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Abstract. In this note, we give a new simple construction of all maximal abelian
ideals in a Borel subalgebra of a complex simple Lie algebra. We also derive formulas
for dimensions of certain maximal abelian ideals in terms of the theory of Borel de
Siebenthal.
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1. Introduction. Let g be a complex simple Lie algebra and b a fixed Borel
subalgebra of g (i.e. a maximal solvable subalgebra of g). In this note, we give a new
simple construction of all maximal abelian ideals in b, see Theorem 4.2. We also derive
dimension formulas in terms of Borel de Siebenthal theory [1], see Corollary 3.4. There
is already an extensive literature on this topic (see [4, 7, 8, 9, 5, 10, 11], and references
therein), most of it concerning the affine Weyl group and coset enumeration. Our
approach is based on root theoretic properties. The results obtained here comprised
part of the author’s Ph.D thesis and he would like to thank Dr J. Burns for his expert
guidance.

2. Preliminaries. Throughout this note, g will denote a finite dimensional
complex simple Lie algebra, with fixed Cartan subalgebra h and b a fixed Borel
subalgebra of g containing h. All basic facts and definitions can be found in [6].
As usual, we have the root space decomposition of g,

g = h ⊕
⊕
α∈�

gα.

Here, � is the set of roots, we partition this set into two sets of positive and negative
roots denoted by �+ and �−. Let � := {α1, . . . , αr} be a set of positive simple roots that
span �, and r is the rank of g. We define h∗

� to be the real span of the roots. We define
the height of a root α as ht(α) = ∑r

i=1 nα
i , where α = ∑r

i=1 nα
i αi. The fundamental

weights {ω1, . . . , ωr} are defined by the condition that (ωi, 2αj) = (αi, αj)δij for all i, j,
where (· , · ) is an invariant inner product normalized so that the highest root, denoted
by α̃ has length (denoted ||α̃||) squared two. If λ = ∑r

i=1 mλ
i ωi, where mλ

i ≥ 0 for all
1 ≤ i ≤ r, then λ is said to be a dominant weight. There are at most two root lengths
in �, called long and short. We denote the set of long and short roots by, �l and �s,
respectively. If all roots in � have equal length we say � is simply laced and the root
length is called long, otherwise we say � is non-simply laced. In the non-simply laced
case, there exists a highest short root β̃, β̃ and α̃ are the only positive roots that are also
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dominant weights. We also note that β̃ = α − αj, where α is a highest long root such
that mα

j > 1 and αj a short simple root. Let Sα(β) := β − 2(α,β)
(α,α) α denote the reflection

of a root β by a root α. We note that Sα(�) = � for any α ∈ �.
The Dynkin diagram of g denoted 	g, is the multi graph with r vertices, labelled by
the simple roots and cαi,αj cαj,αi edges connecting the αi and αj vertices, where cαi,αj is
the (i, j) entry in the Cartan matrix. The extended Dynkin diagram 	̃g, is 	g with
the extra node α0 := −α̃, connected to any other vertex αi by cαi,−α̃c−α̃,αi edges. We
will denote by 	̃g\{αk}, the extended Dynkin Diagram 	̃g, with the node αk deleted.
Similarly, 	g\{αi∈I} denotes the Dynkin diagram 	g with the set of nodes {αi ∈ I} for
some set I deleted. Finally, let |	̃g\{αk}| and |	g\{αi∈I}| denote the number of positive
roots in the root system with Dynkin diagram 	̃g\{αk} and 	g\{αi∈I}, respectively.
Let a ⊂ b be an abelian ideal of a Borel subalgebra b in g. Since a is an ideal, it is ad-h
stable and hence compatible with the root space decomposition. Since a is abelian,
it lies inside the nilpotent radical n := [b, b], hence a is of the form a = ⊕

ψ∈� gψ for
some subset � ⊆ �+. Using the fact that [gα, gβ ] ⊆ gα+β , we see:

(i) The ideal property for a translates into the condition for � that,

� + �+ := {α + β|α ∈ �,β ∈ �+} ∩ �+ ⊆ �.

(ii) The abelian condition becomes, � + � := {α + β|α, β ∈ �} ∩ �+ = ∅.

We now have a bijection between abelian ideals a ⊂ b and subsets � ⊂ �+ that satisfy
(i) and (ii). We will require the following definition and lemmas. Following the notation
used by Suter [11],

DEFINITION 2.1. Following the notation used by Suter in [11], given a set of roots
I , we denote by 〈I〉 the sum

∑
α∈I α.

LEMMA 2.2 ([2, 6]). Given two non-proportional roots α, β, then
(i) If (α, α) ≤ (β, β), then 2 (α,β)

(β,β) ∈ {−1, 0, 1}.
(ii) If (α, β) > 0, then α − β ∈ �.

(iii) If (α, β) < 0, then α + β ∈ �.
(iv) If (α, β) = 0 and α + β ∈ �, then α − β ∈ �.

LEMMA 2.3 ([3] – Theorem 1.1, [12]). For a finite dimensional representation of g

with weights �,

∑
λ∈�i1 ,x1 ∩···∩�ip ,xp

λ =
p∑

j=1

cij ωij x, cij ∈ �,

where �i,x := {λ ∈ �|(λ, ωi) = x} and i ∈ {1, . . . , r}.
The most obvious way to obtain a maximal abelian ideal is given by the following

theorem (various proofs can be found in [4, 9, 11, 8]).

THEOREM 2.4. Given a root system of a Lie algebra such that nα̃
i = 1 for some i, let

� := {α ∈ �+|nα
i = 1}. Then, a� := ⊕

α∈� gα is a maximal abelian ideal of dimension
g||ωi||, where g is the dual Coxeter number.
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3. Maximal abelian ideals. In [9], Theorem 4.2 (page 242) yielded a maximal
abelian ideal for every index i such that nα̃

i = 2 (where nα̃
i denotes the coefficient of αi

in the expression α̃ = ∑r
i=1 nα

i αi). In this section, we prove a generalized version of
this theorem, although we do not strictly need this result, it is of independent interest
and also yields a dimension formula.

DEFINITION 3.1. Let η = ∑
p∈P cpωp + ∑

q∈Q dqωq be a weight with cp > 0 for all
p ∈ P ⊂ {1, . . . , r} and dq < 0 for all q ∈ Q ⊂ {1, . . . , r}. The η−height of a root α is
denoted by htη(α) := ∑

p∈P nα
p , and we call the elements of P the grading positions

associated to η.

LEMMA 3.2. Let αk ∈ � be long and nα̃
k be even. Let γ ∈ �+ \ {α̃} such that nγ

k = c

( a positive integer ) with c ≥ nα̃
k
2 and ht(γ ) ≥ ht(α) for all α such that nα

k = c. Then, γ is
long and (γ, α̃) = 1.

Proof. We first prove that mγ
i ≥ 0 for all i �= k. If mγ

i < 0 for any i �= k, we
have (γ, αi) < 0 thus γ + αi ∈ �+ with nγ+αi

k = c, and ht(γ + αi) > ht(γ ), which is
a contradiction.

Suppose γ is short. If mγ

k < 0, then Sγ (αk) = αk − 2(γ,αk)
(γ,γ ) γ = αk + 2γ ∈ �+ (or

αk + 3γ in the case of G2 ) but nαk+2γ

k > nα̃
k , a contradiction. Therefore, mγ

k ≥ 0 forcing
γ = β̃ ( since we already know that mγ

i ≥ 0 for any i �= k ), and there exists a long root
α such that α − αi = γ . If i �= k, then γ is not a highest root such that nγ

k = c, thus
i = k. Observe that

(γ, γ ) = (α − αk, α − αk)

= (α, α) + (αk, αk) − 2(α, αk).

Now, since α and αk are long roots, (α, αk) ∈ � and hence (γ, γ ) is an even integer,
which is impossible if γ is a short root. So γ is long.
Since both α̃ and γ are long, we will show that (γ, α̃) > 0 and use Lemma 2.2 to
conclude that (γ, α̃) = 1. We know that nγ

k > 0. If nγ
i = 0 for some index i �= k, then

(γ, αi) < 0, hence γ + αi ∈ �+, contradicting the definition of γ . Thus, nγ
i > 0 for any

index i. Finally, mα̃
i > 0 for some index i, hence (γ, α̃) > 0. �

The following observation will prove useful. Let γ and k be as in Lemma 3.2 and
α ∈ �+, then (γ, αk) = −1 and (γ, αi) = 1 if and only if mγ

i > 0 (by Lemma 2.2). Then,

(γ, α) =
(

γ,

r∑
j �=k

nα
j αj

)
− nα

k =
r∑

j �=k

nα
j (γ, αj) − nα

k =
∑

{j|mγ

j >0}
nα

j − nα
k = htγ (α) − nα

k . (1)

THEOREM 3.3. Let αk be a long simple root such that nα̃
k = 2n, where n ∈ �>0. Let γ

be a root such that nγ

k = n and ht(γ ) ≥ ht(α) for all α such that nα
k = n, and let P be the

set of grading positions associated to γ . Let

� := {α ∈ �+|nα
k ≥ n + 1} ∪ {γ } ∪ {γ − α|(γ, α) > 0 and nα

k = 0}.
Then, a� is a maximal abelian ideal. Moreover, for n ≥ 2,
|P| ≤ 2 and 〈{α ∈ �|htγ (α) = htγ (α̃)}〉 = kpωp + kqωq with kp > 0 and kq ≥ 0, where αp

is the node closest to −α̃ in the extended Dynkin diagram.

https://doi.org/10.1017/S0017089516000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000148


258 PATRICK J. BROWNE

Proof. We first show that � ⊆ {α ∈ �+|htγ (α) ≥ n + 1}. Using Lemma 3.2 and
equation (1) above, (γ, γ ) = 2 = htγ (γ ) − n, hence htγ (γ ) = n + 2. Also (γ, α̃) = 1 =
htγ (α̃) − 2n, thus htγ (α̃) = 2n + 1. Let α ∈ �+ such that nα

k ≥ n + 1, if (γ, α) < 0, then
γ + α ∈ �+ and nγ+α

k > nα̃
k a contradiction, thus (γ, α) ≥ 0. Hence , (γ, α) = htγ (α) −

nα
k ≥ 0, and htγ (α) ≥ n + 1. Lastly, let α ∈ �+ such that nα

k = 0 and (γ, α) > 0, then
by Lemma 2.2 (γ, α) = 1 = htγ (α) − nα

k so htγ (α) = 1 and htγ (γ − α) = n + 1.
Now to show that {α ∈ �+|htγ (α) ≥ n + 1} ⊆ �. Let α ∈ �+ such that htγ (α) ≥

n + 1 and α �∈ �. If (γ, α) < 0, then α + γ ∈ �+ and htγ (α + γ ) ≥ 2n + 3 a
contradiction (since htγ (α̃) = 2n + 1) , therefore (γ, α) ≥ 0. Also since htγ (α) ≥ n + 1
and nα

k ≤ n, we have (γ, α) �= 0, hence (γ, α) > 0. Since α �= γ , (γ, α) = 1, thus
γ − α ∈ �+ and nγ−α

k = 0. Furthermore, (γ, γ − α) = 2 − 1 > 0. Since nγ−α

k = 0 and
(γ, γ − α) > 0, we know that γ − (γ − α) = α ∈ � a contradiction. Hence, � =
{α ∈ �+|htγ (α) ≥ n + 1}. Since � = {α ∈ �+|htγ (α) ≥ n + 1}, the abelian and ideal
conditions are satisfied.

Before we address the question of maximality, we note that if nα̃
k = 2, the statement

of the theorem is essentially that found in [9] and we do not cover the proof here. Since
maximality for the remaining cases (i.e. nα̃

k = 4, 6) has already been verified in [9] (by
computer), we do not include our proof here, the interested reader should consult the
appendix for our proof of maximality which makes use of the following observations
on the grading positions associated to γ . Henceforth, nα̃

k = 4 or 6 so g is of type E7 or
E8.

Since the Dynkin diagram is connected, μ := ∑r
i=1 αi ∈ �+, now (γ, μ) = −1 + x,

where x = |P| (the number of grading positions associated to γ ). If x = 3 ⇒ (γ, μ) = 2,
hence γ = μ and this only arises if nα̃

k = 2. Since |(γ, μ)| �> 2, x > 3 is a contradiction,
also x �= 0 since mγ

i > 0 for at least one i. Therefore, x = 1 or 2, and |P| ≤ 2.
Now, let p be the grading position (associated to γ ) such that the αp node is closest

to the αl0 node in the Dynkin diagram, where α̃ = ωl0 . Let the set of nodes on the
shortest path from αp to αl0 be {l0, . . . , lp−1, lp}, then ν := α̃ − αl0 − · · · − αlp−1 ∈ �+,
htγ (ν) = htγ (α̃) and mν

p > 0.
Let α ∈ �+ such that htγ (α) = htγ (α̃), then mα

p �< 0 (otherwise α + αp ∈ �+ and
htγ (α + αp) > htγ (α̃), a contradiction). Using Lemma 2.3, we conclude that

〈{α|htγ (α) = htγ (α̃)}〉 = kpωp + kqωq,

where p and q are the grading positions and kp > 0 and kq ≥ 0, since mν
p ≥ 0 for all

p ∈ P and htγ (ν) = htγ (α̃).
In summary:

� |P| ≤ 2.
� 〈{α|htγ (α) = htγ (α̃)}〉 = kpωp + kqωq, where kp > 0 and p is defined above.

The above conditions on the set P, reduces the maximality arguments to a handful of
case by case arguments. These arguments are covered in the appendix. �

COROLLARY 3.4. With �, P, k and γ as in Theorem 3.3.

(i) If nα̃
k = 2, then |�| = |	̃g\αk | − |	g\{αi|i∈P∪{k}}| + 1.

(ii) For all other cases, |�| = |	̃g\αk | − |	g\{αi|i∈P∪{k}}| + 1 +∑2n−1
i=n+1 |{α ∈ �+|nα

k = i}|.
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Proof.
(i): Let α ∈ �+ such that nα

k = 0, then (γ, α) ≥ 0 since mγ
i < 0 if and only if i = k.

If (γ, α) = 0, then nα
p = 0 for all p ∈ P. Now,

� = {α ∈ �+|nα
k ≥ 2} ∪ {γ } ∪ {γ − α|(γ, α) > 0 and nα

k = 0}.
Hence,

|�| = |{α ∈ �+|nα
k = 2, 0}| − |{α ∈ �+|nα

k = 0, (α, γ ) = 0}| + 1.

Using the theory of Borel de Siebenthal, or Theorem 8.10.9 (page 280) in [13],

|�| = |	̃g\αk | − |	g\{αi|i∈P∪{k}}| + 1.

(ii): The proof is once again by argument along the lines of Borel de Siebenthal.
�

We illustrate the above results for the exceptional Lie algebra E7, here α̃ = 2α1 +
2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7. In the statement of Theorem 3.3, choose k = 2 ( i.e.
nα̃

2 = 2 ), then γ = −ω2 + ω5 (i.e. htγ (α̃) = 3 and P = {5}), then � = {α ∈ �+|htγ (α) ≥
2}. To compute |�|, we use Corollary 3.4, and see that |	̃E7\α2 | = |	A7 | = 28 and
|	E7\{α2,α5}| = |	A3×A2 | = 9. Thus, |�| = 28 − 9 + 1 = 20.

Finally, we give an example with multiple grading positions. In the case of E8,
nα̃

4 = 6 and γ = ω2 − ω4 + ω6. So, htγ (α̃) = 7, P = {2, 6} and � = {α ∈ �+|htγ (α) ≥
4}. Lastly, |�| = |	̃E8\α4 | − |	E8\{α4,α2,α6}| + 1 + ∑5

i=4 |{α ∈ �+|nα
4 = i}| = 19 − 7 +

1 + 21 = 34.

4. A uniform method to find all maximal abelian ideals. In this final section, we
present a uniform method for finding all maximal abelian ideals in b. Furthermore,
this method highlights the natural one to one correspondence between long simple
roots and maximal abelian ideals for classical g. This was first observed by Panyushev
and Röhrle [9] for any g and later proved by Suter in [11]. We first introduce some
notation. Let �(0) := {α ∈ �+|(α, α̃) = 0} and �(1) := {α ∈ �+|(α, α̃) = 1}.

LEMMA 4.1. Let a� be a maximal abelian ideal in b. Then, for all α ∈ �(1), either
α ∈ � or α̃ − α ∈ �.

Proof. Let α ∈ �(1) be such that {α, α̃ − α} �∈ �. Then, there exists such a root of
maximal height, henceforth denoted α.

Let β ∈ �. If β ∈ �(1) and (α, β) < 0, then α + β ∈ �+, so α + β ∈ � by the
ideal condition. Since α, β ∈ �(1), α + β = α̃ and β = α̃ − α ∈ �, a contradiction. If
β ∈ �(0) and (α, β) < 0, then α + β ∈ � ∩ �(1). Thus, α̃ − (α + β) ∈ �+. Using the
ideal condition β + (α̃ − (α + β)) = α̃ − α ∈ �, a contradiction. Also, (α, α̃) ≥ 0 by
definition of α̃. Hence, (α, β) ≥ 0 for all β ∈ � and α ∈ �(1).

We will show that � ∪ {α} is an abelian ideal, thus giving a contradiction. Let
α + β ∈ �+ for some β ∈ �. If β ∈ �(1), then α + β = α̃ and hence β = α̃ − α, a
contradiction as before. Let β ∈ �(0), if (α, β) > 0, then α − β ∈ �+ (since α ∈ �(1)

β ∈ �(0)) and (α − β) + β = α ∈ � by the ideal condition, a contradiction. If (α, β) =
0 and α + β ∈ �+, then α − β ∈ �+ by Lemma 2.2, hence β + (α − β) = α ∈ � by the
ideal condition, a contradiction. Hence, we have shown that α + β �∈ �+, thus � ∪ {α}
is abelian.
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We now show that � ∪ {α} is an ideal. Let γ ∈ �+ such that α + γ ∈ �+. If
γ ∈ �(1), then α + γ = α̃ ∈ �, otherwise γ ∈ �(0) and α + γ ∈ �(1). By definition of
α, α + γ ∈ �. Hence, � ∪ {α} is an abelian ideal. �

The above lemma prompts us to partition �(1) into two (top and bottom) halves,
�T

(1) and �B
(1). Let �T

(1) := {α ∈ �(1)|ht(α) ≥ ht(α̃)+1
2 } (in the case of Aeven, where ht(α̃) is

even , we let �T
(1) := {α ∈ �(1)|ht(α) ≥ ht(α̃)

2 } ), and �B
(1) := {�(1) \ �T

(1)}. Now if α ∈ �T
(1),

then α̃ − α ∈ �B
(1).

By Lemma 4.1, we must firstly determine, for every maximal abelian ideal, which
roots from �T

(1) are to be excluded from the ideal. We observe that if a root α ∈ �T
(1)

is excluded (so that α̃ − α ∈ �B
(1) is included), then 2nα

k < nα̃
k for some k (since α̃ − α

cannot be an ancestor of α). To obtain all possibilities therefore, for each k with nα̃
k =

2n + 1, n ≥ 0, we choose α̂ ∈ �T
(1) of maximal height such that nα̂

k = n. Thus, we obtain

(see Theorem 4.2 below) a maximal abelian ideal I α̂ = {α ∈ �+|ht−α̂(α) > ht−α̂(α̂)}. We
now repeat the process with the next highest α̂ ∈ �T

(1) such that nα̂
k = n, and we continue

until all possibilities are exhausted for all choices of k with nα̃
k = 2n + 1, n ≥ 0. For

example, in the case where nα̃
k = 1, the first root α̂ ∈ �T

(1) we exclude is the highest

root such that nα̂
k = 0. This root is of the form −ωk + ∑

m∈M ωM for some set of
indices M, where

∑
m∈M ωm is the highest root of the embedded root system obtained

by deletion of αk from the Dynkin diagram. Now, if we consider roots α such that
ht−α̂(α) > ht−α̂(α̂) (i.e. using the grading positions associated to −α̂ and choosing all
roots such that nα

k = 1), we recover the maximal abelian ideal ({α ∈ �+|nα
k = 1}) as

described by Theorem 2.4.
For any subsequent α̂ of lower height, there will be multiple indices i such that

mα̂
i < 0, we will use the grading positions associated to the root −α̂ (i.e. {i|mα̂

i < 0}).
When no root is removed from �T

(1), we use the grading positions associated to 〈�T
(1)〉

excluding the index p, where α̃ = ωp, in the case of An we exclude both 1 and n. For
convenience, let 〈�T

(1)〉 = ∑
i∈I miωi, and let δ := ∑

i∈I
i �=p

miωi. We exclude the index p

since α̃ �∈ �(1) ∪ �(0). The following theorem provides a simple uniform description
of all maximal abelian ideals. The proof relies on determination of grading positions,
which unavoidably will introduce some case by case analysis.

THEOREM 4.2. Let g be a complex simple Lie algebra. Every maximal abelian ideal
in b is of the form aϒ , where ϒ is either

(i) {α ∈ �+|ht−α̂(α) > ht−α̂(α̂)}, where α̂ ∈ �T
(1), nα̂

k = n and k is such that nα̃
k =

2n + 1, where n ∈ �≥0.
Or,

(ii) {α ∈ �+|htδ(α) >
htδ (α̃)−1

2 } .

Proof. For simplicity, we will not cover the case g being of type Al (Theorem 2.4
already recovers all maximal abelian ideals).

For each k such that nα̃
k = 2n + 1, where n ∈ �≥0 let α̂0, α̂1, . . . α̂j . . . be the highest,

next highest, . . . root in �T
(1) with nα̂j

k = n. We observe that for all classical cases, the

only odd coefficient of α̃ is one and when nα̃
k = 1 we have nα̂0

k = 0. Clearly, α̂0 is the
highest root of the embedded root system with Dynkin diagram a component of that
of g with the αk node removed. When g is of type Bl, then k = 1 is the only choice for k.
Since α̃ = ω2 and α̂0 is the highest root of the embedded Bl−1 root system, obtained by
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deletion of the α1 node, we see that α̂0 = −ω1 + ω3. The grading position associated
to −α̂0 is {1}, and nα̂0

1 = 0. So, ϒ = {α ∈ �+|ht−α̂0 (α) > 0} (i.e. {α ∈ �+|nα
1 = 1}). This

ideal was described in Theorem 2.4, and so is a maximal abelian ideal. Now, α̂1 is
Sα3 (α̂0), so that α̂1 = −ω1 + ω2 − ω3 + ω4. The grading positions associated to −α̂1 are
{1, 3}, also nα̂1

1 = 0 and nα̂1
3 = 1. So, ϒ = {α ∈ �+|ht−α̂1 (α) > 1}. This ideal was already

described in Theorem 3.3 and hence is a maximal abelian ideal. We can continue in this
fashion to recover a total of (l − 2) α̂i roots (any more reflections would force the height
of α̂i included too low to be an element of �T

(1)). The grading positions associated to
−α̂i are {1, i + 1} for 2 ≤ i ≤ l − 2. Each of these correspond to a maximal abelian
ideal described in Theorem 3.3. Lastly, the grading positions associated to δ are {1, l},
once again these correspond to a maximal abelian ideal described in Theorem 3.3.
Hence, we have a total of l − 1 maximal abelian ideals.

Let g be of type Cl, then α̃ = 2ω1 and ht(α̃) = 2l − 1. Here, nα̃
k is odd for

k = l. Hence, α̂0 must belong to an embedded Al−1 root system, forcing α̂0 �∈ �T
(1),

a contradiction. So, there are no α̂ roots in this case. The grading position associated
to δ is {l}, and nα̃

l = 1. Hence, ϒ = {α ∈ �+|htδ(α) > 0}. This is the only maximal
abelian ideal, and already found in Theorem 2.4.

Let g be of type Dl, then α̃ = ω2, ht(α̃) = 2l − 3 and nα̃
k is odd if and only if

k ∈ {1, l − 1, l}. If k = l or l − 1, then α̂0 is found by l − 2 simple reflections from α̃

(each reflection corresponding to those nodes in the path from α2 to αk in the Dynkin
diagram), thus ht(α̂0) = ht(α̃) − (l − 2) = l − 1. Hence, we cannot further decrease in
height and remain contained in �T

(1). So each k ∈ {l − 1, l} gives one α̂, the grading
positions associated to −α̂0 are {l − 1} for k = l − 1 and {l} for k = l (i.e. corresponding
to the maximal abelian ideals found in Theorem 2.4). If k = 1, α̂0 = −ω1 + ω3, the
grading position associated to −α̂0 is {1} (found in Theorem 2.4). Using simple
reflections, we can find l − 4 more α̂i roots, where {1, i} are the grading positions
associated to −α̂i for 3 ≤ i < l − 2. Once again these grading positions correspond
to the maximal abelian ideals found in Theorem 3.3. Lastly, the grading positions
associated to δ are {1, l − 1, l}. This is our first example of three grading positions.
Here, htδ(α̃) = 3, and ϒ = {α ∈ �+|htδ(α) > 1}. Once again this maximal abelian ideal
was described by Theorem 3.3.

Let g be of type E6. Here, nα̃
k = 1 for k = 1 or k = 6. In each of these cases,

the grading positions associated to −α̂0 describe maximal abelian ideals found by
Theorem 2.4. There is only one other α̂ root, the grading positions associated to
−α̂1 are {1, 5} for k = 1 (and {3, 6} for k = 6). Once again both of these correspond
to maximal abelian ideals described in Theorem 3.3. For k = 4 (i.e. nα̃

4 = 3) α̂0 =
ω1 + ω2 − ω4 + ω6, so the grading position associated to −α̂0 is {4}, there are no
more α̂ roots for k = 4. Once again this was described in Theorem 3.3. The grading
positions associated to δ are {1, 4, 6}, and htδ(α̃) = 5. So, ϒ = {α ∈ �+|htδ(α) > 2}.
To show that aϒ is maximal, let β ∈ �+, such that htδ(β) = 2, and suppose that
β ∪ ϒ is an abelian ideal. Now, 〈{α ∈ �+|htδ(α) = 5}〉 = ω4. If (β, ω4) < 0, then there
exists an α such that htδ(α) = 5 and α + β ∈ �+ a contradiction. If (β, ω4) > 0, then
there exists an α such that α − β ∈ �+ and since htδ(α) = 5, α − β ∈ ϒ . This is a
contradiction since β + (α − β) ∈ �+ (violating the abelian condition). So (β, ω4) = 0,
hence nβ

4 = 0. This is another contradiction since htδ(β) = 2 and nβ

4 = 0, no such root
exists in the E6 root system (since if nβ

4 = 0, β belongs to a product of embedded
type A root systems). Hence, aϒ is maximal. This gives a total of six maximal abelian
ideals.
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Table 1. Maximal abelian ideals

Lie algebra Grading positions Theorems

An {1}, . . . , {r}. 2.4
Bn, n ≥ 3 {1}. 2.4

{1, 3}, . . . , {1, n}. 3.3
Cn {n}. 2.4
Dn, n > 3 {1}, {n − 1}, {n}. 2.4

{1, 3}, . . . , {1, n − 2}, {1, n − 1, n}. 3.3
E6 {1}, {6}. 2.4

{1, 5}, {3, 6}, {4}. 3.3
{1, 4, 6}. 4.2

E7 {7}. 2.4
{5}, {3}, {2, 7}, {3, 6}. 3.3
{4, 7}, {3, 5, 7}. 4.2

E8 {7}, {2}, {5}, {1, 7}, {2, 6}. 3.3
{3, 7}, {4, 7}, {2, 5, 7}. 4.2

F4 {2}. 3.3
{2, 4}. 4.2

G2 {1}. 3.3

The arguments for E7 and E8 are almost identical to those for E6. In E7, the
only grading positions not found previously are {3, 5, 7} associated to δ and {4, 7}
associated to α̂. To show maximality, we repeat a similar argument to the E6 case.
In E8, the only grading positions not found previously are {2, 5, 7}, {3, 7} and {4, 7},
maximality follows along the lines of previous arguments again. Giving a total of seven
and eight maximal abelian ideals for E7 and E8, respectively.

For F4, α̃ = ω1 and nα̃
k is odd if and only if k = 2. Here, α̂0 = ω1 − ω2 + 2ω4 and the

grading position associated to −α̂0 is {2}, there are no more α̂ roots. This corresponds
to a maximal abelian ideal described in Theorem 3.3. The grading positions associated
to δ are {2, 4} so htδ(α̃) = 5 and 〈{α|htδ(α) = 5}〉 = ω2. A similar argument to that of
the above will show maximality, giving a total of two maximal abelian ideals.

Lastly, we find one maximal abelian ideal in G2, grading position {1} associated
to δ, which was already found by Theorem 3.3. We have exhausted all possible choices
of α ∈ �(1) to produce maximal abelian ideals. Using the result that there are as many
maximal abelian ideals as the number of long simple roots, proved in [11] and [10], we
have found every maximal abelian ideal. �

We present our results in table form (see Table 1), showing grading positions
associated to both −α̂i and δ in the case of Theorem 4.2 or γ for Theorem 3.3. The last
column shows which theorems found these grading positions, we also include Theorem
2.4 when it found the same maximal abelian ideals, as our other theorems. Theorem
4.2 describes every maximal abelian ideal but we only reference it in the table when
it is the only theorem that identifies the grading positions shown. We also note that
Theorems 2.4 and 3.3 struggle for exceptional g.

A Appendix

Conclusion of the proof of Theorem 3.3. We know that � = {α ∈ �+|htγ (α) ≥
n + 1}. Using the two observations in the proof of Theorem 3.3, we now show that
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Figure 1. Extended dynkin diagram of E7.
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α23

α0E8

Figure 2. Extended dynkin diagram of E8.

a� is maximal for n ≥ 2. To prove maximality, we show that for any root α such that
htγ (α) = n, � ∪ {α} is not an abelian ideal.

Let α ∈ �+ such that htγ (α) = n and suppose � ∪ {α} is an abelian ideal.
If (〈{β ∈ �|htγ (β) = htγ (α̃)}〉, α) < 0, then there exists a β such that β + α ∈ �+,
a contradiction. If (〈{β|htγ (β) = htγ (α̃)}〉, α) > 0, then there exists a β such that
β − α ∈ �+ and since htγ (α) = n, β − α ∈ �. Hence, α + (β − α) ∈ � a contradiction.
So, (〈{β|htγ (β) = htγ (α̃)}〉, α) = 0.

Suppose |P| = 1, then 〈{β|htγ (β) = htγ (α̃)}〉 = kpωp, where p is the grading
position and by our observations kp > 0. If (〈{β|htγ (β) = htγ (α̃)}〉, α) = 0, then
(kpωp, α) = kp(ωp, nα

p αp) = 0, so nα
p = 0 a contradiction since htγ (α) = n. Since |P| ≤ 2,

there must be exactly two grading positions, henceforth let P = {p, q}, and let αp be
closer to the −α̃ node in the extended Dynkin diagram.

If (〈{β|htγ (β) = htγ (α̃)}〉, α) = 0, then

(kpωp, α) + (kqωq, α) = kp(ωp, nα
p αp) + kq(ωq, nα

q αq) = 0.

Since (ωp, αp) > 0 and kp > 0, kq ≥ 0, then nα
p = 0. If kq > 0, then nα

q = 0, also a
contradiction since htγ (α) = n. Therefore, kq = 0, and nα

q = n since htγ (α) = n. So, we
require a root α such that htγ (α) = n and nα

q = n.
Since we are only concerned with the cases where nα̃

k > 2 (i.e. where nα̃
k = 4 or

6) and αk is long, the only root systems left to consider are that of E7 and E8. Our
arguments from now on we will make extensive use of Dynkin diagrams and embedded
root systems. To aid the reader in seeing the embedded root systems for the various
possibilities of grading positions associated to γ , we will provide the extended Dynkin
diagrams for both E7 and E8 (see Figures 1 and 2). The nodes are denoted by αl and
the number adjacent to each node is nα̃

l . We start with E7.
In E7, the only case to consider is that of k = 4, here htγ (α̃) = 5, htγ (γ ) = 4 and

α̃ = ω1. If {1} ∈ P, then, nγ

1 = 1 since nα̃
1 = 2. Hence, nγ

q = 3, since htγ (γ ) = 4. Now,
mγ

p > 0 for all p ∈ P by definition of P. So, η := γ − α1 is a root. Moreover, nη

1 = 0,
hence η belongs to an embedded D6 root system. This is a contradiction since nη

q = 3
and nα̃

i ≤ 2 for all i in D6. Therefore, {1} �∈ P.
Since htγ (α̃) = 5, the following are the only possible choices for grading positions

associated to γ , {{3, 2}, {3, 6}, {5, 2}, {5, 6}, {4, 7}}. We now use the observations that
nα

p = 0 and nα
q = n, to exclude possible grading positions associated to γ . Suppose

{3} ∈ P. Since α3 is closer to the α1 node in the Dynkin diagram, we know that
nα

3 = 0, hence α belongs to embedded A1 × A5, a contradiction since we require nα
q = 2.
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Suppose P = {5, 2}, then α ∈ A4 × A2 such that nα
2 = 2, a contradiction. If P = {5, 6},

then there exists α ∈ A4 × A2 such that nα
6 = 2, a contradiction. Lastly, if P = {4, 7},

then there exists α ∈ A2 × A1 × A3 such that nα
6 = 2 another contradiction.

For E8 (see extended Dynkin diagram below), α̃ = ω8. First, nα̃
k = 4, for k ∈

{3, 6}. In either case, the set of possible grading positions associated to γ is
{{1, 2}, {1, 7}, {2, 8}, {7, 8}}. Similar to the E7 case, arguments along the lines of
embedded root systems that contain some root η such that nη

p = 0 and nη
q > 2, exclude

these as grading positions.
Finally, if k = 4, nα̃

k = 6, htγ (α̃) = 7 and htγ (γ ) = 5. The set of possible grading
positions associated to γ is {{5, 8}, {1, 5}, {3, 2}, {3, 7}, {2, 6}, {6, 7}}.

Similar to the case of E7, if P = {5, 8}, then nγ

8 = 1 (since α̃ = ω8) and hence
nγ

5 = 4, so there exists an η such that nη

8 = 0 and nη

5 = 4 a contradiction since η belongs
to an embedded E7 root system.

If P = {1, 5}, then α ∈ A4 × A3, where nα
1 = 3. If P = {3, 2}, then α ∈ A7, where

nα
3 = 3. If P = {3, 7}, then there exists α ∈ E6 such that nα

3 = 3. If P = {2, 6}, then
α ∈ D5 × A2 such that nα

2 = 3. If P = {6, 7}, then there exists α ∈ E6, such that nα
6 = 3,

all of which a contradictions. Thus, � ∪ {α} is not abelian when htγ (α) = n.
Now, let β be a root of maximal height such that htγ (β) = n − 1 and � ∪ {β} is

an abelian ideal. There exists an αl such that β + αl ∈ �+ and β + αl ∈ � by the ideal
condition. If l ∈ P, then htγ (β + αl) = n, a contradiction. If l �∈ P, then htγ (β + αl) =
n − 1 and ht(β + αl) > ht(β) a contradiction by definition of β. Hence, the theorem is
proved. �
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