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Abstract. In the paper we find a further generalization of congruences of the K. Hardy and
K. S. Williams [5] type which seems to be a full generalization of congruences of G. Gras [4].
Moreover we extend results of [5], [7], [8], [9] and in part of [6]. We apply ideas and methods of [2],
[7]and [9].
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1. Notation

Let us recall the notation of the paper [9]. As usuallgt(p-prime) stand for the
completion of an algebraic closure@fat some place aboyelLet L, (k, x) denote

thep-adic L-function defined in [10]. Herg is a primitive Dirichlet character with
values inC, . Following R. F. Coleman [2] we defineadic multilogarithms by the
formula

1P(2) = (2) — p~F1k(22),

wherel;, = I, ,, is a locally analytic function o, — {1} defined in [2]. We adopt
the notation=_,’ to mean a sum taken over integersoprime toc. Let A be a
positive integer. For any Dirichlet charactemoduloA, any integek andz € Cy,
we define

A
Liy(2) = (D) g() A Y "p(a)lk(Chz), (2 # CH),

a=1

if ¢y is not trivial, and we set

Lrp(z) = ()" UD(2), (2 # +1),
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otherwise. Heré& 4 is a primitive Ath root of unity. Further on we shall adopt the
same convention as in [9]. For any Dirichlet charagtenoduloM > 1 and for
any integerc we write

Mot =TI Q= x(p)p* *) Lalk, xw' ),
p| M, p-prime

unlessk = 1 andy is trivial in which case we simply puL[ZM](k,le—k) =0.
Herew = w, is the Teichniller character ap. Let 7, denote the set of all
fundamental discriminants dividing/. The set can be described as the set of
square-free numbers of the form 4- 1 and 4 times square-free numbers not of
this form. Let us denote by, = (Q) the quadratic character (Kronecker symbol)
associated with the fundamental discrimindntt is convenient to denote by,
the trivial character.

Lety., = —1if I =1,2 (mod4 ande € Tg — 74, and lety, ; = 1 otherwise.
Denote byK a finite set of integers. Let us consider a finite set of 2-adic integers
{Zke ek, ceTs- FOrl > 0 andp € {0, 1} we define

toye =2° Z(—l)l(k+1)(25 + )Y Fy e,
k,e

where the sum is taken over &lle K,e € Tgif o =0andoverk € K,e € Tg
satisfying sgre = (—1)% if o = 1.
Let us consider a sequence of the form

Yn = Z ak,e(n)xk,ea

keEK,
e€Tg

whereay, .(n) (n > 0) are 2-adic integers. For this sequenceglet c({y,}) > 0
denote an integer satisfying:
(i) there exits a sequence of 2-adic integrs . } not all being even such that
yn = 0(mod Z),

(i) if for a sequence of 2-adic intege{s;, . } we havey,, = 0(mod Z+1) then all
the numbers;;, . are even.

2. The main theorem

THEOREM. Let M > 1 be a square-free odd natural number havingrime
factorsandletl: N — C, be a multiplicative function with odd values at divisors of
M. LetK denote a finite set consisting of consecutive integers and write#K .
Let {zkc}kek, ec7; D€ @ sequence dt-adic integers not all being even. Write
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Ju = —(log, M)/2, if M is a prime number and/,; = 0 otherwise. Then the
number

Ao, M) = 3 (=DM, ST 0(ld) LYk, xeaw %) + 212700

e€Tg, d€Ty
keK

is a 2-adic integer divisible by, where2” is the greatest common divisor of
2¢({tn}) andt,,, 0 < n < 4m — 1. Moreover we have

c({tn}) = 4m — 1 — sp(m) — ordp(m),

wheres,(m) denotes the sum of digits of tReadic expansion of.

3. Lemmas

The proof the theorem is divided into a sequence of lemmas. Some of these lemmas
were proved in [9]. The others extend corresponding lemmas of [9].

LEMMA 1 ([9], cf. [7]). Given any odd integed/, let x be a primitive Dirichlet
character modulaV/. Suppose thalv is an odd multiple of\/ such thatN/M
is square-free and relatively prime to M. Lgtbe a primitive Dirichlet character
being either trivial or of even conductor coprimefta Letw denote the Teichirer
character atp = 2 and write¢y = (a(ny/p- Then for any integek we have

N
g@M > "x(a) Ly (CR)
a=1
= (—1)rWVADFRELTT (1 — x4 (p)p™ %) La(k, xypw?*),

pI(N/M)

unlessk = 1 and both the characterng and+) are trivial, in which case we have

N . —(log,N)/2, if N is a prime number
Z ﬁk,w(CN) =
a=1

0, otherwise.

Proof. The case if ori) are nottrivial for any:, and the case # € {—1,0, 1, 2}
for any x and+ were considered in [9]. Let us assume that both the charagters
andqy are trivial andk ¢ {—1,0, 1, 2}. In order to prove the lemma in this case we
apply the methods of the proof of Lemma 1 of [9]. Then puttivig= ng, whereg
is a prime number, we have
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N n ¢-1 n
YR = DD Gt = D k()
a=1 a=1 ¢=0 b=1
n q-1 n
= 3> (ChgC)) = D k(G
a=1 ¢=0 a=1
no1(ce n
= > S
a=1 a=1

= —(1-¢"") D ()
a=1
Thus by induction on the numbe(N') of prime factors ofV we get

N q
STk = (=)™ I @ -2 S,
a=1 a=1

pl(N/q)

where the product is taken over primes dividiNggq.
On the other hand Corollary 7.1a [2] and formula (4), p. 2 [2] imply

D () = —(1— gt F) lim 1 (2)
a=1

z—1

= (1 g = 278 Lk, Wt

if & > 2. Therefore the lemma in this case follows easily from the obvious equation

N N
Y Lep(Ch) = (DL =275) D T (CR)-
a=1 a=1
If & < —1then we shall prove that
S 1k Blkoa
Y =1—gq )ﬁa (1)
a=1

where B,, denotes thenth Bernoulli number. Further on we shall apply some
polynomialsR,, € Z[z]introduced by Frobenius in [3] (see also formulas 2.6 and
2.14in [1]) and defined by the formula

1-=2 :i R,(z) t"

e—z (1—2z)"nl"

n=0
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We shall prove for that fon. > 0 the following identity

2R, (2
ln(z) = —(Z_il()n)ﬂ

holds. By definition of;, (see [2], p. 195) it suffices to check that the right-hand
side, of the above equation, let us denote it-pf), satisfies

(iii ) liinork(z) =0.
By definition we have
_2Ro(2) 2
1—=2 z—1
and so (i) holds. (iii) is also obvious. As for (ii), we have to prove that

d <(an(z) )Z_(Rn+1(z>

dz \ (1= z)n+l 1—z)nt2 (2)

ro(z) =

By definition of the polynomialsz,, (z) we have

2G5)-Ea ()

dz \el —z) “—dz \(1—2)"*t1) nl

n=0
and so we obtain
e = d zRn(z) \ t"

(el — 2)2 _nz::()& ((1_z)n+l> nl’ 3)

On the other hand we have

d <1—z> _ —€(1-2)

dt \e — 2 @ — 2)2

and
d (& Ra(m) ") N Rula) & Bun(a) 1
dt (nzzl (1-2z)" (n)'> _nz::l(l—z)" (n—1)! _n:O (1—z)ntinl’

Hence we find that

et _i Rn+1(2) tn
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This together with (3) gives the formula (2) at once. Consequently, we get

TL tn
= Z Ln(2) = 4)

Letp be a prime number and Igt£ 1 be apth root of unity. Then (4) implies

p , tn—i—l
TR o) e
a:l a=1n=0
o p—1 n
DI e N (G T ()
n=1la=1 n:

On the other hand, we have formally

P a oo [p—-1
z_:llet%ga — _Z (ZC an) Z e _1) Z etn

n=0 n>0, pin n>0, p|n

_ = in = tpn 1 _ p
_nz:%e pz:%ep_l—et -

and in consequence by definition of Bernoulli numbers we get

S gt -2 ma-

This together with (5) gives

p—1
S halch) = (-

a=1

and so (1) holds aB,, = 0 if n > 1 is odd. Finally, we get

B —k
ZﬁkaN ) = (-)a-27F MTla )T
pIN
= ()M =)™ T (@ = p*) La(k, ')
p|N
and the lemma is proved. |

Letn > 0 andk be integers. For any € 7g let us define

Wieln) = 3 (~2)/0+0 (21 4 1)1y, (2” + 1>. @

= n—1
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Let us notice that the numbe¥g,, .(n) are 2-adic integers. Moreoverkf= 0 and
e € T4 then we havéVy, .(0) = 1 andWy .(n) =0ifn > 1. If k =0 ande ¢ T4
then we havéVy .(n) = (2n + 1)2". If k£ = 1 then we havéV .(n) = 4" if
e € TaandWy, .(n) = 2" if e € T4. Furthermore foe € 7g we have

Wi_2(n) = (2n+ 1)2Wk,e(n) —8n(2n+ )W e(n — 1). @)

Indeed, by the definition the right-hand side of (7) is equal to

(2 + 1?3 (—1) 4+ (21 4 1) (2" * 1)

Py n—I

ol 2n—1
—8n(2n+1) > (-1)'* V(20 + 1)+ ( >

= n—1-—1
n—1
_ 2n + 1)!
— -1 I(k+1) 21 1 1-k (
lg( AR CEL = 1=Dln+)
2
" (2n+1) 4
(n=0Mn+1+1)
+ (_1)n(k+l)(2n + 1)1—(k—2),yn .
- 1
- a2 (2 ).
l:O n—1
Moreover, by a simple induction eanwe can deduce from (7) that
-1
24 (2 "1 (2
= — 2 MWi_a.(0). 8

Using the number®/;, .(n) we shall extend Lemma 3 [9], and next Lemmas 6
and 7 of [7] and Lemma 4 [9].

LEMMA 2. Letn > Obe aninteger. Set, = —1,ifn = 1,2 (mod 4), and~,, = 1,
otherwise. Then for the numbéiis,, .(n) defined above we have

= (kY (=1 _ (=D
> (n — k:) 2k + le,e(k)  (2n+1)m

k=0

Proof. First we shall prove (using Granville’s ideas similarly as in the proof of
Lemma 3 [9]) the following identity
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" (n+k\ (1)
(2n + 1)2];() (n J—r k) Z(k +)1Wm’e(k)

f (” * ’“) D Wl ©

Let us denote

-1
A = (—1)k2% (Z v_L Z) (2:) .

Then for allk > 0 we have

2n+1\2
Ak — A1 = <m> Ak

and so we get

2n+12§n:< +Z>( 1)ka,e(kz)
k=0

n k
2 12 —4] mfel
nr ,;)2k+12l252z+1< > Win—2e(1)

§n (A — Ar1) §k : b <2l> 27U W _2.(1)
= k — Nk+1 m—2,e
= 2A+1\1

Now the Iemma follows from (9) by induction on in virtue of the identities

" (ot & fn k) (CD) Weah)
Z(n—k>(_2)k:,yn’ Z(n—k)Zk——i—oll:]"

k=0 k=0
Z": n+k\ (=4 _ ()" Z": n+k\ (=2 _ (=)"m
—=\n—kJ2k+1 2n+1 Z\n-kJ2k+1 2n+1°

To evaluate the first identity, note that

o)
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is the coefficient of” in
£k
(1— )2+1
Thus the left-hand side of the identity is the coefficient™oin

(=2 1 1
Z (L—t)2+1  1—t1—((=2t)/(1—1)?)

k>0

Cl-t 1-t—248
142 14

and so equals-1,ifn = 1,2 (mod 2 and 1, otherwise. See the proof of Lemma 3
[9]. The identity with the numberid/y 1 (k) follows immediately from the definition
of these numbers. Two remaining identities follow from the obvious formula

n+1(n+k _[(n+Ek+1 n n+k
2k+1\n—k/ n—k n—k—1/"

It suffices to notice that

(") (resn(, 5 ))

is the coefficient of” (resp.t”+1) in

ik
(1— )22

The rest of the proof runs as above. O

In the next lemmas lef # 1 be anNth root of unity, whereN is an odd nat-
ural number.

LEMMA 3. For anye € Tg andm € Z write « = (—1)"*1sgn(e) and let

Wo = ot
C 14 ?

Then

Zane w2kt
okl o

Proof. First let us observe that the 2-adic series on the right-hand side of
the above equation converges. In fact it is easy to see thatlog.(n)) > n.
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We can prove it by induction om. It is obvious that org(Wy.(n)) > n and
orth(Wie(n)) > n. If m < 0 we can apply formula (7). lf» > 1 then it follows
from (8) at once since

2 (n\ T 1 (2
OFty (Wi, e (n)) = ordy (2n+1<:> ;)Zl_ﬂ<l>zuwm2,e(1)>

— n n!(20 + )N 3tn1)
- (ZZ(:) M2+ 1)(2n + 1N 2 sz,e(l)> ,

wherer!! is the product of all odd integers r.
Now write 2 = «. On the open unit ball ift, we have

i aka,e(k) ( T >2k+1
2k+1 1+ az?

k=0

k=0 1=0
= (1) Wine(k) o (Zk + l) N2k
=—iyy Sy (iryz)
= 2k+1 P l
_ —Wi zl: (=1)"Win,e (k) (l + k) (i) 241
== 2k +1 l—k
[e%9) [
L+ kY (—=1)*W,, o (k)
— _Z,YZ(Z,Y:E)ZZJAZ ( ) )
= o\l —k 2k+1
Therefore the lemma follows immediately from Lemma 2, Theorem 5.11 [2] and
the uniqueness principle (see p. 176, [2]). O

In order to prove the key lemma of the paper we will need the following ele-
mentary fact

LEMMA 4 (cf. Lemma 5.19 and 5.21 [10]For integersb, p > 0 we have
0 if p<b,
b b
Za”(—l)“( ) =< (=1)%! if p="n,
b! x integer ifp > b.

Proof. The first and the third identites are proved in [10] (see Lemmas 5.19 and
5.21 respectively). As for the second identity it follows by the same manner as the

https://doi.org/10.1023/A:1000238926989 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000238926989

LINEAR CONGRUENCE RELATIONS FOR 2-ADIA.-SERIES AT INTEGERS 299

third one (for details, see the proof of Lemma 5.21 [10]). O

LEMMA 5. Letm > 1 be aninteger and lek = {-m +2,—m + 3, ... ,0,1}.
Then for the sequendg, },>0 defined in the Notation we have

c({tn}) = 3m — 1+ ordy((m — 1)1).

Proof. In what follows, letr = 3m — 1+ ordy((m — 1)!). Let us consider the
infinite system of congruences

tons1 = 0(mod 2+, n>0. (10)

We shall prove that the above congruences witgh2m—1imply z;, . = 0(mod 2.
Substituting in (10)

T = Tpe + T aANd Yp = Tp e — Tp o,

wheree € T3 ande’ € T4, we can rewrite it in the form of two subsystems of

congruences
1 1 1 1 L1
1 -7 (=72 ... (=7)y™1 7o
19 @ ... gnt -1 | = 0o(mod2) (11)
l S1 S% e Sg_n_l $7m+2

(in this subsystem we consider the congruences of (10) avith O or 3(mod 4),
heres; = (—1)™*1(4m — 2) — 1) and

1 -3 (=32 ... (-3m! Y1

15 &% .. g¢ot Yo

1 -11 (=127 ... (-1y™t Y=1 | = o(mod2) (12)
1 s s3 ... 32’_1 Y-m+2

(in this subsystem we consider the congruences of (10)avith 1 or 2(mod 4),
heres; = (—1)"(4m — 2) — 1). We have

The = L;y’“ and ;.. = L;y’“ (13)
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Let 0 < b < m — 1 be afixed integer. Let us notice that forang % < b+ 1
(resp. any Og a < b) there exists & a < b (resp. 1< £ < b+ 1) such that

2(-1)Y2k —1) —1=8(]p/2] —a) + 1. (14)

It suffices to take: = [b/2] + (—1)*[k/2] (resp.k = 2a — 2[b/2] if a > [b/2] and
k=2b/2] —2a+1if a < [b/2] — 1). Similarly, forany 1< k£ < b+ 1 (resp. any
0 < a < b) there exists (K a <b(resp. 1< k < b+ 1)such that

2(-1) Y2k —1) —1=28([p/2] —a) — 3. (15)

It suffices to take: = [b/2]] + (— )k+1[k/2] (respk = 2[b/2] —2aif a < [b/2] —

andk = 2a — 2[b/2) + 1 if a > [b/2]). In other words, there are two one-one
correspondences between integers [1,b + 1] anda € [0, b] satisfying (14) or
(15) respectively. Using these correspondences and identity

, if p<b,

07
> (8(c—a) + f)P(—1)" (Z) =< 8!, if p="0, (16)

a=0 8! x integer if p > b,

withb <m—1,p<m—1,¢=[b/2] andf = 1,—3, we can rewrite the above
systems in the equivalent triangular forms

11 1 1 x1

0 —8 8xinteger ... 8 x integer 0

0 O 128 ... 128x integer T_1 = 0(mod 2), (17)
0 O e 0 (-8 (m —1)! Tom42

1 -3 (=32 ... (-gm! 9

0 8 8xinteger ... 8x integer Yo

0 O 128 ... 128x integer Y—_1 — 0(mod Z) (18)
0 0 e 0 8" Ym—1) Y mi2

To construct théth congruence of (17) or (18) one can multiply #th congruence
of (11) (resp. of (12)) for i< k < i through by(—1)*("), whereb = i — 1 and
a = [a/2] + (—1)¥[k/2] (resp.a = [b/2] + (—1)¥T1[k/2]) and next add up the
firsti congruences of each of the systems using identity (16). Therefgye, =
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0 (mod 4 at once and then the congruenges, ;3 = - - - = 21 = 0(mod 4 follow
by induction. Similarly we obtain the congruenges, 2 = --- = y1 = 0(mod 4
and the parity ofr; . with sgne = (—1)* follows from (13) immediately.

In order to prove the same fay, . with sgne # (—1)*, let us notice that

ton = tont1 + ton,

wherety, 1 comes intoty, 1 by substitutingzy, 1 (resp. zy,—a, Tx,g O T, _3g)
instead ofr, 4 (resp.zy, 1, zx,—g OF zg). Then the divisibility 2t by, toya,
leads to 271|751 and by the same reasoning as in the case otsgn—1)*
we getz; . = 0(mod 2 in the case under consideration. We have showed that
c({tp}) <.

In order to prove the lemma completely we should find a sequence of 2-adic
integers{z, . } not all being even such that the congruences

ts=0(modZ), s=>0 (29)

hold.

We begin by puttingr,1 = —x5,4 andzg = —xj, g Which implies
ts = 0 for s even and next we will finds;, 4, ;g not all being even satis-
fying t; = O(mod 2') for s odd. It is obvious that the systems (17) and (18) have
a solutions such that_,,,» = 2 andy_,,+» = 0 and hence that the system (19)
with odds < 4m — 1 has a solution such that ,,, 1> _4 = 1, andz_,, > g = 1.
Now we have to prove that = 0(mod 2') with the abover if s > 4m. It will
follow from the identity (16). O

LEMMA 6. Letm > 1be aninteger and lek = {—m +2,—m + 3,...,1}. Let
{zr.e} ke K ceT; D€ @ SEqUENnce of integers@ not all being even. Then we have:

(i)

Z xk,eﬁk,e(f) = O(mOd 2\)a (20)

kEK,
e€Tg

where2” is the greatest common divisor©f, 0 < n < 4m — 1 and2<({t»}),
(i) For any integerl we get

Z xk,e['k-i-l,e(f) = 0(mod 2\)

keK,
e€Tg

Proof. Lemma 3 and formula (6) imply
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"Wi.e
Z xk,eﬁk,e(g) = Z Tk.e Z azn]:_ 1 §n+l

kEK, kEK,
e€Tg e€Tg
o0
I(k+1)
=2 D The Za
n=0 2n + 1 keL,
e€Tg
2 1
x (2 + 1)1_k76,l ( " +l >w§n+1_
n —

Consequently, putting fat > 0 andp € {0, 1}

2n+1
“onte = Z 2n il n-1 )

and
vont1 = 3((—1) WP — wihth),
we have
o0
Y whelpe) =D zopwit+ Z 22n4+1V2n41- (21)
Icg? n=0 n=0
ec/g

The numbers:,,, and vy, 1 are 2-adic integers. Write = ¢({z5}) and
¢ = c({ts}). Let us notice that

c=c¢.

Indeed, if for a sequence of 2-adic integdrs; .} not all being even we have
ts = 0(mod Z) then by the definition ofz; } we havez; = O(mod Z) andsa: > ¢

Let us prove the inequality < é. By definition there exists a sequence of 2-adic

integers{xy, .} such thatz, = O(mod Z). Then the congruences = 0(mod Z)
follow by induction ons from the obvious identity

(s—0—2)/2
s—p—1
to=(s—o+Dlz— > ( s—g—zz >t21+g'

Herep = 0if nis even ang = 1 if n is odd.

Thus in order to prove the part (i) of the lemma it suffices to use the fact that

the divisibility 2"|¢s for s < 4m — 1 implies the same fof > 4m — 1 which was
already proved for odd in the previous lemma. I is even then we apply the
formula

ton = toni1 + tonta-
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Since 2 |tp,, toni1for 2n+ 1 < 4m we deduce that'24,, 1 then. The proof that
2" |tan 41 for 2n + 1 > 4m is the same as fap, ;1 in the previous lemma and we
get 2'|to, for anyn > 0.

In order to prove the part (ii) let us notice that by the definition the numbers
ts defined on the sek” + [ are equal ta; defined onK multiplied by the factor
(2s 4+ 1)! and since the factor is odd the second part of the lemma follows at
once. O

4. Proof of the theorem

By Lemma 1 we have

Ao(z, M)
= (1" Y ()M e Y U(ld)p(d)g(xa)ld]
kEK, deTu

X Zxd Ek:Xa CM)

Z " TpeLiy. (Co) Y U(ld)u(d)g(xa)ld]  xa(a)

a=1 ’;g"_s d€Trr
M

= (1" D> | D wrelrn. (Chr)
EE

X (H (1- \P(p)g(xp*)lpllxp*(a))) ,

p|M

wherep* = (—1)?=D/2p, Therefore it follows from Lemma 3 that the numbers
Ay(x, M) are 2-adic integers and since

U (p)g(xp-)

(@) =1 = 14(+--- ¢t = 0(mod 2,

the theorem follows from Lemmas 5 and 6 easily. Here we have used the obvious
identity orch((m — 1)!) =m — 1 — sa(m — 1) = m — sa(m) — orde(m). O
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