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1. Introduction

Consider a supercritical Galton–Watson process Z with reproduction law π , where π is a
probability measure on Z+ with

∑∞
n=0 nπ(n) ∈ (1, ∞]. We also assume that π(0) > 0, and

we write

g(s) :=
∞∑

n=0

snπ(n), s ∈ [0, 1],

for the generating function of π . Then the following assertions are well known and easy to
check; see, e.g. Proposition 11.8 of [9]. To start with, the equation g(s) = s has a unique root ρ

in (0, 1), which coincides with the probability of extinction of Z when the process starts from a
single ancestor. Furthermore, splitting the graph of the generating function at (ρ, ρ) produces
the following pair of generating functions (see Figure 1):

ge(s) := ρ−1g(ρs)

and
gp(s) := (1 − ρ)−1g(ρ + (1 − ρ)s), s ∈ [0, 1].

More precisely, on the one hand, ge is the generating function of the subcritical reproduction
law πe of the Galton–Watson process Ze, which is obtained by conditioning Z to become
extinct, i.e.

ge(s) =
∞∑

n=0

snπe(n) with πe(n) := ρn−1π(n).
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Figure 1: Graph of the generating function g(s) = 1
4 + 3

4 s2 split at ρ = 1
3 ; rescaling the lower-left

quadrant and the upper-right quadrant yields the generating functions ge and gp , respectively.

On the other hand, let us refer to an individual with infinite descent in the Galton–Watson
process as a prolific individual. Then gp is the generating function of the reproduction law
πp of the Galton–Watson process Zp, which is obtained by the restriction of Z to prolific
individuals, i.e.

gp(s) =
∞∑

�=1

s�πp(�) with πp(�) :=
∞∑

n=�

(
n

�

)
(1 − ρ)�−1ρn−�π(n).

In other words, the genealogical tree induced by Zp is distributed as that of Z after conditioning
on nonextinction and removing all the finite branches.

The purpose of this note is to point at an analog of these transformations in the framework
of continuous-state branching processes (CSBPs). More precisely, the dynamics of a CSBP
are characterized by a branching mechanism �, which, in some loose sense, is related to
the generating function g of the reproduction law for Galton–Watson processes. It is well
known that conditioning a supercritical CSBP to become (eventually) extinguished yields
another CSBP whose branching mechanism �e is a simple transformation of �. Our main
interest here is to show that the notion of prolific individuals can also be defined for a CSBP
and yields a continuous-time (but discrete space) branching process whose characteristics are
again expressed by simple transforms of the original CSBP. It will certainly not come as a
surprise that a result for Galton–Watson processes possesses a counterpart in the continuous
setting, and indeed, a closely related description has been obtained recently by Duquesne and
Winkel [4]. Our approach differs from that of Duquesne and Winkel and enables us to handle
more general CSBPs. Specifically, we will essentially rely on the connection between CSBPs
and subordinators, whereas Duquesne and Winkel dwelled on techniques from real trees and
percolation on Galton–Watson trees. Finally, in the case of stable branching mechanisms, this
points at some simple path transformations which do not seem to have been observed previously.

We refer the reader to [6, Chapter 10], [8], and the references therein for background on
CSBPs. We begin by recalling the material that will be needed here.
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2. Preliminaries

Consider a conservative CSBP X = (X(t, a) : t ≥ 0 and a ≥ 0), where t is the time
parameter and a is the size of the initial population. This means that, for each fixed a ≥ 0,
the process X(·, a) is a time-homogeneous Markov process with values in R+ started from
X(0, a) = a. Furthermore, the fundamental branching property holds, namely, for every
a, b ≥ 0, X(·, a + b) − X(·, a) has same the law as X(·, b) and is independent of the family
of processes (X(·, c), 0 ≤ c ≤ a).

The dynamics of X are characterized by its branching mechanism � : [0, ∞) → R, which
is a convex function of the type

�(q) = αq + βq2 +
∫

(0,∞)

(e−qx − 1 + qx 1{x≤1})�(dx),

where α ∈ R, β ≥ 0, and � is a measure on (0, ∞) such that
∫
(1 ∧ x2)�(dx) < ∞.

Specifically, the semigroup of X(·, a) can be characterized via its Laplace transform as follows.
For every q > 0, we have

E(exp{−qX(t, a)}) = exp{−aut (q)}, (1)

where the function ut (q) solves

∂ut (q)

∂t
= −�(ut (q)), u0(q) = q. (2)

We will assume throughout this work that X is supercritical, i.e. that

� ′(0+) = α −
∫

(1,∞)

x�(dx) ∈ [−∞, 0),

and not immortal, in the sense that �(q) > 0 when q is sufficiently large. As the branching
mechanism is a convex function with �(0) = 0, this implies that there exists a unique q0 > 0
that solves the equation

�(q0) = 0.

We also recall that the hypothesis that X is conservative (i.e. the process X(·, a) does not
explode in finite time almost surely) is then equivalent to

∫
0+ |�(q)|−1 dq = ∞ (see [5]).

The importance of the role of the positive root q0 of the branching mechanism should
already be clear from the following easy consequence of (1) and (2). For each a ≥ 0, the
process exp{−q0X(·, a)} is a martingale with values in [0, 1]; it thus converges almost surely
and it is easily seen that its limit can only take the values 0 or 1 almost surely. More precisely,
writing X(∞, a) = limt→∞ X(t, a), we have

P(X(∞, a) = 0) = 1 − P(X(∞, a) = ∞) = exp{−q0a} for all a ≥ 0.

In the sequel we will say that the CSBP with initial population of size a becomes eventually
extinguished when X(∞, a) = 0 and is prolific when X(∞, a) = ∞. We mention that the
process may become eventually extinguished without ever being entirely extinguished: the
event that X(∞, a) = 0 and X(t, a) > 0 for all t ≥ 0 has a positive probability whenever the
branching mechanism fulfills

∫ ∞
�−1(q) dq = ∞.
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In order to rigorously define prolific individuals, we turn our attention to specifying the
genealogy in a CSBP, which requires the connection with subordinators and Bochner subor-
dination. Specifically, the branching property entails that, for each fixed t ≥ 0, the process
X(t, ·) has independent and homogeneous increments with values in R+. We will always deal
with its right-continuous modification which is then a subordinator. We see from (1) that its
Laplace exponent is the function q → ut (q), and the semigroup identity ut+s(q) = ut (us(q))

points at the following representation (see Proposition 1 of [2] for details).

Lemma 1. On some probability space, there exists a process (S(s,t)(a), 0 ≤ s ≤ t and a ≥ 0)

such that the following statements hold.

(i) For every 0 ≤ s ≤ t , S(s,t) = (S(s,t)(a), a ≥ 0) is a subordinator with Laplace exponent
ut−s(·).

(ii) For every integer p ≥ 2 and 0 ≤ t1 ≤ · · · ≤ tp, the subordinators S(t1,t2), . . . , S(tp−1,tp)

are independent and

S(t1,tp)(a) = S(tp−1,tp) ◦ · · · ◦ S(t1,t2)(a) for all a ≥ 0 almost surely.

(iii) The processes (S(0,t)(a), t ≥ 0 and a ≥ 0) and (X(t, a), t ≥ 0 and a ≥ 0) have the
same finite-dimensional marginals.

For the sake of simplicity, from now on we will further assume that

β > 0 or
∫

(0,∞)

(1 ∧ x)�(dx) = ∞,

in order to ensure that the subordinators S(s,t) are pure-jump processes (i.e. they have no drift);
see [12]. Analyzing their jumps in the framework of the representation above yields a natural
notion of genealogy of CSBPs (we refer the reader to [2] for details): for every b, c ≥ 0 and
0 ≤ s < t , we say that individual c in the population at time t has ancestor (or is a descendant
of) individual b in the population at time s if b is a jump time of S(s,t) and

S(s,t)(b−) < c < S(s,t)(b).

Note that, when the subordinatorS(s,t) has a jump at locationb, the size of this jump	S(s,t)(b) =
S(s,t)(b) − S(s,t)(b−) describes the size of the subpopulation at time t which descends from
individual b in the population at time s. Considering the limit as t → ∞, this enables us to
define prolific individuals.

Definition. For every b ≥ 0 and s ≥ 0, we say that individual b in the population at time s is
prolific if

lim
t→∞ 	S(s,t)(b) = ∞.

For every a ≥ 0 and s ≥ 0, we introduce the number of prolific individuals in the population
at time s which descend from the initial population [0, a] of size a,

P(s, a) := card{b ∈ [0, X(s, a)] : b is a prolific individual in the population at time s}.
We point out that there are prolific individuals in the initial population if and only if the CSBP
is prolific. This is certainly not surprising, but it requires a rigorous argument which has some
importance in this study.
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Lemma 2. For every initial population a ≥ 0, the events

{X(·, a) becomes eventually extinguished}

and

{P(0, a) = 0}
coincide almost surely. Furthermore, P(0, a) has the Poisson distribution with parameter aq0.

Proof. As the inclusion

{X(·, a) becomes eventually extinguished} ⊆ {P(0, a) = 0}

is obvious, we just need to check that the probability of the two events coincide.
Fix an arbitrary time t > 0 and focus on the evolution of the initial population [0, a]. The

fact that the subordinator S(0,t) is pure jump means that almost all the population at time t

descends from at most countably many individuals in the initial population. More precisely,
denote by (ai)i∈I the set of jump locations of S(0,t)(·) on [0, a]; so 	S(0,t)(ai) is the size of
the subpopulation at time t having ai as ancestor and

∑
i∈I

	S(0,t)(ai) = X(t, a).

Since, for every t ′ > t , the pure-jump subordinator S(t,t ′) is independent of S(0,t) and
S(0,t ′) = S(t,t ′) ◦ S(0,t), we see that the ancestors in the population at time t of the almost entire
population at time t ′ descend from the individuals (ai)i∈I . As a consequence, any prolific
individual in the initial population belongs to the set of ancestors (ai)i∈I . By applying the
branching property at time t , we find that the conditional probability, given the evolution of the
process up to time t that the individual ai is prolific, equals 1 − exp{−q0	S(0,t)(ai)}, and, for
different indices i, these events are (conditionally) independent. Thus,

P(P (0, a) = 0) = E

(∏
i∈I

exp{−q0	S(0,t)(ai)}
)

= E

(
exp

{
−q0

∑
i∈I

	S(0,t)(ai)

})

= E(exp{−q0X(t, a)})
= exp{−q0a}
= P(X(·, a) becomes eventually extinguished).

This shows the first assertion. Finally, the branching property entails that the process P(0, ·)
is Poisson, and since P(P (0, a) = 0) = exp{−q0a}, its intensity is q0.

Remark 1. An application of the Markov property shows that, conditionally on X(t, a) = b,
the number of prolific individuals at time t has the Poisson law with parameter q0b. By the law
of large number for the Poisson laws, we deduce that, conditionally on the event that X(·, a) is
prolific, we have P(t, a) ∼ q0X(t, a) as t → ∞.
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3. Main results

Fix a > 0, and introduce the probability measure

Pe = exp{q0a} 1{X(a,∞)=0} P,

which is obtained by conditioning the CSBP with initial population of size a to become
eventually extinguished. Observe that, on the σ -field Ft = σ(X(r, a) : 0 ≤ r ≤ t), Pe is
absolutely continuous with respect to the initial probability measure P with density given by
the martingale exp{q0a} exp{−q0X(t, a)}.

We now have all the ingredients needed to state and prove the main results of this note.
First, let us present the continuous-time analogue of the interpretation of the component ge for
Galton–Watson processes, which belongs to the folklore of CSBPs.

Proposition 1. Under Pe, X(·, a) is a CSBP with initial population of size a. Its branching
mechanism is given by

�e(q) = �(q0 + q), q ≥ 0,

and can be expressed in the form

�e(q) = αeq + βq2 +
∫

(0,∞)

(e−qx − 1 + qx 1{x≤1})�e(dx),

where
�e(dx) = exp{−q0x}�(dx)

and

αe = α + 2βq0 +
∫

(0,∞)

(1 − exp{−q0x})x 1{x≤1} �(dx).

More generally, we point out how a simple modification of the law Pe of the branching process
X(·, a) conditioned to become eventually extinguished enables us to describe the conditional
distribution of X(t, a) on the number of prolific individuals P(t, a) at a fixed time t > 0.

Proposition 2. For every a, t ≥ 0 and n ∈ Z+, the conditional law of X(t, a) given P(t, a) =
n is

P(X(t, a) ∈ dx | P(t, a) = n) = xn Pe(X(t, a) ∈ dx)

Ee(X(t, a)n)
.

Proof. To start with, Remark 1 yields the identity

E(exp{−qX(t, a)}sP (t,a)) = E(exp{−qX(t, a)} exp{−q0(1 − s)X(t, a)})
= E(exp{−(q + q0)X(t, a)} exp{q0sX(t, a)})

=
∞∑

n=0

(sq0)
n

n! E(exp{−(q + q0)X(t, a)}X(t, a)n).

Next, we define

f (t, q, a, n) := E(exp{−qX(t, a)} | P(t, a) = n).

Again using Remark 1, but conditioning first on P(t, a) and then on X(t, a), we obtain

E(exp{−qX(t, a)}sP (t,a)) =
∞∑

n=0

(sq0)
n

n! f (t, q, a, n) E(exp{−q0X(t, a)}X(t, a)n).
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We deduce that

f (t, q, a, n) = E(exp{−(q + q0)X(t, a)}X(t, a)n)

E(exp{−q0X(t, a)}X(t, a)n)

= Ee(exp{−qx(t, a)}X(t, a)n)

Ee(X(t, a)n)
,

where in the second identity we made use of the fact that, on the σ -field Ft = σ(X(r, a) : 0 ≤
r ≤ t), the probability measure Pe for the CSBP conditioned to become eventually extin-
guished is absolutely continuous with respect to the initial probability measure P with density
exp{q0a} exp{−q0X(t, a)}. Inverting the Laplace transform (in q) yields the formula of the
statement.

Recall that, with any probability law m on R+ with finite nonzero mean, we can associate
the law m̄ of its size-biased picking, defined by

m̄(dy) = y

c
m(dy)

with c = ∫ ∞
0 ym(dy). We may then note the following recursive identity: for every n ∈ Z+,

the law L(X(t, a) | P(t, a) = n+1) is obtained from L(X(t, a) | P(t, a) = n) by size-biased
picking.

In order to state the main result of this note, we first recall some further well-known material
(see, e.g. Chapter III of [1] or [7]). A continuous-time branching process Z = (Z(t, k) : t ≥
0, k ∈ Z+), where t is the time parameter and k is the number of ancestors, can be viewed
as a Galton–Watson process in which individuals have independent, exponentially distributed
lifetimes. The rate of reproduction is governed by a finite measure µ on Z+ with µ(1) = 0,
which we call the reproduction measure. Specifically, each individual lives for an exponential
time with parameter µ(Z+) and begets at its death a random number of children that is
distributed according to the normalized probability measure µ(·)/µ(Z+) (which coincides
with the reproduction law of the underlying Galton–Watson process). Thus, for each k ∈ Z+,
Z(·, k) is a Markov chain in continuous time, whose dynamics are entirely characterized by the
reproduction measure µ. In turn, the latter is determined by the function

�(s) :=
∞∑

n=0

(sn − s)µ(n), s ∈ [0, 1].

More precisely, the branching property entails that the generating function of Z(t, k) has the
form

E(sZ(t,k)) = γt (s)
k, s ∈ [0, 1], k ∈ Z+,

and solves
∂γt (s)

∂t
= �(γt (s)). (3)

In the case when µ(0) = 0, we say that Z is immortal as each individual has at least two
children almost surely.

Theorem 1. For every a ≥ 0, the process P(·, a) is an immortal branching process in
continuous time with initial distribution given by the Poisson law with parameter q0a. Its
reproduction measure µp is characterized in terms of the branching mechanism of X by

�p(s) =
∞∑

n=0

(sn − s)µp(n) = 1

q0
�(q0(1 − s)), s ∈ [0, 1],
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Figure 2: Graph of the branching mechanism �(q) = q ln q split at q0 = 1. The upper-right quadrant
gives the graph of �e and the reflection of the lower-left quadrant gives the graph of �p .

and is explicitly given by

µp(n) = qn−1
0

∫
(0,∞)

xn

n! exp{−q0x}�(dx) for n ≥ 3 (4)

and

µp(2) = βq0 + q0

∫
(0,∞)

x2

2
exp{−q0x}�(dx).

Figure 2 depicts the transformation � → (�e, �p) and should be compared to Figure 1 for
generating functions in the setting of Galton–Watson processes.

Proof of Theorem 1. The proof of the assertion that the process P(·, a) of the number of
prolific individuals is a branching process in continuous time follows the same route as Galton–
Watson processes by using the argument in the proof of Lemma 2. That this branching process
is immortal is obvious. Lemma 2 also states that its initial distribution is the Poisson law with
parameter aq0.

Let us now compute the generating function of its semigroup. Recall that the generating
function of the Poisson distribution with parameter c ≥ 0 is s → exp{−(1 − s)c}. On the one
hand, combining Lemma 2 with the Markov property at time t yields

E(sP (t,a)) = E(exp{−(1 − s)q0X(t, a)})
= exp{−aut ((1 − s)q0)}.

On the other hand, using the fact that P(0, a) has the Poisson distribution with parameter aq0
shows that the generating function γt of the continuous-time branching process fulfills

E(sP (t,a)) = E(γt (s)
P (0,a)) = exp{−aq0(1 − γt (s))}.

We deduce from these two observations that

1 − γt (s) = 1

q0
ut ((1 − s)q0).
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Taking the derivative in t yields, by (2) and (3),

�p(γt (s)) = 1

q0
�(ut ((1 − s)q0)) = 1

q0
�(q0(1 − γt (s))).

We conclude that

�p(s) = 1

q0
�(q0(1 − s)).

Finally, we recover the measure µp by inverting of the transform �p. This can be performed
by combining Proposition 1 and the observation that �(q0(1 − s)) = �e(−q0s).

Remark. When the branching mechanism fulfills the additional condition∫ ∞
�−1(q) dq < ∞

(this requirement is equivalent to the assumption that asymptotic extinction coincides with
extinction in finite time, which is needed to ensure the separability of the associated real tree
in [4]), we can use the link between CSBPs and Lévy trees, and identify branches with infinite
length in a continuous tree as prolific individuals. Then we can view Theorem 1 as a special
case of Theorem 5.6 of [4], which characterizes the law of the infinite component in a Lévy
tree as a Galton–Watson tree with exponential edge lengths.

In the setting of supercritical Galton–Watson processes we can assign a type to each individ-
ual depending on whether it has finite descent or is prolific, and this yields two-type Galton–
Watson processes. A similar observation can be made in the continuous setting; in this direction
recall that, for every fixed t ≥ 0, there are only countably many prolific individuals at time t ,
which thus do not contribute to the size of the population at time t (but of course the descent of
prolific individuals at time t may have a crucial role in the size of the population at time t ′ > t).
Then we can check that the pair ((X(t, a), P (t, a)) : a, t ≥ 0) also satisfies the branching
property. More precisely, for every a ≥ 0 and n ∈ Z+, let us write (X(·, a, n), P (·, a, n)) for
a version of the pair of processes (X(t, a), P (t, a))t≥0 conditioned on P(0, a) = n. Then, for
every a, a′ ≥ 0 and n, n′ ∈ Z+, there is the identity in distribution

(X(·, a + a′, n + n′), P (·, a + a′, n + n′))
L= (X(·, a, n), P (·, a, n)) + (X′(·, a′, n′), P ′(·, a′, n′)),

where, on the right-hand side, (X′(·, a′, n′), P ′(·, a′, n′)) is independent of (X(·, a, n),

P (·, a, n)) and has the same law as (X(·, a′, n′), P (·, a′, n′)).
For n = 0, X(·, a, 0) is just a version of the initial CSBP with an initial population of

size a and conditioned to become eventually extinguished (i.e. with branching mechanism
�e(q) = �(q + q0)), and, obviously, P(·, a, 0) ≡ 0. This yields

E(exp{−qX(t, a, 0)}sP (t,a,0)) = exp{−a(ut (q + q0) − q0)} (5)

for all q ≥ 0 and s ∈ (0, 1], where ut (·) is defined as in (2). Next, recall from Remark 1 that
there is the identity

E(exp{−qX(t, a)}sP (t,a)) = E(exp{−(q + q0(1 − s))X(t, a)})
= exp{−aut (q + q0(1 − s))}.
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On the other hand, since P(0, a) has the Poisson distribution with parameter aq0, the
branching property enables us to express the preceding quantity as

E(exp{−qX(t, a)}sP (t,a))

=
∞∑

n=0

exp{−aq0}
(aq0)

n

n! E(exp{−qX(t, a, 0)}sP (t,a,0))(E(exp{−qX(t, 0, 1)}sP (t,0,1)))n.

Using (5) and considering the asymptotic when a → 0, easily yield

E(exp{−qX(t, 0, 1)}sP (t,0,1)) = 1

q0
(ut (q + q0) − ut (q + q0(1 − s))).

Putting the pieces together, we conclude that the joint law of (X(t, a, n), P (t, a, n)) is charac-
terized by

E(exp{−qx(t, a, n)}sP (t,a,n)) = exp{−a(ut (q + q0) − q0)}
×

(
1

q0
(ut (q + q0) − ut (q + q0(1 − s)))

)n

.

4. Some examples

We will now present some examples in which explicit computations are possible. The third
example will point at a path transformation that relates strictly stable CSBPs to some super-
critical CSBPs which may be new.

Example 1. (Quadratic branching.) The simplest example is when �(q) = q2 −q, so � = 0,
β = 1, and α = −1. Then we obtain q0 = 1 and �p(s) = s2 − s, which yield µp = δ2.
We conclude that, as time passes, the number of prolific individuals evolves as a standard Yule
process. This is a well-known fact; see, for instance, [11].

Example 2. (Neveu’s branching.) Next, we consider Neveu’s branching process [2], [10],
which has branching mechanism �(q) = q ln(q). Then q0 = 1 and

�p(s) = (1 − s) ln(1 − s) =
∞∑

n=2

sn − s

n(n − 1)
.

We thus obtain µp(n) = 1/n(n − 1) for every n ≥ 2. As a check, recall that Neveu’s branching
process has no Gaussian component and that its Lévy measure is �(dx) = x−2 dx, and, thus,
we recover from (4) that, for n ≥ 2,

µp(n) =
∫ ∞

0

xn

n! e−xx−2 dx = (n − 2)!
n! = 1

n(n − 1)
.

We also point out that ut (q) = qe−t
, and, thus,

γt (s) = 1 − (1 − s)e−t

, s ∈ [0, 1].
Example 3. (Stable branching.) Next consider the supercritical stable branching mechanism
�(q) = �(−ϑ)(qϑ − q), so that q0 = 1 and �(dx) = x−ϑ−1 dx, and

µp(n) =
∫ ∞

0

xn

n! e−xx−ϑ−1 dx = �(n − ϑ)

n! , n ≥ 2.
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It is easily checked that the total mass of µp is

µp(Z+) = �(2 − ϑ)

ϑ
= (ϑ − 1)�(−ϑ);

so the normalized probability measure µp(·)/µp(Z+) is given by

µp(n)

µp(Z+)
= ϑ(2 − ϑ) · · · (n − 1 − ϑ)

n! := νϑ(n), n ≥ 2.

The reproduction law (νϑ(n))n≥2 in Example 3 already appeared at the bottom of page 74
of Duquesne and Le Gall [3] (see also Section 7 of [7]), which points at a rather surprising
connection with strictly stable trees reduced at some finite level. More precisely, Duquesne and
Le Gall (see Sections 2.6 and 2.7 of [3]) were interested in the limit of certain reduced critical
Galton–Watson trees observed up to some large generation. Following Theorem 2.7.1 of [3],
we consider a time-inhomogeneous Markov process (Z1

t )0≤t<1 with values in N, which models
the evolution of a population with the following dynamics. The death time of an individual
that is alive at time t ∈ [0, 1) has the uniform distribution on [t, 1], and at its death, this
individual begets a random number of children distributed according to the reproduction law νϑ ,
independently of the death time. Furthermore, different individuals evolve independently of
the others. Heuristically, the quantity Z1

t can be interpreted as the number of individuals at
time t which have a nonzero descent at time 1 in a strictly stable(ϑ)-CSBP, i.e. with branching
mechanism �ϑ(q) := cqϑ , where c > 0 is arbitrary.

On the other hand, recall that a random variable ε which has the exponential distribution with
parameter c > 0 satisfies the property of absence of memory, and, furthermore, 1−exp{−cε} is
then uniformly distributed on [0, 1]. Putting these observations together, we now realize that if
Z1 starts with a number of ancestors distributed according to the Poisson law with parameter a

then the time-changed process

t → Z1
1−exp{−(ϑ−1)�(−ϑ)t}

is a version of the process (P (t, a))t≥0 of the number of prolific individuals for a CSBP with
branching mechanism �(q) = �(−ϑ)(qϑ −q) and started from an initial population of size a.

We now conclude this work by providing a direct explanation for the preceding relation,
which is based on the following simple transformation of strictly stable CSBPs.

Proposition 3. Let (Y (t, a) : t ≥ 0 and a ≥ 0) be a strictly stable CSBP with branching
mechanism �ϑ(q) = cqϑ , where c > 0 and ϑ ∈ (1, 2], and fix b > 0. Then the process

Ỹ (t, a) := ebtY (1 − e−b(1−ϑ)t , a), t ≥ 0 and a ≥ 0,

is a CSBP with branching mechanism

�̃ϑ (q) = bc(ϑ − 1)qϑ − bq.

This provides a pathwise proof for the identity in distribution which was observed above.
Indeed, we choose b = �(−ϑ) and c = 1/(ϑ − 1) so that �̃ϑ (q) = �(−ϑ)(qϑ − q). Then it
suffices to observe that Z1

1−exp{−(ϑ−1)�(−ϑ)t}, the number of individuals at time 1 − e−b(1−ϑ)t

which have a nonzero descent at time 1 in the strictly stable CSBP Y , coincides with the number
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of prolific individuals at time t in the supercritical CSBP Ỹ . For this, we have to use the feature
that, since

∫ ∞ dq/�̃ϑ(q) < ∞, the following equivalence holds with probability 1:

Ỹ (t, a) = 0 when t is sufficiently large ⇐⇒ lim
t→∞ Ỹ (t, a) = 0.

In other words, when the CSBP Ỹ becomes eventually extinguished, it must become entirely
extinguished at some finite time. See, for instance, the exercise of [8, p. 28].

Proof of Proposition 3. Let us write

vt (q) = −ln E(exp{−qY (t, 1)})

for the solution to (2) for the branching mechanism �ϑ(q) = cqϑ . This equation can be solved
explicitly and we find that

vt (q) = ((ϑ − 1)ct + q1−ϑ)1/(1−ϑ), q > 0.

It is immediate to check that the transformed process Ỹ is a (possibly time-inhomogeneous)
Markov process that satisfies the branching property. Identity (1) yields

E(exp{−qỸ (t, a)}) = E(exp{−q ebtY (1 − e−b(1−ϑ)t , a)}) = exp{−aut (q)}

with

ut (q) = v1−e−b(ϑ−1)t (q ebt )

= ((ϑ − 1)c(1 − e−b(ϑ−1)t ) + q1−ϑ e−b(ϑ−1)t )1/(1−ϑ).

Taking the derivative with respect to t , we obtain

∂ut (q)

∂t
= 1

1 − ϑ
(b(ϑ − 1)2c e−b(ϑ−1)t − b(ϑ − 1)q1−ϑ e−b(ϑ−1)t )ut (q)ϑ

= −b((ϑ − 1)c − ut (q))ut (q)ϑ .

Thus, we see that ut (q) solves

∂ut (q)

∂t
= −�̃ϑ (ut (q)), u0(q) = q,

and, as in this partial differential equation, the function �̃ϑ does not depend on t , which ensures
that Ỹ has in fact the time-homogeneous branching property. More precisely, Ỹ is a CSBP with
branching mechanism �̃ϑ .
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