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Abstract

In this paper, we introduce a slight variation of the dominated-coupling-from-the-past
(DCFTP) algorithm of Kendall, for bounded Markov chains. It is based on the control of
a (typically non-monotonic) stochastic recursion by another (typically monotonic) one.
We show that this algorithm is particularly suitable for stochastic matching models with
bounded patience, a class of models for which the steady-state distribution of the system
is in general unknown in closed form. We first show that the Markov chain of this model
can easily be controlled by an infinite-server queue. We then investigate the particular
case where patience times are deterministic, and this control argument may fail. In that
case we resort to an ad-hoc technique that can also be seen as a control (this time, by
the arrival sequence). We then compare this algorithm to the primitive coupling-from-
the-past (CFTP) algorithm and to control by an infinite-server queue, and show how our
perfect simulation results can be used to estimate and compare, for instance, the loss
probabilities of various systems in equilibrium.
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1. Introduction

The study of stochastic matching models is currently a very active line of research in applied
probability. It has been demonstrated in various contexts that these stochastic models are suit-
able for capturing the dynamics of a wide range of real-time random systems, in which items
enter the system at (possibly) random times, with a view to finding a match, which is identi-
fied as such in accordance with specified compatibility rules, given by a compatibility graph
between classes of items. Matched couples leave the system right away, as soon as a match
has been found. This is the case in various applications, such as peer-to-peer applications, job
searches, public housing or college allocations, organ transplants, blood banks, car sharing,
assemble-to-order systems, and so on. These models have been introduced in [15] for bipartite
graphs (which are suitable for supply/demand-type applications) and arrivals by couples, as a
variant of the seminal works [3, 16]. To account for a wider range of applications (e.g., dat-
ing websites, crossed kidney transplants, assemble-to-order systems, or car-sharing), they have
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2 T. MASANET AND P. MOYAL

been generalized to general graphs (with simple arrivals) in [32], and then to hypergraphs in
[40, 42] and graphs with self-loops, in [8].

Applications such as organ transplants are subject to very strong timing constraints: the
patients waiting for a transplant have a finite lifetime in the system, and similarly, available
organs are highly perishable and must be transplanted very quickly—hence the need to incor-
porate an impatience (or reneging) parameter into the system. More precisely, in this paper
we address a general stochastic matching model, as defined in [32], in which the items have
a finite (and possibly random) patience upon arrival, before the end of which they must find a
match. Otherwise, they renege and leave the system forever. Matching models with impatience
have recently been addressed for a bipartite model and the ‘N’ graph in [17] for a matching
policy of the first-come-first-matched (FCFM) type, and from the point of view of stochastic
optimization, for partially static policies, in [5]. On another hand, in [26], stability conditions,
together with moment bounds at equilibrium, have been given for models in which some, but
not all, classes of items are impatient, and the matching policy is of the max-weight class.

However, it is important to observe, first, that the exact computation of the stability regions
of matching models is difficult for general graphs, and heavily depends on the matching pol-
icy; see e.g. [32, 38]. Second, the stationary distributions of the models at hand are in general
unknown, and little is known about the characteristics of the steady state. In the existing lit-
erature, the models implementing the FCFM policy constitute the only exception, in which the
stationary distribution is known explicitly. It can often be characterized in a product form, as
is shown using dynamic reversibility arguments (see, for the various models, [1, 2, 8, 18, 37]),
for models without reneging. Let us also observe the recent advances in [7, 19] concerning
the invariance of stationary matching rates on the matching policy for various graphs—which
shows that all matching policies have the same matching rates as FCFM.

However, in the cases of models with reneging, aside from the particular graph geometries
addressed in [17], no exact results are known. Moreover, FCFM policies are clearly not always
the best option in a real-time context: coming back to the case of organ transplants, other
criteria must be taken into account, such as the level of emergency, equity, ages of the patient
and donor, various levels of compatibility, and so on. Mimicking the various existing results
in queueing theory, implementing policies of the match-the-longest-queue (ML) or earliest-
deadline-first (EDF) type may be profitable to minimize loss, and it is significant that EDF
does not amount to FCFM if the patience times are random.

Our aim is to analyze matching models with reneging in steady state, for general matching
policies. In view of the above discussion, we thus need to assess the stationary distribution of
the matching model at hand, without knowledge of this distribution in closed form. As is well
known, this task can be handled through perfect simulation of this steady state.

Perfect simulation has been a constantly active line of research in the analysis of stochastic
systems, since the pioneering works of Propp and Wilson [41] and Borovkov and Foss [11,
12]. The underlying idea is now well known: consider a discrete-event stochastic system whose
stationary distribution is intractable mathematically. Then we can study the system in steady
state by precisely simulating samples of the stationary distribution, even though the latter is
not known in closed form, instead of approximating it by long-run trajectories. Then various
average performance parameters at equilibrium can be assessed by Monte Carlo techniques.

The celebrated algorithm of Propp and Wilson [41] is based on coupling from the past
(CFTP); namely, all trajectories of the considered Markov chain coalesce before time 0, when-
ever these trajectories are initiated from all possible states of the chain, far away enough in the
past. This phenomenon is closely related to the concept of strong backwards coupling (see e.g.
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Perfect sampling of matching models 3

[13] and Chapter 2.5 of [6]), and the connections between the two notions are investigated for
various cases of stochastic recursions in [22]. Strong backwards coupling is the pillar of the
construction of the stationary state under general non-Markov assumptions, via the use of ren-
ovating events; see e.g. [11, 12]. It is also a tool for constructing stationary states on enriched
probability spaces via skew-product constructions; see [4, 31, 36].

As they rely on the exact coalescence of a family of Markov chains, CFTP algorithms are
typically adapted to finite state spaces and to monotonic dynamics, using envelope techniques.
Various authors have extended these settings: generalizing the ideas in [22], it is proven in [28]
that geometrically ergodic Markov chains admit a CFTP algorithm of the envelope type, even
if they are not monotonic, a result that was then generalized to a wider class of ergodic Markov
chains in [20]. Various related approaches have since been proposed, all of which rely on the
intuitive idea of simulating from the past a ‘simpler’ recursion, then deducing the stationary
state of the recursion of interest by comparison. This is the core idea of dominated coupling
from the past (DCFTP), introduced in [29, 30] and then [28]; of the bounding chains of Huber
[24, 25], which are particularly adapted to mechanical-statistical contexts; and of various enve-
lope techniques for queueing systems (see e.g. [14]). More recently, DCFTP-related methods
have been implemented, together with saturation techniques, to perfectly simulate non-Markov
queueing systems; see [9] for infinite-server and loss queues, and [10] for multiple-server
queues.

This paper is a first contribution on the perfect sampling of stochastic matching models. We
introduce two perfect sampling algorithms, Algorithms 2 and 3 below, that produce samples
of the stationary distribution of stochastic matching models with reneging, in the case where
arrival times are discrete. The first algorithm simply relies on the control of the model at hand
by an infinite-server queue, an algorithm that would clearly not be optimal in a context with
heavy traffic. Indeed, as was observed in [9], as it relies on the depletion of a corresponding
infinite-server model, the coalescence time for Algorithm 2 grows exponentially as a function
of the arrival rates; see [27]. Our second algorithm, Algorithm 3, is peculiar to the case where
patience times are deterministic (and so the matching policies FCFM and edf are equivalent).
In that case, we propose an ad-hoc control of the system simulated backwards in time by
the input of the system. Then the algorithm substantially reduces the number of operations
compared to the primitive CFTP. In particular, if latency is allowed, we show that Algorithm 3
also outperforms the algorithm based on control by the infinite-server queue, Algorithm 2.
In fact, both Algorithms 2 and 3 can be seen as particular cases of a more general perfect
sampling algorithm for bounded Markov chains, namely Algorithm 1 below, which we call
perfect sampling by control, a condition that is closely related to those under which a DCFTP-
type algorithm can be implemented.

This paper is organized as follows. After some preliminaries in Section 2, we introduce
our general algorithm for perfect sampling by control in Section 3. In Section 4 we introduce
the general stochastic matching model with reneging, and we introduce the two correspond-
ing perfect sampling algorithms in Subsections 4.2 and 4.3.3. The performance of the latter
algorithm is investigated in Subsection 4.3.4. We compare the performance of Algorithm 3
to that of the primitive CFTP algorithm in Subsection 4.5, and to that of Algorithm 2 in
Subsection 4.4, for a model with reneging and latency. In Subsection 4.5 we provide a first
application to the comparison of the steady-state performances of two matching policies (here,
edf—or, in other words, FCFM—and ML).
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4 T. MASANET AND P. MOYAL

2. Preliminaries

In what follows, R, N, N∗, and Z denote the sets of real numbers, non-negative integers,
strictly positive integers, and integers, respectively. For any two elements a, b ∈Z, let [[a, b]]
denote the integer interval [a, b] ∩Z.

Any (simple, finite, and undirected) graph G is denoted by G = (V, E), where V is the set
of nodes and E is the set of edges for a node i ∈V. For n ∈N

∗, we say that G is of size n
if the cardinality |V| of V is n. For any nodes i, j ∈V, we write i − j if i and j share an edge
in G, that is, {i, j} ∈ E. Otherwise, we write i −/ j. For any set U ⊂V, we denote by E(U) the
neighborhood of U, namely,

E(U) = {j ∈V : i − j for some i ∈ U} .

For simplicity, for all i ∈V we set E(i) := E({i}), the set of neighbors of node i in V.
Throughout the paper, all the random variables we consider are defined on a common

probability space (�,F , P).

Definition 1. Let X and V be two separable metric spaces. Let k ∈Z and x ∈X. Let f be a mea-
surable mapping from X×V to X, and let (vn)n∈Z be an identically distributed sequence of
V-valued random variables. We denote by

(
Xk

n(x)
)

n≥k the stochastic recursive sequence (SRS)

driven by
(
f , (vn)n∈Z

)
, with initial value x at time k. Namely,

(
Xk

n(x)
)

n≥k is fully determined
by the recurrence equation⎧⎨⎩Xk

k (x) = x ,

Xk
n+1(x) = f (Xk

n(x), vn) a.s. for all n ≥ k.

It is immediate that
(
Xk

n(x)
)

n∈Z is an X-valued Markov chain whenever the sequence (vn)n∈Z
is independent and identically distributed (i.i.d.). Conversely, any X-valued Markov chain
(Zn)n∈N of fixed starting time k and initial value x, and with transition matrix Q over X, can
be represented by the SRS driven by

(
f , (vn)n∈Z

)
, where (vn)n∈Z is an i.i.d. sequence of uni-

formly distributed random variables on [0, 1], and f is piecewise constant and satisfies, for all
x1, x2 ∈X,

λ ({x : , f (x1, x) = x2})= Q(x1, x2),

for λ the Lebesgue measure; see e.g. Section 2.5.3 of [6].

Fix an SRS X := (
Xk

n(x)
)

n≥k. Then for all e ∈X, we set

τX,k
e (x) = inf

{
n ≥ k : Xk

n(x) = e
}
,

the hitting time of the value e by
(
Xk

n(x)
)

n≥k. If (vn)n∈Z is i.i.d., then
(
Xk

n(x)
)

n≥k is a Markov

chain, and the distribution of τX,k
e (x) − k is independent of k. In that case, we then denote by

τX
e (x) a generic random variable that is so distributed.

3. A perfect sampling algorithm by control

In this section we present a perfect simulation algorithm, Algorithm 3, for processes that
are bounded, in a sense that we will make precise hereafter.
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Perfect sampling of matching models 5

Our procedure is closely related to that of the DCFTP algorithm introduced by Kendall and
Moller in [29, 30]. Algorithm 1 proceeds roughly as follows: we simulate from the past an
auxiliary chain Y , until it has reached one of the endpoints, at which time we start simulating
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6 T. MASANET AND P. MOYAL

a trajectory of the CTMC X, up to time 0. As will be shown hereafter, under certain conditions
the output of Algorithm 1 is sampled exactly from the stationary distribution of X.

Until the end of this section, we fix three separable metric spaces X, Y, and V, and two
mappings f : X×V→X and g : Y×V→Y.

3.1. A control condition

The control of an SRS of interest by an auxiliary one is the key to our perfect simulation
algorithm. It is defined below.

Definition 2. Let (Xn)n∈Z and (Yn)n∈Z be two SRSs, respectively valued in X and Y, and let r ∈
N

∗. We say that (Yn)n∈Z r-controls (Xn)n∈Z if there exist b1, . . . , br, y ∈Y and a1, . . . , ar ∈X

such that the following holds:

For all i ∈ [[1, r]], k ∈Z, and n ≥ k,
[
Yk

n(y) = bi

]
=⇒

[
∀x ∈X, Xk

n(x) = ai

]
. (1)

The points b1, . . . , br are called the endpoints of Y . If r = 1, we simply say that Y controls X.

The following result establishes that under certain conditions including the control of
(Xn)n∈Z and (Yn)n∈Z, Algorithm 1 terminates almost surely, and the output is a sample of
the stationary distribution of the SRS (Xn)n∈Z.

Theorem 1. Suppose that the sequence (vn)n∈Z is i.i.d., and let X and Y be two SRSs
respectively driven by

(
f , (vn)n∈Z

)
and

(
g, (vn)n∈Z

)
. Suppose that X is r-controlled by Y for

b1, . . . , br, y and a1, . . . , ar, and that it holds that

P
[
τY

bi
(y)<∞]= 1, i ∈ [[1, r]]. (2)

Then Algorithm 1 terminates almost surely, and its output is sampled from the unique
stationary distribution of X.

Proof. We first show that Algorithm 1 terminates almost surely. To see this, observe that
for any i ∈ [[1, r]] and any N ∈N,

P

(⋃
n∈N

{
τ

Y,−2n

bi
(y) ≤ 0

})
= P

(⋃
n∈N

{
τ

Y,−2n

bi
(y) + 2n ≤ 2n

})

≥ P

({
τ

Y,−2N

bi
(y) + 2N ≤ 2N

})
= P

({
τY

bi
(y) ≤ 2N}) ,

in view of the stationarity of the input. So we obtain that

P

(⋃
n∈N

{
τ

Y,−2n

bi
(y) ≤ 0

})
≥ lim

N→+∞ P
({
τY

bi
(y) ≤ 2N})

= P({τY
bi

(y)<+∞}) = 1,

showing that Algorithm 1 terminates almost surely.
Now, let N be the backwards coalescence time of the chain X, that is, the smallest starting

time for which the CFTP algorithm terminates for X; in other words,

N = min
{
n ≥ 0 : X−n

0 (x) = X−n
0 (x′) for all x = x′ ∈X

}
. (3)
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Let R be the smallest termination time of Algorithm 1. Then, by the very definition of
Algorithm 1 and (1), there exist i ∈ [[1, q]] and a time n0 > 0 such that −R<−n0, and such
that X−R−n0

(x) = X−R−n0
(x′) = ai for all x, x′ ∈X, x = x′, so that

X−R
0 (x) = X−R

0 (x′) = X−n0
0 (ai), for all x, x′ ∈X, x = x′. (4)

In particular, it naturally follows from (3) that we necessarily have R ≥ N; otherwise all ver-
sions of the chain X starting from a time posterior to −N would have coalesced before 0, an
absurdity. In particular, N is almost surely finite. In the terms of [22], the vertical backwards
coalescence time of X is successful, and so it follows from Theorem 4.1 in [22], first, that there
exists a unique invariant probability π for the chain X, and second, that the output X−N

0 (x) of
the CFTP algorithm when started from any x ∈X is sampled from π . But it also follows from
(4) that

X−R
0 (x) = X−N

0 (x) = X−n0
0 (ai), for all x ∈X.

So Algorithm 1 and the CFTP algorithm produce the same output, which completes the
proof. �
Remark 1. The assumptions of Theorem 1 are satisfied in particular if Y is positive recurrent
and irreducible on the discrete state space Y, or if the distribution of Y has atoms at points
b1, . . . , br with finite hitting times from y.

Remark 2. It follows from the equivalence shown in Theorem 4.2 of [22] that under the
assumptions of Theorem 1, the Markov chain X is uniformly ergodic, since the vertical
coalescence time for X is successful.

3.2. Renovating events and small sets

Assumption (1) is key to our analysis. Under this control condition, the value of the SRS Y
forces that of X at time n, whatever the value of X at time N. This is reminiscent of the concept
of a renovating event, as introduced by Borovkov and Foss; see [11, 12].

Definition 3. Let us recall the following. Let X be an SRS driven by f and (vn)n∈Z, and let
(An)n∈N be a sequence of events. We say that (An)n∈N is a sequence of renovating events
of length m and associated mapping h : Vm →X for the chain X if for any n ∈Z, on An

we have

Xn+m = h(vn, . . . , vn+m−1).

Now suppose that (1) holds for a1, . . . , ar, b1, . . . , br and y. Then it is easily seen that for
all k ∈Z, i ∈ [[1, r]], and x ∈X,

({Yk
n(y) = bi}

)
n≥k is a sequence of renovating events of length

1 for the sequence
(
Xk

n(x)
)

n≥k. Indeed, for all n ≥ k, on {Yk
n(y) = bi} we get that Xk

n(x) = ai, and
therefore

Xk
n+1(x) = f (ai, vn) =: h(vn).

One can then give various conditions on the events
({Yk

n(y) = bi}
)

n≥k which imply that there
exists a stationary version of the chain (Xn)n∈N; see e.g. Theorem 2.5.3 and Property 2.5.5
in [6].

There is also an insightful connection between the control condition of Definition 2 and
the concept of a small set, which is recalled below as formulated in Chapter 5 of [33].
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8 T. MASANET AND P. MOYAL

Definition 4. For a positive integer m, we say that the subset A ⊂X is m- small for the Markov
chain (Xn)n∈N on X if there exist ηm > 0 and a non-null Borel measure μm on X such that

∀x ∈ A, ∀B ∈B(X), P [Xm ∈ B | X0 = x] ≥ ηmμm(B).

Thus, starting from such a set, the chain (partially) regenerates in a finite horizon of size
m, since after that, the transitions of the chain do not depend on the starting point x with
strictly positive probability. The existence of small sets is of crucial use in the construction of
uniformly ergodic Markov chains; see [20, 22, 28].

It is significant that under the control condition of Definition 2 and (2), the whole set X is

small. To see this, observe that for any i ∈ [[1, r]], for any m ∈N such that P
[
τY

bi
(y) = m − 1

]
>

0, in view of the Markov property, for all x ∈X and all Borel subsets B ⊂X we have

P [Xm ∈ B | X0 = x] ≥ P
[{Xm ∈ B} ∩ {Xm−1 = ai} | X0 = x

]
= P

[
Xm−1 = ai | X0 = x

]
P
[
Xm ∈ B | {Xm−1 = ai} ∩ {X0 = x}]

≥ P
[
τY

bi
(y) = m − 1

]
P [X1 ∈ B | X0 = ai]

=: δi
mμ

i
m(B).

Hence X is m-small.

3.3. The ordered case

A typical context in which the control of the SRS X by the SRS Y occurs is when the two
sequences are constructed on the same input, and their driving maps satisfy some monotonicity
properties, which we detail below. Throughout this section, (U,≺ ) denotes a partially ordered
space, and we define two mappings ϕ : X �−→U and ψ : Y �−→U.

Definition 5. We say that the mapping f : X→X is dominated (for U, ϕ, and ψ) by the
mapping g : Y→Y, and write f ≺U,ϕ,ψ g, if

∀x ∈X, y ∈Y,
[
ϕ(x) ≺ψ(y)

]=⇒ [
ϕ ◦ f (x) ≺ψ ◦ g(y)

]
.

In the definition above, U is an auxiliary partially ordered set that is used for comparing f to g
via the projections ϕ and ψ . Observe the following simple special case.

Proposition 1. In the case where X=Y=U, X is partially ordered by ≺, and ϕ =ψ = i is
the identity function, we have f ≺X,i,i g under either one of the conditions below:

(i) g is ≺-non-decreasing and pointwise lower-bounded by f;

(ii) f is ≺-non-decreasing and pointwise upper-bounded by g.

Proof. Plainly, for all x, y ∈X such that x ≺ y, if we assume that (i) holds, then we get
f (x) ≺ g(x) ≺ g(y), whereas if (ii) holds we obtain that f (x) ≺ f (y) ≺ g(y). �
Proposition 2. Let X and Y be two SRSs respectively driven by (f , (vn)n∈Z ) and (g, (vn)n∈Z ),
where the input (vn)n∈Z is i.i.d. on V. Suppose that f (., v) ≺U,ϕ,ψ g(., v) for all v ∈V, where U

admits the ≺-minimal point o. Suppose also that ϕ−1(o) = {a}, that there exists y ∈Y such that

∀x ∈X, ϕ(x) ≺ψ(y), (5)
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Perfect sampling of matching models 9

and that τY
b (y) is almost surely finite for some b ∈ψ−1(o). Then Algorithm 1 for y, a, and b

terminates almost surely and produces a sample of the unique stationary distribution of X.

Proof. We aim to show that Y controls X for b, y, a. Let k, n ∈Z be such that n> k and
Yk

n(y) = b. Let x ∈X. We show by induction on 
 that for all 
 ∈ [[k, n]],

ϕ(Xk

(x)) ≺ψ(Yk


 (y)). (6)

First, from (5) we get that ϕ(Xk
k (x)) = ϕ(x) ≺ψ(y) =ψ(Yk

k (y)), so (6) holds for 
= k. Suppose
that it is true at rank 
 ∈ [[k, n − 1]], i.e., that ϕ(Xk


(x)) ≺ψ(Yk

 (y)). Then, from the assumption

that g dominates f , we obtain that

ϕ(Xk

+1(x)) = ϕ(f (Xk


(x), v
)) ≺ψ(g(Yk

 (y), v
)) =ψ(Yk


+1(y)),

so (6) holds at rank 
+ 1. It is therefore true for all 
 ∈ [[k, n]]. In particular, we have that

ϕ(Xk
n(x)) ≺ψ(Yk

n(y)) =ψ(b) = o,

implying that Xk
n(x) = a. Thus Y controls X, and we conclude using Theorem 1. �

As a conclusion, provided that f ≺U,ϕ,ψ g, Algorithm 1 provides a perfect sampling algo-
rithm for the SRS X. In fact, in this ordered case, Algorithm 1 is closely related to the DCFTP
algorithms of Kendall; see [20, 28]. Specifically, as in [20], thanks to (5) we have an upper-
bound process Y that we can simulate backwards in time. We also have a lower-bound process,
namely the constant process equal to b. Similarly to the sandwiching method in [41], we only
have to simulate the process Y starting at state y. When that process meets the lower bound
backwards in time, it means that coalescence has been detected. Then, as in [20, 28], we sim-
ulate X starting from a single state until time 0. Notice that the DCFTP algorithms introduced
in [20, 28] use geometric ergodicity and are based on the construction of small sets. As we
observed above (Section 3.2), the control condition implies the smallness of X, so our approach
is reminiscent of this idea.

Observe that similar approaches are used for the perfect sampling of loss queueing systems
in [9], which uses the domination of the system by an infinite-server queue in some sense (an
idea that we also use in the construction of Section 4.2 below), and likewise for the perfect
sampling of multiple-server queues in [10].

Remark 3. The above DCFTP conditions are in fact reminiscent of stochastic domination con-
ditions for the construction of stationary SRSs in the general stationary ergodic context. For
instance, for X= E a lattice space, Condition (i) in Proposition 1 above amounts to Condition
(H1) in [36] for any SRSs X and Y that are respectively driven by f and g, and a common
input (vn)n∈Z. This latter condition guarantees, under general stationary ergodic assumptions,
the existence of a stationary version of the SRS X, at least on an extended probability space,
provided that a stationary version of the SRS Y exists on the original one. See [31] and
Theorem 3 in [36].

4. A stochastic matching model with impatience

In this section we address the perfect sampling of the stationary state of a class of models,
which we refer to as ‘general stochastic matching models with impatience’.
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4.1. The model

We consider a general stochastic matching model (GM), as defined in [32]: items enter a
system one by one, and each of them belongs to a determinate class. The set of classes is
denoted by V and is identified with [[1, |V|]]. We fix a simple, connected graph G = (V, E)
having set of nodes V, termed a compatibility graph. Upon the arrival of an incoming item of
class, say, i ∈V, either it is matched with an item present in the buffer, of a class j such that
i shares an edge with j in G, if any, or if no such item is available, it is stored in the buffer
to wait for a match. Whenever several possible matches are possible for an incoming item i,
a matching policy determines what the match of i is, without ambiguity. Each matched pair
departs the system right away.

A GM model with impatience is a GM model in which each item entering the system is
assigned a patience time upon arrival. If the item under consideration has not been matched
at the end of its patience time, then it leaves the system forever. To formalize this, after fixing
the compatibility graph G = (V, E) and the matching policy �, we assume that arrivals occur
at integer times, i.e., we suppose that the generic inter-arrival time ξ is constant equal to one,
and fix two i.i.d. sequences (Vn)n∈Z and (Pn)n∈Z, where for all n ∈Z, Pn ∈R+ and Vn ∈V

respectively represent the patience time and the class of the nth item entering the system. By V
and P we denote generic random variables distributed like (Vn)n∈Z and (Pn)n∈Z, respectively,
and we assume throughout that the random variable P is integrable. The two sequences (Vn)n∈Z
and (Pn)n∈Z are not necessarily independent. In particular, it can be the case that the patience
time Pn of the nth item depends on its class Vn. In what follows, we denote by μ the law of V
on V.

The class of models defined in Section 4.1 admits the following Markov representation.
Define the set

X := {∅} ∪
∞⋃

q=1

(
R

∗+ ×V
)q .

For all t ≥ 0, let Q(t) be the number of customers in the system at time t, and let us define the
profile of the system at t as the following element of X:

X(t) =
⎧⎨⎩
((

R1(t), V1(t)
)
, · · · , (RQ(t)(t), VQ(t)(t)

))
if Q(t) ≥ 1,

∅ otherwise,
(7)

where for all i ∈ [[1,Q(t)]], we denote by Ri(t) (resp., Vi(t)) the remaining patience (resp., the
class) at time t of the ith item in line at time t, in the order of arrival. If the system is empty at
t, we again set X(t) = ∅.

Definition 6. We say that the matching policy � is admissible if, upon each arrival, the choice
of the match amongst compatible items in line at t, if any, is made solely according to the
knowledge of X(t), and possibly of a draw that is independent of everything else.

Remark 4. It is easily seen that matching policies that depend only on the arrival times
(first-come-first-matched (FCFM) or last-come-first-matched (lcfm)), remaining patience times
(earliest-deadline-first, latest-deadline-first), matching policies that depend on the queue sizes
of the various nodes (match-the-longest, match-the-shortest, max-weight), and priority policies
are all admissible. See e.g. [26, 32, 37] for a detailed presentation of admissible policies for
classical matching models.
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Set (Tn)n∈Z = (n)n∈Z, the arrival times to the system, and for all n ∈Z, denote by Xn =
X(T−

n ) = X(n−) the state of the system seen by the customer entering at time n. Then we obtain
the following result.

Proposition 3. For any admissible matching policy�, the profile sequence (Xn)n∈Z is stochas-
tic recursive, driven by the sequence of pairs ((Vn, Pn))n∈Z and a mapping f� : X× (R+ ×
V) �−→X that depends on � and possibly on a random draw independent of everything else.
In other words, we get that

Xn+1 = f� (Xn, (Pn, Vn)) , n ∈Z.

Proof. The construction of f� is immediate: if the incoming item at n is matched upon
arrival, the pair corresponding to this match, determined by �, is erased from the vector Xn;
otherwise, the pair (Vn, Pn) is added at the end of the vector Xn. Lastly, the pairs (possibly
including the incoming pair (Vn, Pn)) whose second coordinate is strictly less than 1 at n are
erased from the vector Xn (because they will have reneged by time n + 1), and the second
coordinates of all other pairs in Xn, if any, decrease by 1. �

4.2. A first perfect sampling algorithm

We can now design a first perfect sampling algorithm for matching models with impatience,
which is simply based on control (in the sense of Section 3) by an infinite-server system. In
this context, we let Y := (Yn)n∈Z be an R+-valued SRS defined by the recursion

Yn+1 = [max (Yn, Pn) − 1]+ =: g (Yn, Pn) , n ∈Z. (8)

Then, for all n, Yn can be interpreted as the largest remaining service time of a D/GI/∞ queue
of service times (Pn)n∈Z, upon the arrival of the nth customer. As the generic random variable
P is assumed integrable, it is well known that whenever

P(P ≤ ξ ) = P(P ≤ 1)> 0, (9)

the Markov chain (Yn)n∈Z is positive recurrent; see e.g. Corollary 4.32 in [21, 43], and the
generalization to the case where (Pn)n∈Z is stationary ergodic, combining Lemma 5 of [34]
with Corollary 2 in [35]. Consider Algorithm 2, which is a declination of Algorithm 1 started
with y = m for m defined below, for Y the recursion defined by (8), q = 1, a1 = ∅, and b1 = 0.

Theorem 2. Under Condition (9), the profile Markov chain (Xn)n∈Z admits a unique station-
ary distribution. If moreover there exists m> 0 such that P(P ≤ m) = 1, then Algorithm 2
terminates almost surely, and its output is sampled from the stationary distribution of (Xn)n∈Z.

Proof. We apply Proposition 2, by setting in this case

ϕ: X −→R+ (10)

x = (
(r1, v1), · · · , (rq, vq)

) = ∅ �−→ max {ri: i ∈ [[1, q]]}
∅ �−→ 0.

As the time spent in the system by any item is less than or equal to its patience time, for any
n ∈Z, ϕ(Xn) corresponds to the largest remaining maximal sojourn time in the system of an
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item in the system just before time Tn. Consequently, for any (p, v) ∈R+ ×V, for all x ∈X we
obtain that

ϕ
(
f� (x, (p, v))

)≤ [max (ϕ (x) , p)− 1
]+ = g (ϕ (x) , p) . (11)

Therefore, for any x ∈X and y ∈R+ such that ϕ(x) ≤ y, for any (p, v), as g(., p) is non-
decreasing on R+ we get that

ϕ
(
f� (x, (p, v))

)≤ g (y, p) .

Proposition 2 completes the proof. �
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4.3. Deterministic patience times

Whenever Condition (9) does not hold, the existence and uniqueness of a stationary distribu-
tion for the Markov chain (Xn)n∈N are not granted. One then has to resort to ad-hoc techniques
to show stability and to sample the stationary state.

In this section, we consider the particular case of the previous model, in which patience
times are deterministic. Specifically, we suppose that P ≡ p + ε, for some p ∈N

∗ and
0< ε < 1. Assuming that patience times are not integers, while arrivals occur at integer times,
allows us to avoid the ambiguous situation in which an item enters the system and finds an
item with remaining patience time zero. In practice, any incoming item can be matched either
upon arrival, or with one of the p items that enter subsequently. If not, the item is lost before
the arrival of the (p + 1)th item after it, because its remaining time then equals ε− 1< 0. For
short, we denote such a matching model by (G, �, μ, p).

Clearly, in this context, (9) fails. (Notice that taking p = 0 in the present construction would
lead to a system in which no item could ever be matched.) In this section, we show that such
systems are nevertheless positive recurrent, and construct an alternative perfect sampling algo-
rithm that is another declination of Algorithm 3, and is again based on the control condition
defined in Section 3.

4.3.1. Alternative Markov representation. In this particular case, the profile Markov chain can
be simplified so as to yield the following alternative, simpler Markov representation of the
system state.

Definition 7. For all n ∈Z, the word-profile of the system just before time n is defined by the
word

X̃n = w1 · · · wp ∈ (V∪ {0})p,

where for all i ∈ [[1, p]],

wi =
⎧⎨⎩Vn−p+i−1 if the item entered at n − p + i − 1 was not matched before n,

0 otherwise.
.

In particular, if the item that entered at time n − p is still in the system at time n (its class
thus appearing as the first letter of the word X̃n), it is either matched with the incoming item at
time n, or considered lost.

We call X̃⊂ (V∪ {0})p the (finite) state space of X̃. Similarly to Proposition 3, it is imme-
diate that for any admissible policy�, the sequence

(
X̃n
)

n∈Z is a Markov chain, and we denote

by f̃� the (deterministic, up to a possible draw that is independent of everything else) map
f̃�:X̃×V→ X̃ such that

X̃n+1 = f̃�
(
X̃n, Vn

)
, n ∈Z.

4.3.2. Synchronizing words. For a fixed model (G, �, μ, p), with G = (V, E), let V∗ be the set
of words on V. For any word v = v1 · · · vl in V

∗ and any X̃ ∈ X̃, let us denote by W�(X̃, v) ∈ X̃

the state of a system started at X̃ and receiving the arrivals v1, . . . , vl in that order.

Definition 8. Fix a model (G, �, μ, p). A word w = w1 · · · wq ∈V
∗ is said to be synchroniz-

ing if

∃z(w) ∈ X̃ : ∀x̃ ∈ X̃, W�(x̃,w) = z(w).
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In other words, w is a synchronizing word if all buffers synchronize to some value z(w)
whenever they are fed by a common arrival scenario w, whatever the initial state. It is obvious
how synchronizing words can be used for perfect simulation. Indeed, if we start the Markov
chain at a time −M from all possible states, observing a synchronizing word of length q<M
amongst the arrivals (in the sense that the classes of q consecutive incoming items are given
by the letters of w, in that order) clearly guarantees that all chains have coalesced by time 0. In
fact, recalling Definition 4, it is immediate that whenever there exists a synchronizing word w,
the whole set X̃ is (q + 1)-small for the chain

(
X̃n
)

n∈Z. Indeed, for all x̃ ∈ X̃ and B ⊂ X̃,

P
[
X̃q+1 ∈ B | X̃0 = x̃

]≥ P
[{X̃q+1 ∈ B} ∩ {V0V1 · · · Vq−1 = w} | X̃0 = x̃

]
= P

[
V0V1 · · · Vq−1 = w

]
P
[
X̃q+1 ∈ B | {V0V1 · · · Vq−1 = w} ∩ {X̃0 = x̃}]

=
q−1∏
i=0

μ(wi)P
[
X̃q+1 ∈ B | X̃q = z

]
.

In fact, our approach hereafter for perfect simulation is reminiscent of the small-set techniques
for exact sampling in [23, 39, 44]. Specifically, we will use the arrivals of synchronizing words
as a control to ensure the coalescence of all versions of the Markov chains.

We first provide a sufficient condition for the existence of synchronizing words, for any
discrete matching system. Hereafter, for any k, 
 ∈ V we write k–
 if (k, 
) ∈ E, that is, if the
nodes k and 
 share an edge in G. Otherwise, we write k −/ 
.
Definition 9. Let w ∈V

∗. We say that the word of length 2p given by w = w1 · · · w2p ∈V
∗ is

strongly synchronizing if

∀i ∈ [[1, p]], ∀j ∈ [[p + 1, p + i]], wi −/ wj.

The term ‘strongly synchronizing’ is justified by the following result.

Theorem 3. In a discrete matching model with impatience (G, �, μ, p), any strongly synchro-
nizing word is a synchronizing word.

Proof. Let w = w1 · · · w2p be a strongly synchronizing word, and let u = w1 · · · wp and
v = wp+1 · · · w2p. Let x̃ ∈ X̃, and let 0p = 0 · · · 0︸ ︷︷ ︸

p

be the empty state. As u is of length p, any

item present in the buffer represented by x̃ is no longer in there after the arrivals represented by
u (it is either matched or discarded, possibly just after the arrival of the last item of class wp).
Therefore W�(x̃, u) = u′ = w′

1, . . . ,w′
p where for all i ∈ [[1, p]], w′

i = wi if the corresponding
item is still in the buffer after these arrivals, and w′

i = 0 otherwise. As w is strongly synchro-
nizing, for any i ∈ [[1, p]] such that w′

i = 0 and any j ∈ [[p + 1; p + i]], we have that w′
i −/ wj. All

items corresponding to non-zero letters of u′ are not matched, because their patience neces-
sarily expires before the arrival of a compatible item, and no letters from v can be matched
to a letter in u′. Therefore, if j, h ∈ [[p + 1, 2p]] are such that the item corresponding to wj is
matched to that corresponding to wh if we add v to the empty buffer 0p, then this is also the
case if we add v to the buffer u′. In other words, we get that

W�(x̃,w) = W�(W�(x̃, u), v) = W�(u′, v) = W�(0p, v).

As this is true for any x̃ ∈ X̃, w is a synchronizing word for z(w) := W�(0p, v). �
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We proceed with two technical lemmas. In what follows, for all a ∈V∪ {0} and all k ∈
[[0, p]], we define the following word of length p:

xa(k) = 0 · · · 0︸ ︷︷ ︸
k

a · · · a︸ ︷︷ ︸
p−k

.

First observe the following.

Lemma 1. Consider a matching model with impatience (G, FCFM, μ, p), with matching policy
FCFM. Let a ∈V. Then, for all k ∈ [[0, p − 1]], for all words w of length p, W�(xa(k),w) and
W�(xa(k + 1),w) differ at most by one letter in some position i (substituting 0 to the ith letter).

Proof. Let k ∈ [[0, p − 1]], and write w = w1 · · · wp. With some abuse of notation, in the
proof below, the matching procedure of the initial state xa(k) (or xa(k + 1)) with the arrival
represented by w is itself called WFCFM(xa(k),w) (or WFCFM(xa(k + 1),w)).

If wi −/ a for all i ∈ [[1, p]], then we trivially get that

WFCFM(xa(k),w) = WFCFM(xa(k + 1),w).

Otherwise, let i1, . . . , il be the indices, in increasing order, of the letters of w matched with
letters of xa(k + 1) in WFCFM(xa(k + 1),w). There are three possibilities for the indices (in
increasing order) of the letters of w that are matched with letters of xa(k) in WFCFM(xa(k),w)
(which we call for short ‘the indices’ in the discussion hereafter):

1. The first a of xa(k) is matched in WFCFM(xa(k),w) with a letter of w of index i0 < i1.
Then all the remaining a’s in xa(k) are matched in WFCFM(xa(k),w) exactly like the a’s
in WFCFM(xa(k + 1),w), and so the indices are precisely i0, i1, . . . , il.

2. The first a of xa(k) is not matched in WFCFM(xa(k),w). Then all the remaining a’s of
xa(k) are matched in WFCFM(xa(k),w) exactly like the a’s in WFCFM(xa(k + 1),w), and
the indices are again i1, . . . , il.

3. The first matched a of xa(k) in WFCFM(xa(k),w) is matched with the letter of index i1 in
w. Then, in WFCFM(xa(k),w), either the indices of the matched letters of w are the same
as in WFCFM(xa(k + 1),w) (and then the last a in xa(k) remains unmatched), or the first
p − k − 1 a’s of xa(k) are matched with letters of w at indices i1, . . . , il, and the last a
is matched with a letter of w of index il+1, with il < il+1, in which case the indices are
i1, . . . , il+1.

If the indices are i1, . . . , il, then WFCFM(xa(k),w) = WFCFM(xa(k + 1),w). If the indices are
i0, i1, . . . , il or i1, . . . , il+1, then there is a letter b of w that is not matched with an a of xa(k +
1) in WFCFM(xa(k + 1),w), but is matched with an a of xa(k) in WFCFM(xa(k),w). Then, either
that letter b remains unmatched in WFCFM(xa(k + 1),w), in which case WFCFM(xa(k + 1),w)
and WFCFM(xa(k),w) differ only at the index i0 (or il+1), where there is a b in WFCFM(xa(k +
1),w) and 0 in WFCFM(xa(k),w); or b is matched with a letter c of w in WFCFM(xa(k + 1),w).
Then, either the letter c remains unmatched in WFCFM(xa(k),w), in which case WFCFM(xa(k +
1),w) and WFCFM(xa(k),w) differ only at the index of that letter c in WFCFM(xa(k),w), where
there is a 0 in WFCFM(xa(k + 1),w); or c is matched with another letter b′ in WFCFM(xa(k),w),
in which case we can repeat the same procedure for b′ instead of b. As we have a finite number
of letters in w, we eventually stop with a letter being present in a buffer and 0 in the other. In
all cases, the buffers WFCFM(xa(k + 1),w) and WFCFM(xa(k),w) differ only by one letter. �
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For all x̃ ∈ X̃, let us define

T(x̃, a) = Card {letters x̃i of x̃ : x̃i − a} .

The above leads to the following result.

Corollary 1. Let w be a word of length 2p such that for some i ∈ [[1; p]] and j ∈ [[p + 1; p + i]],
we have wi − wj. For such a pair {i, j}, and k ∈ [[0, 2p]], let

xi,j(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xwi (k) if k ∈ [[0, p − 1]],

02p if k = p,

xwj (2p − k) if k ∈ [[p + 1, 2p]].

Also let u(k) = WFCFM(xi,j(k),w1 · · · wp), for all k ∈ [[0, 2p]]. Then there exists an integer k in
[[0, 2p − 1]] such that u(k) = z1 · · · zp differs from u(k + 1) = z′

1 · · · z′
p by only one letter in

some position l, where zl − wj, z′
l = 0, and for all h ∈ [[1, p]], z′

h = wh or z′
h = 0. Moreover we

have that T(u(k),wj) = 1 and T(u(k + 1),wj) = 0.

Proof. By Lemma 1, for all k ∈ [[0, 2p − 1]], u(k) and u(k + 1) differ at most by one let-
ter in some position i (one being wi, the other being a 0). Therefore, for all k ∈ [[0, 2p − 1]],
|T(u(k),wj) − T(u(k + 1),wj)| ≤ 1. Now notice that 2 ≤ T(u(0),wj), because gathering the
words xi,j(0) and w would lead to at least p + 1 wi’s out of 2p letters—so at least two wi’s
must remain in u(0). On the other hand, we also have that T(u(2p),wj) = 0, because any
letter of w1 · · · wp that can be matched with wj gets matched in u(2p) with the letters of
xi,j(2p). As a consequence, there exists a rank k ∈ [[0, 2p − 1]] such that T(u(k),wj) = 1 and
T(u(k + 1),wj) = 0. The remaining statements follow readily from Lemma 1. �
Theorem 4. Consider a matching model with impatience (G, FCFM, μ, p). Let w be a word of
length 2p of V∗. Then the following conditions are equivalent:

(i) w is a strongly synchronizing word;

(ii) w is a synchronizing word.

Proof. In view of Theorem 3, only the implication (ii) ⇒ (i) remains to be proven.
For this, we reason by contraposition. So let w be a word of length 2p such that wi − wj

for some i ∈ [[1; p]] and j ∈ [[p + 1; p + i]]. Let i∗ ∈ [[1; p]] and j∗ ∈ [[p + 1; p + i∗]] be such
that wi∗ − wj∗ and j∗ = inf{j ∈ [[p + 1; 2p]], ∃i ∈ [[2p − j;p]] wi − wj}. We let u = w1 · · · wp and
v = wp+1 · · · w2p. Let k∗ be the integer obtained in Corollary 1 for i ≡ i∗ and j ≡ j∗. Then we
get u(k∗) = d1 · · · dp and u(k∗ + 1) = e1 · · · ep, where u(.) is defined in Corollary 1. We will
prove that WFCFM(u(k∗), v) = WFCFM(u(k∗ + 1), v), which will show in turn that w is not a
synchronizing word.

Let i1, . . . , il be the indices (in increasing order) of letters of v that are matched with letters
of u(k∗) in WFCFM(u(k∗), v), and let i′1, . . . , i′h be the indices (in increasing order) of letters
of v that are matched with letters of u(k∗ + 1) in WFCFM(u(k∗ + 1), v). Now let us define the
following sets:⎧⎨⎩I0 = ∅,

Im+1 = Im ∪ {inf
{
j ∈ [[p + 1, p + m + 1]] \ Im : wj − dm+1

}}
, m ∈ [[0, p − 1]].
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At each step of this construction we add to the set Im the index of the letter that is matched
with dm+1 in WFCFM(u(k∗), v), if any, as in FCFM, dm+1 is matched with the first compatible
letter that has not been matched to a previous letter of u∗

k . In particular, we finally obtain that
Ip = {i1, . . . , il}. In the same way, we define the sets⎧⎨⎩I′

0 = ∅,
I′
m+1 = I′

m ∪ {inf
{
j ∈ [[p + 1, p + m + 1]] \ I′

m : wj − em+1
}}
, m ∈ [[0, p − 1]],

and the same argument leads to I′
p = {i′1, . . . , i′h}.

If, in Corollary 1, the letter a that can be matched with wj∗ in u(k∗) (and be replaced by a 0
in u(k∗ + 1)) is at position m, then by construction of j∗, u(k∗), and u(k∗ + 1), a will indeed be
matched with wj∗ in u(k∗). So the mth step is different for WFCFM(u(k∗), v) and WFCFM(u(k∗ +
1), v). For every other step m’, as dm′ −/ wj∗ and em′ −/ wj∗ , we add the same letter, if any, to
Im′−1 and I′

m′−1. So we have Ip = I′
p ∪ {j∗}. Let n1 (resp., n2) be the total number of letters

from v that are matched in WFCFM(u(k∗), v) (resp., WFCFM(u(k∗ + 1), v)). As the total numbers
of matched letters are even, both n1 + |Ip| and n2 + |I′

p| are even. But as |Ip| and |I′
p| are of

different parity, so are n1 and n2. Thus,

WFCFM(xi∗,j∗ (k∗),w) = WFCFM(u(k∗), v) = WFCFM(u(k∗ + 1), v)

= WFCFM(xi∗,j∗ (k∗ + 1),w),

and w is not a synchronizing word. �
We have proven that being strongly synchronizing is a necessary and sufficient condition

for being a synchronizing word of length 2p in the case where the matching policy is FCFM.
This is not the case for all matching policies. For example, for the last-come-first-matched
policy (lcfm), it can be proven that there exist synchronizing words of length � 3p

2 �, so that
any suffix of those words that does not satisfy the p-condition would still be a synchronizing
word. However, as we prove below, checking that a word is strongly synchronizing is a simple
criterion that can be used to construct an efficient perfect sampling algorithm.

4.3.3. A second perfect sampling algorithm. We are now in position to introduce a perfect
sampling algorithm for the state of a matching model with deterministic patience.

Definition 10. Consider a model (G, �, μ, p), and for all k ∈Z, define the SRS Ỹ := (
Ỹk

n

)
n≥k

on the set Ỹ= {∅} ∪⋃2p
j=1 V

j by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ỹk
k = ∅,

Ỹk
n+1 = g̃(Ỹk

n, Vn+1)

:=
⎧⎨⎩v1 · · · viVn+1, if Ỹk

n = v1 · · · vi ∈V
i with i< 2p

v2 · · · v2pVn+1, if Ỹk
n = v1 · · · v2p ∈V

2p
, n ≥ k,

in such a way that for all k and all n ≥ k + 2p, Ỹk
n represents the last 2p arrivals to the system

at time n.
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18 T. MASANET AND P. MOYAL

Consider Algorithm 3. It consists of another declination of Algorithm 1, started with Ỹ = ∅,
for Ỹ being the recursion of Definition 10, b1, . . . , bq the strongly synchronizing words of the
model, and a1, . . . , aq the states of X̃ after the arrival of b1,. . .,bq, respectively.

We have the following result.
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Proposition 4. X̃ is positive recurrent. Moreover, Algorithm 3 terminates almost surely, and its
output is sampled from the stationary distribution of X̃.

Proof. We can easily show that Ỹ r-controls X̃, with q the number of strongly synchronizing
words. Let w be a strongly synchronizing word. By Theorem 3, w is a synchronizing word.
Thus for all k ∈Z and n ≥ k, we get in particular that[

Ỹk
n(∅) = w

]
=⇒

[
∀x̃ ∈ X̃, X̃k

n(x̃) = W�(∅,w)
]
, (12)

which implies that Ỹ controls X̃ over all strongly synchronizing words. We conclude using
Theorem 1. �
Remark 5. Observe that Ỹ is not irreducible; however, it reaches its recurrent class in 2p
iterations. So for all strongly synchronizing words w, we still have that

P(τ Ỹ
∅ (w)<∞) = 1.

4.3.4. Efficiency of Algorithm 3. In this section we analyze the coalescence time of
Algorithm 3. For this, one needs to assess the probability that a given input word of length
2p is strongly synchronizing. This is, in turn, a function of μ and of the number of admissible
arrival words of length 2p that are strongly synchronizing. The latter number is, clearly, highly
dependent on the geometry of the compatibility graph at hand.

Let us first bound the average number of iterations of the algorithm to see the coalescence
time, and then for the corresponding horizon in the past, as a function of the number of strongly
synchronizing words. We have the following.

Proposition 5. Let I be the number of iterations of Algorithm 1 to detect coalescence, and let
T = −p2I be the corresponding starting time. Then we have that

E [−T] ≤ 2p

Pp,μ
,

where
P

p,μ = P
[
V1 · · · V2p is strongly synchronizing

]
.

Proof. For any integer n ≥ 1, for all i ∈N
∗, we let zn

i be the word of length 2p representing
the arrivals into the system between time −p2n + (i − 1)2p and time −p2n + i2p − 1, inclusive,
in order of arrival. We also let

Kn = inf
{
i ∈N

∗ : zn
i is strongly synchronizing

}
.

The independence of arrivals implies that the random variables Kn, n ∈N
∗, are identically

distributed (but not independent), with geometric distribution of parameter Pp,μ.
Now, it readily follows from Theorem 3 that for all n ∈N

∗, I ≤ n in particular if there has
been a strongly synchronizing arrival array between times −p2n and −1 inclusive, that is, if
2pKn ≤ p2n. Consequently, for all n ∈N

∗ we get that

P
[−T > p2n]= P [I > n] ≤ P

[
2pKn > p2n]= P

[
2pK1 > p2n

]
.
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This readily implies that −T ≤st 2pK1, where ≤st denotes the strong stochastic ordering. We
deduce that

E [−T] ≤ 2pE
[
K1
]
= 2p

Pp,μ
.

�
Whenever the arrival measure μ is uniform over V, the latter result specializes as follows.

Corollary 2. If the graph G = (V, E) is of size n and μ is uniform over V, we get the bounds

E [−T] ≤ 2pn2p

N(G, p)
, E [I] ≤ 1 + 2pLogn − LogN(G, p)

Log2
,

where N(G,p) is the number of strongly synchronizing words of V∗.

Proof. The results readily follow from Proposition 5, observing that in this case

P
p,μ = N(G, p)

n2p
·

�
For a given G and a given p, computing the number N(G, p) of strongly synchronizing words

is of crucial interest for assessing the efficiency of Algorithm 3. As Corollary 2 demonstrates,
a function of the latter quantity provides bounds for the expected values of |T| and I. We now
turn to a specific evaluation of N(G, p), and for this, we first need the following definitions.

Definition 11. Let (G = (V, E), �, μ, p) be a discrete matching model with impatience. For
any strongly synchronizing word w = w1 · · · w2p, the trace of w is defined as the word Zw

gathering, in order of their appearance, all distinct letters of the second half of w. In other
words, we set

(1) Zw
1 = wp+1;

(2) for all i ∈ [[1, p − 1]],

Zw
i+1 =

⎧⎨⎩Zw
i if wp+i+1 ∈ Zw

i ,

Zw
i wp+i+1 if wp+i+1 /∈ Zw

i ,

and Zw ≡ Zw
p .

In what follows, for any word z = z1 · · · zl, we denote by β(z) the cardinality of the set of
nodes that are incompatible with all letters of z; that is,

β(z) = Card
{

v ∈V : ∀i ∈ [[1, l]], v −/ zi

}
.

We have the following.

Proposition 6. Let (G = (V, E), �, μ, p) be a discrete matching model with impatience, and
let T(G) be the set of words having distinct letters, that form a permutation of the elements of
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a set U ⊂V such that E(U) =V. Then the number N(G,p) of strongly synchronizing words is
given by

N(G, p) =
∑

z=z1···zl∈T(G)

∑
{1=k1<k2<···<kl<kl+1=p+1}

l∏
i=1

iki+1−ki−1β(z1z2 · · · zi)
ki+1−ki .

Proof. Let z = z1 · · · zl ∈V
∗ be a word having l distinct letters. For any word w =

w1 · · · w2p of trace z, let us denote by

kw
i = inf

{
j ∈ [[1, p]], wp+j = zi

}
, i ∈ [[1, l]],

the consecutive indices, in the second half suffix of w, corresponding to the first occurrences
of the successive letters of z.

Let 1 = k1 < k2 < · · ·< kl < kl+1 = p + 1 be a fixed family of integers, and let w be a word
of length 2p. We first show the equivalence between the following two assertions:

(i) w is strongly synchronizing, has trace z = z1 · · · zl, and satisfies

(kw
1 , kw

2 , . . . , kw
l ) = (k1, k2, . . . , kl);

(ii) for all i ∈ [[1, l]],

(iia) wp+ki = zi;
(iib) for all j ∈ [[ki, ki+1 − 1]], wp+j ∈ {z1, · · · , zi} and wj ∈ E ({z1, · · · , zi})c .

Indeed, if (i) holds true, then (ii) also holds by induction on i: first, (iia)–(iib) hold true for
i = 1. Indeed, for all j ∈ [[k1, k2 − 1]] we have that wp+j = z1 by definition of k1 and k2, and
thus, by definition of a strongly synchronizing word, that wj −/ wp+k1 = z1. Now suppose that
(iia)–(iib) hold true for some i − 1 ∈ [[1, p − 1]]. Then (iia) holds for i by definition of the trace
and of ki. The statement (iib) also holds true by induction on j over [[ki, ki+1 − 1]]: first, we
have wp+ki = zi by (iia), implying, by definition of a strongly synchronizing word and in view
of the induction assumption, that

wki ∈ E ({w
 : 
 ∈ [[p + 1, p + ki]]})c

= E
({w
 : 
 ∈ [[p + 1, p + ki − 1]]} ∪ {wp+ki}

)c
= E ({z1, · · · , zi − 1} ∪ {zi})c = E ({z1, · · · , zi})c ,

so the properties in (iib) hold for j = ki. Now suppose that they hold true for some j − 1 ∈
[[ki, ki+1 − 2]]. Then wp+j ∈ {z1, · · · , zi} by the very definition of ki. Thus, as w is strongly
synchronizing, we have that

wj ∈ E ({w
 : 
 ∈ [[p + 1, p + j]]})c

= E
({w
 : 
 ∈ [[p + 1, p + j − 1]]} ∪ {wp+j}

)c
= E

({z1, · · · , zi} ∪ {wp+j}
)c = E ({z1, · · · , zi})c .

Thus (iib) holds true at index i, which completes the proof of (ii).
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1

2

3 4

FIGURE 1. The paw graph.

Now suppose that (ii) holds. Then it follows from (iia) and the first property in (iib) that kw
i =

ki for all i ∈ [[1, l]]. Now fix j ∈ [[1, p]], and let i be the index in [[1, l]] such that j ∈ [[ki, ki+1 − 1]].
Then, in view of (iia)–(iib), we get that

wj ∈ E ({z1, · · · , zi})c = E
({wp+1, · · · , zp+j}

)c
,

so w is indeed strongly synchronizing. From (ii), w also clearly has trace z, so (i) holds, which
concludes the proof of (i) ⇔ (ii).

Now, for a fixed trace z, to count the strongly synchronizing words having trace z, it thus suf-
fices to count, for all families of integers 1 = k1 < k2 < · · ·< kl < kl+1 = p + 1, all the words
w satisfying (ii). First, the letters at indices k1,. . .,kl are fixed, and for all i ∈ [[1, l]] we have
i possibilities for each letter between indices ki + 1 and ki+1 − 1, and β(z1 · · · zi) possibili-
ties for each letter between indices ki − p and ki+1 − 1 − p. Therefore, the number of strongly
synchronizing words having trace z is given by

Nz :=
∑

{1=k1<k2<···<kl<kl+1=p+1}

l∏
i=1

iki+1−ki−1β(z1z2 · · · zi)
ki+1−ki . (13)

Lastly, to get N(G, p) we must sum the above quantity over all possible traces of strongly
synchronizing words. To characterize this set, observe that any trace z necessarily has distinct
letters, forming a permutation of a set Uz ⊂V. If E(Uz) =V, then there exists a letter i ∈
V \ E(Uz), and z clearly is the trace of any word w whose prefix of size p is ii · · · i, and whose
suffix of size p is a permutation of the elements of U. Now, if E(Uz) =V, for any strongly
synchronizing word w having trace z we must have that wp ∈ E(Uz), leading to an immediate
contradiction. Thus, for z to be a trace, it is necessary and sufficient that E(Uz) =V, which
concludes the proof. �
4.3.5. Example. To illustrate the efficiency of Algorithm 3 in the case of deterministic patience
times, we consider the simple non-trivial example of the so-called paw graph G of Figure 1.

As the above results demonstrate, for any p, to compute the number N(G, p) of strongly
synchronizing words, we first need to determine the set of all possible traces T(G) of G. In the
present case we readily obtain that

T(G) = {1, 2, 3, 4, 13, 14, 31, 34, 41, 43, 134, 143, 314, 341, 413, 431}.
Indeed, any trace containing a 2 can only contain 2, since adding another class will result

in having compatible classes, which cannot be the case for a trace. Conversely, any other word
containing only 1 or 3 or 4 is possible as a trace, since not having 2 in the word means that the
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letters of the word are still compatible with the class 1. It is then immediate to compute β(z)
for all z ∈ T(G) using (13). We obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 = 3p, N2 = 1, N3 = 2p, N4 = 2p,N13 = 3
2 4p − 2.3p, N14 = 3

2 4p − 2.3p,

N31 = 1
2 4p − 2p, N34 = (p − 1)2p−1, N41 = 1

2 4p − 2p, N43 = (p − 1)2p−1,

N134 = 3.22p−1 − (2p + 4)3p−1, N143 = 3.22p−1 − (2p + 4)3p−1,

N314 = 22p−1 − 4.3p−1 + 2p, N341 = 2.3p−1 − (p + 1)2p−1,

N413 = 22p−1 − 4.3p−1 + 2p, N431 = 2.3p−1 − (p + 1)2p−1.

(14)

For clarity, let us detail one of the above computations, for z = 13. We then have β(1) =
|{1, 3, 4}| = 3 and β(13) = |{1, 3}| = 2. Therefore, using (13) we have

N13 =
p∑

k2=2

1k2−1−1β(1)k2−12p+1−k2−1β(13)p+1−k2

=
p∑

k2=2

3k2−12p−k2 2p+1−k2

= 2 × 4p

3

p∑
k2=2

(
3

4

)k2

= 3

2
4p − 2.3p.

Summing all elements of (14) and rearranging, we obtain that

N(G, p) = 1 + 22p+3 − 3p+1 − 4(p + 3)3p−1.

Then, applying Corollary 2 and Jensen’s inequality, for the average number of iterations
needed by Algorithm 1 to detect coalescence, we obtain the bound

E [I] ≤ 1 + 2p Logn − LogN(G, p)

Log2

= 1 + 4p − Log
(
1 + 22p+3 − 3p+1 − 4(p + 3)3p−1

)
Log2

=: BI,

and the average starting time T to detect coalescence is bounded by −p2BI . In Table 1, we
specify the number of strongly synchronizing words, together with the corresponding bounds
for E [I] and E [−T], for various values of p.

4.3.6. Complexity comparison. Having provided a bound for the average coalescence time for
Algorithm 3, we now compare the number of operations necessary to complete Algorithm 3 to
the number of operations necessary to complete the primitive CFTP algorithm, which consists
of running chains started from all possible states in parallel. To compare these two algorithms,
we need to specify what we mean by operations: we say that an algorithm does one operation
if it compares two letters of V to determine whether they are equal or not, or whether the two
letters are connected in G. It is intuitively clear that each of the two algorithms can basically
be decomposed into a sequence of such operations:
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TABLE 1. Efficiency of Algorithm 1.

p N(G, p) Bound for E [I] Bound for E [−T]

1 8 2 4
2 42 3,608 24,381
3 216 5,245 113,778
4 1050 6,964 499,322
5 4872 8,750 2152,250
6 21834 10,586 9220,784
7 95352 12,460 39412,874
8 408378 14,360 168274,189
9 1723176 16,283 717831,830
10 7187946 18,223 3059320,779

• In the CFTP algorithm, the matching of the incoming individuals amounts to an investi-
gation of the set of stored compatible items in a determinate order, and thus to a sequence
of such operations. Second, so does the test of equality of the current states of all Markov
chains, at any given time.

• In Algorithm 3, testing the ‘strongly synchronizing’ property at all times is again a
sequence of operations, and so is the construction of the dynamics of the recursion,
from the coalescence time onward.

To estimate the number of operations in the two algorithms, for two values of p (3 and 6),
we first drew realizations of Erdös–Rényi graphs G of parameters (n, α), which are conditioned
to be connected, for various values of the size n and of the connectivity parameter α. We then
tracked the average number of operations for 10 realizations of both algorithms, on the same
graph each time.

The results, presented in Tables 2–5, tend to indicate that Algorithm 3 is much more efficient
than primitive CFTP, and that the performance gap is particular important for sparse graphs.
This last fact is an intuitively clear consequence of the fact that the proportion of strongly
synchronizing words is decreasing in the number of edges. For α ≥ 3

4 , however, we observe
cases where Algorithm 3 does not terminate in a reasonable amount of time.

4.4. Deterministic matching model with latency

It is well known that the primitive CFTP algorithm is in general not a good benchmark in
terms of complexity, as it requires the coalescence of a large number of versions of the Markov
chain considered—which makes its use impractical for a large state space. On the other hand,
as previously mentioned, non-trivial deterministic matching models do not satisfy Condition
(9). This means that the SRS defined by the recursion (2) cannot hit 0, and so we cannot use
Algorithm 2 for deterministic matching models.

In this section we introduce the following variant of the model of Section 4.3: we suppose
that latency is allowed; that is, at each instant we suppose that, with a positive probability γ ,
no item enters the system. In other words, the generic inter-arrival time ξ follows a geometric
law of parameter 1 − γ . The sequences

(
V̂n
)

n∈Z and
(̂
Pn
)

n∈Z are then defined as follows:
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TABLE 2. Average number of operations of the algorithms for 10 repetitions with p = 3 and multiple
values of (n, α).

p = 3 α = 1
8 α= 2

8 α = 3
8 α = 4

8 α = 5
8

n = 4, CFTP 2907.67 3356.04 3012.46 3228.72 3393.52
n = 4, Algo 3 123.16 168.11 297.64 213.27 307.5
n = 5, CFTP 4689.57 5078.86 4694.66 5542.87 4713.41
n = 5, Algo 3 102.2 108.24 161.58 422.99 548.35
n = 6, CFTP 7888.29 7350.42 6550.72 7466.3 7319.94
n = 6, Algo 3 93.96 82.39 161.96 338.36 406.9
n = 7, CFTP 11458.40 10200.46 111044.26 10455.48 9222.91
n = 7, Algo 3 69.06 117.94 140.82 252.71 764.8
n = 8, CFTP 15984.74 14829.7 15127.1 12565.42 12189.06
n = 8, Algo 3 56.85 86.28 93.19 241.3 818.16

TABLE 3. Average CPU time of the algorithms on a standard computer for 10 repetitions with p = 3 and
multiple values of (n, α).

p = 3 α= 1
8 α= 2

8 α = 3
8 α = 4

8 α = 5
8

n = 4, CFTP 0.00969 0.01 0.00890 0.00937 0.01
n = 4, Algo 3 0.00078 0.00093 0.00172 0.00125 0.00172
n = 5, CFTP 0.01282 0.01468 0.01328 0.01609 0.01422
n = 5, Algo 3 0.00047 0.00047 0.00125 0.00280 0.00328
n = 6, CFTP 0.02236 0.02046 0.01875 0.02188 0.02375
n = 6, Algo 3 0.00063 0.00062 0.00110 0.00220 0.00233
n = 7, CFTP 0.03499 0.03608 0.03281 0.03407 0.02954
n = 7, Algo 3 0.00046 0.00062 0.00079 0.00187 0.00484
n = 8, CFTP 0.04984 0.04545 0.04404 0.03125 0.02922
n = 8, Algo 3 0.00048 0.00078 0.00078 0.00172 0.00594

• If a n item enters the system at time n, then V̂n is the class of the item entering the system,
and P̂n = p + ε is the patience of the item entering the system.

• Otherwise, we set V̂n = −1 and P̂n = 0.

We denote such a deterministic model with latency by (G, �, μ, p, γ ). Similarly as in
Section 4.3, we then easily obtain a simplified representation of the system state.

Definition 12. For all n ∈Z, the word-profile of the system just before time n is defined by the
word

X̂n = w1 · · · wp ∈ (V∪ {0} ∪ {−1})p,
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TABLE 4. Average number of operations of the algorithms for 10 repetitions with p = 6 and multiple
values of (n, α).

p = 6 α = 1
8 α= 2

8 α = 3
8 α = 4

8 α= 5
8

n = 4, CFTP 467834.38 477424.56 457725.73 433542.6 363723.37
n = 4, Algo 3 5576.1 12843.9 12070.8 21559.18 17672.3
n = 5, CFTP 1248551.28 1139776.29 919830.29 853625.28 980490.29
n = 5, Algo 3 12472.92 11666.23 11111.01 58257.99 143122.55
n = 6, CFTP 3218753.63 2446069.32 2999130.02 2128500.86 1547150.53
n = 6, Algo 3 3183.32 6274.56 11272.88 127429.52 284116.14
n = 7, CFTP 4790047.9 7288225.3 7117622.9 2536934.7 3628303.2
n = 7, Algo 3 2609.97 9818.73 455.36 171196.79 381580.97
n = 8, CFTP 14779764.95 10594880.96 8477686.16 6073463.72 4123539.06
n = 8, Algo 3 2382.32 2174.99 14180.58 46050.05 389028.98

TABLE 5. Average CPU time of the algorithms on a standard computer for 10 repetitions with p = 6 and
multiple values of (n, α).

p = 3 α = 1
8 α= 2

8 α= 3
8 α= 4

8 α = 5
8

n = 4, CFTP 1.10219 1.20124 1.13655 1.09686 0.91844
n = 4, Algo 3 0.05930 0.1313 0.1328 0.24062 0.2062
n = 5, CFTP 2.85954 2.66343 2.06705 2.23469 2.66578
n = 5, Algo 3 0.06749 0.08233 0.06798 0.55468 2.4180
n = 6, CFTP 7.99048 6.53797 9.8092 5.83189 4.18533
n = 6, Algo 3 0.01812 0.03922 0.07391 1.31535 3.8147
n = 7, CFTP 17.61454 14.21235 15.81282 10.9244 17.6595
n = 7, Algo 3 0.01516 0.06514 0.03921 3.53732 7.23748
n = 8, CFTP 42.85513 35.96576 27.95357 18.95672 12.183
n = 8, Algo 3 0.01517 0.01281 0.09954 46.98482 13.43019

where for all i ∈ [[1, p]],

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂n−p+i−1 = v ∈V if the item of class v entering at time n − p + i − 1

was not matched before n,

0 if the item entering at time n − p + i − 1

was matched before n,

V̂n−p+i−1 = −1 if no item entered at time n − p + i − 1.

.

We can therefore view the latency at a certain time n as the arrival of an item labeled −1 that
cannot be matched with any other item. We then denote by

X̂= (V∪ {0} ∪ {−1})p
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the (finite) state space space of X̂. In contrast to the model of Section 4.3 (which can be seen
as a particular of the present one for γ = 0), (9) is satisfied here, since the geometric random
variable ξ can be arbitrarily large. Therefore, Algorithm 2 can be used to design a perfect
sampling algorithm in this case. Let Ŷ := (

Ŷn
)

n∈Z be the SRS defined by the recursive equation

Ŷn+1 = [
max (̂Yn, P̂n) − 1

]+ = g
(
Ŷn, P̂n

)
, n ∈Z. (15)

Proposition 7. For any n ∈Z, the following statements are equivalent:

(i) Ŷn = 0.

(ii) For all k ∈ [[1, p]], V̂n−k = −1 (and equivalently P̂n−k = 0).

Proof. Fix n ∈Z. Regarding the implication (ii) ⇒ (i), by the construction of P̂ and Ŷ we
have that

Ŷn−p ≤ p + ε− 1.

Moreover, for all k ∈ [[1, p]],

Ŷn−k+1 = [
max (̂Yn−k, P̂n−k) − 1

]+ = [
max (̂Yn−k, 0) − 1

]+ = [
Ŷn−k − 1

]+
,

so by induction we obtain that

Ŷn ≤ max (̂Yn−p − p, 0) ≤ max (p+ε− 1 − p, 0) = 0.

We now turn to the converse implication (i) ⇒ (ii). Suppose to the contrary that for some
k ∈ [[1, p]] we have P̂n−k = 0, which, by the very definition of P̂, means that P̂n−k = p + ε.
Then, as Ŷn−k ≤ p + ε− 1, we have that

Ŷn−k+1 = [
max (̂Yn−k, P̂n−k) − 1

]+ = P̂n−k − 1 = p + ε− 1.

But for all l ∈ [[1, k − 1]] we have that Ŷn−l+1 ≥ Ŷn−l − 1, so that by an immediate induction,

Ŷn ≥ p + ε− 1 − (k − 1) ≥ ε > 0.

�
As a consequence of Proposition 7, determining when Ŷ = 0 in Algorithm 2 amounts to

checking that the last p arrivals are all −1’s, meaning that no item has entered the system in
the last p instants. In fact, as (ii) above has a positive probability, we immediately see that in
the present context, Algorithm 2 terminates almost surely.

For any x = x1 · · · xp ∈ X̂, denote by
◦
x the word

◦
x1 · · · ◦

xp, where for all i ∈ [[1, p]],
◦
xi =

xi1xi =−1. The notions of synchronizing and strongly synchronizing words are then extended as
follows.

Definition 13. A word w ∈ (V∪ −1)∗ is said to be synchronizing for the deterministic match-
ing model with latency (G, �, μ, p, γ ) if

∃z ∈ X̂, ∀x ∈ X̂, W�(x,w) = wx is such that
◦

wx = z. (16)

We say that a word w = w1 · · · w2p ∈ (V∪ −1)∗ is strongly synchronizing if

∀i ∈ [[1, p]], ∀j ∈ [[p + 1, p + i]], wi −/ wj,

where, by convention, for all v ∈V, v −/ − 1.
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TABLE 6. Average CPU time of the algorithms on a standard computer for 100 repetitions with p = 3,
γ = 0.2, and multiple values of (n, α).

p = 3 α = 1
8 α = 2

8 α = 3
8 α= 4

8 α= 5
8

n = 4, Algo 2 0.0038045 0.0037805 0.0040165 0.0039802 0.0042959
n = 4, Algo 3 0.0004670 0.0004578 0.0005623 0.0007405 0.0009837
n = 5, Algo 2 0.0044388 0.0041361 0.0043400 0.0045547 0.0043607
n = 5, Algo 3 0.0004592 0.0005210 0.0005462 0.0006469 0.0008396
n = 6, Algo 2 0.0046643 0.0045620 0.0046185 0.0046222 0.0048220
n = 6, Algo 3 0.0004305 0.0004332 0.0005398 0.0006290 0.0010127
n = 7, Algo 2 0.0049668 0.0053617 0.0051719 0.0048706 0.0047918
n = 7, Algo 3 0.0003674 0.0005255 0.0006371 0.0008323 0.0009967
n = 8, Algo 2 0.0049822 0.0049859 0.0050439 0.0052366 0.0059534
n = 8, Algo 3 0.0003490 0.0003939 0.0006275 0.0008972 0.0013853

We can then apply the exact same arguments as for Theorems 3 and 4 to show the
following.

Proposition 8. Any strongly synchronizing word w ∈ (V∪ −1)∗ is also a synchronizing word
for the deterministic matching model with latency (G, �, μ, p, γ ). Conversely, if the matching
policy � is FCFM, then any synchronizing word of length 2p is strongly synchronizing.

The previous result implies that Algorithm 3 (by taking strongly synchronizing words in this
new sense) terminates almost surely, and also produces a sample of the stationary distribution
of the model with latency.

In conclusion, for a model with latency, both Algorithm 2 and Algorithm 3 are valid perfect
sampling algorithms that terminate almost surely, and we can now compare their performance.
For this, first notice that Algorithm 3 is obviously faster than Algorithm 2, since the arrival of
p consecutive −1’s also creates a strongly synchronizing word, as any word of length 2p in
which the first or last p letters are all −1 is strongly synchronizing. In Tables 6–9, we quantify
the gain from applying Algorithm 3 rather than Algorithm 2 in terms of CPU time, for various
parameters.

4.5. Estimating of the loss probability for ML and FCFM

Algorithm 3 returns a random variable that is distributed from the stationary distribution
of the system. This result can be of critical use in comparing the performance of systems for
which no exact characterization of the steady state is known. As an example, we are able to
assess the asymptotic loss rate of items of every class. We use this to compare two matching
policies in steady state: match-the-longest (ML) and first-come-first-matched (FCFM).

Let (G = (V, E), �, μ, p) be a discrete matching model with deterministic impati ence, and
let X̃ = (

X̃n
)

n∈Z be the Markov chain of the system. Let π be the stationary distribution for X,
and for all (i, j) ∈V

2 such that (i, j) ∈ E, let

Ai,j = {x = x1 · · · xj ∈X, x1 = i and the arrival is of class j in a buffer x}.
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TABLE 7. Average CPU time of the algorithms on a standard computer for 104 repetitions with p = 3,
γ = 0.5, and multiple values of (n, α).

p = 3 α = 1
8 α = 2

8 α = 3
8 α = 4

8 α= 5
8

n = 4, Algo 2 0.0003215 0.0003227 0.0003087 0.0003241 0.0002954
n = 4, Algo 3 0.0002715 0.0002666 0.0002210 0.0002102 0.0002593
n = 5, Algo 2 0.0003761 0.0003799 0.0003718 0.0003690 0.0003190
n = 5, Algo 3 0.0002000 0.0001950 0.0001834 0.0002102 0.0002446
n = 6, Algo 2 0.0004253 0.0003487 0.0003704 0.0003690 0.0003768
n = 6, Algo 3 00.0002045 0.0001953 0.0002090 0.0002409 0.0002559
n = 7, Algo 2 0.0004097 0.0003916 0.0004289 0.0004132 0.0004103
n = 7, Algo 3 0.0002384 0.0002094 0.0002073 0.0002868 0.0002901
n = 8, Algo 2 0.0004186 0.0004070 0.0004908 0.0005598 0.0006104
n = 8, Algo 3 0.0002074 0.0001791 0.0002156 0.0002520 0.0002659

TABLE 8. Average CPU time of the algorithms for 100 repetitions with p = 6, γ = 0.2, and multiple
values of (n, α).

p = 6 α = 1
8 α = 2

8 α = 3
8 α = 4

8 α= 5
8

n = 4, Algo 2 0.7051800 0.5984500 0.5163900 0.4517600 0.7003300
n = 4, Algo 3 0.0034300 0.0057900 0.0056100 0.0068200 0.0246900
n = 5, Algo 2 0.5984500 0.8970700 0.5821500 0.6060300 0.5139100
n = 5, Algo 3 0.0035900 0.0026300 0.0065800 0.0109600 0.0221800
n = 6, Algo 2 0.7514100 0.6232700 0.6096600 0.9526300 0.7364400
n = 6, Algo 3 0.0009300 0.0042500 0.0051800 0.0105000 0.0219500
n = 7, Algo 2 0.7517200 0.5460800 0.4714300 0.5977900 0.6670700
n = 7, Algo 3 0.0014000 0.0025000 0.0042300 0.0084900 0.0171500
n = 8, Algo 2 0.5546900 0.6359300 0.4876600 0.7620300 0.6122400
n = 8, Algo 3 0.00109000 0.0017500 0.0037400 0.0092300 0.0376300

TABLE 9. Average CPU time of the algorithms on a standard computer for 104 repetitions with p = 6,
γ = 0.5, and multiple values of (n, α).

p = 6 α = 1
8 α= 2

8 α = 3
8 α = 4

8 α= 5
8

n = 4, Algo 2 0.0046900 0.00316360 0.0034701 0.0031292 0.0031772
n = 4, Algo 3 0.0010425 0.0010735 0.0012352 0.0013639 0.0016111
n = 5, Algo 2 0.0040600 0.0035472 0.0035068 , 0.0034339 0.0035351
n = 5, Algo 3 0.0008387 0.0010067 0.0010954 0.0013510 0.0015984
n = 6, Algo 2 0.0034200 0.0035355 0.0039241 0.00358213 0.0036049
n = 6, Algo 3 0.0008432 0.0008729 0.0010616 0.0013186 0.0017617
n = 7, Algo 2 0.0048400 0.0037248 0.0037925 0.0036611 0.0038020
n = 7, Algo 3 0.0007764 0.0008591 0.0010278 0.0013062 0.0017764
n = 8, Algo 2 0.0054600 0.0038513 0.0038263 0.0037788 0.0038358
n = 8, Algo 3 0.0007209 0.0008657 0.0010599 0.0013521 0.0018399
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TABLE 10. Monte Carlo estimates for the asymptotic loss rates for 104 repetitions of Algorithm 3 for a
random Erdös–Rényi graph of parameters n = 5, α = 0.6, for p = 5 and μ the uniform distribution.

ρ ρ(1) ρ(2) ρ(3) ρ(4) ρ(5)

FCFM 0.0293 0.00026 0.00032 0.0132 0.0152 0.00032
ML 0.03122 0.00028 0.0003 0.01536 0.01486 0.00042

The asymptotic loss rate of items of class i is denoted by

ρ(i) := lim
N→+∞

N∑
n=1

1Ai
n

N
, (17)

where for all n,

Ai
n = {an item of class i is lost at time n}.

An immediate first-step analysis implies that

ρ(i) =
∑
j∈V

π (Ai,j)μ(j), (18)

so ρ(i) can also be interpreted as the probability of losing an item of class i in the system at a
given instant, in steady state. Reasoning similarly, we have that

ρ =
∑
i∈V

ρ(i)

is the asymptotic loss rate of items (of any class) in the system, and can also be seen as the prob-
ability of losing an item (of any class) at a given time, in steady state. Using Equation 18, we
can then estimate these asymptotic loss rates by running our perfect simulation Algorithm 3,
and then estimating π (Ai,j) for all i, j ∈V using a Monte Carlo estimate.

Table 10 presents the results over 104 simulations, for G a random Erdös–Rényi graph of
parameters n = 5, α= 0.6, conditioned on being connected, for p = 5, and for μ the uniform
distribution. Both matching policies FCFM and ML are implemented on the same samples each
time. We observe that the overall asymptotic loss rate is slightly, but consistently, lower under
FCFM than under ML, although nominal loss rates of given nodes can be higher under FCFM.
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