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Abstract

Artificial intelligence (AI) holds immense promise for accelerating and improving all aspects of
drug discovery, not least target discovery and validation. By integrating a diverse range of
biological data modalities, AI enables the accurate prediction of drug target properties, ultim-
ately illuminating biological mechanisms of disease and guiding drug discovery strategies.
Despite the indisputable potential of AI in drug target discovery, there are many challenges
and obstacles yet to be overcome, including dealing with data biases, model interpretability and
generalisability, and the validation of predicted drug targets, to name a few. By exploring recent
advancements in AI, this review showcases current applications of AI for drug target discovery
and offers perspectives on the future of AI for the discovery and validation of drug targets, paving
the way for the generation of novel and safer pharmaceuticals.

Impact statement

Artificial intelligence (AI) is transforming drug discovery and development by enabling the
rapid analysis of massive amounts of biological data and chemical information. This paper
reviews recent advances in using AI methods for the discovery and validation of drug targets.
Identifying and validating novel drug targets is fundamental to creating safe and effective new
medicines but has remained a major bottleneck in the drug R&D process. By integrating diverse
datasets, AI models can accurately predict key properties of drug targets, reveal intricate
biological relationships underlying disease, and guide drug discovery strategies. This paper
highlights groundbreaking applications of AI that accelerate target discovery, including models
that prioritise candidate genes, predict druggability of proteins, uncover disease mechanisms,
and simulate biological experiments. Critically, AI enables leveraging insights across modalities
like sequences (e.g., DNA, proteins), structures (e.g., compounds, proteins), multiomics, bio-
medical literature and more. Integrating multimodal inputs is paramount for comprehensively
understanding complex diseases involving genetic and non-genetic factors. The AI methods
outlined will profoundly enhance R&D efficiency. By illuminating novel drug targets,
AI-powered target discovery will expand treatment options available for patients suffering from
previously untreatable or poorly managed diseases. From rare diseases and refractory cancers to
multifactorial neurodegenerative and autoimmune conditions, accelerating target discovery
through AI has far-reaching therapeutic implications. Additionally, safer, more selective drugs
developed against AI-predicted targets could dramatically improve patient outcomes and quality
of life. Overcoming existing challenges in AI-based target discovery will be critical to actualising
its immense potential and promises to usher in a new era of data-driven, accelerated drug R&D.

Background

Historically, drug target discovery and validation has been a laborious and somewhat haphazard
process, heavily reliant on industry standard laboratory models and analysis procedures (Drews,
2000; Huang et al., 2004; Materi and Wishart, 2007). Most drug discoveries to date have taken a
phenotype-first approach focusing on the evaluation of the therapeutic potential of compounds
in phenotypic assays, without necessarily knowing the exact target or mechanism of action
(Moffat et al., 2017). This approach relies largely on serendipity, where complex compound
libraries, including phytochemicals, biochemicals and other organic chemistry, are identified for
therapeutic use by chance. Naturally, pharma companies initially sought to improve their odds by
increasing the size and complexity of their compound libraries, and by themid-2000smostmajor
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pharmaceutical companies had compound libraries in the range of
1–2 million small molecule entities (SMEs) (Hann and Oprea,
2004). However, the unsustainability of this chemistry arms race
has spurred a shift towards a target-first strategy, which signified a
pivotal moment in pharmacological research, emphasising the
importance of thorough understanding and validation of a bio-
logical target before initiation of the drug design process. This
paradigm shift marked a transition from empirical, trial-and-error
methods to a more rational and systematic approach, greatly
enhancing the efficiency and effectiveness of drug discovery. Iron-
ically, although the target-first approach was designed to reduce the
complexity of drug discovery, it may have had the opposite effect,
simply highlighting the challenges of true target validation, leading
to over a decade of increased failure in drug discovery stemming
frompoorly validated targets (Paul et al., 2010; Scannell et al., 2012).
With an increasing repertoire of biomolecular assays to probe
mechanisms such as CRISPR-Cas9, so-called target deconvolution
studies have been conducted. These studies connect phenotypic to
target-first approaches by attempting to elucidate themechanism of
action of the target upon which a drug acted retrospectively. This
strategy enriches the phenotype-centric drug discovery paradigm
with mechanistic understanding of the observed therapeutic effect
and sets the groundwork for integration of phenotype-first and
target-first approaches (Terstappen et al., 2007).

In this review, we define drug targets as biomolecules—primar-
ily proteins, but also DNA, RNA or other biomolecular species—
that a therapeutic compound can bind to or modulate. The pool of
existing drug targets is limited, and assessments of the druggable
genome, which refers to those genes susceptible to modulation by
small molecules, fluctuate. The latest estimate places this number at
4,479 potential targets, accounting for approximately 22% of
protein-coding genes (Finan et al., 2017). According to records of
the Human Protein Atlas (HPA), there are approximately 863 FDA
approved drug targets (Paananen and Fortino, 2020), over 50% of
these targets are represented by just four protein families—ion
channels, nuclear receptors, kinases, and G-protein coupled recep-
tors (Bakheet and Doig, 2009; Santos et al., 2017).When it comes to
finding novel, efficacious, and safer drug targets, as a general
guideline, targets should have a role in disease, limited role in
normal physiology, particularly in critical tissues such as the heart,
and ideally should be druggable with small molecules, although
biologic drugs and gene targeted therapies make almost all targets
therapeutically tractable. Furthermore, while a laboratory-resolved
3D protein structure was a prior requirement for drug design, with
the advent of protein structure prediction models, further acceler-
ated by AI approaches (Baek et al., 2021; Jumper et al., 2021; Lin
et al., 2023b), high-quality 3D structures of a wide range of potential
drug targets are generally available. This enables a broader appli-
cation of in silico structure-based drug design. Another desirable
property for a drug target is having multiple binding pockets. By
having multiple potential binding pockets, different conformations
of the protein in various functional states can be targeted. It also
provides opportunities for identifying allosteric inhibitors rather
than only targeting the active site. Allosteric sites may offer better
selectivity and provide safety benefits (May et al., 2007; Abdel-
Magid, 2015; Wagner et al., 2016b). Lastly, by understanding the
associated pathways of the target, we gain insight into the processes
the target is involved in and thus, what other biological processes
could potentially be affected. This can help the assessment of
potential off-target effects.

Despite the great progress in drug discovery, the process is still
burdened by high costs, long timelines, and extraordinarily high

attrition rates in clinical trials, attributed to limited efficacy, safety
concerns, off-target effects, or sometimes purely economic reasons
(DiMasi et al., 2016; Minikel et al., 2024) Collectively, against this
backdrop of failure, the need for transformative solutions for drug
discovery becomes clear, especially when we consider our incom-
plete understanding of target mechanism and the vast chemical
space of compounds that can interact with that target.

The role of AI in drug discovery

Ideally, we would develop a comprehensive mathematical frame-
work to systematically navigate the vast search spaces and intricate
interactions inherent to drug discovery. However, realising such a
framework has proven to be an immensely challenging endeavour
with limited success so far. In contrast, methods using artificial
intelligence (AI) are particularly well-suited for modelling the
complexities and nuances of drug discovery. When employing
AI, we essentially shift our approach: rather than relying on explicit
mathematical descriptions of the underlying biology, chemistry,
and physics, we leverage AI models to learn and infer patterns
directly from data. While adopting data-driven machine learning
techniques holds great promise for enhancing drug discovery pipe-
lines, there are also certain trade-offs, such as a lack of transparency
in the models and obscured understanding of causality.

AI has the potential to accelerate drug discovery by improving
the identification of drug candidates and enhancing our under-
standing of their mechanisms. The increasing volume of diverse
biological and chemical data, including genomics, proteomics,
metabolomics, electronic health records, and biomedical literature,
combined with high-throughput experiments, greatly enhances
AI’s ability to extract and interpret insights. Notably, recent studies
have highlighted the importance of including genetic and genomic
data in drug target discovery pipelines (Razuvayevskaya et al.,
2023). One estimate quantifying the impact genetic evidence has
on the success of clinical trials estimated the odds of advancing to a
later stage of clinical trials to be 80% higher when genetic evidence
for a target is present (Minikel et al., 2024). Furthermore, AI can be
used to develop in silicomethods to predict and simulate biological
and chemical spaces. Examples of such approaches are cellular
and genetic perturbation modelling (Prasad et al., 2022; Bunne
et al., 2023), gene expression prediction (Kelley et al., 2018;
Avsec et al., 2021; Linder et al., 2023), variant effect prediction
(Frazer et al., 2021; Brandes et al., 2022; Cheng et al., 2023; Lin et al.,
2023a), protein structure prediction (Baek et al., 2021; Jumper et al.,
2021; Lin et al., 2023b), drug-target interaction prediction (Chen
et al., 2016; Wen et al., 2017; Huang et al., 2021), and molecular
docking simulations for drug design (Gentile et al., 2020; Corso
et al., 2023).

When it comes to determining the applicability of AI, we can
refer to some guiding principles (Figure 1) that can help us to
establish whether introducing AI to solve our problem is sensible.
We argue that drug target discovery problems lie at the inter-
section of all these principles, making them amenable to be solved
with AI.

First, the problem at hand must have sufficient scale. Building a
successful AI model is reliant on having examples to learn from.
While unsupervised approaches can be powerful, the potential of AI
predominantly resides in the ability to uncover generalisable pat-
terns within training data through a supervised or a self-supervised
framework. A part of this scale is the quality of the data. The dataset
should not just be large, but it should also be of high quality or be
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processed such that it is of high quality. High-quality data implies
that the model can learn meaningful signals from the patterns and
relationships contained within the data. Some concrete examples of
factors potentially decreasing data quality are noise, class imbal-
ances, population bias, and missing data.

Second, the complexity of the problem should be appropriate to
fully leverage the power of AI models. At the lower bound of the
complexity spectrum, the problem could be insufficiently complex,
making it likely that an overparameterized AI model is developed
that performs seemingly well, but does not generalise. This phe-
nomenon is referred to as overfitting in AI literature. Note that
overfitting is not limited to this scenario and can also occur in
poorly designed AI models where the problem itself is not neces-
sarily insufficiently complex. At the other end of the complexity
spectrum, a problem could be intractable. Take the entire chemical
space of ~1060 compounds (e.g., Reymond, 2015), this immense
search space is simply too large for any computational method to
fully explore. However, we can make this task more manageable by
focusing on a smaller, more relevant subset of compounds. One
effective approach to achieve this is by using generative AI models.
These models are trained by adding random variations to existing,
known data and then attempting to reconstruct the original input
from this altered data. Through this process, the model learns the
patterns and distributions inherent in the data, which can be used to
construct outputs based on these patterns.

In the context of drug discovery, this technique can be applied
to known chemical structures. This is the basis of generative
molecular design (GMD), where AI models are used to generate
potentially viable chemical compounds by learning from existing
chemical structures (Thomas et al., 2023). This approach helps
streamline the search for new drug candidates by focusing on the
most promising areas of the vast chemical space, in this case, up to
~1011 compounds (Ruddigkeit et al., 2012), constraining the
search space and thus making the problem computationally tract-
able. For AI methods to thrive, a balance must be struck as it

pertains to the complexity of the problem. We argue that drug
discovery, including drug target discovery, satisfies the complexity
criterion. Target discovery is often constrained to parameterisa-
tions of the genome or the druggable genome. These are about
20,000 and 4,000 genes in size, respectively, which is a tractable
search space. As for the chemistry of compounds binding to the
target, we can narrow down the search space to effectively design
novel compounds.

Lastly, the input features for the problem should be non-linearly
related to the target variable. Most biological phenomena are highly
non-linear, so it is rare to encounter a biological problem where
input and output are linearly related. This also becomes apparent
from examining the AI models that underpin some seminal break-
throughs in the context of biology, such as CellOT for gene per-
turbation prediction (Bunne et al., 2023), ESMFold and AlphaFold
for protein structure prediction (Jumper et al., 2021; Lin et al.,
2023b), and EVE and AlphaMissense for missense variant patho-
genicity prediction (Frazer et al., 2021; Cheng et al., 2023). To
model the non-linearity inherent to these problems, non-linear
activation functions are one of the key elements allowing AImodels
to effectively capture the highly complex relationships within the
underlying distributions they attempt to model. Since many bio-
logical phenomena exhibit strong non-linearity, it makes sense to
express and solve these problems in the language of AI.

AI methods and data modalities in drug target discovery

One leading reason for the convergence between AI and drug
discovery is the diverse range of data types that are being used in
drug discovery. The data can be presented in various forms, such as
tabular, text, sequences, graphs, and images, each offering a distinct
perspective into the biology underlying disease and potential cures.
In Table 1, we summarise the different modalities, their use-cases,
and some open-access data sources. In the following paragraphs, we
briefly discuss each data modality, and how it is generally used in
drug target discovery.

One of themost commonmethods for presenting data related to
drug target discovery is through structured tables. Typically, these
tabular data structures will contain information describing genes or
variants, for example, allele frequency, mutation type, and conser-
vation scores across species. There are different resources and
consortia that aggregate and characterise genomic data in tabular
form, such as UK Biobank (Sudlow et al., 2015), Genes & Health
(Finer et al., 2020), and Open Targets (Ochoa et al., 2021). Trad-
itional machine learning (ML) methods, for example, XGBoost
(Chen and Guestrin, 2016), Linear Regression, Logistic Regression
(Pedregosa et al., 2011), as well as deep neural networks (LeCun
et al., 2015), have been developed and tailored to tabular datasets.
Therefore, these models have a track record of delivering outstand-
ing performance when working with tabular data.

Textual data, comprising scientific literature, research articles,
patents, clinical trial reports, medical textbooks, chemical databases
and electronic health records, represents a valuable resource for
drug discovery. The unstructured information in textual docu-
ments can provide us with critical insights related to potential drug
targets, novel or repurposed drug candidates, and adverse events
amongst others. Textual data is typically best analysed using Nat-
ural Language Processing (NLP) methods. Recently, large language
models (LLMs) have surfaced as the state-of-the-art model type to
analyse textual data. LLMs are deep neural networks that combine
many different layer types, such as embedding layers, attention
layers and linear layers that coalesce to learn semantic information

Figure 1. Venn diagram of guiding criteria for the maximum impact of AI in relation to
drug discovery. We havemade the connection to drug target discovery in the respective
sets. The intersection of all sets is where the sweet spot for using AI lies.
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from textual input. Typically, LLMs are pre-trained using self-
supervised approaches where a large corpus of text gets tokenised,
that is, it gets mapped to numerical vectors representing the words.
This corpus is masked at random, and consequently tasked with
predicting the next tokens (Radford et al., 2018; Devlin et al., 2019).
For task-specific objectives, the pre-trained model can be trained
further on data related to the task of interest, for example, infor-
mation retrieval or translation (Microsoft Research AI4Science and
Microsoft Azure Quantum 2023; Singhal et al., 2023a, 2023b).

Data that can be represented sequentially are fundamental to
biology. Such sequences often correspond to biological or chemical
structures. Some of these data are genomic data, transcriptomic
data, protein sequences, and drug compound libraries in the form
of SMILES or SELFIES strings. Previously, we introduced language
models within the context of natural language. Yet, their versatility
transcends the domain of language. Language models also prove
adept at understanding biological languages, for example, decoding
semantic meaning fromDNA via nucleotide sequences, and unrav-
elling structural or functional information for proteins through the
interpretation of amino acid sequences. To model and use these
sequences, language models can be trained to predict masked
nucleotides or amino acids and consequently generalise to unseen
sequences (Dee, 2022; Benegas et al., 2023; Lin et al., 2023b).
Another type of model showing promise in sequential and struc-
tural data are generative models. Generative models are self-
supervised machine learning models that are trained to model the
statistical distribution of input data, typically by reconstructing the
original distribution after random noise has been added as input
during the training process (Goodfellow et al., 2014). A couple of
ways in which these models can be applied are to model DNA
regulatory sequences (Zrimec et al., 2022), and they can be utilised
to generate novel protein structures that meet some specified
criteria. (Ingraham et al., 2023; Watson et al., 2023). Attention-
based neural networks have been shown to be well-versed in
analysing sequences to correct consensus sequence errors (Baid
et al., 2023), comprehend protein structures (Baek et al., 2021; Lin
et al., 2023b), and discover potential drug targets (Chen et al., 2023).
The attention mechanism allows the model to learn relations
between different parts of the input sequence, even if these parts
are located far away from each other in their representation space
(Vaswani et al., 2017). The most notable example of an attention-

based neural network working with sequence-based data is Alpha-
Fold. AlphaFold predicts protein structure in 3D from an amino
acid sequence input (Jumper et al., 2021).

Network data (e.g., gene and protein interaction networks) can
provide a comprehensive view of molecular relationships by rep-
resenting them efficiently as graphs with nodes and edges. Further-
more, representing data as a graph allows us to build Graph Neural
Networks (GNNs) (Veličković, 2023). GNNs are optimised to learn
and propagate information across nodes, allowing for efficient
learning from these data structures. In the context of drug target
discovery, there are various successful examples of graphs being
used, such as in network expansion for pleiotropymapping (Barrio-
Hernandez et al., 2023), CausalBench (Chevalley et al., 2022), and
many others (Muzio et al., 2021). A recent trend in drug target
discovery has been the usage of knowledge graphs (KGs). These
typically are heterogeneous graphs that store different data about
compounds or genes in nodes, and relationships between nodes in
the edges (Chandak et al., 2023).

Medical imaging, including X-rays, CT scans, MRI and histo-
pathology slides, function as important assets for disease diagnosis
and tracking treatment responses. Generative models, convolu-
tional neural networks (CNNs), visual transformers (ViTs) and
deep learning architectures are frequently used for the analysis of
visual data (Liu et al., 2017; Dosovitskiy et al., 2021; Tu et al., 2023).
When it comes to molecular imaging, images are captured in
various resolutions all the way down from the tissue to the cellular
level. These images offer profound insights into the molecular
intricacies of diseases and drug interactions. Finally, drug screening
assays generate a treasure trove of image data, showcasing cells or
organisms under perturbation of various compounds in pursuit of
potential drugs. AI models help with their ability to comprehen-
sively analyse the resulting images. Next to interpreting the images,
using image data also often involves image correction and auto-
matic feature extraction, both tasks in whichAImethods excel (Dee
et al., 2023; Krentzel et al., 2023).

While it is true that certain data modalities conventionally have
been associated with certain types of AI architectures, a lot of the
state-of-the-art models do not exclusively use a single datamodality
or a single architecture. Often, data and model types are combined.
This combination can occur in various ways, and often different
model types are involved with the processing of various types of

Table 1. Categorisation of various data modalities commonly used in the field of biomedical research and drug target discovery, along with biology the data
represents, the primary AI architecture employed on them, and key data sources

Data modality Biological representation Main AI architectures Example data sources1

Tabular Multiomics, electronic health records Traditional machine learning,2

multilayer perceptron
UK Biobank, Genes & Health, OpenTargets,
TCGA, GEO

Text Gene ontology, scientific literature, clinical trials Large language model GO, PubMed, ClinicalTrials.gov

Sequence/structure DNA, RNA, protein, small molecules Attention–based neural network,
generative model, language
model

Ensembl, UniProt, UCSC Genome Browser,
ChEMBL, GenBank, PDB, GENCODE

Graph PPI, gene interaction network, protein
structures, small molecule structures, pathway
annotations

Graph neural network STRING, STITCH, BioGRID, PDB, TRRUST,
RegNetwork, IntAct, PubChem, ChEMBL,
Reactome, KEGG

Image Histopathology, radiology, spatial
transcriptomics

Convolutional neural network,
visual transformers

TCIA, GDC, MICA–MIC

Note that the AI architectures are not exclusive to these data modalities. In practice, multiple modalities are combined or sometimes even integrated into each other in an end-to-end fashion.
1Citations to databases can be found in Supplementary Material S2.
2In this case, we mean traditional machine learning to encompass linear and logistic regression, support vector machines and tree-boosting models.
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data before it gets combined, which often happens in so-called
embeddings (Ngiam et al., 2011; Venugopalan et al., 2021; Alwaz-
zan et al., 2023; Khader et al., 2023). Embeddings are representa-
tions of the raw input data in a latent space that can be used for
downstream computations. Furthermore, most modern-day AI
architectures consist of various blocks, which are organisational
units in a neural network that are composed of different layers, or
even whole models that feed into each other and interact with each
other. Models like this are often referred to as multimodal machine
learning models.

Exploring AI-based strategies for drug target identification

The first example we will explore is DrugnomeAI, an ensemble
architecture for the prediction of drug targets (Polikar, 2006; Vitsios
and Petrovski, 2020; Raies et al., 2022). DrugnomeAI excels in
predicting the druggability of candidate drug targets by leveraging
324 gene-level features for every protein-coding gene within the
human exome. Raies et al. conducted a feature importance study
with Boruta, which is a feature selection technique that helps
identify the most relevant variables in a dataset by comparing their
importance to that of randomised, noise-added variables (Kursa
et al., 2010). This analysis showed that the most informative fea-
tures for druggability prediction were protein–protein interaction
features. This is in line with existing research showing that partners
of druggable genes are also likely to be druggable (Finan et al.,
2017). Raies et al. frame their model’s objective as a positive-
unlabelled learning (PUL) problem. Here, the positive dataset
comprises targets for which they have identified evidence of drugg-
ability, while the unlabelled set encompasses the remaining targets.
The ultimate task is to rank these remaining targets based on their
predicted druggability. Within their PUL framework, Raies et al.
use eight separate classifiers that are stochastically trained through
a 10-fold cross-validation process. Subsequently, the predictions
from these classifiers are combined to produce the final ranking of
the unlabelled drug targets. Notably, Raies et al. observed that the
top-ranked genes in their prioritisation exhibit significant enrich-
ment in the clinical literature, arguing that their model has effect-
ively recognised druggability patterns within the feature set.

It is also possible to combinemultiple datamodalities in amore
direct way than ensemble modelling, namely via multitask learn-
ing (Caruana, 1998). A multitask learning problem in drug target
discovery is typically framed as one where you are trying to predict
target qualities as well as properties of the target-binding drug
(Sadawi et al., 2019; Lin et al., 2022). Multitask learning allows the
model to co-learn a set of tasks together to optimise overall
performance. This approach leverages shared information
between tasks, combatting overfitting and improving generalisa-
tion. Multitask neural networks can integrate data from various
sources, making them valuable for a wide range of tasks, such as
predicting drug targets, but also drug toxicity and sensitivity
(Costello et al., 2014; Ammad-Ud-Din et al., 2017). Furthermore,
they offer a means to bridge the gap between biology and chem-
istry in drug discovery by incorporating structural data like
SMILES representations, next to information characterising the
biological target, enabling simultaneous prediction of side effects,
ligand docking, likely targets and key compound properties
(Mikolov et al., 2013b, 2013a).

In some areas of study where data is sparsely available, such as
for rare diseases or diseases in clinically unavailable tissues, AI
methods can meaningfully identify candidate drug targets through

transfer learning. Transfer learning is a concept in AI where we
train on abundant data that is tangentially related to some problem
with limited data, and consequently fine-tune the resulting model
towards the limited data case (Pan andYang, 2010). One example of
a model utilising transfer learning is Geneformer (Theodoris et al.,
2023). Geneformer uses self-attention to pick out important genes
using transcriptomic data, which can vary across different cell
types, developmental stages, or disease conditions. Geneformer
was trained with a dataset called Genecorpus-30M, which was
assembled from 29.9 million human single-cell transcriptomes.
The transcriptome data is processed through six transformer
encoder units involving self-attention and feed-forward layers.
Pre-training is done using a masked learning objective, where
15% of genes in each transcriptome are masked, and the model
learns to predict the masked genes based on the context of the
unmasked genes. Due to the size and broad scope of Geneformer’s
pre-training, together with the potential to fine-tune the model, we
refer to this model as a foundation model (Bommasani et al., 2022).
Using Geneformer, cardiomyocytes from three types of limitedly
available heart tissue were studied: healthy (n = 9), hypertrophic
cardiomyopathy (n = 11), or dilated cardiomyopathy (n = 9). Theo-
doris et al. performed in silico treatment analysis by either inhibiting
or activating pathways and seeing if this wouldmove the healthy cell
states towards either hypertrophic or dilated cardiomyopathic
states. If so, the pathway was inspected for potential therapeutic
targets based on druggability and disease relevance. A target that
was highlighted through this analysis wasADCY5, which is a known
druggable target (Wagner et al., 2016a) as well as involved in
longevity and protection of cardiomyocytes in mouse models
(Ho et al., 2010). Another target that in silico treatment analysis
pointed to in this context was SRPK3, which is a downstream
effector of MEF2 (Nakagawa et al., 2005). MEF2 is known to play
a role inmyocardial cell hypertrophy (Akazawa andKomuro, 2003).
While single-cell foundationmodels have demonstrated impressive
results in certain situations and seem conceptually attractive for
downstream applications, it is important to exercise caution. These
pre-trained models may not perform well in all contexts, particu-
larly for zero-shot prediction in other biological contexts
(Kedzierska et al., 2023). Therefore, employing biological founda-
tion models for zero-shot prediction in contexts divergent from
their original training objective should be approached carefully.

GNNs are also being employed in drug target discovery. One
such approach is EMOGI (Schulte-Sasse et al., 2021), a graph
convolutional network (GCN) that predicts cancer drug targets.
EMOGI stands out by integrating a wide range of interaction and
multiomics data to predict cancer genes. This way of combining
different data sources addresses the evolving understanding of
cancer as a complex interplay of genetic and non-genetic factors
(Bell and Gilan, 2020; Hanahan and Weinberg, 2011). Unlike
previous approaches that primarily rely on somatic mutations
and occasionally integrate PPI networks (Cowen et al., 2017; Lei-
serson et al., 2015; Reyna et al., 2018), EMOGI employs GCNs to
predict cancer genes by amalgamating multiple data modalities,
including mutations, copy number variations, DNA methylation,
gene expression, and PPI networks. The graph is constructed to
have its topology represent a PPI network. This means that the
nodes represent genes, and the edges represent whether two genes
interact. R. Schulte-Sassen et al. also did an interpretability analysis
of their GCNmodel. They use the layer-wise relevance propagation
(LRP) propagation rule (Bach et al., 2015), which allows for dis-
secting what is happening in the GCNs and provides us with
insights into why specific genes are classified as cancer-related.
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Through biclustering and LRP analysis, distinct modules of newly
predicted cancer genes (NPCGs) are revealed—some predomin-
antly influenced by network interactions, others primarily driven
by omics features. These NPCGs, while not always necessarily
displaying recurrent alterations themselves, interact with known
cancer genes, positioning them as significant players in tumorigen-
esis. Notably, these predictions align with essential genes identified
through loss-of-function screens, reinforcing the credibility of
EMOGI’s insights.

Beyond academic research and applications, as of Q3 2023, there
are a plethora of AI-derived therapeutics in clinical trial pipelines.
Most of these come forth out of industrial research laboratories. A
lot of the information that is publicly available on how AI is
influencing drug target discovery comes from what we here refer
to as AI-first drug discovery companies. These are companies that
highlight explicitly the fact that they are usingAI in their drug target
discovery and drug design efforts. While we can only associate
drugs being AI-derived from such companies, we should note that
big pharmaceutical companies are also heavily investing in intro-
ducing AI into their pipelines. However, it is much harder to
attribute the involvement of AI in the development of new phar-
maceuticals in this case. So, while looking at the status of AI-first
companies might be a good probe into the penetrance of AI into the
pharmaceutical industry, it does not provide us with a comprehen-
sive view of the role AI is currently playing in the industry.

In Figure 2, we have visualised the status of targets and associ-
ated compounds currently in clinical and preclinical trials. The data
was put together by searching and collecting a list of publicly and
privately held companies that explicitly mention the usage of AI on
their website. We have added a table containing the data we
collected in Supplementary Table S1. Note that this is not an
exhaustive list, and we only included target-compound pairs for
which we could find sufficient data in the pipelines reported by the
companies. For discontinued compounds, press-releases and his-
torical website snapshots have been consulted to confirm the
development status of compounds. The discontinued compounds
collected in our data are an underestimation of the true number of
discontinued compounds. Often, data and status on discontinued
compounds are not easily accessible in public records. Hence, the
only discontinued compounds added to this list are ones that
(i) have had accessible press coverage, (ii) have been withdrawn
from a clinical trial investigation as indicated by ClinicalTrials.gov,
or (iii) have been mentioned in an accessible snapshot of a com-
pany’s pipeline webpage, consulted via wayback.archive.org, and
removed without any mention of success. We only consider com-
pounds in which the company was leading the effort for approval.
We use FDA approval status to determine whether a compound has
been officially approved.We excluded AI-first companies that have
not yet had at least one compound enter clinical trials.

Discussion and future prospects

AI is penetrating all levels of drug discovery, including target
discovery and validation. AI methods rely on the existence of large,
high-quality data sets. Currently, these data exist but are certainly
incomplete and potentially confounding in nature. We must take
note of the limitations of existing data and look at ways to improve
data in a targeted manner. Most publicly available big data sets
often rely on aggregated information descendent from skewed
representations of the population. Different populations display
widely varying genomic characteristics and responses to drugs, and

consequently, less represented populations suffer from diminished
treatment outcomes (Ramamoorthy et al., 2015; Popejoy and Full-
erton, 2016; Gross et al., 2022). Therefore, the databases used to
identify drug targets often lack sufficient representation of popu-
lation diversity, resulting in disparate health outcomes for diseases
that are effectively treated in well-represented groups but remain
challenging to address in underrepresented populations (Hindorff
et al., 2018; Landry et al., 2018).

At the molecular level, we encounter a different set of biases in
the data we use to train our models. For example, some protein
classes are significantly overrepresented compared to others
based on FDA approval data, which may be attributed to shared
structural or functional similarities for proteins within a given
class. If we train a new generation of models with these targets as
labels, we are likely to perpetuate these biases in newly prioritised
drug targets. Furthermore, we should also acknowledge that
because of data availability limitations, bias and historical
momentum around known drug targets and classes of targets,
there is a significant portion of the genome of which we know too
little to assess their validity as drug targets (Finan et al., 2017;
Oprea et al., 2018; Wood et al., 2019). Assuming there are also
potential drug targets hidden within what has been colloquially
termed the “unknome” (Rocha et al., 2023), this would increase
the search space of potential drug targets further beyond what the
current paradigm of what drug target druggability models con-
sider. Another challenge is that the concept of a druggable target
is not static. This is particularly pronounced for cancer, where
target-associated pathways are prone to quickly becoming resist-
ant to treatment through various mechanisms (Shabani and
Hojjat-Farsangi, 2016). This means that the “one disease, one
target” paradigm might not be the best approach to curing
diseases, even in cases where a single target is indeed initially
therapeutically receptive to treat the disease.

While AI-powered drug target discovery has its fair share of
obstacles to overcome, it is still a field that is in its infancy.
Moreover, next to these obstacles lie many opportunities for prom-
ising discoveries. This is not only limited to drug target discovery,
but drug discovery in its broadest sense. For the successful appli-
cation of AI, specifically deep learning-based architectures, the
three guiding principles must be satisfied: scale, complexity and
non-linearity. We argue that drug target discovery satisfies all three
of these principles. Given this reality, AI-based methods stand to
improve the speed with which we can discover and validate novel
drug targets. Recent breakthroughs in AI have led to improvements
by providing an increased ability to incorporate sequence and
structure-based target evidence. As models like AlphaFold are
improved and extended to also reflect the dynamic nature of
proteins, and we incorporate small molecules and macromolecular
structures into these models, our ability to do in silico drug discov-
ery will dramatically improve. In addition to predicting protein
structures, AI methods stand to significantly improve a multitude
of other biological challenges. These include, but are not limited to,
predicting gene perturbations, assessing the effects of genetic vari-
ants, de novo generation of proteins, and molecular docking simu-
lations. In the long run, transitioning a significant portion of the
drug discovery pipeline to an in silico environment holds substan-
tial advantages for all parties involved with drug discovery. For
patients, this shift would enhance the efficiency of developing new
and safe medications, resulting in faster delivery of improved
therapeutics. For pharmaceutical companies, this transition would
lead to significant cost and time savings, which are estimated
between 25% and 50% up to the preclinical stage (Loynachan
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et al., 2023). For us to get to this point, experimental validations of
in silico methods remain essential both to validate computational
predictions and to provide labels for the models to train with.

AI-driven drug target discovery presents a promising avenue for
identifying novel, safe and efficacious targets. By leveraging the

abundance of multiomics data and the power of modern AI archi-
tectures applicable to a variety of data modalities – ranging from
images to sequences and protein structures, we find ourselves at the
precipice of having data and method converge at meaningful
impact on drug target discovery, and drug discovery at large.

A)

B)

Figure 2. A) Compounds of AI-first companies that are currently in clinical trials, approved or discontinued, stratified by ICD10 disease categories. Scatter size indicates the number
of compounds in that clinical trial phase for that company and disease area. Note that dots have been jittered for visual purposes. This does not reflect progress of the compound in
the respective phase. B) Number of compounds each company has in clinical trials, where the bar colours refer to the phase or the status of the clinical trial.
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