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Abstract. We study the exact Hausdorff and packing dimensions of the prime Cantor set,
�P , which comprises the irrationals whose continued fraction entries are prime numbers.
We prove that the Hausdorff measure of the prime Cantor set cannot be finite and positive
with respect to any sufficiently regular dimension function, thus negatively answering a
question of Mauldin and Urbański (1999) and Mauldin (2013) for this class of dimension
functions. By contrast, under a reasonable number-theoretic conjecture we prove that the
packing measure of the conformal measure on the prime Cantor set is in fact positive and
finite with respect to the dimension function ψ(r) = rδ log−2δ log(1/r), where δ is the
dimension (conformal, Hausdorff, and packing) of the prime Cantor set.
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1. Introduction
Iterated function systems (IFSs) have been studied intensively since the 1980s by several
groups of researchers, including Bandt, Barnsley, Dekking, Falconer, Graf, Hata, Hutchin-
son, Mauldin, Schief, Simon, Solomyak, and Urbański. For a very selective sampling of
such research see [2–4, 9, 12, 13, 20, 24, 26, 33, 35]. Much of the early research on IFSs
focused on systems with a finite number of Euclidean similarities as generators. Since the
1990s the theory has been extended to handle systems with countably many conformal
maps. Mauldin and Urbański were among the pioneers of this extension of IFS theory,
first to the study of infinite conformal iterated function systems (CIFSs), and then to their
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2 T. Das and D. S. Simmons

generalizations, namely, conformal graph directed Markov systems (CGDMSs) that may
be used to study Fuchsian and Kleinian group limit sets as well as Julia sets associated
with holomorphic and meromorphic iteration; see [24, 26].

In particular, the CIFS/CGDMS framework may be leveraged to encode a variety of
sets that appear naturally at the interfaces of dynamical systems, fractal geometry and
Diophantine approximation. In particular, with an eye on the focus of our paper, one
can encode real numbers via their continued fraction expansions leading to the Gauss
continued fraction IFS, which is a prime example of an infinite CIFS whose generators are
the Möbius maps x �→ 1/(a + x) for a ∈ N. Given any subset A ⊂ N, let �A denote the
set of all irrationals x ∈ [0, 1] whose continued fraction partial quotients all lie in A. Then
�A may be expressed as the limit set of the subsystem of the Gauss IFS that comprises the
maps x �→ 1/(a + x) for a ∈ A; see, for example, [7, 18, 25].

We focus on �P , the prime Cantor set of our title, that is, the Cantor set of irrationals
whose continued fraction entries are prime numbers. Let δ = δP denote the common value
[25, Theorems 2.7 and 2.11] for the Hausdorff and packing dimensions of �P . Using a
result due to Erdős [10] guaranteeing the existence of arbitrarily large two-sided gaps in
the sequence of primes, Mauldin and Urbański [25, Corollaries 4.5 and 5.6] proved that
despite there being a conformal measure and a corresponding invariant Borel probability
measure for this CIFS, the δ-dimensional Hausdorff and packing measures were zero and
infinity, respectively. (Such phenomena cannot occur in the setting of finite-alphabet Gauss
IFSs, since their limit sets are Ahlfors regular.) This result led naturally to the surprisingly
resistant problem, first stated by Mauldin and Urbański in [25, Problem 2 in §7] and later
repeated by Mauldin in the 2013 Erdős centennial volume [23, Problem 7.1], of determining
whether there was an appropriate dimension function with respect to which the Hausdorff
and packing measures of �P were positive and finite. The study of such dimension
functions, called exact dimension functions, has offered mathematicians myriad challenges
over the past century. A very selective sampling of results follows: for Liouville numbers
see [27]; for Bedford–McMullen self-affine carpets see [28, 29]; for geometrically finite
Kleinian limit sets see [34]; and for random recursive constructions, Brownian sample
paths and beyond see [13, 38].

2. Main theorems
We start by stating our main results; precise definitions will follow in the next section.
Let δ = δP denote the common value [25, Theorems 2.7 and 2.11] for the Hausdorff and
packing dimensions of �P . If μ is a locally finite Borel measure on R, then we let

Hψ(μ)
def= inf{Hψ(A) : μ(R \ A) = 0},

Pψ(μ) def= inf{Pψ(A) : μ(R \ A) = 0}.

A function ψ is doubling if for all C1 ≥ 1, there exists C2 ≥ 1 such that for all x, y with
C−1

1 ≤ x/y ≤ C1, we have C−1
2 ≤ ψ(x)/ψ(y) ≤ C2.

THEOREM 2.1. Let μ = μP be the conformal measure on �P , and let ψ be a doubling
dimension function such that�(r) = r−δψ(r) is monotonic. Then Hψ(μ) = 0 if the series
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Exact dimension functions of the prime continued fraction Cantor set 3

∞∑
k=1

y(1−2δ)/(1−δ)

(log y)δ/(1−δ) �y=�(λ−k) (2.1)

diverges, and = ∞ if it converges, for all (equivalently, for any) fixed λ > 1.

Note that 1/2 < δ ≈ 0.657 < 1 [7, Table 1 and §3], so the exponent in the numerator is
negative.

The following corollary negatively resolves [23, Problem 7.1] and part of [25, Problem 2
in §7] for sufficiently regular dimension functions, for example Hardy L-functions [16, 17].

COROLLARY 2.2. For any doubling dimension function ψ such that �(r) = r−δψ(r) is
monotonic, we have Hψ(�P ) ∈ {0, ∞}.
Proof. By way of contradiction suppose that 0 < Hψ(�P ) < ∞. Then Hψ � �P is a
conformal measure on �P and therefore a scalar multiple of μP , and thus Hψ(�P ) =
Hψ(Hψ � �P ) ∈ {0, ∞} by Theorem 2.1, a contradiction.

Remark. Letting ψ(r) = rδ logs(1/r) with s > (1 − δ)/(2δ − 1) gives an example of a
function that satisfies the hypotheses of Theorem 2.1 such that the series (2.1) converges.
For this function, we have Hψ(�P ) ≥ Hψ(μ) = ∞. This affirmatively answers part of
[25, Problem 2 in §7].

THEOREM 2.3. Let μ be the conformal measure on �P , let θ = 21/40, and let

φ(x) = log(x) log log(x) log log log log(x)

log2 log log(x)
· (2.2)

Then

Pψ(μ) = ∞ where ψ(r) = rδφ−δ(log(1/r)). (2.3)

Pψ(μ) = 0 where ψ(r) = rδ log−s(1/r) if s > θδ/(2δ − 1) (2.4)

We can get a stronger result for packing measure by assuming the following conjecture.

Conjecture 2.4. Let pn denote the nth prime, and let dn = pn+1 − pn. For each k ≥ 1 let

Rk
def= lim sup

n→∞
min(dn+1, . . . , dn+k)

log2(pn)
·

Then 0 < Rk < ∞ for all k ∈ N.

Remark. The case k = 1 of Conjecture 2.4 is known as the Cramér–Granville conjecture.
Early heuristics led Harald Cramér to conjecture that it is true with R1 = 1 [8]. Applying
Cramér’s heuristics to the case k ≥ 2 of Conjecture 2.4 yields the prediction that
Rk = 1/k. Specifically, assume that each integer n has probability 1/log(n) of being
prime. Under this assumption, for m ≤ n the probability that no integers in an interval
(n, n+m] are prime is approximately (1 − 1/log(n))m 
 exp(−m/log(n)). Thus, the
probability that dn > m is approximately exp(−m/log(pn)), since dn > m if and only if
the interval (pn,pn+m] has no primes. So the probability that min(dn+1, . . . , dn+k) >m
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4 T. Das and D. S. Simmons

is approximately exp(−km/log(pn)). Now fix a constant C > 0. The probability that
min(dn+1, . . . , dn+k) ≥ C log2(pn) is approximately exp(−kC log2(pn)/log(pn)) =
p−kC
n . Now, by the Borel–Cantelli lemma, the probability is 1 that min(dn+1, . . . , dn+k) ≥
C log2(pn) for infinitely many n if and only if the series

∑
n p

−kC
n diverges, which by the

prime number theorem is true if and only if C ≤ 1/k. It follows (under this probabilistic
model) that Rk = 1/k, where Rk is as in Conjecture 2.4.

However, improved heuristics now suggest that R1 = 2e−γ , where γ is the
Euler–Mascheroni constant; see [14, 15, 30]. So perhaps an appropriate correction would
be Rk = 2e−γ /k.

THEOREM 2.5. If the cases k = 1, 2 of Conjecture 2.4 are true, then Pψ(μ) ∈ (0, ∞),
where ψ is given by the formula

ψ(r) = rδ log−2δ log(1/r). (2.5)

Note that the cases k = 1, 2 of Conjecture 2.4 correspond to information about the
lengths of one-sided and two-sided gaps in the primes, respectively.

Question 2.6. Determine whether (2.5) is an exact dimension function for the prime
Cantor set, that is, whether 0 < Pψ(�P ) < ∞.

2.1. Outline of the proofs. The basic idea of the proofs is to use the Rogers–Taylor–Tricot
density theorem (Theorem 3.5), which relates the Hausdorff and packing measures of a
measure μ to the upper and lower densities

D
ψ

μ(x)
def= lim sup

r↘0

μ(B(x, r))
ψ(r)

,

Dψμ(x)
def= lim inf

r↘0

μ(B(x, r))
ψ(r)

·

at μ-almost every point x ∈ R. We use the Roger–Taylor–Tricot density theorem as applied
to the conformal measure μ. The next step is to estimate these densities using a global
measure formula (Theorem 4.5), which relates the μ-measure of a ball B(x, r) to the
μ-measure of certain cylinders contained in that ball. Here, a ‘cylinder’ is a set of the
form [ω] = φω([0, 1]), where φω is a composition of elements of the Gauss IFS (cf. §3).
This allows us to estimate D

ψ

μ(x) and Dψμ(x) in terms of certain sets Jk,α,ε ⊂ E, where E

is the set of primes (see Proposition 4.6 for more details). Specifically, D
ψ

μ(x) and Dψμ(x)
can be estimated in terms of certain sets Sα,1 and Sα,−1, respectively.

Next, we need to estimate the μ-measure of x such that D
ψ

μ(x) = 0 (respectively,

D
ψ
μ(x) = 0). This is done via Lemma 4.4, which relates the μ-measure of Sα,1

(respectively, Sα,−1) to the μ-measures of Jk,α,1 (respectively, Jk,α,−1). Specifically, the
former is 0 if and only if the latter series converges. So the next thing we need to do is
estimate the series

∑
k μ(Jk,α,ε); this is done in Lemma 4.8 for the case of a general Gauss

IFS (φa)a∈E . Finally, in §5 we perform further computations in the case where E is the set
of primes, yielding Theorems 2.1, 2.3, and 2.5.
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Exact dimension functions of the prime continued fraction Cantor set 5

2.2. Layout of the paper. In §3 we introduce preliminaries such as the concept of Gauss
IFSs and Hausdorff and packing dimensions, as well as the Rogers–Taylor–Tricot theorem
and its corollary. In §4 we prove some results that hold in the general setting of Gauss
IFSs, which are used to prove our main theorems but may also be interesting in their own
right. Finally, in §5 we specialize to the case of the prime Gauss IFS, allowing us to prove
our main theorems.

3. Preliminaries and notation
Convention 3.1. In what follows,A � B means that there exists a constantC > 0 such that
A ≤ CB. A 
 B means A � B � A. A �+ B means there exists a constant C such that
A ≤ B + C. A �+,× B means that there exist constants C1, C2 such that A ≤ C1B + C2.

Convention 3.2. All measures and sets are assumed to be Borel, and measures are assumed
to be locally finite. Sometimes we restate these hypotheses for emphasis.

Recall that the continued fraction expansion of an irrational number x ∈ (0, 1) is the
unique sequence of positive integers (an) such that

x = [0; a1, a2, . . .] def= 1

a1 + 1

a2 + . . .

GivenE ⊂ N, we define the set�E to be the set of all irrationals in (0, 1)whose continued
fraction expansions lie entirely in E. Equivalently,�E is the image of EN under the coding
map π : NN → (0, 1) defined by π((an)) = [0; a1, a2, . . .].

The set �E can be studied dynamically in terms of its corresponding Gauss iterated

function system, that is, the collection of maps �E
def= (φa)a∈E , where

φa(x)
def= 1
a + x

·
(The Gauss IFS �E is a special case of a conformal iterated function system (see, for
example, [7, 24, 25]), but in this paper we deal only with the Gauss IFS case.) Let
E∗ = ⋃

n≥0 E
n denote the collection of finite words in the alphabet E. For each ω ∈ E∗,

let φω = φω1 ◦ · · · ◦ φω|ω| , where |ω| denotes the length of ω. Then

π(ω) = lim
n→∞ φω�[1,n](0).

Equivalently, π(ω) is the unique intersection point of the cylinder sets [ω � [1, n]], where

[ω] def= φω([0, 1]).

Next, we define the pressure of a real number s ≥ 0 to be

PE(s)
def= lim

n→∞
1
n

log
∑
ω∈En

‖φ′
ω‖s ,

where ‖φ′
ω‖ def= supx∈[0,1] |φ′

ω(x)|. The Gauss IFS �E is called regular if there exists
δ = δE ≥ 0 such that PE(δE) = 0. The following result was proven in [24].
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PROPOSITION 3.3. [24, Theorem 3.5] Let�E be a regular (Gauss) IFS. Then there exists
a unique measure μ = μE on �E such that

μE(A) =
∑
a∈E

∫
φ−1
a (A)

|φ′
a(x)|δE dμE(x)

for all A ⊂ [0, 1].

The measureμ appearing in Proposition 3.3 is called the conformal measure of�E , and
δE is called the conformal dimension of �E . Recall that the bounded distortion property
(cf. [24, (2.9)]) states that

|φ′
ω(x)| 
 ‖φ′

ω‖ for all ω ∈ E∗ and x ∈ [0, 1].

This implies that the measure of a cylinder set [ω] satisfies

μ(ω)
def= μ([ω]) 
 ‖φ′

ω‖δ
and that

μ(ωτ) 
 μ(ω)μ(τ) for all ω, τ ∈ E∗. (3.1)

Convention 3.4. We write μ(A) = ∑
ω∈A μ(ω) for all A ⊂ E∗, and μ(A) = μ(π(A))

for all A ⊂ EN.

The aim of this paper is to study the Hausdorff and packing measures of the measure
μP , where P ⊂ N is the set of primes. To define these quantities, let ψ : (0, ∞) →
(0, ∞) be a dimension function, that is, a continuous increasing function such that
limr→0 ψ(r)= 0. Then the ψ-dimensional Hausdorff measure of a set A ⊂ R is

Hψ(A)
def= lim

ε↘0
inf

{ ∞∑
i=1

ψ(diam(Ui)) : (Ui)∞1

is a countable cover of A with diam(Ui) ≤ ε for all i
}

and the ψ-dimensional packing measure of A is defined by the formulas

P̃ψ(A)
def= lim

ε↘0
sup

{ ∞∑
j=1

ψ(diam(Bj )) :
(Bj )

∞
1 is a countable disjoint collection of balls

with centers in A and with diam(Bj ) ≤ ε for all j

}

and

Pψ(A) def= inf
{ ∞∑
i=1

P̃ψ(Ai) : A ⊂
∞⋃
i=1

Ai

}
.

A special case is when ψ(r) = rs for some s > 0, in which case we write Hψ = Hs and
Pψ = Ps .

If μ is a locally finite Borel measure on R, then we let

Hψ(μ)
def= inf{Hψ(A) : μ(R \ A) = 0},

Pψ(μ) def= inf{Pψ(A) : μ(R \ A) = 0}.
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Exact dimension functions of the prime continued fraction Cantor set 7

This is analogous to the definitions of the (upper) Hausdorff and packing dimensions of μ;
see [11, Proposition 10.3].

Remark. The Hausdorff and packing dimensions of sets [11, §2.1] and the (upper)
Hausdorff and packing dimensions of measures [11, Proposition 10.3] can be defined in
terms of Hs and Ps as follows:

dimH (A)
def= sup{s ≥ 0 : Hs(A) > 0}, dimH (μ)

def= sup{s ≥ 0 : Hs(μ) > 0},
dimP (A)

def= sup{s ≥ 0 : Ps(A) > 0}, dimP (μ)
def= sup{s ≥ 0 : Ps(μ) > 0}.

It follows from [25, Theorems 2.7 and 2.11] and Theorems 2.1 and 2.3 above that

dimH (�P ) = dimP (�P ) = dimH (μP ) = dimP (μP ) = δP .

For each point x ∈ R let

D
ψ

μ(x)
def= lim sup

r↘0

μ(B(x, r))
ψ(r)

,

Dψμ(x)
def= lim inf

r↘0

μ(B(x, r))
ψ(r)

·

THEOREM 3.5. (Rogers–Taylor–Tricot density theorem, [39, Theorems 2.1 and 5.4]; see
also [32]) Let μ be a positive and finite Borel measure on R, and let ψ be a dimension
function. Then for every Borel set A ⊂ R,

μ(A) inf
x∈A

1

D
ψ

μ(x)
�× Hψ(A) �× μ(R) sup

x∈A
1

D
ψ

μ(x)
, (3.2)

μ(A) inf
x∈A

1

D
ψ
μ(x)

�× Pψ(A) �× μ(R) sup
x∈A

1

D
ψ
μ(x)

· (3.3)

COROLLARY 3.6. Let μ, ψ be as in Theorem 3.5. Then

Hψ(μ) 
× ess sup
x∼μ

1

D
ψ

μ(x)
, (3.4)

Pψ(μ) 
× ess sup
x∼μ

1

D
ψ
μ(x)

· (3.5)

Here the implied constants may depend on μ and ψ , and ess supx∼μ denotes the essential
supremum with x distributed according to μ.

Proof. We prove (3.4); (3.5) is similar. For the � direction, take

A =
{
x :

1

D
ψ

μ(x)
≤ ess sup

y∼μ
1

D
ψ

μ(y)

}

in the right half of (3.2). A has full μ-measure, so Hψ(μ) ≤ Hψ(A). For the � direction,
let B be a set of full μ-measure, fix t < ess supy∼μ(1/D

ψ

μ(y)), and let
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8 T. Das and D. S. Simmons

A = B ∩
{
x :

1

D
ψ

μ(x)
≥ t

}
.

Then μ(A) > 0. Applying the left half of (3.2), using Hψ(A) ≤ Hψ(B), and then taking
the infimum over all B and supremum over t yields the � direction of (3.4).

Remark. For a doubling dimension function ψ and a conformal measure μ = μE , the
ess sup in (3.4)–(3.5) can be replaced by ess inf due to the ergodicity of the shift
map σ with respect to μ [24, Theorem 3.8]. Indeed, a routine calculation shows that
D
ψ

μ(x) 
 D
ψ

μ(σ(x)) for all x, whence ergodicity implies that the function x �→ D
ψ

μ(x)

is constant μ-almost everywhere, and similarly for x �→ D
ψ
μ(x).

Terminological note. If ψ is a dimension function such that Hψ(A) (respectively,
Hψ(μ)) is positive and finite, then ψ is called an exact Hausdorff dimension function
for A (respectively, μ). Similar terminology applies to packing dimension.

4. Results for regular Gauss IFSs
In this section we consider a regular Gauss IFS �E and state some results concerning
Hψ(μE) and Pψ(μE), given appropriate assumptions on E andψ . Throughout the section
we will make use of the following assumptions, all of which hold for the prime Gauss
IFS �P .

Assumption 4.1. The set E ⊂ N satisfies an asymptotic law

#(E ∩ [N , 2N]) 
 f (N), (4.1)

where f is regularly varying with exponent s ∈ (δ, 2δ). (A function f is said to be regularly
varying with exponent s if for all a > 1, we have limx→∞(f (ax)/f (x)) = as .) For
example, if E is the set of primes, then by the prime number theorem f (N) = N/ log(N)
satisfies (4.1), and f is regularly varying with exponent s = 1 ∈ (δ, 2δ), since 1/2<δP < 1.

Assumption 4.2. There exists λ > 1 such that for all 0 < r ≤ 1,

μ({a ∈ E : λ−1r < ‖φ′
a‖ ≤ r}) 
 μ({a ∈ E : ‖φ′

a‖ ≤ r}).
For example, if E is the set of primes, then this assumption follows from the prime number
theorem via a routine calculation showing that both sides are 
 rδ/log(1/r).

Assumption 4.3. The Lyapunov exponent − ∑
a∈E μ(a) log ‖φ′

a‖ is finite. Note that this
is satisfied when E is the set of primes, since μ(a) log ‖φ′

a‖ 
 a−2δ log(a) and δ > 1/2.

For each k ∈ N, let

Wk
def= {ω ∈ E∗ : λ−(k+1) < ‖φ′

ω‖ ≤ λ−k}. (4.2)

Note that although the sets ([ω])ω∈Wk are not necessarily disjoint, there is a uniform bound
(depending on λ) on the multiplicity of the collection, that is, there exists a constant C
independent of k such that supx{#{ω ∈ Wk : x ∈ [ω]}} ≤ C.
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Exact dimension functions of the prime continued fraction Cantor set 9

LEMMA 4.4. Assume that Assumption 4.2 holds. Let J = (Jk)
∞
1 be a sequence of subsets

of E, and let

�J
def=

∞∑
k=1

μ(Jk),

SJ
def= {ω ∈ EN : there exist infinitely many (n, k) such that ω � n ∈ Wk , ωn+1 ∈ Jk}.

Then μ(SJ ) > 0 if �J = ∞, and μ(SJ ) = 0 otherwise.

Proof. For each k ∈ N, let

Ak =
⋃

{[ωa] : ω ∈ Wk , a ∈ Jk}.
We claim that
(1) μ(Ak) 
 μ(Jk) and that
(2) the sequence (Ak)∞1 is quasi-independent, meaning thatμ(Ak ∩ A�) � μ(Ak)μ(A�)

whenever k �= �.
Proof of (1). Since the collection ([ω])ω∈Wk has bounded multiplicity, we have

μ(Ak) 

∑
ω∈Wk

∑
a∈Jk

μ(ωa) 

∑
ω∈Wk

μ(ω)μ(Jk)

and ∑
ω∈Wk

μ(ω) 

∑

ω∈Wk‖φ′
ω�|ω|−1‖>λ−k

μ(ω) (since([ω])ω∈Wkhas bounded multiplicity)



∑

ω∈E∗‖φ′
ω‖>λ−k

∑
a∈Eωa∈Wk

μ(ω)μ(a)



∑

ω∈E∗‖φ′
ω‖>λ−k

μ(ω)
∑

a∈E‖φ′
ωa‖≤λ−k

μ(a) (by Assumption 4.2)



∑

ω∈E∗ ‖φ′
ω‖>λ−k

∑
a∈E‖φ′

ωa‖≤λ−k
μ(ωa) = μ([0, 1]) = 1.

Proof of (2). Let k < �. Then

μ(Ak ∩ A�) =
∑
ω∈Wk

∑
a∈Jk

∑
τ∈E∗ωaτ∈W�

∑
b∈J�

μ(ωaτb)



∑
ω∈Wk

μ(ω)
∑
a∈Jk

μ(a)
∑

τ∈E∗ωaτ∈W�
μ(τ)μ(J�)

� μ(Jk)μ(J�) 
 μ(Ak)μ(A�),

where the � in the last line is because the collection {[τ ] : τ ∈ E∗, ωaτ ∈ W�} has
bounded multiplicity.

Now if
∑
k μ(Jk) < ∞, the convergence case of the Borel–Cantelli lemma completes

the proof. If
∑
k μ(Jk) = ∞, then (2) implies that condition [5, (3)] holds, so [5, Lemma

DBC] completes the proof.

https://doi.org/10.1017/etds.2024.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.57


10 T. Das and D. S. Simmons

THEOREM 4.5. (Global measure formula for Gauss IFSs) Let�E be a regular Gauss IFS.
Then for all x = π(ω) ∈ �E and r > 0, there exists n such that

[ω � n+ 1] ⊂ B(x, Cr) (4.3)

and

M(x, n, r) ≤ μ(B(x, r)) � M(x, n, Cr), (4.4)

where

M(x, n, r) def=
∑
a∈E

[(ω�n)a]⊂B(x,r)

μ((ω � n)a),

and where C ≥ 1 is a uniform constant.

We call this theorem a ‘global measure formula’ due to its similarity to other global
measure formulas found in the literature, such as [37, §7], [36, Theorem 2].

Proof. Note that the first inequality M(x, n, r) ≤ μ(B(x, r)) follows trivially from
applying μ to both sides of the inclusion

⋃{[τa] ⊂ B(x, r) : a ∈ E} ⊂ B(x, r).
Given x = π(ω) ∈ �E and r > 0, let m ≥ 0 be maximal such that B(x, r) ∩�E ⊂

[ω � m]. By applying the inverse transformation φ−1
ω�m to the setup and using the bounded

distortion property we may without loss of generality assume that m = 0, or equivalently
that B(x, r) intersects at least two top-level cylinders. We now divide into two cases.
• If [ω1] ⊂ B(x, r), then we claim that

B(x, r) ∩�E ⊂
⋃
a∈E

[a]⊂B(x,Cr)

[a]

which guarantees (4.4) with n = 0. Indeed, if y = π(τ) ∈ B(x, r) ∩�E , then
1/(τ1 + 1) ≤ π(τ) ≤ π(ω)+ r ≤ 1/ω1 + r and thus

diam([τ1]) 
 1
τ 2

1
� max

(
1
ω2

1
, r2

)

 diam([ω1])+ r2 ≤ 2r + r2 � r .

• If [ω1] is not contained in B(x, r), then one of the endpoints of [ω1], namely 1/ω1 or
1/(ω1 + 1), is contained in B(x, r), but not both. Suppose that 1/ω1 ∈ B(x, r); the
other case is similar. Now for all N ∈ E such that [(ω1 − 1) ∗ 1 ∗N] ∩ B(x, r) �= ∅
(where ∗ denotes concatenation), we have

r ≥ d(1/ω1, [(ω1 − 1) ∗ 1 ∗N]) 
 1/(ω2
1N) 
 d(1/ω1, min([ω1 ∗N]))

and thus [ω1 ∗N] ⊂ B(1/ω1, Cr) ⊂ B(x, (C + 1)r) for an appropriately large
constant C. Applying μ and summing over all such N gives
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μ(B(x, r)) ≤ μ([ω1] ∩ B(x, r))+
∑
N∈E

[(ω1−1)∗1∗N]∩B(x,r) �=∅

μ([(ω1 − 1) ∗ 1 ∗N])

�
∑
N∈E

[ω1∗N]⊂B(x,(C+1)r)

μ([ω1 ∗N])

which implies (4.4) with n = 1. On the other hand, since

r ≥ d(x, 1/ω1) 
 1/(ω2
1ω2) ≥ 1/(ω2

1ω
2
2) 
 diam([ω � 2]),

we have [ω � 2] ⊂ B(x, Cr) as long as C is sufficiently large.

Fix ε ∈ {±1} (loosely speaking, ε = 1 when we are trying to prove results about
Hausdorff measure, and ε = −1 when we are trying to prove results about packing
measure), a real number α > 0, and a doubling dimension function ψ(r) = rδ�(r). We
will assume that � is ε-monotonic, meaning that � is decreasing if ε = 1 and increasing
if ε = −1. Fix α > 0, and for each k ∈ N let

Jk,α,ε
def= {a ∈ E : there exists r ∈ [‖φ′

a‖, 1] with r−δμ(B([a], r)) � α�(λ−kr)}.
Here � denotes ≥ if ε = 1 and ≤ if ε = −1, and λ > 1 is as in Assumption 4.2. Write

Sα,ε
def= SJα,ε for Jα,ε

def= (Jk,α,ε)
∞
k=1,

as defined in Lemma 4.4. Note that Sα,1 grows smaller as α grows larger, while Sα,−1 grows
larger as α grows larger.

PROPOSITION 4.6. For all ω ∈ EN,

sup{α : ω ∈ Sα,1} 
 D
ψ

μ(π(ω)),

inf{α : ω ∈ Sα,−1} 
 Dψμ(π(ω)).

Proof. Let x = π(ω), fix r > 0, and let C, n, and τ = ω � n be as in the global measure
formula. Write τ ∈ Wk for some k, as in (4.2). By the global measure formula, we have∑

a∈E
[τa]⊂B(x,r)

μ(τa) ≤ μ(B(x, r)) �
∑
a∈E

[τa]⊂B(x,Cr)

μ(τa).

Now for each β ≥ 1 let

�β
def= μ(B(x, βr))

ψ(βr)
·

Let y = π(σnω), where σ : EN → EN is the shift map. Then there exist constants
C2, C3 > 0 (independent of x, r, n, and k) such that for all s > 0,

B(x, C2λ
−ks) ⊂ φτ (B(y, s)) ⊂ B(x, C3λ

−ks).
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Taking s = C−1
3 λkr and s = C−1

2 Cλkβr , and using the bounded distortion property and
the fact that μ(τ) 
 λ−δk , yields

�1 � 1
ψ(r)

λ−δk ∑
a∈E

[a]⊂B(y,C−1
2 Cλkr)

μ(a),

�β �β
1

ψ(r)
λ−δk ∑

a∈E
[a]⊂B(y,C−1

3 λkβr)

μ(a).

Write b = ωn+1, so that x ∈ [τb] ⊂ B(x, Cr) by (4.3) and thus by the bounded distortion

property y ∈ [b] ⊂ B(y, C4λ
kr) for sufficiently largeC4. ThenR def= 2C4λ

kr ≥ diam([b]).
Thus,

μ(B(y, R)) ≤ μ(B([b], R)) ≤ μ(B(y, 2R)),

so �1 � � �β �β for some C5, C6 > 0, where

�
def= 1
ψ(λ−kR)

λ−δk ∑
a∈E

[a]⊂B([b],R)

μ(a) = 1
�(λ−kR)

R−δ ∑
a∈E

[a]⊂B([b],R)

μ(a).

Applying the global measure formula again yields

�1 � 1
�(λ−kR)

R−δμ(B([b], R)) � �β

for some C7, C8 > 0, and thus

�1 ≥ C9α ⇒ R−δμ(B([b], R)) ≥ α�(λ−kR) ⇒ �β ≥ C10α,

�β ≤ C11α ⇒ R−δμ(B([b], R)) ≤ α�(λ−kR) ⇒ �1 ≤ C12α

for some C9, C10, C11, C12 > 0 and for all α > 0. It follows that

D
ψ

μ(π(ω)) ≥ C13α ⇒ ω ∈ Sα,1 ⇒ D
ψ

μ(π(ω)) ≥ C14α,

Dψμ(π(ω)) ≤ C15α ⇒ ω ∈ Sα,−1 ⇒ Dψμ(π(ω)) ≤ C16α,

since ω ∈ Sα,ε if and only if there exist infinitely many n, k, R such that ω � n ∈ Wk ,
R ∈ [‖φ′

ωn+1
‖, 1], and R−δμ(B([b], R)) � α�(λ−kR), and lim supr↘0 �1 = lim supr↘0

�β = D
ψ

μ(π(ω)) and lim infr↘0 �1 = lim infr↘0 �β = D
ψ
μ(π(ω)). Taking the supre-

mum (respectively, infimum) with respect to α completes the proof.

So to calculate Hψ(μ) or Pψ(μ), we need to determine whether the series
�α,ε

def= ∑∞
k=1 μ(Jk,α,ε) converges or diverges for each α > 0.

LEMMA 4.7. Let ε = 1, and suppose that � is ε-monotonic. If
∑∞
k=1 μ(Jk,α,ε) converges

(respectively, diverges) for all α > 0, then Hψ(μ) = ∞ (respectively, = 0); otherwise
Hψ(μ) is positive and finite. If ε = −1, the analogous statement holds for Pψ(μ).
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Proof. By Corollary 3.6 (and the subsequent remark), it suffices to show that
D
ψ

μ(π(ω)) = 0 (respectively, = ∞) for a positiveμ-measure set of ωs. By Proposition 4.6,
this is equivalent to showing that sup{α : ω ∈ Sα,1} = 0 (respectively, = ∞), or
equivalently that ω /∈ Sα,1 (respectively, ∈ Sα,1) for all α > 0. For each α, to show this for
a positive μ-measure set of ωs it suffices to show that μ(Sα,1) = 0 (respectively, > 0),
which by Lemma 4.4 is equivalent to showing that

∑∞
k=1 μ(Jk,α,1) converges (respectively,

diverges). The cases ε = −1 and where
∑∞
k=1 μ(Jk,α,ε) converges for some α but diverges

for others are proven similarly.

LEMMA 4.8. Assume that Assumptions 4.1, 4.2, and 4.3 all hold, and that � is
ε-monotonic. Then there exists a constant C ≥ 1 such that for all α > 0 and ε ∈ {±1}, we
have

�′
Cεα,ε �+,× �α,ε �+,× �′

C−εα,ε

where

�′
α,−1

def=
∑
a∈E

μ(a) max
1≤x≤a/3

log(1/�−1(α−1x−δ#(B(a, x) ∩ E))),

�′′
α

def=
∑
a∈E

μ(a) log(1/�−1(α−1F(a−1))),

�′
α,1

def= �′
α,−1 +�′′

α .

Here F(r) = rδf (r−1), where f is as in Assumption 4.1.

Proof. Indeed,
∞∑
k=1

μ(Jk,α,ε)

=
∑
a∈E

μ(a)#{k ∈ N : there exists r ∈ [‖φ′
a‖, 1]r−δμ(B([a], r)) � α�(λ−kr)}

=
∑
a∈E

μ(a) max{k ∈ N : there exists r ∈ [‖φ′
a‖, 1]r−δμ(B([a], r)) � α�(λ−kr)}

(since � is decreasing if ε = 1 and increasing if ε = −1)


+,×
∑
a∈E

μ(a) max(0, max
r∈[‖φ′

a‖,1]
logλ(r/�

−1(α−1r−δμ(B([a], r)))))

∈
[ ∑
a∈E

μ(a) logλ ‖φ′
a‖, C

]
+

∑
a∈E

μ(a) max
r∈[‖φ′

a‖,1]
logλ(1/�

−1(α−1r−δμ(B([a], r))))

(since r ≤ 1 � 1/�−1(α−1r−δμ(B([a], r)))).

The first term is finite by Assumption 4.3. The second term can be analyzed by considering

�1,α
def=

∑
a∈E

μ(a) max
a−1≤r≤1

logλ(1/�
−1(α−1r−δμ(B([a], r)))),

�2,α
def=

∑
a∈E

μ(a) max
‖φ′
a‖≤r≤a−1/3

logλ(1/�
−1(α−1r−δμ(B([a], r)))).
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Then

�1,α +�2,α �+,× �α,ε �+,× �1,3δα +�2,3−δα .

Now for r > 0 sufficiently small we have

μ(B(0, r)) ≥
∑
a≥r−1

μ(a) 

∑
a≥r−1

a−2δ



∞∑
k=0

#(E ∩ [2kr−1, 2k+1r−1])(2kr−1)−2δ



∞∑
k=0

f (2kr−1)2−2kδr2δ 
 f (r−1)r2δ

(sincef is regularly varying with exponent s < 2δ)

and similarly for the reverse direction, giving

μ(B(0, r)) 
 r2δf (r−1).

When r ≥ a−1, we have B(0, r) ∩ [0, 1] ⊂ B([a], r) ⊂ B(0, 2r), so

μ(B([a], r)) 
 r2δf (r−1)

and thus �′
1,Cεα ≤ �1,α ≤ �′

1,C−εα , where

�′
1,α

def=
∑
a∈E

μ(a) max
a−1≤r≤1

log(1/�−1(α−1rδf (r−1))).

Since f is regularly varying with exponent s > δ, the function F(r) = rδf (r−1) is
monotonically decreasing for r sufficiently small, while �−1 is decreasing (respectively,
increasing) if ε = 1 (respectively, ε = −1). It follows that the maximum occurs at r = a−1

(respectively, r = 1), corresponding to

�′
1,α 
+

∑
a∈E

μ(a) log(1/�−1(α−1F(a−1))) if ε = 1 (4.5)

and

�′
1,α 
+

∑
a∈E

μ(a) const. < ∞ if ε = −1. (4.6)

The latter series always converges, whereas the former series may either converge or
diverge.

On the other hand, we have

�2,α 

∑
a∈E

μ(a) max
a−2≤r≤a−1/3

log(1/�−1(α−1r−δμ(B([a], r)))).

Using the change of variables r = a−2x and the fact that μ(b) 
 μ(a) 
 a−2δ for all
b ∈ E such that B([a], r) ∩ [b] �= ∅, we get �′

2,Cεα � �2,α � �′
2,C−εα , where

�′
2,α

def=
∑
a∈E

μ(a) max
1≤x≤a/3

log(1/�−1(α−1x−δ#(B(a, x) ∩ E))) (4.7)

and C ≥ 1 is a constant. Combining (4.5), (4.6), and (4.7) yields the conclusion.
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5. Proofs of main theorems
In this section we consider the Gauss IFS�P , where P is the set of primes. We begin with
a number-theoretic lemma.

LEMMA 5.1. For all δ < 1,

#(P ∩ B(a, x)) � (x/a)δf (a) for 1 ≤ x ≤ a/3 (5.1)

where f (N) = N/ log(N) is as in Assumption 4.1.

Proof. A well-known result of Hoheisel [19] (see also [6, Ch. V] for a book reference)
states that there exists θ < 1 such that

#(P ∩ [a, b]) 
 b − a

log(a)
if aθ ≤ b − a ≤ a. (5.2)

(This result has seen numerous improvements (see [31] for a survey), but it does not matter
very much for our purposes, although the lower bound does make a difference in our
upper bound for the exact packing dimension. The most recent improvements we were
aware of are θ = 6/11 + ε for the upper bound [21] and θ = 21/40 for the lower bound
[1, pp. 562].)

It follows that

#(P ∩ B(a, x)) � x

log(a)
if aθ ≤ x ≤ a/3.

In this case, since δ < 1 and x ≤ a we have

x

log(a)
= x

a
f (a) ≤

(
x

a

)δ
f (a),

and combining yields (5.1) in this case. On the other hand, if 1 ≤ x ≤ aθ , then

#(P ∩ B(a, x)) ≤ 2x + 1 � (x/a)δf (a),

since

x1−δ ≤ a(1−δ)θ � a1−δ/ log(a),

demonstrating (5.1) for the second case.

Thus, for appropriate C ≥ 1,

�′
α,−1 ≤

∑
a∈P

μ(a) log(1/�−1(Cα−1 max
1≤x≤a/3

x−δ(x/a)δf (a)))

=
∑
a∈P

μ(a) log(1/�−1(Cα−1a−δf (a)))

=
∑
a∈P

μ(a) log(1/�−1(Cα−1F(a−1))) 
+ �′′
C−1α

.

It follows that �′
α,1 � �′′

C−1α
.
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Proof of Theorem 2.1. Set ε= 1 and E=P . If� is increasing, then Hψ(μ)�Hδ(μ) = 0
and the series (2.1) diverges, so we may henceforth assume that � is decreasing, allowing
us to use Lemma 4.8. Using the Iverson bracket notation

[�] =
{

1, � true,
0, � false,

we have

�′′
α 
+

∑
a∈P

μ(a)

∞∑
k=1

[k ≤ logλ(1/�
−1(α−1F(a−1))]

=
∑
a∈P

μ(a)

∞∑
k=1

[F−1(α�(λ−k)) ≥ a−1]



∞∑
k=1

∑
a∈P

a≥1/F−1(α�(λ−k))

a−2δ



∞∑
k=1

x1−2δ

log x
�x=1/F−1(α�(λ−k))

Now we have f (x)= x/ log x, thusF(r)= rδ−1/ log(r−1) and F−1(x)
 (x log x)1/(δ−1).
So we can continue the computation as



∞∑
k=1

x1−2δ

log x
�x=(y log y)1/(1−δ),y=α�(λ−k)



∞∑
k=1

(y log y)(1−2δ)/(1−δ)

log y
�y=α�(λ−k)



∞∑
k=1

(y log y)(1−2δ)/(1−δ)

log y
�y=�(λ−k) .

If this series converges for all α > 0, then so do �′
α,1 and (by Lemma 4.8)

∑
k μ(Jk,α,1),

and thus by Lemma 4.7 we have Hψ(μ) = ∞. On the other hand, if the series diverges,
then so does

∑
k μ(Jk,α,1) for all α > 0, and thus by Lemma 4.7 we have Hψ(μ) = 0.

Proof of Theorem 2.3. We can get bounds on the exact packing dimension of μP by using
known results about the distribution of primes. First, we state the strongest known lower
bound on two-sided gaps.

THEOREM 5.2. [22] Let pn denote the nth prime and let dn = pn+1 − pn. For all k,

lim sup
n→∞

min(dn+1, . . . , dn+k)
φ(pn)

> 0

where φ is as in (2.2).
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Let k = 2 and let (n�) be a sequence along which the limit superior is achieved, and
let a� = pn�+2 ∈ P for some � ∈ N, so that P ∩ B(a�, x) = {a�}, where x = cφ(a�) for
some constant c > 0. Then we have

�′
α,−1 �

∑
a∈P

a−2δ log(1/�−1(α−1x−δ#(P ∩ B(a, x))))

≥
∑
�∈N

a−2δ
� log(1/�−1(α−1c−δφ(a�)−δ)).

Let ψ(r) = rδφ−δ(log(1/r)) as in (2.3), so that �(r) = φ−δ(log(1/r)) and �−1(x) =
exp(−φ−1(x−1/δ)). Note that

φ−1(x) = log(1/�−1(x−δ)) 
 ex
log2 x

x log log x
,

and thus, letting α = c−δγ−δ ,

a−2δ log(1/�−1(α−1c−δφ(a)−δ)) = a−2δφ−1(γ φ(a))


 a−2δaγ

so that�′
α,−1 diverges for γ >2δ. Combining with Lemmas 4.7 and 4.8 demonstrates (2.3).

On the other hand, we use the lower bound of Hoheisel’s theorem (5.2) to get an upper
bound on the exact packing dimension. Let θ = 21/40. Fix a ∈ P and 1 ≤ x ≤ a/3, and
let θ = 21/40 as in (5.1). If x ≥ aθ , then we have

x−δ#(P ∩ B(a, x)) � x−δ x

log(a)
≥ a−θδ aθ

log(a)
� a−θδ ,

and if x ≤ aθ , then we have

x−δ#(P ∩ B(a, x)) ≥ x−δ ≥ a−θδ .

Thus, for appropriate c2 > 0,

�′
α,−1 


∑
a∈P

a−2δ max
1≤x≤a/3

log(1/�−1(α−1x−δ#(P ∩ B(a, x))))

≤
∑
a∈P

a−2δ log(1/�−1(c2α
−1a−θδ)).

Letting

ψ(r) = rδ log−s(1/r), �(r) = log−s(1/r), �−1(x) = exp(−x−1/s),

we get

�′
α,−1 �

∑
a∈P

a−2δaθδ/s < ∞ if θδ/s < 2δ − 1

Combining with Lemmas 4.7 and 4.8 demonstrates (2.4).
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Proof of Theorem 2.5. In what follows we assume the cases k = 1, 2 of Conjecture 2.4.
From the case k = 1 of Conjecture 2.4, in particular from R1 < ∞, it follows that the gaps
between primes have size dn = O(log2(pn)), and thus for all a ∈ P and 1 ≤ x ≤ a/3,
we have

x−δ#(P ∩ B(a, x)) � x−δ
(

x

log2(a)
+ 1

)
≥ x−δ

(
x

log2(a)

)δ
= 1

log2δ(a)
· (5.3)

On the other hand, from the case k = 2, in particular R2 > 0, it follows that for
an appropriate constant c > 0 there exists an infinite set I ⊂ P (that is, the set
{pn+2 : min(dn+1, dn+2) ≥ c log2(pn+2)} for an appropriate constant c > 0) such that
for all a ∈ I and 1 ≤ x = xa = c log2(a) ≤ a/3 we have P ∩ B(a, x) = {a} and thus

x−δ#(P ∩ B(a, x)) = x−δ 
 1

log2δ(a)
. (5.4)

Now let ψ(r) = rδ log−2δ log(1/r) be as in (2.5), so that �(r) = log−2δ(1/r) and
�−1(x) = exp(− exp(x−1/2δ)). In particular, �−1 is increasing. It follows that for
appropriate C1 ≥ 1 ≥ C2 > 0,

[a ∈ I ] log
(

1/�−1
(
α−1 C1

log2δ(a)

))
≤
(5.4)

max
1≤x≤a/3

log(1/�−1(α−1x−δ#(B(a, x) ∩ P)))

≤
(5.3)

log
(

1/�−1
(
α−1 C2

log2δ(a)

))
,

and plugging into (4.7) yields

∑
a∈I

μ(a) log
(

1/�−1
(
α−1 C1

log2δ(a)

))
≤ �′

α,−1 ≤
∑
a∈P

μ(a) log
(

1/�−1
(
α−1 C2

log2δ(a)

))
.

We get

∑
a∈I

a−2δa(αC
−1
1 )1/2δ � �′

α,−1 �
∑
a∈P

a−2δa(αC
−1
2 )1/2δ .

By choosing α > 0 so that (αC−1
2 )1/2δ < 2δ − 1, we get �′

α,−1 < ∞, and by choosing
α > 0 so that (αC−1

1 )1/2δ > 2δ, we get �′
α,−1 = ∞. It follows then from Lemmas 4.7 and

4.8 that Pψ(μ) is positive and finite.
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