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Abstract. In the paper we find a further generalization of congruences of the K. Hardy and
K. S. Williams [5] type which seems to be a full generalization of congruences of G. Gras [4].
Moreover we extend results of [5], [7], [8], [9] and in part of [6]. We apply ideas and methods of [2],
[7] and [9].
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1. Notation

Let us recall the notation of the paper [9]. As usual letC p (p-prime) stand for the
completion of an algebraic closure ofQ at some place abovep. LetLp(k; �) denote
thep-adicL-function defined in [10]. Here� is a primitive Dirichlet character with
values inC p . Following R. F. Coleman [2] we definep-adic multilogarithms by the
formula

l
(p)
k
(z) = lk(z) � p

�k
lk(z

p);

wherelk = lk;p is a locally analytic function onC p �f1g defined in [2]. We adopt
the notation�c

a=1
0 to mean a sum taken over integersa coprime toc. LetA be a

positive integer. For any Dirichlet character moduloA, any integerk andz 2 C 2,
we define

Lk; (z) = (�1)k+1
g( )A�1

AX
a=1

0
 (a)lk(�

a

Az); (z 6= �
a

A);

if  is not trivial, and we set

Lk; (z) = (�1)k+1
l
(2)
k
(z); (z 6= �1);
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290 AMBRO _ZY WÓJCIK

otherwise. Here�A is a primitiveAth root of unity. Further on we shall adopt the
same convention as in [9]. For any Dirichlet character� moduloM > 1 and for
any integerk we write

L
[M ]
2 (k; �!1�k) =

Y
pjM;p-prime

(1� �(p)p1�k)L2(k; �!
1�k);

unlessk = 1 and� is trivial in which case we simply putL[M ]
2 (k; �!1�k) = 0.

Here! := !p is the Teichm̈uller character atp. Let TM denote the set of all
fundamental discriminants dividingM . The set can be described as the set of
square-free numbers of the form 4n + 1 and 4 times square-free numbers not of
this form. Let us denote by�d =

�
d

�

�
the quadratic character (Kronecker symbol)

associated with the fundamental discriminantd. It is convenient to denote by�1

the trivial character.
Let 
e;l = �1 if l � 1;2 (mod 4) ande 2 T8 � T4, and let
e;l = 1 otherwise.

Denote byK a finite set of integers. Let us consider a finite set of 2-adic integers
fxk;egk2K; e2T8: For l > 0 and% 2 f0;1g we define

t2l+% = 2%
X
k;e

(�1)l(k+1)(2l + 1)1�k
l;exk;e;

where the sum is taken over allk 2 K, e 2 T8 if % = 0 and overk 2 K, e 2 T8

satisfying sgne = (�1)k if % = 1.
Let us consider a sequence of the form

yn =
X
k2K;
e2T8

ak;e(n)xk;e;

whereak;e(n) (n > 0) are 2-adic integers. For this sequence, letc := c(fyng) > 0
denote an integer satisfying:

(i) there exits a sequence of 2-adic integersfxk;eg not all being even such that

yn � 0(mod 2c);

(ii) if for a sequence of 2-adic integersfxk;eg we haveyn � 0(mod 2c+1) then all
the numbersxk;e are even.

2. The main theorem

THEOREM. Let M > 1 be a square-free odd natural number havingr prime
factors and let	: N ! C 2 be a multiplicative function with odd values at divisors of
M . LetK denote a finite set consisting of consecutive integers and writem = #K.
Let fxk;egk2K; e2T8 be a sequence of2-adic integers not all being even. Write
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JM = �(log2M)=2, if M is a prime number andJM = 0 otherwise. Then the
number

�2(x;M) :=
X
e2T8;
k2K

(�1)k+1
xk;e

X
d2TM

	(jdj)L
[M ]
2 (k; �ed!

1�k) + x1;1JM

is a 2-adic integer divisible by2r+�, where2� is the greatest common divisor of
2c(ftng) andtn, 0 6 n 6 4m� 1. Moreover we have

c(ftng) = 4m� 1� s2(m)� ord2(m);

wheres2(m) denotes the sum of digits of the2-adic expansion ofm.

3. Lemmas

The proof the theorem is divided into a sequence of lemmas. Some of these lemmas
were proved in [9]. The others extend corresponding lemmas of [9].

LEMMA 1 ([9], cf. [7]). Given any odd integerM , let � be a primitive Dirichlet
character moduloM . Suppose thatN is an odd multiple ofM such thatN=M
is square-free and relatively prime to M. Let be a primitive Dirichlet character
being either trivial or of even conductor coprime toN . Let! denote the Teichm̈uler
character atp = 2 and write�N = �M�N=M . Then for any integerk we have

g(�)M�1
NX
a=1

0
�(a)Lk; (�

a

N )

= (�1)r(N=M)+k+1
Y

pj(N=M)

(1� � (p)p1�k)L2(k; � !
1�k);

unlessk = 1 and both the characters� and are trivial, in which case we have

NX
a=1

0Lk; (�
a

N ) =

(
�(log2N)=2; if N is a prime number;

0; otherwise.

Proof. The case if�or are not trivial for anyk, and the case ifk 2 f�1;0;1;2g
for any� and were considered in [9]. Let us assume that both the characters�

and are trivial andk 62 f�1;0;1;2g. In order to prove the lemma in this case we
apply the methods of the proof of Lemma 1 of [9]. Then puttingN = nq, whereq
is a prime number, we have
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NX
a=1

0
lk(�

a

N ) =
nX
a=1

0

q�1X
c=0

lk(�
cn+a
nq )�

nX
b=1

0
lk(�

bq

nq)

=
nX
a=1

0

q�1X
c=0

lk(�
a

nq�
c

q)�
nX
a=1

0
lk(�

a

n)

=
nX
a=1

0
lk(�

a
n)

qk�1 �
nX
a=1

0
lk(�

a

n)

= �(1� q
1�k)

nX
a=1

0
lk(�

a

n):

Thus by induction on the numberr(N) of prime factors ofN we get

NX
a=1

0
lk(�

a

N ) = (�1)r(N)�1
Y

pj(N=q)

(1� p
1�k)

qX
a=1

0
lk(�

a

q );

where the product is taken over primes dividingN=q.
On the other hand Corollary 7.1a [2] and formula (4), p. 2 [2] imply

qX
a=1

0
lk(�

a

q ) = �(1� q
1�k) lim

z!1
lk(z)

= �(1� q
1�k)(1� 2�k)�1

L2(k; !
1�k)

if k > 2. Therefore the lemma in this case follows easily from the obvious equation

NX
a=1

0Lk; (�
a

N ) = (�1)k+1(1� 2�k)
NX
a=1

0
lk(�

a

N ):

If k 6 �1 then we shall prove that

qX
a=1

0
lk(�

a

q ) = (1� q
1�k)

B1�k;�1

1� k
; (1)

whereBn denotes thenth Bernoulli number. Further on we shall apply some
polynomialsRn 2 Z[z] introduced by Frobenius in [3] (see also formulas 2.6 and
2.14 in [1]) and defined by the formula

1� z

et � z
=

1X
n=0

Rn(z)

(1� z)n
tn

n!
:
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We shall prove for that forn > 0 the following identity

l�n(z) = �
zRn(z)

(z � 1)n+1

holds. By definition oflk (see [2], p. 195) it suffices to check that the right-hand
side, of the above equation, let us denote it byrn(z), satisfies

(i) r0(z) =
z

z � 1
;

(ii)
drk(z)

dz
=
rk�1(z)

z
;

(iii ) lim
z!0

rk(z) = 0:

By definition we have

r0(z) = �
zR0(z)

1� z
=

z

z � 1

and so (i) holds. (iii) is also obvious. As for (ii), we have to prove that

d
dz

�
zRn(z)

(1� z)n+1

�
= �

Rn+1(z)

(1� z)n+2 : (2)

By definition of the polynomialsRn(z) we have

d
dz

�
z

et � z

�
=

1X
n=0

d
dz

�
zRn(z)

(1� z)n+1

�
tn

n!

and so we obtain

et

(et � z)2
=

1X
n=0

d
dz

�
zRn(z)

(1� z)n+1

�
tn

n!
: (3)

On the other hand we have

d
dt

�
1� z

et � z

�
=
�et(1� z)

(et � z)2

and

d
dt

 
1X
n=1

Rn(z)

(1� z)n
tn

(n)!

!
=

1X
n=1

Rn(z)

(1� z)n
tn�1

(n� 1)!
=

1X
n=0

Rn+1(z)

(1� z)n+1

tn

n!
:

Hence we find that

et

(et � z)2
= �

1X
n=0

Rn+1(z)

(1� z)n+2

tn

n!
:
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This together with (3) gives the formula (2) at once. Consequently, we get

z

et � z
=

1X
n=0

(�1)nl�n(z)
tn

n!
: (4)

Let p be a prime number and let� 6= 1 be apth root of unity. Then (4) implies

t

pX
a=1

0
�a

et � �a
=

p�1X
a=1

1X
n=0

(�1)nl�n(�a)
tn+1

n!

=
1X
n=1

p�1X
a=1

(�1)n�1
l1�n(�

a)n
tn

n!
: (5)

On the other hand, we have formally

pX
a=1

0
�a

et � �a
= �

1X
n=0

0
@p�1X
a=1

�
�an

1
Aetn =

X
n>0; p -n

etn � (p� 1)
X

n>0; pjn

etn

=
1X
n=0

etn � p

1X
n=0

etpn =
1

1� et
�

p

1� ept

and in consequence by definition of Bernoulli numbers we get

t

pX
a=1

0
�a

et � �a
= �

1X
n=0

Bn(1� p
n)
tn

n!
:

This together with (5) gives

p�1X
a=1

l1�n(�
a) = (�1)n(1� p

n)
Bn

n

and so (1) holds asBn = 0 if n > 1 is odd. Finally, we get

NX
a=1

0Lk; (�
a

N ) = (�1)k+1(1� 2�k)(�1)r(N)�1
Y
pjN

(1� p
1�k)

B1�k

1� k

= (�1)k+1(�1)r(N)
Y
pjN

(1� p
1�k)L2(k; !

1�k)

and the lemma is proved. 2

Letn > 0 andk be integers. For anye 2 T8 let us define

Wk;e(n) =
nX
l=0

(�1)l(k+1)(2l + 1)1�k
e;l

 
2n+ 1
n� l

!
: (6)
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Let us notice that the numbersWk;e(n) are 2-adic integers. Moreover ifk = 0 and
e 2 T4 then we haveWk;e(0) = 1 andWk;e(n) = 0 if n > 1. If k = 0 ande 62 T4

then we haveWk;e(n) = (2n + 1)2n. If k = 1 then we haveWk;e(n) = 4n if
e 2 T4 andWk;e(n) = 2n if e 62 T4: Furthermore fore 2 T8 we have

Wk�2;e(n) = (2n+ 1)2Wk;e(n)� 8n(2n+ 1)Wk;e(n� 1): (7)

Indeed, by the definition the right-hand side of (7) is equal to

(2n+ 1)2
nX
l=0

(�1)l(k+1)(2l + 1)1�k
e;l

 
2n+ 1
n� l

!

�8n(2n+ 1)
n�1X
l=0

(�1)l(k+1)(2l + 1)1�k
e;l

 
2n� 1
n� 1� l

!

=
n�1X
l=0

(�1)l(k+1)(2l + 1)1�k
e;l
(2n+ 1)!

(n� l � 1)!(n+ l)!

�

 
(2n+ 1)2

(n� l)(n+ l + 1)
� 4

!

+ (�1)n(k+1)(2n+ 1)1�(k�2)

n;e

=
nX
l=0

(�1)l(k�1)(2l + 1)1�(k�2)

e;l

 
2n+ 1
n� l

!
:

Moreover, by a simple induction onn we can deduce from (7) that

Wk;e(n) =
24n

2n+ 1

 
2n
n

!�1 nX
l=0

1
2l + 1

 
2l
l

!
2�4l

Wk�2;e(l): (8)

Using the numbersWk;e(n) we shall extend Lemma 3 [9], and next Lemmas 6
and 7 of [7] and Lemma 4 [9].

LEMMA 2. Letn > 0be an integer. Set
n = �1, if n � 1;2 (mod 4), and
n = 1,
otherwise. Then for the numbersWm;e(n) defined above we have

nX
k=0

 
n+ k

n� k

!
(�1)k

2k + 1
Wm;e(k) =

(�1)nm
n
(2n+ 1)m

:

Proof. First we shall prove (using Granville’s ideas similarly as in the proof of
Lemma 3 [9]) the following identity
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(2n+ 1)2
nX
k=0

 
n+ k

n� k

!
(�1)k

2k + 1
Wm;e(k)

=
nX
k=0

 
n+ k

n� k

!
(�1)k

2k + 1
Wm�2;e(k): (9)

Let us denote

�k = (�1)k24k

 
n+ k

n� k

! 
2k
k

!�1

:

Then for allk > 0 we have

�k � �k+1 =

�
2n+ 1
2k + 1

�2

�k

and so we get

(2n+ 1)2
nX
k=0

 
n+ k

n� k

!
(�1)k

2k + 1
Wm;e(k)

= (2n+ 1)2
nX
k=0

�k

(2k + 1)2

kX
l=0

1
2l + 1

 
2l
l

!
2�4l

Wm�2;e(l)

=
nX
k=0

(�k � �k+1)
kX
l=0

1
2l + 1

 
2l
l

!
2�4l

Wm�2;e(l)

=
nX
k=0

�k

2k + 1

 
2k
k

!
2�4k

Wm�2;e(k)

=
nX
k=0

 
n+ k

n� k

!
(�1)k

2k + 1
Wm�2;e(k):

Now the lemma follows from (9) by induction onm in virtue of the identities
nX
k=0

 
n+ k

n� k

!
(�2)k = 
n;

nX
k=0

 
n+ k

n� k

!
(�1)kW0;1(k)

2k + 1
= 1;

nX
k=0

 
n+ k

n� k

!
(�4)k

2k + 1
=

(�1)n

2n+ 1
;

nX
k=0

 
n+ k

n� k

!
(�2)k

2k + 1
=

(�1)n
n
2n+ 1

:

To evaluate the first identity, note that 
n+ k

n� k

!
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is the coefficient oftn in

tk

(1� t)2k+1 :

Thus the left-hand side of the identity is the coefficient oftn in

X
k>0

(�2t)k

(1� t)2k+1 =
1

1� t

1
1� ((�2t)=(1� t)2)

=
1� t

1+ t2
=

1� t� t2 + t3

1� t4

and so equals�1, if n � 1;2 (mod 2) and 1, otherwise. See the proof of Lemma 3
[9]. The identity with the numbersW0;1(k) follows immediately from the definition
of these numbers. Two remaining identities follow from the obvious formula

2n+ 1
2k + 1

 
n+ k

n� k

!
=

 
n+ k + 1
n� k

!
+

 
n+ k

n� k � 1

!
:

It suffices to notice that 
n+ k + 1
n� k

! 
resp:

 
n+ k

n� k � 1

!!

is the coefficient oftn (resp.tn+1) in

tk

(1� t)2k+2 :

The rest of the proof runs as above. 2

In the next lemmas let� 6= 1 be anN th root of unity, whereN is an odd nat-
ural number.

LEMMA 3. For anye 2 T8 andm 2 Zwrite� = (�1)m+1 sgn(e) and let

w� =
��

1+ ��2 :

Then

Lm;e(�) =
1X
k=0

�kWm;e(k)

2k + 1
w

2k+1
� :

Proof. First let us observe that the 2-adic series on the right-hand side of
the above equation converges. In fact it is easy to see that ord2(Wm;e(n)) > n.
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We can prove it by induction onm. It is obvious that ord2(W0;e(n)) > n and
ord2(W1;e(n)) > n: If m 6 0 we can apply formula (7). Ifm > 1 then it follows
from (8) at once since

ord2(Wm;e(n)) = ord2

0
@ 24n

2n+ 1

 
2n
n

!�1 nX
l=0

1
2l + 1

 
2l
l

!
24l
Wm�2;e(l)

1
A

= ord2

 
nX
l=0

n!(2l + 1)!!
l!(2l + 1)(2n+ 1)!!

23(n�l)
Wm�2;e(l)

!
;

wherer!! is the product of all odd integers6 r.
Now write
2 = �. On the open unit ball inC 2 we have

1X
k=0

�kWm;e(k)

2k + 1

�
�x

1+ �x2

�2k+1

= �i

1X
k=0

(�1)kWm;e(k)

2k + 1

 
1X
l=0

(i
x)2l+1

!2k+1

= �i

1X
k=0

(�1)kWm;e(k)

2k + 1

1X
l=0

 
2k + l

l

!
(i
x)2(k+l)+1

= �i

1X
l=0

lX
k=0

(�1)kWm;e(k)

2k + 1

 
l + k

l � k

!
(i
x)2l+1

= �i

1X
l=0

(i
x)2l+1
lX

k=0

 
l + k

l � k

!
(�1)kWm;e(k)

2k + 1
:

Therefore the lemma follows immediately from Lemma 2, Theorem 5.11 [2] and
the uniqueness principle (see p. 176, [2]). 2

In order to prove the key lemma of the paper we will need the following ele-
mentary fact

LEMMA 4 (cf. Lemma 5.19 and 5.21 [10]).For integersb; p > 0 we have

bX
a=0

a
p(�1)a

 
b

a

!
=

8>><
>>:

0 if p < b;

(�1)bb! if p = b;

b! � integer ifp > b:

Proof. The first and the third identites are proved in [10] (see Lemmas 5.19 and
5.21 respectively). As for the second identity it follows by the same manner as the
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third one (for details, see the proof of Lemma 5.21 [10]). 2

LEMMA 5. Letm > 1 be an integer and letK = f�m+ 2;�m+ 3; : : : ;0;1g.
Then for the sequenceftngn>0 defined in the Notation we have

c(ftng) = 3m� 1+ ord2((m� 1)!):

Proof. In what follows, letr = 3m� 1+ ord2((m � 1)!). Let us consider the
infinite system of congruences

t2n+1 � 0(mod 2r+1); n > 0: (10)

We shall prove that the above congruences withn6 2m�1 implyxk;e � 0(mod 2).
Substituting in (10)

xk = xk;e + xk;e0 and yk = xk;e � xk;e0 ;

wheree 2 T4 ande0 62 T4, we can rewrite it in the form of two subsystems of
congruences

0
BBBBBBBBBB@

1 1 1 : : : 1

1 �7 (�7)2 : : : (�7)m�1

1 9 92 : : : 9m�1

...
...

...

1 s1 s2
1 : : : s

m�1
1

1
CCCCCCCCCCA

0
BBBBBBBBBBB@

x1

x0

x�1

...

x�m+2

1
CCCCCCCCCCCA
� 0(mod 2r) (11)

(in this subsystem we consider the congruences of (10) withn � 0 or 3(mod 4),
heres1 = (�1)m+1(4m� 2)� 1) and

0
BBBBBBBBBB@

1 �3 (�3)2 : : : (�3)m�1

1 5 52 : : : 5m�1

1 �11 (�11)2 : : : (�11)m�1

...
...

...

1 s2 s2
2 : : : s

m�1
2

1
CCCCCCCCCCA

0
BBBBBBBBBBB@

y1

y0

y�1

...

y�m+2

1
CCCCCCCCCCCA
� 0(mod 2r) (12)

(in this subsystem we consider the congruences of (10) withn � 1 or 2(mod 4),
heres2 = (�1)m(4m� 2)� 1). We have

xk;e =
xk + yk

2
and xk;e0 =

xk � yk

2
: (13)
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Let 06 b 6 m� 1 be a fixed integer. Let us notice that for any 16 k 6 b+ 1
(resp. any 06 a 6 b) there exists 06 a 6 b (resp. 16 k 6 b+ 1) such that

2(�1)k+1(2k � 1)� 1 = 8([b=2]� a) + 1: (14)

It suffices to takea = [b=2] + (�1)k[k=2] (resp.k = 2a� 2[b=2] if a > [b=2] and
k = 2[b=2]� 2a+ 1 if a 6 [b=2]� 1). Similarly, for any 16 k 6 b+ 1 (resp. any
0 6 a 6 b) there exists 06 a 6 b (resp. 16 k 6 b+ 1) such that

2(�1)k+1(2k � 1)� 1 = 8([b=2]� a)� 3: (15)

It suffices to takea = [b=2]]+(�1)k+1[k=2] (resp.k = 2[b=2]�2a if a 6 [b=2]�1
andk = 2a � 2[b=2] + 1 if a > [b=2]). In other words, there are two one-one
correspondences between integersk 2 [1; b + 1] anda 2 [0; b] satisfying (14) or
(15) respectively. Using these correspondences and identity

bX
a=0

(8(c� a) + f)p(�1)a
 
b

a

!
=

8>><
>>:

0; if p < b;

8bb!; if p = b;

8bb! � integer; if p > b;

(16)

with b 6 m � 1, p 6 m � 1, c = [b=2] andf = 1;�3, we can rewrite the above
systems in the equivalent triangular forms0
BBBBBBBBBB@

1 1 1 : : : 1

0 �8 8� integer : : : 8� integer

0 0 128 : : : 128� integer

...
...

0 0 : : : 0 (�8)m�1(m� 1)!

1
CCCCCCCCCCA

0
BBBBBBBBBB@

x1

x0

x�1

...

x�m+2

1
CCCCCCCCCCA
� 0(mod 2r); (17)

0
BBBBBBBBB@

1 �3 (�3)2 : : : (�3)m�1

0 8 8� integer : : : 8� integer
0 0 128 : : : 128� integer

...
...

0 0 : : : 0 8m�1(m� 1)!

1
CCCCCCCCCA

0
BBBBBBBBBBB@

y1

y0

y�1

...

y�m+2

1
CCCCCCCCCCCA
� 0(mod 2r); (18)

To construct theith congruence of (17) or (18) one can multiply thekth congruence
of (11) (resp. of (12)) for 16 k 6 i through by(�1)a

�
b

a

�
, whereb = i � 1 and

a = [a=2] + (�1)k[k=2] (resp.a = [b=2] + (�1)k+1[k=2]) and next add up the
first i congruences of each of the systems using identity (16). Thereforex�m+2 �
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0 (mod 4) at once and then the congruencesx�m+3 � � � � � x1 � 0(mod 4) follow
by induction. Similarly we obtain the congruencesy�m+2 � � � � � y1 � 0(mod 4)
and the parity ofxk;e with sgne = (�1)k follows from (13) immediately.

In order to prove the same forxk;e with sgne 6= (�1)k, let us notice that

t2n = t2n+1 + ~t2n+1;

where ~t2l+1 comes intot2l+1 by substitutingxk;1 (resp.xk;�4, xk;8 or xk;�8)
instead ofxk;�4 (resp.xk;1, xk;�8 or xk;8). Then the divisibility 2r+1 j t2l; t2l+1;

leads to 2r+1 j ~t2l+1 and by the same reasoning as in the case of sgne = (�1)k

we getxk;e � 0(mod 2) in the case under consideration. We have showed that
c(ftng) 6 r:

In order to prove the lemma completely we should find a sequence of 2-adic
integersfxk;eg not all being even such that the congruences

ts � 0(mod 2r); s > 0 (19)

hold.
We begin by puttingxk;1 = �xk;�4 and xk;8 = �xk;�8 which implies

ts = 0 for s even and next we will findxk;�4; xk;�8 not all being even satis-
fying ts � 0(mod 2r) for s odd. It is obvious that the systems (17) and (18) have
a solutions such thatx�m+2 = 2 andy�m+2 = 0 and hence that the system (19)
with odds 6 4m� 1 has a solution such thatx�m+2;�4 = 1, andx�m+2;�8 = 1.
Now we have to prove thatts � 0(mod 2r) with the abover if s > 4m. It will
follow from the identity (16). 2

LEMMA 6. Letm > 1 be an integer and letK = f�m+ 2;�m+ 3; : : : ;1g. Let
fxk;egk2K;e2T8 be a sequence of integers inC 2 not all being even. Then we have:

(i)

X
k2K;

e2T8

xk;eLk;e(�) � 0(mod 2�); (20)

where2� is the greatest common divisor oftn, 0 6 n 6 4m� 1 and2c(ftng).
(ii) For any integerl we get

X
k2K;

e2T8

xk;eLk+l;e(�) � 0(mod 2�):

Proof. Lemma 3 and formula (6) imply
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X
k2K;

e2T8

xk;eLk;e(�) =
X
k2K;

e2T8

xk;e

1X
n=0

�nWk;e(n)

2n+ 1
!

2n+1
�

=
1X
n=0

1
2n+ 1

X
k2L;
e2T8

xk;e

nX
l=0

�
n(�1)l(k+1)

�(2l + 1)1�k
e;l

 
2n+ 1
n� l

!
!

2n+1
� :

Consequently, putting forn > 0 and% 2 f0;1g

z2n+% =
nX
l=0

1
2n+ 1

 
2n+ 1
n� l

!
t2l+%

and

v2n+1 =
1
2((�1)n!2n+1

�1 � w
2n+1
1 );

we have

X
k2K;

e2T8

xk;eLk;e(�) =
1X
n=0

z2n!
2n+1
1 +

1X
n=0

z2n+1v2n+1: (21)

The numbersz2n+% and v2n+1 are 2-adic integers. Writec = c(fzsg) and
~c = c(ftsg). Let us notice that

c = ~c:

Indeed, if for a sequence of 2-adic integersfxk;eg not all being even we have
ts � 0(mod 2~c) then by the definition offzsgwe havezs � 0(mod 2~c) and soc > ~c.
Let us prove the inequalityc 6 ~c. By definition there exists a sequence of 2-adic
integersfxk;eg such thatzs � 0(mod 2c). Then the congruencests � 0(mod 2c)
follow by induction ons from the obvious identity

ts = (s� %+ 1)zs �
(s�%�2)=2X

l=0

 
s� %� 1
s�%�2l

2

!
t2l+%:

Here% = 0 if n is even and% = 1 if n is odd.
Thus in order to prove the part (i) of the lemma it suffices to use the fact that

the divisibility 2rjts for s 6 4m� 1 implies the same fors > 4m� 1 which was
already proved for odds in the previous lemma. Ifs is even then we apply the
formula

t2n = t2n+1 + ~t2n+1:
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Since 2rjt2n; t2n+1 for 2n+ 1< 4m we deduce that 2rj~t2n+1 then. The proof that
2rj~t2n+1 for 2n+ 1 > 4m is the same as fort2n+1 in the previous lemma and we
get 2rjt2n for anyn > 0.

In order to prove the part (ii) let us notice that by the definition the numbers
ts defined on the setK + l are equal tots defined onK multiplied by the factor
(2s + 1)l and since the factor is odd the second part of the lemma follows at
once. 2

4. Proof of the theorem

By Lemma 1 we have

�2(x;M)

= (�1)r
X
k2K;

e2T8

(�1)k+1(�1)k+1
xk;e

X
d2TM

	(jdj)�(d)g(�d)jdj
�1

�
MX
a=1

0
�d(a)Lk;�e(�

a

M )

= (�1)r
MX
a=1

0
X
k2K;

e2T8

xk;eLk;�e(�
a

M )
X
d2TM

	(jdj)�(d)g(�d)jdj
�1
�d(a)

= (�1)r
MX
a=1

0
BB@X

k2K;
e2T8

xk;eLk;�e(�
a

M )

1
CCA

�

0
@Y
pjM

�
1�	(p)g(�p�)jpj

�1
�p�(a))

1
A ;

wherep� = (�1)(p�1)=2p. Therefore it follows from Lemma 3 that the numbers
�2(x;M) are 2-adic integers and since

	(p)g(�p�)jpj
�1
�p�(a)� 1 � 1+ �p + � � � �p�1

p � 0(mod 2);

the theorem follows from Lemmas 5 and 6 easily. Here we have used the obvious
identity ord2((m� 1)!) = m� 1� s2(m� 1) =m� s2(m)� ord2(m). 2
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