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Abstract  15 

Artificial intelligence (AI) holds immense promise for accelerating and improving all 16 

aspects of drug discovery, not least target discovery and validation. By integrating a 17 

diverse range of biological data modalities, AI enables the accurate prediction of drug 18 

target properties, ultimately illuminating biological mechanisms of disease and guiding 19 

drug discovery strategies. Despite the indisputable potential of AI in drug target 20 

discovery, there are many challenges and obstacles yet to be overcome, including 21 

dealing with data biases, model interpretability and generalisability, and the validation 22 

of predicted drug targets to name a few. By exploring recent advancements in AI, this 23 

review showcases current applications of AI for drug target discovery and offers 24 

perspectives on the future of AI for the discovery and validation of drug targets, paving 25 

the way for the generation of novel and safer pharmaceuticals.  26 
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Background  31 

Historically, drug target discovery and validation has been a laborious and somewhat 32 

haphazard process, heavily reliant on industry standard laboratory models and 33 

analysis procedures (Drews 2000; Huang et al. 2004; Materi and Wishart 2007). Most 34 

drug discovery to date has taken a phenotype-first approach focusing on evaluation 35 

of the therapeutic potential of compounds in phenotypic assays, without necessarily 36 

knowing the exact target or mechanism of action (Moffat et al. 2017). This approach 37 

relies largely on serendipity, where complex compound libraries, including 38 

phytochemicals, biochemicals and other organic chemistry, are identified for 39 

therapeutic use by chance. Naturally, pharma companies initially sought to improve 40 

their odds by increasing the size and complexity of their compound libraries, and by 41 

the mid-2000s most major pharmaceutical companies had compound libraries in the 42 

range of 1-2 million small molecule entities (SMEs) (Hann and Oprea 2004). However, 43 

the unsustainability of this chemistry arms race has spurred a shift towards a target-44 

first strategy, which signified a pivotal moment in pharmacological research, 45 

emphasising the importance of thorough understanding and validation of a biological 46 

target before initiation of the drug design process. This paradigm shift marked a 47 

transition from empirical, trial-and-error methods to a more rational and systematic 48 

approach, greatly enhancing the efficiency and effectiveness of drug discovery. 49 

Ironically, although the target-first approach was designed to reduce the complexity 50 

of drug discovery, it may have had the opposite effect, simply highlighting the 51 

challenges of true target validation, leading to over a decade of increased failure in 52 

drug discovery stemming from poorly validated targets (Paul et al. 2010; Scannell et 53 

al. 2012). With an increasing repertoire of biomolecular assays to probe mechanism, 54 

such as CRISPR-Cas9, so-called target deconvolution studies have been conducted. 55 

These studies connect phenotypic to target-first approaches by attempting to elucidate 56 

the mechanism of action of the target upon which a drug acted retrospectively. This 57 

strategy enriches the phenotype-centric drug discovery paradigm with mechanistic 58 

understanding of the observed therapeutic effect and set the groundwork for 59 

integration of phenotype-first and target-first approaches (Terstappen et al. 2007).  60 

 61 

In this review, we define drug targets as biomolecules—primarily proteins, but also 62 

DNA, RNA, or other biomolecular species—that a therapeutic compound can bind to 63 

or modulate. The pool of existing drug targets is limited, and assessments of the 64 

druggable genome, which refers to those genes susceptible to modulation by small 65 
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molecules, fluctuate. The latest estimate places this number at 4,479 potential 66 

targets, accounting for approximately 22% of protein-coding genes (Finan et al. 67 

2017). According to records of the Human Protein Atlas (HPA), there are 68 

approximately 863 FDA approved drug targets (Paananen and Fortino 2020), over 69 

50% of these targets are represented by just four protein families - ion channels, 70 

nuclear receptors, kinases, and G-protein coupled receptors (Bakheet and Doig 2009; 71 

Santos et al. 2017). When it comes to finding novel, efficacious, and safer drug 72 

targets, as a general guideline, targets should have a role in disease, limited role in 73 

normal physiology, particularly in critical tissues such as the heart, and ideally should 74 

be druggable with small molecules, although biologic drugs and gene targeted 75 

therapies make almost all targets therapeutically tractable. Furthermore, while a 76 

laboratory resolved 3D protein structure was a prior requirement for drug design, with 77 

the advent of protein structure prediction models, further accelerated by AI 78 

approaches (Baek et al. 2021; Jumper et al. 2021; Lin et al. 2023b), high quality 3D 79 

structures of a wide range of potential drug targets are generally available. This 80 

enables a broader application of in silico structure-based drug design. Another 81 

desirable property for a drug target is having multiple binding pockets. By having 82 

multiple potential binding pockets, different conformations of the protein in various 83 

functional states can be targeted. It also provides opportunities for identifying 84 

allosteric inhibitors rather than only targeting the active site. Allosteric sites may offer 85 

better selectivity and provide safety benefits (Abdel-Magid 2015; May et al. 2007; 86 

Wagner et al. 2016b). Lastly, by understanding the associated pathways of the target, 87 

we gain insight into the processes the target is involved in and thus, what other 88 

biological processes could potentially be affected. This can help the assessment of 89 

potential off-target effects. 90 

 91 

Despite the great progress in drug discovery, the process is still burdened by high 92 

costs, long timelines, and extraordinarily high attrition rates in clinical trials, attributed 93 

to limited efficacy, safety concerns, off-target effects, or sometimes purely economic 94 

reasons (DiMasi et al. 2016; Minikel et al. 2024) Collectively, against this backdrop of 95 

failure, the need for transformative solutions for drug discovery becomes clear. 96 

Especially when we consider our incomplete understanding of target mechanism and 97 

the vast chemical space of compounds that can interact with that target.  98 

 99 

The role of AI in drug discovery  100 

https://doi.org/10.1017/pcm.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/pcm.2024.4


Accepted Manuscript 

 
 

 

 

Ideally, we would develop a comprehensive mathematical framework to systematically 101 

navigate the vast search spaces and intricate interactions inherent to drug discovery. 102 

However, realising such a framework has proven to be an immensely challenging 103 

endeavour with limited success so far. In contrast, methods using artificial intelligence 104 

(AI) are particularly well-suited for modelling the complexities and nuances of drug 105 

discovery. When employing AI, we essentially shift our approach: rather than relying 106 

on explicit mathematical descriptions of the underlying biology, chemistry, and 107 

physics, we leverage AI models to learn and infer patterns directly from data. While 108 

adopting data-driven machine learning techniques holds great promise for enhancing 109 

drug discovery pipelines, there are also certain trade-offs, such as a lack of 110 

transparency in the models and obscured understanding of causality. 111 

 112 

AI has potential to accelerate drug discovery by improving the identification of drug 113 

candidates and enhancing our understanding of their mechanisms. The increasing 114 

volume of diverse biological and chemical data, including genomics, proteomics, 115 

metabolomics, electronic health records, and biomedical literature, combined with 116 

high-throughput experiments, greatly enhances AI's ability to extract and interpret 117 

insights. Notably, recent studies have highlighted the importance of including genetic 118 

and genomic data in drug target discovery pipelines (Razuvayevskaya et al. 2023). 119 

One estimate quantifying the impact genetic evidence has on success of clinical trials, 120 

estimated the odds of advancing to a later stage of clinical trials to be 80% higher 121 

when genetic evidence for a target is present (Minikel et al. 2024). Furthermore, AI 122 

can be used to develop in silico methods to predict and simulate biological and 123 

chemical spaces. Examples of such approaches are cellular and genetic perturbation 124 

modelling (Bunne et al. 2023; Prasad et al. 2022), gene expression prediction (Avsec 125 

et al. 2021; Kelley et al. 2018; Linder et al. 2023), variant effect prediction (Brandes 126 

et al. 2022; Cheng et al. 2023; Frazer et al. 2021; Lin et al. 2023a), protein structure 127 

prediction (Baek et al. 2021; Jumper et al. 2021; Lin et al. 2023b), drug-target 128 

interaction prediction (Chen et al. 2016; Huang et al. 2021; Wen et al. 2017), and 129 

molecular docking simulations for drug design (Corso et al. 2023; Gentile et al. 2020).  130 
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 131 

Figure 1: Venn diagram of guiding criteria for the maximum impact of AI in relation to 132 

drug discovery. We have made the connection to drug target discovery in the 133 

respective sets. The intersection of all sets is where the sweet spot for using AI lies.  134 

 135 

When it comes to determining the applicability of AI, we can refer to some guiding 136 

principles (Figure 1) that can help us to establish whether introducing AI to solve our 137 

problem is sensible. We argue that drug target discovery problems lie at the 138 

intersection of all these principles, making them amenable to be solved with AI.  139 

 140 

Firstly, the problem at hand must have sufficient scale. Building a successful AI model 141 

is reliant on having examples to learn from. While unsupervised approaches can be 142 

powerful, the potential of AI predominantly resides in the ability to uncover 143 

generalisable patterns within training data through a supervised or a self-supervised 144 

framework. A part of this scale is the quality of the data. The dataset should not just 145 

be large, but it should also be of  146 

high quality or be processed such that it is of high quality. High quality data implies 147 

that the model can learn meaningful signals from the patterns and relationships 148 

contained within the data. Some concrete examples of factors potentially decreasing 149 

data quality are noise, class imbalances, population bias, and missing data. 150 

 151 

Secondly, the complexity of the problem should be appropriate to fully leverage the 152 

power of AI models. At the lower bound of the complexity spectrum, the problem could 153 

be insufficiently complex, making it likely that an overparameterized AI model is 154 

developed that performs seemingly well, but does not generalise. This phenomenon 155 

https://doi.org/10.1017/pcm.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/pcm.2024.4


Accepted Manuscript 

 
 

 

 

is referred to as overfitting in AI literature. Note that overfitting is not limited to this 156 

scenario and can also occur in poorly designed AI models where the problem itself is 157 

not necessarily insufficiently complex.  At the other end of the complexity spectrum, 158 

a problem could be intractable. Take the entire chemical space of ~1060 compounds 159 

for example (Reymond 2015), this immense search space is simply too large for any 160 

computational method to fully explore. However, we can make this task more 161 

manageable by focusing on a smaller, more relevant subset of compounds. One 162 

effective approach to achieve this is by using generative AI models. These models are 163 

trained by adding random variations to existing, known data and then attempting to 164 

reconstruct the original input from this altered data. Through this process, the model 165 

learns the patterns and distributions inherent in the data which can be used to 166 

construct outputs based on these patterns. 167 

 168 

In the context of drug discovery, this technique can be applied to known chemical 169 

structures. This is the basis of Generative Molecular Design (GMD), where AI models 170 

are used to generate potentially viable chemical compounds by learning from existing 171 

chemical structures (Thomas et al. 2023). This approach helps streamline the search 172 

for new drug candidates by focusing on the most promising areas of the vast chemical 173 

space, in this case up to ~1011 compounds (Ruddigkeit et al. 2012), constraining the 174 

search space and thus making the problem computationally tractable. For AI methods 175 

to thrive, a balance must be struck as it pertains to the complexity of the problem. 176 

We argue that drug discovery, including drug target discovery, satisfies the complexity 177 

criterion. Target discovery is often constrained to parameterisations of the genome, 178 

or the druggable genome. These are about 20,000 and 4,000 genes in size 179 

respectively, which is a tractable search space. As for the chemistry of compounds 180 

binding to the target, we can narrow down the search space to effectively design novel 181 

compounds.  182 

 183 

Lastly, the input features for the problem should be non-linearly related to the target 184 

variable. Most biological phenomena are highly non-linear, so it is rare to encounter a 185 

biological problem where input and output are linearly related. This also becomes 186 

apparent from examining the AI models that underpin some seminal breakthroughs 187 

in the context of biology, such as CellOT for gene perturbation prediction (Bunne et 188 

al. 2023), ESMFold and AlphaFold for protein structure prediction (Jumper et al. 2021; 189 

Lin et al. 2023b), and EVE and AlphaMissense for missense variant pathogenicity 190 
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prediction (Cheng et al. 2023; Frazer et al. 2021). To model the non-linearity inherent 191 

to these problems, non-linear activation functions are one of the key elements allowing 192 

AI models to effectively capture the highly complex relationships within the underlying 193 

distributions they attempt to model. Since many biological phenomena exhibit strong 194 

non-linearity, it makes sense to express and solve these problems in the language of 195 

AI.   196 
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AI Methods and Data Modalities in Drug Target Discovery  197 

One leading reason for the convergence between AI and drug discovery is the diverse 198 

range of data types that are being used in drug discovery. The data can be presented 199 

in various forms, such as tabular, text, sequences, graphs, and images, each offering 200 

a distinct perspective into the biology underlying disease and potential cures. In Table 201 

1, we summarise the different modalities, their use-cases, and some open-access data 202 

sources. In the following paragraphs, we briefly discuss each data modality, and how 203 

it generally is used in drug target discovery.  204 

 205 

One of the most common methods for presenting data related to drug target discovery 206 

is through structured tables. Typically, these tabular data structures will contain 207 

information describing genes or variants, e.g., allele frequency, mutation type, and 208 

conservation scores across species. There are different resources and consortia that 209 

aggregate and characterise genomic data in tabular form, such as UK Biobank (Sudlow 210 

et al. 2015), Genes & Health (Finer et al. 2020), and Open Targets (Ochoa et al. 211 

2021). Traditional machine learning (ML) methods, e.g. XGBoost (Chen and Guestrin 212 

2016), Linear Regression, Logistic Regression (Pedregosa et al. 2011), as well as deep 213 

neural networks (LeCun et al. 2015),  have been developed and tailored to tabular 214 

datasets. Therefore, these models have a track record of delivering outstanding 215 

performance when working with tabular data. 216 

 217 

Textual data, comprising scientific literature, research articles, patents, clinical trial 218 

reports, medical textbooks, chemical databases, and electronic health records, 219 

represents a valuable resource for drug discovery. The unstructured information in 220 

textual documents can provide us with critical insights related to potential drug 221 

targets, novel or repurposed drug candidates, and adverse events amongst others. 222 

Textual data is typically best analysed using Natural Language Processing (NLP) 223 

methods. Recently, Large Language Models (LLMs) have surfaced as the state-of-the-224 

art model type to analyse textual data. LLMs are deep neural networks that combine 225 

many different layer types, such as embedding layers, attention layers and linear 226 

layers that coalesce to learn semantic information from textual input. Typically, LLMs 227 

are pre-trained using self-supervised approaches where a large corpus of text gets 228 

tokenised, i.e., it gets mapped to numerical vectors representing the words. This 229 

corpus is masked at random, and consequently tasked with predicting the next tokens 230 

(Devlin et al. 2019; Radford et al. 2018). For task-specific objectives, the pre-trained 231 
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model can be trained further on data related to the task of interest, e.g. information 232 

retrieval or translation. (Microsoft Research AI4Science and Microsoft Azure Quantum 233 

2023; Singhal et al. 2023a, 2023b)  234 

 235 

Data that can be represented sequentially are fundamental to biology. Such sequences 236 

often correspond to biological or chemical structure. Some of these data are genomic 237 

data, transcriptomic data, protein sequences, and drug compound libraries in the form 238 

of SMILES or SELFIES strings. Previously, we introduced language models within the 239 

context of natural language. Yet, their versatility transcends the domain of language. 240 

Language models also prove adept at understanding biological languages, e.g., 241 

decoding semantic meaning from DNA via nucleotide sequences, and unravelling 242 

structural or functional information for proteins through the interpretation of amino 243 

acid sequences. To model and use these sequences, languages models can be trained 244 

to predict masked nucleotides or amino acids and consequently generalise to unseen 245 

sequences (Benegas et al. 2023; Dee 2022; Lin et al. 2023b). Another type of model 246 

showing promise on sequential and structural data are generative models. Generative 247 

models are self-supervised machine learning models that are trained to model the 248 

statistical distribution of input data, typically by reconstructing the original distribution 249 

after random noise has been added as input during the training process (Goodfellow 250 

et al. 2014). A couple of ways in which these models can be applied is to model DNA 251 

regulatory sequences (Zrimec et al. 2022), and they can be utilised to generate novel 252 

protein structures that meet some specified criteria. (Ingraham et al. 2023; Watson 253 

et al. 2023). Attention-based neural networks have shown to be well versed in 254 

analysing sequences to correct consensus sequence errors (Baid et al. 2023), 255 

comprehend protein structures (Baek et al. 2021; Lin et al. 2023b), and discover 256 

potential drug targets (Chen et al. 2023). The attention mechanism allows the model 257 

to learn relations between different parts of the input sequence, even if these parts 258 

are located far away from each other in their representation space (Vaswani et al. 259 

2017). The most notable example of an attention-based neural network working with 260 

sequence-based data is AlphaFold. AlphaFold predicts protein structure in 3D from an 261 

amino acid sequence input (Jumper et al. 2021). 262 

 263 

Network data (e.g., gene and protein interaction networks) can provide a 264 

comprehensive view of molecular relationships, by representing them efficiently as 265 

graphs with nodes and edges. Furthermore, representing data as a graph allows us to 266 
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build Graph Neural Networks (GNNs) (Veličković 2023). GNNs are optimised to learn 267 

and propagate information across nodes, allowing for efficient learning from these 268 

data structures. In the context of drug target discovery, there are various successful 269 

examples of graphs being used, such as in network expansion for pleiotropy mapping 270 

(Barrio-Hernandez et al. 2023), CausalBench (Chevalley et al. 2022), and many others 271 

(Muzio et al. 2021). A recent trend in drug target discovery has been the usage of 272 

Knowledge Graphs (KGs). These typically are heterogeneous graphs that store 273 

different data about compounds or genes in nodes, and relationships between nodes 274 

in the edges (Chandak et al. 2023). 275 

 276 

Medical imaging, including x-rays, CT scans, MRI, and histopathology slides, function 277 

as important assets for disease diagnosis and tracking treatment responses. 278 

Generative models, Convolutional Neural Networks (CNNs), Visual Transformers (ViTs) 279 

and deep learning architectures are frequently used for the analysis of visual data 280 

(Dosovitskiy et al. 2021; Liu et al. 2017; Tu et al. 2023). When it comes to molecular 281 

imaging, images are captured in various resolutions all the way down from the tissue 282 

to the cellular level. These images offer profound insights into the molecular intricacies 283 

of diseases and drug interactions. Finally, drug screening assays generate a treasure 284 

trove of image data, showcasing cells or organisms under perturbation of various 285 

compounds in pursuit of potential drugs. AI models help with their ability to 286 

comprehensively analyse the resulting images. Next to interpreting the images, using 287 

image data also often involves image correction and automatic feature extraction, 288 

both tasks in which AI methods excel (Dee et al. 2023; Krentzel et al. 2023).  289 

 290 

While it is true that certain data modalities conventionally have been associated with 291 

certain types of AI architectures, a lot of the state-of-the-art models do not exclusively 292 

use a single data modality or a single architecture. Often, data and model types are 293 

combined. This combination can occur in various ways and often different model types 294 

are involved with the processing of various types of data before it gets combined, 295 

which often happens in so-called embeddings (Alwazzan et al. 2023; Khader et al. 296 

2023; Ngiam et al. 2011; Venugopalan et al. 2021). Embeddings are representations 297 

of the raw input data in a latent space that can be used for downstream computations. 298 

Furthermore, most modern-day AI architectures consist of various blocks, which are 299 

organisational units in a neural network that are composed of different layers, or even 300 
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whole models that feed into each other and interact with each other. Models like this 301 

are often referred to as multimodal machine learning models.  302 
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 327 

Table 1: Categorisation of various data modalities commonly used in the field of 328 

biomedical research and drug target discovery, along with biology the data represent, 329 

the primary AI architecture employed on them, and key data sources. Note that the 330 

AI architectures are not exclusive to these data modalities and in practise. Moreover, 331 

often multiple are combined or sometimes even integrated into each other in an end-332 

to-end fashion.   333 
1  Citations to databases can be found in Supplementary Materials S2.  334 

Data 

modality 

Biological 

representation 

Main 

AI architectures 

Example data 

sources1 

Tabular 

Multiomics, 

Electronic Health 

Records 

Traditional machine 

learning2,  

Multilayer 

perceptron 

UK Biobank, 

Genes & Health, 

OpenTargets, 

TCGA, GEO 

Text 

Gene ontology, 

Scientific 

literature, Clinical 

trials 

Large language 

model 

GO, PubMed, 

ClinicalTrials.gov  

Sequence/ 

Structure 

DNA, RNA, 

Protein, Small 

molecules 

Attention-based 

neural network, 

Generative model, 

Language model 

Ensembl, 

UniProt, UCSC 

Genome 

Browser, 

ChEMBL, 

GenBank, PDB, 

GENCODE 

Graph 

PPI, Gene 

interaction 

network, Protein 

structures, Small 

molecule 

structures, 

Pathway 

annotiations 

Graph neural 

network 

STRING, 

STITCH, 

BioGRID, PDB, 

TRRUST, 

RegNetwork, 

IntAct, 

PubChem, 

ChEMBL, 

Reactome, KEGG 

Image 

Histopathology, 

Radiology, Spatial 

transcriptomics 

Convolutional neural 

network, Visual 

transformers 

TCIA, GDC,  

MICA-MIC 
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2  In this case, we mean traditional machine learning to encompass linear and logistic regression, support vector 335 

machines and tree boosting models.  336 

Exploring AI-Based Strategies for Drug Target Identification 337 

The first example we will explore is DrugnomeAI, an ensemble architecture for the 338 

prediction of drug targets (Polikar 2006; Raies et al. 2022; Vitsios and Petrovski 339 

2020).  DrugnomeAI excels in predicting the druggability of candidate drug targets by 340 

leveraging 324 gene-level features for every protein-coding gene within the human 341 

exome. Raies et al. conducted a feature importance study with Boruta, which is a 342 

feature selection technique that helps identify the most relevant variables in a dataset 343 

by comparing their importance to that of randomised, noise-added variables (Kursa 344 

et al. 2010). This analysis showed that the most informative features for druggability 345 

prediction were protein-protein interaction features. This is in line with existing 346 

research showing that partners of druggable genes are also likely to be druggable 347 

(Finan et al. 2017). Raies and colleagues frame their model's objective as a positive-348 

unlabelled learning (PUL) problem. Here, the positive dataset comprises targets for 349 

which they have identified evidence of druggability, while the unlabelled set 350 

encompasses the remaining targets. The ultimate task is to rank these remaining 351 

targets based on their predicted druggability. Within their PUL framework, Raies et al. 352 

use eight separate classifiers that are stochastically trained through a 10-fold cross-353 

validation process. Subsequently, the predictions from these classifiers are combined 354 

to produce the final ranking of the unlabelled drug targets. Notably, Raies et al. 355 

observed that the top-ranked genes in their prioritisation exhibit significant 356 

enrichment in the clinical literature, arguing that their model has effectively recognised 357 

druggability patterns within the feature set. 358 

 359 

It is also possible to combine multiple data modalities in a more direct way than 360 

ensemble modelling, namely via multitask learning (Caruana 1998). A multitask 361 

learning problem in drug target discovery is typically framed as one where you are 362 

trying to predict target qualities as well as properties of the target-binding drug (Lin 363 

et al. 2022; Sadawi et al. 2019). Multitask learning allows the model to co-learn a set 364 

of tasks together to optimise overall performance. This approach leverages shared 365 

information between tasks, combatting overfitting and improving generalisation. 366 

Multitask neural networks can integrate data from various sources, making them 367 

valuable for a wide range of tasks such as predicting drug targets, but also drug 368 

toxicity and sensitivity (Ammad-Ud-Din et al. 2017; Costello et al. 2014). 369 

Furthermore, they offer a means to bridge the gap between biology and chemistry in 370 

https://doi.org/10.1017/pcm.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/pcm.2024.4


Accepted Manuscript 

 
 

 

 

drug discovery by incorporating structural data like SMILES representations, next to 371 

information characterising the biological target, enabling simultaneous prediction of 372 

side effects, ligand docking, likely targets, and key compound properties (Mikolov et 373 

al. 2013b, 2013a). 374 

In some areas of study where data is sparsely available, such as for rare diseases or 375 

diseases in clinically unavailable tissues, AI methods can meaningfully identify 376 

candidate drug targets through transfer learning. Transfer learning is a concept in AI 377 

where we train on abundant data that is tangentially related to some problem with 378 

limited data, and consequently fine-tune the resulting model towards the limited data 379 

case (Pan and Yang 2010). One example of a model utilising transfer learning is 380 

Geneformer (Theodoris et al. 2023). Geneformer uses self-attention to pick out 381 

important genes using transcriptomic data, which can vary across different cell types, 382 

developmental stages, or disease conditions. Geneformer was trained with a dataset 383 

called Genecorpus-30M, which was assembled from 29.9 million human single-cell 384 

transcriptomes. The transcriptome data is processed through six transformer encoder 385 

units, involving self-attention and feed-forward layers. Pre-training is done using a 386 

masked learning objective, where 15% of genes in each transcriptome are masked, 387 

and the model learns to predict the masked genes based on the context of the 388 

unmasked genes. Due to the size and broad scope of Geneformer’s pre-training, 389 

together with the potential to fine-tune the model, we refer to this model as a 390 

foundation model (Bommasani et al. 2022). Using Geneformer, cardiomyocytes from 391 

three types of limitedly available heart tissue were studied: healthy (n=9), 392 

hypertrophic cardiomyopathy (n=11), or dilated cardiomyopathy (n=9). Theodoris et 393 

al. performed in silico treatment analysis by either inhibiting or activating pathways 394 

and seeing if this would move the healthy cell states towards either hypertrophic or 395 

dilated cardiomyopathic states. If so, the pathway was inspected for potential 396 

therapeutic targets based on druggability and disease relevance. A target that was 397 

highlighted through this analysis was ADCY5, which is a known druggable target 398 

(Wagner et al. 2016a) as well as involved in longevity and protection of 399 

cardiomyocytes in mouse models (Ho et al. 2010). Another target that in silico 400 

treatment analysis pointed to in this context was SRPK3, which is a downstream 401 

effector of MEF2 (Nakagawa et al. 2005). MEF2 is known to play a role in myocardial 402 

cell hypertrophy (Akazawa and Komuro 2003). While single-cell foundation models 403 

have demonstrated impressive results in certain situations and seem conceptually 404 

attractive for downstream applications, it's important to exercise caution. These pre-405 
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trained models may not perform well in all contexts, particularly for zero-shot 406 

prediction in other biological contexts (Kedzierska et al. 2023). Therefore, employing 407 

biological foundation models for zero-shot prediction in contexts divergent from their 408 

original training objective should be approached carefully. 409 

 410 

GNNs are also being employed in drug target discovery. One such approach is EMOGI 411 

(Schulte-Sasse et al. 2021), a graph convolutional network (GCN) that predicts cancer 412 

drug targets. EMOGI stands out by integrating a wide range of interaction and 413 

multiomics data to predict cancer genes. This way of combining different data sources 414 

addresses the evolving understanding of cancer as a complex interplay of genetic and 415 

non-genetic factors (Bell and Gilan 2020; Hanahan and Weinberg 2011). Unlike 416 

previous approaches that primarily rely on somatic mutations and occasionally 417 

integrate PPI networks (Cowen et al. 2017; Leiserson et al. 2015; Reyna et al. 2018), 418 

EMOGI employs GCNs to predict cancer genes by amalgamating multiple data 419 

modalities, including mutations, copy number variations, DNA methylation, gene 420 

expression, and PPI networks.  The graph is constructed to have its topology represent 421 

a PPI network. This means that the nodes represent genes, and the edges represent 422 

whether two genes interact. R. Schulte-Sassen et al. also did interpretability analysis 423 

of their GCN model. They use the Layer-wise Relevance Propagation (LRP) propagation 424 

rule (Bach et al. 2015), which allows for dissecting what is happening in the GCNs and 425 

provides us with insights into why specific genes are classified as cancer-related. 426 

Through biclustering and LRP analysis, distinct modules of newly predicted cancer 427 

genes (NPCGs) are revealed—some predominantly influenced by network interactions, 428 

others primarily driven by omics features. These NPCGs, while not always necessarily 429 

displaying recurrent alterations themselves, interact with known cancer genes, 430 

positioning them as significant players in tumorigenesis. Notably, these predictions 431 

align with essential genes identified through loss-of-function screens, reinforcing the 432 

credibility of EMOGI's insights.  433 

 434 

Beyond academic research and applications, as of Q3 2023, there are a plethora of 435 

AI-derived therapeutics in clinical trial pipelines. Most of these come forth out of 436 

industrial research laboratories. A lot of the information that is publicly available on 437 

how AI is influencing drug target discovery comes from what we here refer to as AI-438 

first drug discovery companies. These are companies that highlight explicitly the fact 439 

that they are using AI in their drug target discovery and drug design efforts. While we 440 
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can only associate drugs being AI-derived from such companies, we should note that 441 

big pharmaceutical companies are also heavily investing into introducing AI into their 442 

pipelines. However, it is much harder to attribute the involvement of AI in the 443 

development of new pharmaceuticals in this case. So, while looking at the status of 444 

AI-first companies might be a good probe into the penetrance of AI into the 445 

pharmaceutical industry, it does not provide us with a comprehensive view of the role 446 

AI is currently playing in industry. 447 

 448 

In Figure 2, we have visualised the status of targets and associated compounds 449 

currently in clinical and preclinical trials. The data was put together by searching and 450 

collecting a list of publicly and privately held companies that explicitly mention the 451 

usage of AI on their website. We have added a table containing the data we collected 452 

in Supplementary Table S1.  Note that this is not an exhaustive list and we only 453 

included target-compound pairs for which we could find sufficient data in the pipelines 454 

reported by the companies. For discontinued compounds, press-releases and historical 455 

website snapshots have been consulted to confirm the development status of 456 

compounds. The discontinued compounds collected in our data is an underestimation 457 

of the true number of discontinued compounds. Often, data and status on discontinued 458 

compounds is not easily accessible in public records. Hence, the only discontinued 459 

compounds added in this list, are ones that (i) have had accessible press coverage, 460 

(ii) have been withdrawn from a clinical trial investigation as indicated by 461 

ClinicalTrials.gov, or (iii) have been mentioned in an accessible snapshot of a 462 

company’s pipeline webpage, consulted via wayback.archive.org, and removed 463 

without any mention of success. We only consider compounds in which the company 464 

was leading the effort for approval. We use FDA approval status to determine whether 465 

a compound has been officially approved. We excluded AI-first companies that have 466 

not yet had at least one compound enter clinical trials.  467 

  468 
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A)

 

B) 

Figure 2.  A) Compounds of AI-first companies that are currently in clinical trials, 

approved or discontinued, stratified by ICD10 disease categories. Scatter size indicates 

the number of compounds in that clinical trial phase for that company and disease area. 

Note that dots have been jittered for visual purposes. This does not reflect progress of 

the compound in the respective phase. B) Number of compounds each company has in 

clinical trials, where the bar colours refer to the phase or the status of the clinical trial.  

 470 

Discussion and Future Prospects 471 

AI is penetrating all levels of drug discovery, including target discovery and validation. 472 

AI methods rely on the existence of large, high quality data sets. Currently, these data 473 

exist but are certainly incomplete and potentially confounding in nature. We must take 474 

note of the limitations of existing data and look at ways to improve data in a targeted 475 

manner. Most publicly available big data sets often rely on aggregated information 476 

descendent from skewed representations of the population. Different populations 477 

display widely varying genomic characteristics and responses to drugs, and 478 

consequently, less represented populations suffer from diminished treatment 479 

outcomes (Gross et al. 2022; Popejoy and Fullerton 2016; Ramamoorthy et al. 2015). 480 

Therefore, the databases used to identify drug targets often lack sufficient 481 

representation of population diversity, resulting in disparate health outcomes for 482 

diseases that are effectively treated in well-represented groups but remain challenging 483 

to address in the underrepresented populations. (Hindorff et al. 2018; Landry et al. 484 

2018). 485 

 486 

At the molecular level, we encounter a different set of biases in the data we use to 487 

train our models. For example, some protein classes are significantly overrepresented 488 
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compared to others based on FDA approval data, which may be attributed to shared 489 

structural or functional similarities for proteins within a given class. If we train a new 490 

generation of models with these targets as labels, we are likely to perpetuate these 491 

biases in newly prioritised drug targets. Furthermore, we should also acknowledge 492 

that because of data availability limitations, bias and historical momentum around 493 

known drug targets and classes of targets, there is a significant portion of the genome 494 

of which we know too little to assess their validity as drug targets (Finan et al. 2017; 495 

Oprea et al. 2018; Wood et al. 2019). Assuming there are also potential drug targets 496 

hidden within what has been colloquially termed the "unknome" (Rocha et al. 2023), 497 

this would increase the search space of potential drug targets further beyond what 498 

the current paradigm of what drug target druggability models consider. Another 499 

challenge is that the concept of a druggable target is not static. This is particularly 500 

pronounced for cancer, where target-associated pathways are prone to quickly 501 

becoming resistant to treatment through various mechanisms (Shabani and Hojjat-502 

Farsangi 2016). This means that the “one disease, one target” paradigm might not be 503 

the best approach to curing diseases, even in cases where a single target is indeed 504 

initially therapeutically receptive to treat the disease.  505 

 506 

While AI-powered drug target discovery has its fair share of obstacles to overcome, it 507 

is still a field that is in its infancy. Moreover, next to these obstacles lie many 508 

opportunities for promising discoveries. This is not only limited to drug target 509 

discovery, but drug discovery in its broadest sense. For the successful application of 510 

AI, specifically deep learning-based architectures, the three guiding principles must 511 

be satisfied: scale, complexity, and non-linearity. We argue that drug target discovery 512 

satisfies all three of these principles. Given this reality, AI-based methods stand to 513 

improve the speed with which we can discover and validate novel drug targets. Recent 514 

breakthroughs in AI have led to improvements by providing an increased ability to 515 

incorporate sequence and structure-based target evidence. As models like AlphaFold 516 

are improved and extended to also reflect the dynamic nature of proteins, and we 517 

incorporate small molecules and macromolecular structures into these models, our 518 

ability to do in silico drug discovery will dramatically improve. In addition to predicting 519 

protein structures, AI methods stand to significantly improve a multitude of other 520 

biological challenges. These include, but are not limited to, predicting gene 521 

perturbations, assessing the effects of genetic variants, de novo generation of 522 

proteins, and molecular docking simulations. In the long run, transitioning a significant 523 

https://doi.org/10.1017/pcm.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/pcm.2024.4


Accepted Manuscript 

 
 

 

 

portion of the drug discovery pipeline to an in silico environment holds substantial 524 

advantages for all parties involved with drug discovery. For patients, this shift would 525 

enhance the efficiency of developing new and safe medications, resulting in faster 526 

delivery of improved therapeutics. For pharmaceutical companies, this transition 527 

would lead to significant cost and time savings, which are estimated between 25% 528 

and 50% up to the preclinical stage (Loynachan et al. 2023). For us to get to this 529 

point, experimental validations of in silico methods remain essential both to validate 530 

computational predictions and to provide labels for the models to train with. 531 

 532 

AI-driven drug target discovery presents a promising avenue for identifying novel, 533 

safe and efficacious targets. By leveraging the abundance of multiomics data, and the 534 

power of modern AI architectures, applicable to a variety of data modalities – ranging 535 

from images to sequences and protein structures – we find ourselves at the precipice 536 

of having data and method converge at meaningful impact on drug target discovery, 537 

and drug discovery at large. 538 

  539 
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Impact Statement 1093 

Artificial intelligence (AI) is transforming drug discovery and development by enabling 1094 

the rapid analysis of massive amounts of biological data and chemical information. 1095 

This paper reviews recent advances in using AI methods for the discovery and 1096 

validation of drug targets. Identifying and validating novel drug targets is fundamental 1097 

to creating safe and effective new medicines but has remained a major bottleneck in 1098 

the drug R&D process. By integrating diverse datasets, AI models can accurately 1099 

predict key properties of drug targets, reveal intricate biological relationships 1100 

underlying disease, and guide drug discovery strategies. 1101 

 1102 

This paper highlights groundbreaking applications of AI that accelerate target 1103 

discovery, including models that prioritise candidate genes, predict druggability of 1104 

proteins, uncover disease mechanisms, and simulate biological experiments. Critically, 1105 

AI enables leveraging insights across modalities like sequences (e.g. DNA, proteins), 1106 

structures (e.g. compounds, proteins), multiomics, biomedical literature and more. 1107 

Integrating multimodal inputs is paramount for comprehensively understanding 1108 

complex diseases involving genetic and non-genetic factors. 1109 

 1110 

The AI methods outlined will profoundly enhance R&D efficiency. By illuminating novel 1111 

drug targets, AI-powered target discovery will expand treatment options available for 1112 

patients suffering from previously untreatable or poorly managed diseases. From rare 1113 

diseases and refractory cancers to multifactorial neurodegenerative and autoimmune 1114 

conditions, accelerating target discovery through AI has far-reaching therapeutic 1115 

implications. Additionally, safer, more selective drugs developed against AI-predicted 1116 

targets could dramatically improve patient outcomes and quality of life. Overcoming 1117 

existing challenges in AI-based target discovery will be critical to actualising its 1118 

immense potential and promises to usher in a new era of data-driven, accelerated 1119 

drug R&D.  1120 

https://doi.org/10.1017/pcm.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/pcm.2024.4


Accepted Manuscript 

 
 

 

 

Financial Support 1121 

C. C. was funded by the National Institute for Health Research (NIHR) as part of the 1122 

portfolio of translational research of the NIHR Biomedical Research Centre at Barts 1123 

and The London School of Medicine and Dentistry. A. W. was funded by the 1124 

UKRI/BBSRC Collaborative Training Partnership in AI for Drug Discovery and Queen 1125 

Mary University of London. 1126 

 1127 

Conflict of Interest  1128 

At the time of writing, W. W. and V. N. were employed by MSD.  1129 

 1130 

 1131 
 1132 
 1133 

 1134 

https://doi.org/10.1017/pcm.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/pcm.2024.4

