2| . . . , the matrix Cr of degree gr occurring 
with the multiplicity mr > 0, g = Wigi + w2g2 + . . . . The gi2 + g2

2 + . . . 
coefficients of the matrices Ci, C2, . . . , Cn are linear forms of the m para­
meters of (L We speak of complete decomposition if these coefficients are all 
linearly independent and thus m = gi2 + g22 + . • • . For v — 2 we shall 
prove the following 

MAIN THEOREM. Relative to a suitably chosen coordinate system for the 
space fi, the generic matrix A* of 31* suffers complete decomposition 

(1.5) A* = S(^ + l )°^* w v 
u and v are two non-negative integers related by the equation 2u + v = / . The 
part A*u of ilvalence defect" u and the corresponding "valence" v occurs with 
the multiplicity v + 1. Set d = n — f, u~ = d + u. The degree g*w of the 
matrix A*u is given by the formula 

(i 6) £* = (n\ (n\ (n+ V(n+ ! - u -û) 
W W (n + 1 - u) (n + 1 - ny 

n\ - - - - - - - - nl 

l denoting the binomial coefficient — ~ . Only those u occur in the sum 

(1.5) for which u > 0, û > 0, v = n — {u + u) > 0. 

Spectroscopically this theorem establishes the existence of non-intercombin-
ing term systems corresponding to the various valences v. The terms of valence 
v are of multiplicity v + 1. Only when the actually existing weak interactions 
between the spins are taken into account, each term of valence v splits into a 
"multiplet" of v + 1 slightly different terms; whereas the weak interaction 
between position and spin accounts for weak intercombinations between the 
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60 HERMANN WEYL 

several term systems. The significance of the valence v for chemistry is 
sufficiently indicated by its name. 

After some preliminaries in 2 the decomposition (1.5) is derived from the 
Clebsch-Gordan expansion in 3. Its completeness will be proved in 4 and 5. 

2. Auxiliary propositions 

Schur's lemma for complete instead of irreducible matric algebras is a 
triviality; nevertheless it may be stated as our 

LEMMA 1. Complete decomposition of the generic matrix C of a matric 
algebra ©, C = nti°Ci\ m2

0C2 | . . . | mh°Ch, implies the same for its commutator 
algebra SD, D = gi0Di\g20D2\ . . . . But degree and multiplicity are inter­
changed: the degree gr of Cr is the multiplicity with which Dr occurs in the 
generic matrix D of 3), and the multiplicity mT of Cr is the degree of Dr. 

As one knows, the commutator algebra of a given matric algebra S consists 
of those matrices D that commute with all elements C of S. As an abstract 
algebra c the completely decomposed matric algebra 6 of Lemma 1 is the 
direct sum of a number of complete matric algebras; indeed c consists of all 
fe-uples (Ci, . . . , Ch) of arbitrary matrices G , . . . , Ch of the respective 
degrees gi, . . . , gh. We need the following classical proposition, for the 
simple proof of which I refer the reader to GQ, p. 271, Satz (6.1). 

LEMMA 2. Every representation of the direct sum c of h complete matric 
algebras is of the form 

(Ci,. . . , CH) > m*i°Ci\ . . . | m V G . 

(Here some of the multiplicities m*r may be zero; this will happen if the 
representation is not faithful and hence the representing matric algebra 6* 
is of lower order than Ë.) 

Any antisymmetric w-dimensional tensor y\ of rank / is completely character­
ized by its components t\{i\.. . if) with u < t2 < . . . < if, and these are 
independent. We have 

7}(ii . . .if) = ôi • rj( i i . . . i/) 

for any permutation i\. . . if of t i . . . t/, ôi = ± 1 distinguishing the even 

U.'.*//• from the odd permutations ( . * ' * . ) , and ri(ii. . . if) = 0 if the numbers 
V i . . . * / / 

ii. . .if are not all distinct. Hence 2~"= S~"n,/ does not exist unless n > f, 
and its dimensionality is 

_ ni 

LEMMA 3. Any linear transformation in S~ may be written in the form 
(1.1) where a(ii. . . if ; k\. . . k/) is antisymmetric in the / arguments i, 
antisymmetric in t h e / arguments k [and hence symmetric in t h e / pairs (ik)]. 

Indeed a linear transformation in S~, 

7?'(ll . . . If) = S < a ( l i . . . if Î Ki . . . Kf) • 7I(KI . . . Kf) 
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(with the sum extending over the possible sequences KI < . . . < K/ chosen 
from the range 1, 2, . , . , n) may be written as (1.1) when one puts 

àidk 
a(ii. . . if ; ki . . . kf) = "7j- • a ( t i . . . i/ ; «i . . . */) 

for any permutation ii. . . if of i\. . . if and any permutation k\. . . kf of 
KI . . . */, and puts a(i\. . . if ; &i. . . kf) = 0 in case the numbers ii . . . if 
or è i . . . fe/ are not all distinct. 

It follows from this lemma that the algebra 31 of symmetric transformations 
is a complete matric algebra in the invariant subs pace S~ of 2. 

Any symmetric tensor i\ may be completely characterized by its components 
i\(i\i%. . . if) with ii < i2 < . . . < if, and these are independent. On changing 
the labels i\. . . if into ii + 0, 2̂ + 1, ù + 2, . . . , i/ + (/— 1) one sees at 
once that the dimensionality of the space S + = 2 +

n , / of symmetric tensors 
equals 

(n + f - 1)! 
*+-(/> - / I („ - l) ,-

Set 77(̂ 1. . .if) = 7)^ . . .fn if / i of the / arguments i i . . . i/ equal 1, / 2 of them 
equal 2, . . . , fn of them equal n. These numbers r}fl. . . /w corresponding 
to the various partitions / i + /2 + . . • /n of / can also be used as the inde­
pendent components of r?. A typical symmetric tensor arises from a vector 
(xi, . . . , xn) by the formula 
(2.1) r)(ii. . . if) = Xii. . . Xif or r)fl. . . /w = x / 1 • • • xn

fn. 
A linear form Z(?j) depending on a variable symmetric tensor rj is to be writ­
ten as 

l(ri) = S// , . . . fn • Vh . • • /n 

with a constant coefficient If,. . . /n for each partition / i + . . . + fn of / . 
We make the altogether trivial remark that 1(TJ) vanishes identically in 77 
provided it vanishes identically in x by dint of the substitution (2.1). 

The symmetric transformation B = \\b(pi. . . p/ ; <ri. . .o-/)|| of the algebra 
S3 may be looked upon as a symmetric ^-dimensional tensor b(œi, . . . ,a>/) 
of rank/ , if each pair (pa) is taken as a single argument 0) capable of v2 values. 
Hence the order of the matric algebra 33 in P is ikf+„2(/) [and the order of 21 
is M\t(j)]. The linear transformation / = || tp<r jj in the ^-dimensional vector 
space induces the symmetric transformation B(t), 

(2.2) 6 ( P l . . . Pf ; en . . . *f) = t ^ • • • tPfj 

in the tensor space P. Considering the v2 coefficients tpa as indeterminates, 
we speak of t as the generic element of the linear group f and of t > B{t) 
as the representation fy of f. Equation (2.2) is in complete analogy to (2.1), 
and the "altogether trivial remark* ' made above amounts to the following 

LEMMA 4. A linear form 1(B) depending on an arbitrary element B of 93 
vanishes identically if it vanishes identically in the parameters tpa. for 
B = B(t). 
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6 2 HERMANN WEYL 

As a final lemma we write down a simple formula for the case v = 2, v2 = 4: 
LEMMA 5. 

(2.3) JI»4)-tf+1)tf+»(' + « - S ( . + l). 

where the sum extends over the non-negative members v of the sequence 
/ , / - 2, / - 4, . . . . 

Proqf. Verify (2.3) for / = 0, 1 and the relation 
MUf) ~ MMf-2) = (/+1)2 

for a l l / > 2. 

3. The Clebsch-Gordan expansion and the decomposition of 21* 
In this section we assume v — 2. 
The symmetric 2-dimensional tensors <j>(pi. . . pv) (p = 1,2) of rank v 

( < / ) form a linear manifold P +
v = S+

2,v of Î; + 1 dimensions. In agreement 
with a usage established above denote by <t>h the component <j>(p\ . . . pv) 
in which h of the v arguments p have the value 1 and h — v have the value 2 
(& = 0,1, . . . , v). The indeterminate transformation t = \\ tpa || (pfa — 1,2) 
in the 2-dimensional vector space induces the transformation 

0 ' (P1 • • • Pv) = ^Jplal • • • tpvav ' <t>(°l • - • CTV) 

in P+t>, and thus P +
v appears as the representation space of a definite repre­

sentation Zv of f of degree Î; + 1. By multiplying the transformed com­
ponents 4>'h by a fixed power Au (u = 0, 1, 2, . . .) of the determinant A = 
tu t22 — £12 £21 one obtains a representation AWZ^ of f of the same degree 
v + 1. Envisage the subgroup fo of f, the generic element of which is the 
substitution 

X, 0 II 

0. l II 
with one indeterminate parameter X. That substitution multiplies <t>h by \h 

according to the representation Z„, by \u+h according to the representation 
AUZV. Hence the coordinates in the representation space II of AUZV are so 
chosen that they are distinguished by a signature (''magnetic quantum 
number") w — u + h. This signature is the exponent of the factor Xw taken 
on by the coordinate with the label w under the influence of (3.1) and ranges 
over the values w — u, u + 1, . . . , u -\- v. [Decomposition of II into one-
dimensional parts invariant with respect to the subgroup f 0 of f.] 

The 2-dimensional tensors <A(pi • • • Pa, Pa+i • • • Pa+b) of rank a + b ( < / ) 
which are symmetric in the first a and symmetric in the last b arguments form 
the substratum of the representation Za x Zh of f of degree (a + l)(b + 1). 
The latter breaks up into parts in accordance with the Clebsch-Gordan 
formula 
(3.2) Za x Z5 = S&U1V, 
the sum extending over all non-negative integers u, v for which 2u + v = 
a + b and u < min(a, b). This follows by induction from the equation 

ZaxZh= Za+h\ A(Z a- ix Z6-i). 
A simple proof is to be found, for instance, on pp. 115-117 of GQ. 

(3.1) ^ 1 1 » ^ 1 2 

hi, ^22 
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Repeated application of (3.2) leads to a formula of this type: 

Zi x Zi x . . . x Zi (/ factors) = Siu°àuZv (2« + v = / ) . 
Zix . . . xZi is nothing but the representation f7, t+B(t), of f in P, and our 
formula states that the matrix B(t) breaks up in the manner described by 

(3.3) B(t) = SguQBu(t) 

into partial matrices Bu(t) of degree v + 1. Here u, v range over all non-
negative integers satisfying the equation 2u + v = / , and each component 
Bu(t) occurs with a certain multiplicity gu > 0. 

If we now make use of Lemma 4, which also states that two linear forms 
1(B) are identical if they become identical by the substitution B = B(t), 
we see at once that the generic matrix B of 53 itself breaks up in the same 
fashion 
(3.4) B = Sgu°Bu. 

Lemma 5 then shows that none of the valences v = / , / — 2, / — 4, . . . is 
left out, g w > 0 f o r 0 < w < l\f, and that all the coefficients of the various 
matrices Bu are independent linear forms of the M+*(f) parameters 6/,/2/3/4 

of B. Hence (3.4) is a complete decomposition. 
33* is a representation of 93, and thus Lemma 2 leads to a similar formula 

(3.5) B* = S g V ^ u (g*u > 0) 
for the generic matrix B* of 93*. 

It is not difficult to determine the multiplicities g*u explicitly. Specialize 
the element t of f by (3.1) in B = 5 (0 and the corresponding B*(t). The 
effect of this specialized 5*(0 upon a tensor component ^(iipi, . . . , i/p/) 
is multiplication by X ™ if w of the / indices pi, . . . , p/ are 1 (and f — w of 
them equal 2). A complete set of independent components of \p of that type 
is obtained by choosing 

Pi = - - - = P» = 1 I a n d i P « + I = . . . = />/= 2 

Hence their number iVw equals 

« • « * - ( : ) • ( / - . ) - ( : ) • ( : ) 

where d — n — f and w = w + d. According to (3.5) the space 12 breaks 
up into subspaces U*u of dimensionality z; + 1 in each of which J5*(/) induces 
the transformation Bu(t). Every one of these g*w subspaces II*u, therefore, 
contributes exactly one coordinate of signature w to 12 provided u < w < 
u + v = f — u. This simple argument yields the recursive formula 

Nw = Xg*u 

where u ranges over all integers satisfying the inequalities u> 0 and u < w, 
u < / — w. Consequently 

(3.7) g\ = Nu - Nu-! (0<u< if). 
Put H = d + u so that v = n — u — u. Now (1.6) readily follows from 

(3.6) and (3.7), and one sees from this explicit expression that g*u is positive 
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provided u > 0, u > 0 and u + u < n. The range of the valences v actually 
occurring in the decomposition of 33* is thus circumscribed by the relations 

*> > 0, v < n ± d, v = n dtz d (mod 2).3 

93* serves merely as a jumping board for 21*. But since every A* commutes 
with all the transformations J3* of 33* the decomposition (1.5) of the generic 
matrix A* of 21* is now inferred from Lemma 1. A definite decomposition 
according to valences is thus obtained, and for physics this is the most 
essential result. However, as long as we have not yet convinced ourselves 
that 2Ï* is not only contained in, but identical with, the commutator algebra 
of 33*, completeness for the decomposition (1.5) is not ensured. In order to 
settle this point (5) one first has to prove that the only operators in P that com­
mute with the symmetric transformations B are the symmetry operators (4). 

4. Symmetric transformations and permutations 

Our present object is the space 2 = Sn , / of the ^-dimensional tensors 
7](ii. . . if) of rank / . The permutations p and any linear combinations of 
them, a = Spa(^?)p, are linear operators in 2, T?' = a7?, which commute with 
all the symmetric linear transformations i] = At], 

fj(ii. . . if) = 2 * a ( i i . . . if ; ki. . . kf) • rj(ki. . .&/). 

We introduce the symmetry quantities a = Hpa(p)p (with arbitrary numbers 
a(p) as coefficients)4 quite independently from their usage as operators in 2. 
They form an abstract algebra of order/!, the "group ring of the symmetric 
group/ ' 

Let 7j be a tensor and ii, . . . , if a given sequence of integers from the 
interval 1 < i < n. We consider t h e / ! numbers pt](i\. . . if) = x(p) as the 
coefficients of a symmetry quantity x = ^7?(ii. . . if). The tensor equation 
7?' = av is equivalent with ^ V = (^T?)-<2 where a is the symmetry quantity 
with the coefficients a(p) = a(p~l). Here ~-q may be interpreted as the 
symmetry quantity with the tensorial coefficients ~rj(p) — prj, or one may 
replace ~r) and ^ V in our equation by the ordinary symmetry quantities 
^?7 (ii. . . if) and ^77'(̂ *i • • • if) corresponding to any argument combination 
ii, . . . , if. 

The group ring is an /!-dimensional vector space. In it we envisage those 
symmetry quantities ^77 (z\ . . . if) that arise from arbitrary tensors 77 and 
arbitrary argument combinations (ii, . . . , i/), and we determine their linear 
closure K = KH, i.e. the smallest linear subspace that comprises them all. 

sIn passing we notice that the order of the algebra 33* may now be evaluated as 2(z; -+• l)2 , 
the sum extending over the non-negative v of the sequence / ' , f — 2, . . . where / ' = 
min (n - d, n + d) = min (/, 2n - / ) , and hence equals (/ ' + l)(jf + 2)( / ' + 3) / l -2-3. I t 
should be easily possible to confirm this directly. 

4The dot under a letter merely serves to indicate that it stands for a symmetry quantity. 
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Let 7 s (s = 1,2, . . . , nf) be a basis for the space 2. Then the elements x of K 
are given by the equation 

(4.1) x = 2 £ s0\ . . . if) • ~ Y , ( * I . . . i/) 

where the £ s(i i . . . if) are arbitrary coefficients. Write more explicitly 
x(p) = 2 j s(ii . . . * / ) • p7 ,(ii . . . * / ) = S p - 1 ^ . ( i i . . . if) • 7,(*!. . . if), 

s;% s;% 

hence 
(4.2) x = 2.7 sin . . . if) • ~%s(ii. . . i/). 

s;t 

Since y' 8 = a 7 s implies ~ 7 ' s = (^7«) « one sees that xâ lies in K if x does; 
fc is therefore not only an algebra, but even a right-ideal. But in (4.2) one 
may consider £ s as a tensor and the y s(ii. . . if) as coefficients ; consequently 
x lies in * if x does, and thus K is also a left-ideal. Introduce £ ' s = a£ s ; then 
(4.2) yields 

x-a = 27^(^*1 . . . * / ) • ~% &i • • • */), 

(4.3) a-y = 2 (•' , ( i i . . . if) • ^ 7 a ( i i . . . if). 
s ; i 

As a left-ideal /c has a generating idempotent e. This means that ze is in K 
whatever the symmetry quantity z, and if z lies in K then ? = ze. Similar 
statements hold for multiplication by ê on the left. The ensuing equations 
ê = êe and e = e-e show that e = ê. Every tensor 77 satisfies the equation 
er? = r\. 

One more fact about K is of importance. Introduce as the trace tr(a) of a 
symmetry quantity a the coefficient a(l) corresponding to the identical 
permutation 1. The scalar product tr(ab) = 2pû(^~"1)-6(^) is clearly a 
symmetric and non-degenerate bilinear form of the two arbitrary symmetry 
quantities a and b. This non-degeneracy is preserved under restriction to K; 
i.e. a n a c K such that tr(ab) — 0 for every b eK is necessarily zero. Indeed 
let z be an arbitrary symmetry quantity ; then b = se is in K, hence tr(az-e) = 0. 
But with a also as lies in /c, therefore as-^ = az. Thus our equation turns 
into tr(az) = 0 for every z, and that implies a = 0. 

THEOREM I. jf&e symmetry quantities a if interpreted as operators in S 
are the only ones that commute with all symmetric transformations A. The 
symmetry quantity a expressing such an operator can be uniquely normalized 
by requiring a to lie in K. 

Proof (cf. GQ, pp. 266-267).5 Let L be a linear operator in 2, rj > L77, 

5By using deeper algebraic resources than we care to employ in this elementary approach, 
Theorem I could be obtained as an immediate consequence of the following two facts: (a) 
Every representation a -> a of the group ring of the symmetric group breaks up into irreducible 
parts (is ' 'fully reducible") ; (/3) A fully reducible ma trie algebra coincides with the commutator 
algebra of its commutator algebra (R. Brauer).—Another variant: Explicit construction by 
means of Young's symmetry operators shows that the inequivalent irreducible parts of the 
representation a ->• a are absolutely irreducible and inequivalent, and consequently (a) yields 
a complete decomposition. With this additional knowledge (/3) can be replaced by the trivial 
fact that complete decomposition of a matric algebra implies its identity with the commutator 
algebra of its commutator algebra. 
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commuting with all symmetric A. Let Ly s = j8s, and with the same 
coefficients %s(ii. . . if) as in (4.1) form 

y = S S s(ii. ..if) - ~P s(ii. . . if). 
s ; i 

I am going to show that the equation x = 0 for the arbitrary coefficients 
%s(ii. . . if) implies y = 0. Let rj be any tensor and set 

0 = S p x G r 1 ) ^ , ? = HpyiP"1) • p*. 
Then 

0(ii. . . if) = 2 s2fca 8 ( i i . . .if ;ki. . .kf)-y s(ki. . . fe/), 

0( i i . . . i/) = 2 sllkd s(ii. . .if \ki. ..kf)-p s(ki. . . kf) 
where 

as(ii. . . if ; ki. . . kf) = 2PP*?(^I • • • if) -p£s(&i. . . kf) 

is clearly the matrix of a symmetric operator As in 2. As ^4S commutes 

with L we conclude that 0 = Ld. Consequently 0 = 0 implies 0 = 0 , and 

# = 0 implies Hpy{p~x) 'pr\(i\. . . if) = 0, or tr (yy*) = 0 for every y* e K. 

The quantity y itself is in K, and hence the last equation forces y to vanish. 

This settled, one concludes that the correspondence x > y = i£# defines 

a linear mapping i? of K into itself. Formula (4.3) and its parallel 

q.y = 2 i s(ii.. .if) - ~P 8(ii - > -if) 
s ;i 

prove the mapping R to be a similarity; i.e. it carries ax into ay whatever a. 
Replace x and a by e and x. Setting Re — a one finds that x = xe goes into 
x-Re = #a. This statement is equivalent with the nf equations ($s — ay «, 
or Lr; = ai7 for every tensor rj. The symmetry quantities a and « lie in K. 

5. The reciprocity of 21* and 93* 

In this section v is not assumed to have the special value 2. 

THEOREM II. 31* is the commutator algebra of 93*. 

Proof. Let 
C = jl c ( î i p i , . . . , ifPf ; &ici, • • • , kfff/) || 

be the matrix of any linear transformation in 0 in the unique normalization 
established by Lemma 3. Hence C is antisymmetric in the / pairs (ip), 
antisymmetric in the / pairs (ka), and thereby symmetric in the / quadruples 
(ip, ka). Let X — || x(pi. . . p/ ; c i . . . 07) || be symmetric in the / pairs 
(po-). Then CX with the components 

UMiiPu • • • , i /P / Î &iTi> • • • » kfTf)-x(ri . . . 77 ; 0-1 . . . <jf) 

is certainly antisymmetric in the pairs (ip), and since it is symmetric in the 
quadruples (ip, ka) it is also antisymmetric in the pairs (ka). The same is 
true for XC. Our hypothesis demands that CX and XC coincide as operators 
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in 0. Hence their matrices in normalized form must be identical. For 
fixed ii. . . if ; ki. . . kf the coefficients 

c(pi. . . pf ; ai. . .07) = c(iipi,. . . , ifpf ; ki<ri, . . . , fe/<r/) 
form a matrix || c(pi. . . pf ; 0*1. . . 07) || in P which may be denoted by 
C(ii. . . if ; fei. . . kf). Theorem I when applied to P rather than 2 shows 
that this transformation is of the form %ptpp where 

t(p) = tp = tp(ii ...i/;ki...kf) 
are the coefficients of a symmetry quantity 

(5.1) / = t(ii. . .if ;ki. . .kf) 

that lies in K = K„. Introduce the transformation 

(5.2) r p = | | / , ( * ! . . . * / ; * ! . . . *,) || 
in S. Our result may then be written in the form 

C - %P(TP x p), 
the cross indicating the Kronecker product of a matrix in S (first factor) 
and a matrix in P (second factor). If we are not afraid of making use of a 
symmetry quantity T whose coefficients are the matrices Tp in S we can 
express the fact that each t lies in KV by the equations 

(5.3) Te = eT = T, 
e — ev being the generating idempotent of a = /c„. 

C is antisymmetric in the pairs (ko). Hence 

(5.4) C(qxq) = dqC 

for any permutation q. It is antisymmetric in the pairs (ip); hence also 

(5.5) ( q x q ) C = bq-C. 
In more explicit form (5.4) reads 

HP{Tpqxpq} = ôq'%p{Tp x p} 
or 
(5.6) Sp j^ r^xp} = ôq-%p{Tpx p}. 

In order to avoid confusion use for the moment 

G = | | a ( * i . . . î / ; * i . . . * / ) | | 
as a notation for the linear transformation q in S and its matrix. Set 
1 p = 1 P(Jj 

t'P(i\. . . if ; ki... kf) 

= 23/ h(ii. . .if \l\. * .If) - q(h . . . If ; ki. . . kf). 

Given a combination (ii. . . if ; ki. . . kf), the symmetry quantity tf with the 
coefficients t'(p) = ^ p ( i i . . . if ; ki. . . &/) lies in K„ because all the quantities 
t(ii... if ; h . . . If) do. (This is true for any linear transformation Q in 2 . 
What holds for T!

p = TPQ holds likewise for 7"% = QTP.) For a fixed permu­
tation q the numbers t*(p) — t'(pq~l) are the coefficients of the symmetry 
quantity t* = t'q. ||/**>(ii... if ; ki... kf) \\ is the matrix T'pq-i = Tpq-iQ. 
Hence (5.6) states that /* and 8q-t coincide as symmetry operators in P. 
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But t* = /'glies in KV because t' does; coincidence as operators in P, therefore, 

implies identity of the symmetry quantities themselves, t* = bq-t or 

1 p g " 1 Cf = 0 q'l p. 

Setting q — p, Ti = A, one finds 

Tp = ôp-Ap. 

In the same manner (5.5) leads to 
Tp = dp-pA. 

The transformation A in 2 thus commutes with the permutation operators p 
in the same space and is therefore symmetric. Because of the antisymmetry 
of iKiipi, . . . , i/Pf) in the pairs (ip) the equation 

V = w = SP(rp x p)* 
may be written as 

*' = SpSp-crpp-1 x / ) * = f\(A x / ) ^ 
where I stands for identity, and thus Theorem II is proved. 

The normalizing condition (5.3) takes on the form 

(5.7) ëA = Aë = A, 

e being the idempotent with the coefficients ôp-e(p) = dp-eip"1). This, however, 
is no surprise. As a matter of fact, A induces the same transformation A* in 
12 as ëAe, and hence, whether or not A satisfies (5.7), it can always be so 
modified as to fulfil that relation, without change in the corresponding A*. 

Application of Theorem II to v = 2 shows that the decomposition (1.5) by 
valences is complete. 
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