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Abstract

When p > 2, we construct a Hodge-type analogue of Rapoport–Zink spaces under the
unramifiedness assumption, as formal schemes parametrizing ‘deformations’ (up to quasi-
isogeny) of p-divisible groups with certain crystalline Tate tensors. We also define natural rigid
analytic towers with expected extra structure, providing more examples of ‘local Shimura varieties’
conjectured by Rapoport and Viehmann.
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1. Introduction

Let (G,H) be a Hodge-type Shimura datum; that is, (G,H) can be embedded
into the Shimura datum associated to some symplectic similitude group (that is,
Siegel Shimura datum). By choosing such an embedding, the associated complex
Shimura variety Sh(G,H)C obtains a family of abelian varieties (coming from
the ambient Siegel modular variety) together with Hodge cycles.

In this paper, we construct, in the unramified case, a natural p-adic local
analogue of such Shimura varieties; loosely speaking, what we constructed can
be regarded as ‘moduli spaces’ of p-divisible groups equipped with certain
‘crystalline Tate tensors’. Since the precise definition is rather technical, let us
just indicate the idea. Recall that for a Q-Hodge structure H , a Hodge cycle on H
can be understood as a morphism t : 1→ H of Q-Hodge structures, where 1 is
the trivial Q-Hodge structure of rank 1. Our definition of crystalline Tate tensors
is very similar, with Q-Hodge structures replaced by F-crystals equipped with
Hodge filtration. (By F-crystal, we mean Tate twists by any integers of crystals
equipped with nondegenerate Frobenius action. This is to allow the dual of an
F-crystal to be an F-crystal. And we only define the notion of crystalline Tate
tensors for p-divisible groups defined over ‘formally smooth’ base rings, to avoid
subtleties involving torsions of crystalline Dieudonné theory. See Definition 4.6
for the precise definition over nice enough base rings.)

Let G be a connected unramified reductive group over Qp (that is, quasisplit
and split over Qur

p ). We fix a reductive Zp-model of G (which exists by
unramifiedness), and also denote it by G. We choose an element b ∈ G(Q̂ur

p )

which gives rise to a p-divisible group X over Fp in the following sense: for some
finite free Zp-module Λ with faithful G-action, the F-crystal M := (Ẑur

p ⊗ Λ
∗,

b ◦ (σ ⊗ id)) gives rise to a p-divisible group X by the (contravariant) Dieudonné
theory. In this case, we can associate to such b an ‘unramified Hodge-type local
Shimura datum’ (G, [b], {µ−1

}) (cf. Section 2.5).
Let M⊗ denote the direct sum of the combinations of tensor products,

symmetric and alternating products, and duals of M. Then the fact that b ∈ G(K0)

gets encoded as the existence of certain ‘Frobenius-invariant tensors’ (tα) ∈ M⊗;
cf. Lemma 2.5.6, Proposition 2.1.5.

Rapoport and Zink constructed a moduli space RZX parametrizing
‘deformations’ of X up to quasi-isogeny [44, Theorem 2.16]. Here, RZX is a
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formal scheme which is locally formally of finite type over Ẑur
p . Our main result

is roughly of the following form:

THEOREM (4.9.1). Let (G, b) and X be as above, and assume that p > 2.
Then there exists a closed formal subscheme RZG,b ⊂ RZX which classifies
deformations (up to quasi-isogeny) of X with Tate tensors (tα), such that
the Hodge filtration of the p-divisible group is étale-locally given by some
cocharacter in the conjugacy class {µ}. (See Definitions 4.6 and 5.1 for the
precise conditions that define RZG,b.) Furthermore, RZG,b is formally smooth, is
functorial in (G, b), and only depends on the associated unramified Hodge-type
local Shimura datum (G, [b], {µ−1

}) up to isomorphism (and not on the auxiliary
choice of X).

(The assumption that p > 2 is made in order to use the Grothendieck–Messing
deformation theory for the nilpotent ideal generated by p.)

Rapoport and Viehmann conjectured that to any (not necessarily unramified nor
Hodge-type) ‘local Shimura datum’ (G, [b].{µ−1

}), there exists a rigid analytic
tower of ‘local Shimura varieties’ with suitable extra structure [43, Section 5]. In
Section 7, we construct the rigid analytic tower over the generic fibre of RZG,b

equipped with suitable extra structure as predicted in [43, Section 5]; in other
words, we construct ‘local Shimura varieties’ associated to any unramified Hodge-
type local Shimura data when p > 2. (Rapoport and Viehmann also conjectured
that ‘local Shimura varieties’ could be constructed by a purely group-theoretic
means. Note that our construction of ‘local Shimura varieties’ in the unramified
Hodge-type case is not purely group-theoretic as we make crucial use of p-
divisible groups.)

In the case of unramified EL- and PEL-type, we also show that RZG,b recovers
the original construction of Rapoport–Zink space in [44, Theorem 3.25]. See
Proposition 4.7.1 for the precise statement. On the other hand, the theorem
provides Rapoport–Zink spaces for more general class of groups G that do not
necessarily arise from any EL or PEL datum. For example, we may allow G to
be the spin similitude group associated to a split quadratic space over Qp, which
do not arise from any EL or PEL datum if the rank of the quadratic space is at
least 7. Note also that the ‘functoriality’ assertion of the theorem produces some
interesting morphisms between EL and PEL Rapoport–Zink spaces, which may
not be easily seen from the original construction. See Remark 4.9.9 for such an
example involving an ‘exceptional isomorphism’.

Recently, Scholze and Weinstein [48] constructed the ‘infinite-level’ Rapoport–
Zink spaces of EL- and PEL-type, which provides a new approach to study
Repoport–Zink spaces. As remarked in the introduction of [48], for quite a general
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‘local Shimura datum’ (G, [b], {µ−1
})—without requiring G to be unramified,

nor [b] to come from a p-divisible group—it should be possible to construct
the infinite-level Rapoport–Zink space for (G, [b], {µ}) using the technique in
[48]. This approach does not require any formal model at the ‘maximal level’
Rapoport–Zink space, nor does it give a natural formal model, while our approach
is to start with the formal scheme at the hyperspecial maximal level and build
up the rigid analytic tower from there. Perhaps, having a formal scheme at the
hyperspecial maximal level could be useful in some applications; for example,
p-adic uniformization of Hodge-type Shimura varieties; see the next paragraph
for more details. In Section 7.6 we give a construction of RZ∞G,b using ‘finite-
level’ Rapoport–Zink spaces RZKG,b and [48, Theorem D]. Note that there should
be more natural ‘purely infinite-level’ construction of RZ∞G,b, which should work
more generally, but we give our ‘finite-level’ construction just to link our work
with [48].

In the PEL case, Rapoport and Zink also showed that certain arithmetic
quotients of PEL Rapoport–Zink spaces can be related to PEL Shimura varieties,
generalizing the theorem of Drinfeld and Cerednik on p-adic uniformization of
Shimura curves; cf. [44, Ch. VI]. This is a useful tool for studying the mod p
geometry of PEL Shimura varieties—especially, the basic (that is supersingular)
locus—by reducing the question to a purely local problem of studying the
corresponding Rapoport–Zink space. In the sequel of this paper [30], we give
a Hodge-type generalization of this result at odd good reduction primes. In
particular, the result is applicable to GSpin(n, 2) Shimura varieties for any n.

Since the first version of this paper appeared, some alternative constructions of
Hodge-type Rapoport–Zink spaces were developed under some mild restrictions.
Ben Howard and George Pappas [24] gave another construction of Hodge-type
Rapoport–Zink spaces, compatible with ours, in the case when the Hodge-
type local Shimura datum (G, [b], {µ−1

}) comes from a (global) Hodge-type
Shimura datum. Their construction relies on the existence of integral canonical
models of Hodge-type Shimura varieties and the Rapoport–Zink uniformization
for Siegel modular varieties. This global construction is simpler than ours and
automatically gives the Rapoport–Zink uniformization of Hodge-type Shimura
varieties (recovering [30]), while our construction is purely local (as it should be)
and does not require (G, [b], {µ−1

}) to come from a global Shimura datum.
Xinwen Zhu [54] gave a purely group-theoretic (and local) construction of

the perfection of the underlying reduced schemes via mixed characteristic affine
grassmannian. Oliver Bültel and George Pappas [9] gave yet another purely group-
theoretic (and local) construction of Hodge-type Rapoport–Zink spaces via the
theory of (G, µ)-displays if the fixed p-divisible group X does not have any
nontrivial multiplicative or étale part.
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Let us comment on the proof of the main theorem (Theorem 4.9.1). We do
not directly extract defining equations of RZG,b in RZX, but instead we take an
indirect approach. As a starting point, observe that the candidate for the set of
closed points RZG,b(Fp) ⊂ RZX(Fp) is given by the affine Deligne–Lusztig set (cf.
Proposition 2.5.10). Furthermore, Faltings constructed a formally smooth closed
subspace (RZG,b )̂x of the completion (RZX)̂x at x ∈ RZG,b(Fp), which gives a
natural candidate for the completion of RZG,b at x .

We then construct a formal algebraic space RZG,b by patching together Faltings
deformation spaces (RZG,b )̂x via Artin’s algebraization technique (cf. Section 6.1).
(Although Artin’s criterion is only for algebraic spaces, not for formal algebraic
spaces, we apply Artin’s criterion to suitable ‘closed subspaces’ which turn out
to be algebraic spaces.) The key step is to show that Tate tensors, constructed
formal-locally over (RZG,b )̂x by Faltings, patch together and spread out to some
neighbourhood of x whenever they should (cf. Propositions 5.2 and 5.6).

The main reason why we exclude p = 2 is that the standard PD structure
on pR is not nilpotent unless either p > 2 or pR = 0. In particular, if p = 2
then we cannot apply the Grothendieck–Messing deformation theory [39] for the
thickenings R � R/p. The main results of this paper will be extended to the case
when p = 2 in the author’s forthcoming paper.

Structure of the paper. In Section 2, we recall and introduce some basic
definitions, such as (iso)crystals with G-structures, filtrations, and cocharacters.
In Section 3, we review Faltings’s explicit construction of the ‘universal
deformation’ of p-divisible groups with Tate tensors. The theorem on the
existence of RZG,b is stated in Section 4, which is proved in Section 5 and
Section 6.

In Section 7, we define various extra structures on RZG,b as predicted in [43,
Section 5], including rigid analytic tower and the Hecke and quasi-isogeny group
actions. In Section 8, we show the existence and integrality of ‘étale realizations’
of the crystalline Tate tensors, which are needed for constructing the rigid analytic
tower in Section 7.

2. Definitions and preliminaries

2.1. Notation. For any ring R, an R-module M , and an R-algebra R′, we write
MR′ := R′⊗R M . Similarly, if R is a noetherian adic ring and X is a formal scheme
over Spf R, then for any continuous morphism of adic rings R → R′ we write
XR′ := X×Spf R Spf R′.

For any ring O , we let AlgO denote the category of O-algebras. Now assume
that O is a p-adic discrete valuation ring, and we let NilpO denote the category of
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O-algebras R where p is nilpotent. Let ARO denote the category of artin local O-
algebras with residue field O/mO . Note that any (not necessarily p-adic) locally
noetherian formal scheme X over Spf O defines a set-valued functor on NilpO by
X(R) := HomO(Spec R,X) for R ∈ NilpO .

We work with formal schemes that satisfy the following finiteness condition:

DEFINITION 2.1.1. Let O be a p-adic discrete valuation ring. A locally
noetherian formal O-scheme X is locally formally of finite type over Spf O
if Xred is locally of finite type over O/mO (where Xred is the closed subscheme of
X defined by the ideal of locally topologically nilpotent sections).

A formal O-scheme X is formally of finite type if it is quasicompact and locally
formally of finite type over Spf O .

REMARK 2.1.2. Let us denote O[[u1, . . . , ur ]]〈v1, . . . , vs〉 to be the completion
of O[u1, . . . , ur , v1, . . . , vs] with respect to (p, u1, . . . , ur ). We say that a
topological O-algebra R is formally finitely generated over O if it can be written
as the quotient of O[[u1, . . . , ur ]]〈v1, . . . , vs〉. Note that the Jacobson radical J
of R is the ideal of topological nilpotent elements, and the natural topology on
R is the J -adic topology, with respect to which R is separated and complete. (In
particular, any maximal ideal of R is necessarily open.)

Now, it follows that an affine formal scheme X= Spf R is formally of finite type
over O if and only if R is a formally finitely generated O-algebra equipped with
the natural topology (that is, the J -adic topology, where J is the Jacobson radical).
Similarly, a locally noetherian formal scheme X over O is locally formally of
finite type over O if and only if X admits an affine open covering {Spf Rξ } where
each Rξ is formally finitely generated over O equipped with the natural topology.

Later in this paper, we work with two (not necessarily equivalent) topologies
on formally finitely generated O-algebras R; namely, the natural topology and
the p-adic topology (cf. Definition 4.6). To minimize confusions, we introduce
the following convention:

(1) If the topology on R is not specified, we always endow R with the J -adic
topology (referred to as the natural topology), where J is the Jacobson
radical. An ideal of definition J0 of R means an ideal of definition for the
natural topology.

(2) By Spf R, we always endow R with the natural topology. If there is any risk
of confusion, we use the notation Spf(R, J0)where J0 is an ideal of definition
for the natural topology.

(3) A formally finitely generated W -algebra R is called formally smooth (over
W if it is formally smooth over W with respect to the natural topology.
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(4) We write Spf(R, (p)) to denote the formal spectrum of R endowed with
the p-adic topology. If p is nilpotent in R (so the p-adic topology on R
is discrete), then we have Spec R = Spf(R, (p)).

Since any maximal ideal of R is open for the natural topology, the natural maps
Spec R→ Spf(R, (p))→ Spf(R, J ) induce bijections on the set of closed points.

Let C be a pseudoabelian symmetric tensor category such that arbitrary
(infinite) direct sum exists. (Pseudoabelian categories are defined in the same
way as abelian categories, except that we only require the existence of kernel for
idempotent morphisms instead of requiring the existence of kernel and cokernel
for any morphism. In practice, the pseudoabelian categories that we encounter are
the category of filtered or graded objects in some abelian category. For definitions
in category theory, see [52] and references therein.) Let 1 denote the unit object
for ⊗-product in C (which exists by axiom of tensor categories).

Let D be a full subcategory of C which is stable under direct sums, tensor
products, and direct factors. Assume furthermore that D is rigid; that is, every
object of D has a dual. (For example, C can be the category of R-modules filtered
by direct factors over R, and D can be the full subcategory of finitely generated
projective R-modules filtered by direct factors.)

DEFINITION 2.1.3. For any object M ∈ D, we let

M⊗ ∈ C

denote the direct sum of any (finite) combination of tensor products, symmetric
products, alternating products, and duals of M . Note that M⊗ = (M∗)⊗.

DEFINITION 2.1.4. Throughout this paper, a reductive group G over a scheme
S means an affine smooth group scheme such that each geometric fibre is a
connected reductive group. (Note that we always impose the connectedness as
a part of the definition of reductive groups.)

PROPOSITION 2.1.5. Let R be either a field of characteristic 0 or a discrete
valuation ring of mixed characteristic. Let G be a reductive group over R, and Λ
a finite free R-module equipped with a closed immersion of algebraic R-groups
G ↪→ GL(Λ). (We identify G with its image in GL(Λ).) Then there exist finitely
many elements sα ∈ Λ⊗ such that G coincides with the pointwise stabilizer of
(sα); that is, for any R-algebra R′ we have

G(R′) = {g ∈ GL(ΛR′) such that g(sα) = sα ∀α}.
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Proof. A more general statement is proved in [32, Proposition 1.3.2].

EXAMPLE 2.1.6. For any ring R, let Λ be a finite free R-module, and ( , ) :
Λ ⊗ Λ � R be a perfect alternating form. Then we construct a tensor s ∈ Λ⊗

from R× · (, ) so that its pointwise stabilizer is GSp(Λ, ( , )). Let c : GSp(Λ, ( , ))
→ Gm be the similitude character, and let R(c) be R as a R-module equipped
with the GSp(Λ, ( , ))-action via c. Then ( , ) induces a GSp(Λ, ( , ))-equivariant
morphism Λ⊗Λ� R(c).

Now, since the pairing ( , ) induces an isomorphism Λ
∼

−→ Λ∗ sending λ ∈
Λ to (λ, ·) ∈ Λ∗, we can view ( , ) as a pairing of Λ∗. Then the natural action
of GSp(Λ, ( , )) on Λ∗ preserves this pairing up to similitude, with similitude
character c−1; that is, we obtain the following GSp(Λ, ( , ))-equivariant morphism

Λ∗ ⊗Λ∗ � R(c−1) = R(c)∗,

induced by ( , ). By double duality, we now obtain a GSp(Λ, ( , ))-equivariant
section R(c) ↪→ Λ ⊗ Λ. (By choosing an R-basis {ei} of Λ, we can make these
maps explicit as follows. Let {e∗i } denote the dual basis ofΛ∗, and we define e⊥i ∈
Λ by the condition (e⊥i , e j) = δi j for any j . Then the pairing ofΛ∗ induced by ( , )
sends e∗i ⊗ e∗j to (e⊥i , e⊥j ). By applying double duality, the map R(c) ↪→ Λ ⊗ Λ

sends the basis 1 ∈ R(c) to
∑

i, j(e
⊥

i , e⊥j ) · (ei ⊗ e j).)
Therefore, ( , ) induces the following GSp(Λ, ( , ))-equivariant endomorphism

Λ⊗Λ� R(c) ↪→ Λ⊗Λ; ei ⊗ e j 7→ (ei , e j)
∑
i ′, j ′

(e⊥i ′ , e⊥j ′) · (ei ′⊗ e j ′). (2.1.7)

(The endomorphism is independent of the choice of {ei}.) We may view this
endomorphism as a tensor s ∈ Λ⊗2

⊗ Λ∗⊗2. Note that replacing ( , ) with any
R×-multiple does not modify s.

We claim that the pointwise stabilizer of s in GLZp(Λ) is GSp(Λ, ( , )).
Indeed, any g ∈ GSp(Λ, ( , )) fixes each of the maps in (2.1.7) by construction.
Conversely, if g ∈ GLR(Λ) fixes s, then it should preserve the image of R(c) ↪→
Λ⊗Λ (that is, the line in generated by

∑
i ′, j ′(e

⊥

i ′ , e⊥j ′) · (ei ′ ⊗ e j ′)). This condition
means that g fixes the pairing on Λ∗ induced by ( , ) up to similitude, which is
equivalent to fixing the pairing ( , ) on Λ up to similitude.

2.2. {µ}-filtrations.

DEFINITION 2.2.1. Let R be any ring and M a finitely generated projective R-
module. For a cocharacter µ : Gm → GLR(M), we define a grading gr•µM so
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that gra
µ(M) is the ‘weight (−a)-part’; in other words, the Gm-action on M via

µ leaves each grading stable, and the resulting Gm-action on gra
µ(M) is given by

Gm
z 7→z−a

−−−→ Gm
z 7→z id
−−−→ GL(gra

µ(M)).

We say that a filtration Fil•M is induced by µ if we can write Fila M =⊕
a′>a gr

a
µM .

In the definition, we chose the sign so that it is compatible with the standard
sign convention in the theory of Shimura varieties (as in [18, 40]).

Let G be a reductive group over Zp. We choose Λ ∈ RepZp
(G) with faithful

G-action, and finitely many tensors (sα) ⊂ Λ⊗ which define G (in the sense of
Proposition 2.1.5). Let X be a locally noetherian formal scheme over SpfZp, and
E a finite-rank locally free OX-module (that is, a vector bundle on X). Let (tα) ⊂
Γ (X,E ⊗) be finitely many global sections.

We introduce a notion of filtrations on E which étale-locally admits a splitting
given by some cocharacter (but such a splitting may not be defined globally); see
Definition 4.6 for the relevant setting.

Given µ : Gm → GW , let us recall the definition of parabolic groups and their
unipotent radicals over W :

PG(µ) := {g ∈ GW | lim
t→0

ad(µ(t))g exists.} ⊂ GW and

UG(µ
−1) := {g ∈ GW | lim

t→0
ad(µ−1(t))g = id} ⊂ GW ,

(2.2.2)

where the existence of the limit is defined as in [14, page 46]. Recall that both
groups are smooth over W ; cf. [14, Proposition 2.1.8(3)].

DEFINITION 2.2.3 (X. Zhu [54, Definition 3.8]). Let µ : Gm → GW be a
cocharacter, and let {µ} denote the G(W )-conjugacy class of µ. A filtration
Fil•E of E is called a {µ}-filtration (with respect to (tα)) if the following formal
scheme

PFil•E
:= IsomOX

(
[E , (tα),Fil•E ], [OX ⊗Zp Λ, (1⊗ sα),Fil•µ]

)
(2.2.4)

is a PG(µ)-torsor. (This notion does not depend on the choice of µ ∈ {µ}.)

REMARK 2.2.5. Note that if there exists a {µ}-filtration of E with respect to (tα),
then the following formal scheme is a G-torsor:

P := IsomOX
([E , (tα)], [OX ⊗Zp Λ, (1⊗ sα)]). (2.2.6)
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If P is a G-torsor, then a filtration Fil•E of E is a {µ}-filtration (with respect
to (tα)) if and only if the following condition holds: for some étale-local section
ς ∈ P(Y) (where Y → X is an étale covering), the filtration (Fil•E )Y of EY

is induced from the conjugate of the cocharacter µ over Y by some element g ∈
G(Y). In the earlier version of this paper, this was stated as the definition of
{µ}-filtration, and Definition 2.2.3 is the equivalent formulation by X. Zhu [54,
Definition 3.8].

REMARK 2.2.7. If G = GL(Λ) and E is a vector bundle over X with rank equal
to rankZp(Λ), then a filtration Fil•E of E is a {µ}-filtration for some {µ} if and
only if each of the graded pieces griE is of constant rank. (And one can write
down {µ} uniquely up to conjugation from the ranks of griE .)

In the setting of Definition 2.2.3, let FlE ,(tα)
G,{µ} denote the functor on formal

schemes over X, which associates to Y
f
−→ X the set of {µ}-filtrations of f ∗E

with respect to ( f ∗tα). We write FlE
{µ} := FlE ,∅

GL(Λ),{µ}, and use the same symbol to
denote the representing formal scheme, which is relatively projective and smooth
over X.

LEMMA 2.2.8. Assume that P (2.2.6) is a G-torsor. Then FlE ,(tα)
G,{µ} can be

represented by a closed formal subscheme of FlE
{µ} which is smooth over X with

nonempty geometrically connected fibres.

Proof. Let us first deduce the lemma when the torsor PFil•E
(2.2.4) is trivial. In

this case, the representing formal scheme is isomorphic to (GW/PG(µ))×Spec W X.
Note that the representability of GW/PG(µ) as a proper smooth W -scheme can
be deduced from [14, Proposition 2.1.8(3)] and the Iwasawa decomposition [8,
Section 4.4]. (Indeed, [14, Proposition 2.1.8(3)] together with the Iwasawa
decomposition shows that GW/PG(µ) admits an open dense subscheme
isomorphic to UG(µ

−1) and its translates by G(W ) covers GW/PG(µ). And
the W -scheme GW/PG(µ) satisfies the valuative criterion for properness thanks
to the properness of each fibre and the Iwasawa decomposition.) Now, the
natural morphism FlE ,(tα)

G,{µ} → FlE
{µ} is a closed immersion, being a proper

monomorphism. (Note that the properness follows from the properness of the
source and the target.)

In general, the natural inclusion FlE ,(tα)
G,{µ} ↪→ FlE

{µ} can be represented by a
closed immersion étale-locally on X, and it respects the étale descent datum. Now
the lemma follows from effectivity of étale descent for closed immersions.

The following corollary is straightforward from Lemma 2.2.8:
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COROLLARY 2.2.9. Assume that X is locally noetherian and P (2.2.6) is a G-
torsor. Then a filtration Fil•E is a µ-filtration if and only if it is so over the
formal neighbourhood X̂x for any closed point x in X.

Let us finish the section with the following trivial but useful lemma:

LEMMA 2.2.10. Let E /X and (tα) be as in Definition 2.2.3, and let Fil•E be a
{µ}-filtration on E . Then we have tα ∈ Γ (X,Fil0E ⊗) for each α.

Proof. Since the claim is étale-local on X, we may assume that the torsor PFil•E

(2.2.4) is trivial. Fixing a trivialization of PFil•E we may assume that the filtration
Fil•E is given by a cocharacter µ : Gm → GX. This means that Fil•E admits
a splitting by the weight decomposition gr•µE using the Gm-action by µ. In
particular, gr0

µE
⊗ is precisely the Gm-invariants (with respect to µ). On the

other hand, the Gm-action fixes each tα as the cocharacter µ factors through the
pointwise stabilizer of (tα). It follows that tα ∈ gr0

µE
⊗ for each α.

2.3. Review on p-divisible groups and crystalline Dieudonné theory.
Throughout the paper, κ be an algebraically closed field of characteristic p > 0
unless stated otherwise. (Most of the time, there is no harm to set κ := Fp). We
set W := W (κ) and K0 := W [ 1

p ]. Let σ denote the Witt vector Frobenius map on
W and K0.

We only consider compatible PD thickenings; that is, the PD structure is
required to be compatible with the standard PD structure on pZp.

If B is a Zp-algebra and b ⊂ B is a PD ideal, then for any x ∈ b we let x [i]

denote the i th divided power.

DEFINITION 2.3.1. We define the isogeny category of p-divisible groups over a
scheme X over SpfZp as follows:

• objects are p-divisible groups over X

• morphisms ι : X 99K X ′ are global sections of the following Zariski sheaf over
X:

QHomR(X, X ′) := Hom(X, X ′)⊗Z Q.

If X is quasicompact (for example, X= Spec R for R ∈ NilpW ) then morphisms
can be understood as equivalence classes of diagrams of the form

X
[pn
]

←−− X
ι′

−→ X ′
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where the equivalence relation is defined by ‘calculus of fractions’. We also say
that ι is defined up to isogeny, and often write ι = 1

pn ι
′ or ι′ = pnι.

We use dashed arrows X 99K X ′ to denote morphisms defined up to isogeny. By
quasi-isogeny ι : X 99K X ′, we mean an isomorphism in the isogeny category;
that is, an invertible global section of QHomR(X, X ′). Let QisgR(X, X ′) be the
set of quasi-isogenies. A quasi-isogeny ι is called an isogeny if ι is an actual map
of p-divisible groups.

We define the height h(ι) of an isogeny ι : X → X ′ to be a locally constant
function on X so that Zariski-locally on X, the order of ker(ι) is ph(ι). We extend
the definition of the height to a quasi-isogenies by

h(p−nι) := h(ι)− h([pn
])

Zariski-locally on X, where ι is an isogeny.

When p is nilpotent on the base, QisgR(X, X ′) satisfies the ‘rigidity property’
analogous to rigidity of crystals; namely, for any B � R with nilpotent kernel
killed by some power of p, and p-divisible groups X and X ′ over B, the natural
morphism

HomB(X, X ′)[ 1
p ] → HomR(X R, X ′R)[

1
p ] (2.3.2)

is bijective. (Cf. [27, Lemma 1.1.3]. Note that it is important to invert p to obtain a
bijection, since to lift a morphism X R → X ′R over B one often needs to introduce
some denominator.) In particular, for a locally noetherian formal scheme X over
Zp, the isogeny categories of p-divisible groups over X and Xred are equivalent
via the pull-back functor.

Let X be a where p is nilpotent, and let X be the closed subscheme of X cut
out by the ideal generated by p. Let iCRIS := (iCRIS,∗, i∗CRIS) : (X/Zp)CRIS →

(X/Zp)CRIS be the morphism of topoi induced from the closed immersion
X ↪→ X. Then iCRIS,∗ and i∗CRIS induce quasi-inverse exact equivalences of
categories between the categories of crystals of quasicoherent (respectively,
finite locally free) OX/Zp

-modules and OX/Zp -modules. (This follows from [15,
Lemma 2.1.4], which can be applied since the natural map iCRIS,∗OX/Zp

→ OX/Zp

is an isomorphism by [4, Section 5.17.3].) In particular, for any crystal D of
quasicoherent OX/Zp -modules, we define the pull-back by the absolute Frobenius
morphism σ : X→ X as follows:

σ ∗D := iCRIS,∗(σ
∗

CRISi∗CRISD).

For a p-divisible group X over X, we have a contravariant Dieudonné crystal
D(X) equipped with a filtration (Lie X)∗ ∼= Fil1

X ⊂ D(X)X by a Zariski-local
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direct factor as a vector bundle on X, where D(X)X is the pull-back of D(X) to
the Zariski site of X. (See [39], [38], or [3] for the construction.) We call Fil1

X
the Hodge filtration for X . If X = Spec R, then we can regard the Hodge filtration
as a filtration on the R-sections Fil1

X ⊂ D(X)(R). From the relative Frobenius
morphism F : XX → σ ∗XX, we obtain the Frobenius morphism F : σ ∗D(X)→
D(X). On tensor products of D(X)’s, we naturally extend the Frobenius structure
and filtration.

We set 1 := D(Qp/Zp) and 1(−1) := D(µp∞). Note that 1 ∼= OX/Zp with
the usual Frobenius structure and Fil1

= 0. We define D(X)∗ to be the OX/Zp -
linear dual with the dual filtration. (Note that the Frobenius structure on D(X)∗ is
defined ‘up to isogeny’.) We set 1(0) := 1 and

1(−c) := 1(−1)⊗c and 1(c) := 1(−c)∗ if c > 0.

For any crystal D with Frobenius structure and Hodge filtration, we set D(r) :=
D⊗ 1(r) for any r ∈ Z. Note that D(X∨) ∼= D(X)∗(−1) by [3, Section 5.3].

We can extend the above definitions for p-divisible groups X over a locally
noetherian formal scheme X over SpfZp as follows. We write X = lim

−→n
Xn

where Xn is a closed subscheme of X cut out by some ideal of definition, and
we set Xn := XXn . Then we define D(X) to be the projective system {D(Xn)}

with respect to the pull-back under the natural inclusion Xn ↪→ Xn+1 (cf. [15,
Section 2.4]), and we carry out all the operations for D(X) on the level of the
projective system {D(Xn)} (such as σ ∗D(X) := {σ ∗D(Xn)}, D(X)∗ := {D(Xn)

∗
},

and so forth). We let D(X)X denote the vector bundle on X given by the projective
system {D(Xn)Xn }, and we obtain the Hodge filtration Fil1

X ⊂ D(X)X given by
the projective system {Fil1

Xn
}. If X = Spf R, then we denote by D(X)(R) the

global sections of D(X)X, and identify Fil1
X with its global section.

DEFINITION 2.3.3. We define the category of isocrystals over X as follows:

• objects are locally free OX/Zp -modules D; we write D[ 1
p ] if we view D as an

isocrystal;

• morphisms are global sections of the Zariski sheaf Hom(D,D′)[ 1
p ] over X. If

X is quasicompact (for example, X = Spec R for R ∈ NilpW ) then morphisms
can be understood as equivalence classes of diagrams of the form

D pn

←− D ι′

−→ D′

where the equivalence relation is defined by ‘calculus of fractions’.

An F-isocrystal over X is a pair (D[ 1
p ], F) where D[ 1

p ] is an isocrystal over X

and F : σ ∗D[ 1
p ]
∼

−→ D[ 1
p ] is an isomorphism of isocrystals.
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For a p-divisible group X , D(X)[ 1
p ] can be naturally viewed as an F-isocrystal.

Note also that the notion of F-isocrystals is closed under direct sums, tensor
products, and duality. So D(X)∗[ 1

p ] is an F-isocrystal although the Frobenius
structure may not be defined on D(X)∗.

We often let 1(−c) denote the F-isocrystal associated to 1(−c).
Note that for any morphism up to isogeny ι : X 99K X ′ of p-divisible groups

over X, we obtain a morphism of isocrystals D(ι) : D(X ′)[ 1
p ] → D(X)[ 1

p ]. If ι is
a quasi-isogeny, then D(ι) is an isomorphism of F-isocrystals.

We now define D(X)⊗ by setting C to be the category of (integral) crystals of
quasicoherent OX/Zp -modules and D ⊂ C to be the full subcategory of finitely
generated locally free objects (cf. Definition 2.1.3). Then the Hodge filtration
on D(X)X induces a natural filtration on D(X)⊗X, and the Frobenius morphism
on D(X) induces an isomorphism of isocrystals F : σ ∗D(X)⊗[ 1

p ]
∼

−→ D(X)⊗[ 1
p ].

More generally, for any quasi-isogeny ι : X 99K X ′ of p-divisible groups over R,
D(ι) extends to

D(ι) : D(X ′)⊗[1/p]
∼

−→ D(X)⊗[1/p].

DEFINITION 2.3.4. For a ring R where p is nilpotent, a surjection B � R is
called p-adic PD thickening if B = lim

←−m
B/pm where B/pm’s form a projective

system of PD thickenings compatible with the PD structure for pZp.
Let X be a p-divisible group over R. For a p-adic PD thickening B � R, we

set
D(X)(B) := lim

←−
m

D(X)(B/pm)

For t : 1→ D(X)⊗ a morphism of crystals, we define the section t (B) of t over
B (or the B-section of t) to be the image of 1 under the map

B = 1(B) t
−→ D(X)(B)⊗.

Let us review the interpretation of crystals and morphisms thereof as modules
with connection and horizontal morphisms thereof, following [15, Section 2.2].
Let R be a formally finitely generated W/pm-algebra for some m, and we choose a
surjection A� R from a formally smooth formally finitely generated W -algebra
A. Let D � R be the p-adic completed PD hull of A � R. (Note that if R is
formally smooth over W/pm , we may choose A so that A/pm

= R, in which case
we have D = A.)

Let Ω̂A denote the module of p-adically continuous Kähler differentials of A.
By [15, Remark 1.3.4], Ω̂A is isomorphic to the module of continuous Kähler
differentials with respect to the natural topology. (In particular, Ω̂A is a locally
free A-module with rank equal to the relative dimension of A over W ; note that
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Ω̂W = 0 as the residue field of W is perfect, so Ω̂A = Ω̂A/W .) Then the universal
p-adically continuous derivation ∇ : A → Ω̂A naturally extends to a p-adically
continuous connection

∇(= ∇D) : D→ D ⊗A Ω̂A;

see [15, (2.2.1.2)] for the formula.
Let E be a crystal of quasicoherent OSpec R/Zp -modules. (Note that we work over

Spec R, not over Spf R with the natural adic topology.) Then one can naturally
define the connection

∇(= ∇E ) : E (D)→ E (D)⊗A Ω̂A (2.3.5)

over ∇D; cf. [15, Remark 2.2.4 d)]. We recall the following result

LEMMA 2.3.6 [15, Proposition 2.2.2]. The connection ∇E is integrable and
topologically quasinilpotent (in the sense of [15, Remark 2.2.4 c]). Furthermore,
the assignment E  (E (D),∇E ) induces an equivalence of categories from the
categories of crystals of quasicoherent OSpec R/Zp -modules to the category of D-
modules with integrable and topologically quasinilpotent connections, matching
locally free crystals and locally free D-modules.

REMARK 2.3.7. We choose R = A/p, so D = A. Let E be a crystal of locally
free OSpec R/Zp -module of finite rank. Then although the crystalline connection on
E (A) is a priori only p-adically continuous, it turns out to be continuous for the
natural J -adic topology (where J is an ideal of definition). Indeed, this follows
from the J -adic continuity of the universal p-adically continuous derivation ∇ :
A→ Ω̂A; cf. [15, Section 2.5].

REMARK 2.3.8. We may extend Lemma 2.3.6 for isocrystals over Spec R
as follows. Let E [ 1

p ] be an isocrystal over Spec R. We choose a crystal E

representing E [ 1
p ], and consider E (D)[ 1

p ] equipped with connection ∇E [ 1
p ]
:

E (D)[ 1
p ] → E (D)[ 1

p ] ⊗ Ã Ω̂ Ã defined by extending ∇E . Then (E (D)[ 1
p ],∇E [ 1

p ]
)

is independent of the choice of E . Now, Lemma 2.3.6 shows that the assignment
E [ 1

p ]  (E (D)[ 1
p ],∇E [ 1

p ]
) induces a fully faithful functor from the category

of isocrystals over Spec R to the category of D[ 1
p ]-modules with integrable

topologically quasinilpotent connection.

REMARK 2.3.9. We choose a lift of Frobenius endomorphism σ : Ã→ Ã, which
naturally extends to a lift of Frobenius endomorphism σ : D → D. (To see this,
D turns out to coincide with the p-adically completed PD hull of Ã � R/p, and
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σ : Ã→ Ã sends ker( Ã� R/p) into itself. Now we apply the universal property
of PD hull to obtain σ : D → D.) Given an F-isocrystal E [ 1

p ] over Spec R (i.e,

an isocrystal E equipped with an isomorphism F : σ ∗E [ 1
p ]
∼

−→ E [ 1
p ]), we obtain

the following horizontal map

F : σ ∗E (D)[ 1
p ] = D ⊗σ,D E (D)[ 1

p ]
∼

−→ E (D)[ 1
p ]

induced by F : σ ∗E [ 1
p ]

∼

−→ E [ 1
p ]. Then Lemma 2.3.6 induces a fully faithful

functor from the category of F-isocrystals to certain Frobenius-modules with
connection.

REMARK 2.3.10. Let R → R′ is a quotient map of formally finitely generated
W/pm-algebras, and let D′ � R′ denote the p-adically completed PD hull of
A� R � R′. Then we have a natural PD morphism D→ D′.

Let E be a crystal of quasicoherent OSpec R/Zp -modules, and E ′ its pull-back
over Spec R′. Then we have a natural isomorphism

E ′(D′) ∼= E (D)⊗̂D D′,

where−⊗̂D D′ is the p-adic completion of the scalar extension. Furthermore, one
can obtain ∇E ′ by naturally extending ∇E . (This horizontal isomorphism can be
obtained by applying the rigidity axiom of crystals [3, Définition 1.2.1] to the PD
morphism D/pm′

→ D′/pm′ over R → R′ for any m ′ > m.) This discussion can
be applied to the pull-back of (F-)isocrystals via closed immersions Spec R′ ↪→
Spec R.

Let J be an ideal of definition of R. Then a projective system {En} of crystals
over Spec R/J n can be interpreted as a projective system {En(Dn)} of Dn-modules
with connection, where Dn � R/J n is the p-adically completed PD hull of Ã�
R � R/J n . This way, one can get an interpretation of ‘crystals over Spf R’ in
terms of certain modules with connection (which would be different from the
descriptions of crystals over Spec R unless R is finitely generated over W/pm).

2.4. F-isocrystals with G-structure over κ . We review some basic
definitions and results on ‘F-isocrystals with G-structure’. See [44, Ch. 1]
for a detailed overview.

Recall that the category of quasicoherent crystals of OSpec κ/W -modules is
equivalent to the category of W -modules by taking sections over W = W (κ).
Therefore, an F-isocrystal over κ can be regarded as a pair (D, F), where D is a
K0-vector space and F : σ ∗D

∼

−→ D is an isomorphism. By abuse of notation, we
also call (D, F) an F-isocrystal over κ .

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


Rapoport–Zink spaces of Hodge type 17

Let (D, F) be a rank-n F-isocrystal over κ . By choosing a basis of D (or
equivalently, by choosing a faithful algebraic action of GLn on D), we can find
b ∈ GLn(K0)which is the matrix representation of F (that is, F is the linearization
of bσ ). Choosing a different basis of D, b is replaced by a suitable ‘σ -twisted
conjugate’. Motivated by this, we make the following definition (cf. [34], [44,
Section 1.7]):

DEFINITION 2.4.1. Let G be a linear algebraic group over Qp. We say that b,
b′ ∈ G(K0) are σ -conjugate in G(K0) if there exists g ∈ G(K0) such that b′ =
gbσ(g)−1. Let [b] ⊂ G(K0) denote the set of σ -conjugates of b ∈ G(K0) in
G(K0).

Let RepQp
(G) denote the category of finite-dimensional Qp-vector spaces with

algebraic G-action. Then for any b ∈ G(K0) we can functorially associate, to any
V ∈ RepQp

(G), an F-isocrystal βb(V ) = (K0 ⊗Qp V, Fb), where Fb is defined as
follows:

Fb : σ
∗(K0 ⊗Qp V ) ∼= K0 ⊗Qp V

ρV (b)
−−→ K0 ⊗Qp V . (2.4.2)

Here, ρV : G → GL(V ) is the homomorphism of algebraic groups defining the
G-action on V . For b, b′ ∈ G(K0), we have βb

∼= βb′ if b and b′ are σ -conjugate in
G(K0). Note that if G = GLn/Qp and V = Qn

p is the standard representation of
GLn , then b 7→ βb(V ) induces a bijection between the set of σ -conjugacy classes
in GLn(K0) and the set of isomorphism classes F-isocrystals of rank n over κ .

We define the following group-valued functor Jb = JG,b on AlgQp
:

Jb(R) := {g ∈ G(R ⊗Qp K0)| gbσ(g)−1
= b}, ∀R ∈ AlgQp

. (2.4.3)

PROPOSITION 2.4.4 [44, Corollary 1.14]. If G is a reductive group over Qp then
Jb can be represented by an inner form of some Levi subgroup of G.

2.5. Affine Deligne–Lusztig set. From now on, we let G be a reductive group
which is unramified over Qp (that is, quasisplit and split over Qur

p ; or equivalently,
G admits a reductive model over Zp). We fix a reductive model GZp over Zp, and
will often write G = GZp if there is no risk of confusion. For any Zp-algebra R,
we write G R the base change of G over Spec R.

Recall that G is split over W (which is a strictly henselian discrete valuation
ring). Choosing a maximal torus T of GW , we have a bijection

X∗(T )/W (G, T )
∼

−→ HomW (Gm,GW )/G(W )

∼= HomK0(Gm,G K0)/G(K0)
∼

−→ G(W )\G(K0)/G(W ) (2.5.1)

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


W. Kim 18

induced by {ν} 7→ G(W )pνG(W ), where pν := ν(p) ∈ G(K0) and W (G, T )
is the Weyl group; indeed, the first two bijections are standard for split reductive
groups, and the last bijection is the Cartan decomposition.

DEFINITION 2.5.2. To b ∈ G(K0) and a G(W )-conjugacy class {ν} of
cocharacters ν : Gm → GW , we associate the affine Deligne–Lusztig set as
follows:

X G
{ν}(b) :=

{
g ∈ G(K0) such that g−1bσ(g) ∈ G(W )pνG(W )

}
/G(W )

⊂ G(K0)/G(W ).

In the intended application, we choose {ν} so that b ∈ G(W )pνG(W ). If {ν} is
chosen this way, then we write X G(b) := X G

{ν}(b) since it only depends on (G, b).

For γ ∈ G(K0), the left translation gG(W )→ γ gG(W ) induces

X G
{ν}(γ

−1bσ(γ ))
∼

−→ X G
{ν}(b). (2.5.3)

In particular, we obtain a natural action Jb(Qp) on X G
{ν}(b) (since Jb(Qp) ⊂

G(K0)).
The following properties are straightforward to verify from the definition:

LEMMA 2.5.4. (1) For any morphism f : G → G ′ of reductive group over
Zp, we have a natural map X G

{ν}(b)→ X G ′
{ f ◦ν}( f (b)) induced by gG(W ) 7→

f (g)G ′(W ). Furthermore, if f is a closed immersion, then the induced map
on the affine Deligne–Lusztig sets is injective.

(2) For another reductive group G ′ over Zp, b′ ∈ G ′(W ) and a conjugacy class
of cocharacters ν ′ : Gm → G ′W , we have an isomorphism

X G×G ′
{(ν,ν′)}(b, b′)

∼

−→ X G
{ν}(b)× X G ′

{ν′}(b
′)

induced by the natural projections.
In particular, f : G→ G ′ induces X G(b)→ X G ′( f (b)) and we have a natural

isomorphism X G×G ′(b, b′)
∼

−→ X G(b)× X G ′(b′).

Proof. The only possibly nontrivial assertion is the injectivity of the map
X G
{ν}(b) → X G ′

{ f ◦ν}( f (b)) when f is a closed immersion. Indeed, the following
map

G(K0)/G(W )→ G ′(K0)/G ′(W ),

induced by f , is injective, from which the desired injectivity follows.
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Later, we consider pairs (G, b) which can be related to some p-divisible
group. Let us first spell out the condition when G = GLn and Λ = Zn

p is the
standard representation. Then ρΛ∗[ 1

p ]
: GLn → GLn is the isomorphism sending

b to its transpose-inverse. Now, we consider βb(Λ
∗
[

1
p ]) := (K0 ⊗Zp Λ

∗, Fb)

(cf. Definition 2.4.1), and let MΛ
b denote the W -lattice W ⊗Zp Λ

∗ in βb(Λ
∗
[

1
p ]).

Then MΛ
b is a Dieudonné module of some p-divisible group over κ if and only

if we have pMΛ
b ⊂ Fb(σ

∗MΛ
b ) ⊂ MΛ

b , which is equivalent to requiring that
b ∈ GLn(W )pνGLn(W ) where pν := diag(1, . . . , 1︸ ︷︷ ︸

n−d

, p−1, . . . , p−1︸ ︷︷ ︸
d

) for some

d ∈ [0, n].

DEFINITION 2.5.5. We fix b ∈ G(K0). Assume that there exists a faithful G-
representation Λ ∈ RepZp

(G) such that the W -lattice

MΛ
b := W ⊗Zp Λ

∗
⊂ βb(Λ

∗
[

1
p ])

satisfies pMΛ
b ⊂ Fb(σ

∗MΛ
b ) ⊂ MΛ

b , where ρΛ∗[ 1
p ]
: G → GLQp(Λ

∗
[

1
p ]) is the

morphism defining the contragradient G(K0)-action on K0 ⊗Zp Λ
∗. Then, MΛ

b

is an Fb-stable W -lattice in βb(Λ
∗
[

1
p ]), which is a (contravariant) Dieudonné

module of some p-divisible group over κ . (The existence of suchΛ is a restrictive
condition on G and b. See Example 2.5.12 for the reason to dualize Λ in the
definition of MΛ

b .)
For such b and Λ, we let XΛ

b denote the p-divisible group over κ such that we
have an isomorphism D(XΛ

b )(W ) ∼=MΛ
b as an F-crystal.

Just like the abelian variety which appears as a complex point of some Shimura
variety of Hodge type has certain Hodge cycles, the p-divisible group X as in
Definition 2.5.5 has certain crystalline tensors from the fact that b ∈ G(K0). The
following lemma is straightforward.

LEMMA 2.5.6. Let (G, b) and XΛ
b be as in Definition 2.5.5. Let s ∈ Λ⊗ be such

that for any Zp-algebra R, 1 ⊗ s ∈ R ⊗ Λ⊗ is fixed by G(R). (For example,
we may take s = sα for sα as in Proposition 2.1.5.) Consider 1 ⊗ s ∈ W ⊗
Λ⊗ = D(XΛ

b )(W )⊗. (Recall thatΛ⊗ = (Λ∗)⊗; cf. Definition 2.1.3.) Then 1⊗ s ∈
D(XΛ

b )(W )⊗[ 1
p ] is fixed by F, where we extend F naturally to D(XΛ

b )(W )⊗[ 1
p ].

DEFINITION 2.5.7. We fix finitely many tensors (sα) ⊂ Λ⊗ which defines G in
the sense of Proposition 2.1.5. We set (tα) := (1⊗sα) ∈ W⊗ZpΛ

⊗ ∼= D(XΛ
b )(W )⊗.

By Lemma 2.5.6, each tα is fixed by the crystalline Frobenius operator in
D(XΛ

b )(W )⊗[ 1
p ], which is induced by b via MΛ

b = D(XΛ
b )(W ).
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LEMMA 2.5.8. Let (G, b) and Λ be as in Definition 2.5.5, and set X := XΛ
b . Let

{µ} be a G(W )-conjugacy class of cocharacters Gm → GW . Then the following
hold:

(1) For a cocharacter µ : Gm → GW , the Hodge filtration Fil1
X ⊂ D(X)(κ) =

κ ⊗Zp Λ
∗ is induced by µ if and only if b ∈ G(W )pσ

∗µ−1
. (Recall that we

identified D(X)(W ) =MΛ
b = W ⊗Zp Λ

∗.)

(2) The Hodge filtration Fil1
X ⊂ D(X)(κ) is a {µ}-filtration with respect to

the image of (tα) in D(X)(κ)⊗ (cf. Definition 2.2.3) if and only if we have
b ∈ G(W )pσ

∗µ−1
G(W ).

(3) The image of (tα) in D(X)(κ)⊗ lies in the 0th filtration with respect to the
Hodge filtration.

Proof. We write V := Λ[ 1
p ] and let ρV ∗ : G → GL(V ∗) denote the

homomorphism defining the G-action on V ∗.
Let us first show (1). Assume that b ∈ G(W )pν for some ν : Gm → GW . Since

the Hodge filtration Fil1
X ⊂ D(X)(κ) is the kernel of ρV ∗(b)(σ ⊗ idΛ∗) acting on

κ ⊗Zp Λ
∗
= D(X)(κ), we have

(ρV ∗(b)σ )−1(pMΛ
b ) = σ

−1(ρV ∗((p−1)ν) · pMΛ
b ) = gr1

(σ−1)∗ν−1 MΛ
b + pMΛ

b .

(To see the second equality, recall that gri
(σ−1)∗ν−1 MΛ

b is the eigenspace for the
action of ρV ∗((p−1)ν) with eigenvalue pi .) This shows that the Hodge filtration
Fil1

X is the image of gr1
(σ−1)∗ν−1 MΛ

b in MΛ
b /pMΛ

b
∼= D(X)(κ) (that is, Fil1

X is
induced by µ with ν := σ ∗µ−1).

Conversely, assume that Fil1
X is induced by µ : Gm → GW . By reversing the

engineering, we have

ρV ∗(pµ)(pMΛ
b ) = gr1

µMΛ
b + pMΛ

b = (ρV ∗(b)σ )−1(pMΛ
b ).

Applying p−1ρV ∗(b)σ to this equation, it follows that ρV ∗(b · σ(pµ))MΛ
b = MΛ

b .
(Note that ρV ∗ commutes with σ as it is defined over Qp.) Since G(W ) ⊂ G(K0)

is the stabilizer of the W -lattice MΛ
b = W ⊗Zp Λ

∗ in K0 ⊗Qp V ∗ (via ρV ∗), we
have b · σ(pµ) = b · pσ

∗µ
∈ G(W ). This proves (1).

Let us show (2). Choose a cocharacter ν : Gm → GW such that b ∈
G(W )pνG(W ); recall that such ν is unique up to G(W )-conjugate. By replacing ν
by a suitable G(W )-conjugate, we may assume that b = gpν for some g ∈ G(W );
indeed, if b = g1 pνg2 for g1, g2 ∈ G(W ), then we take g = g1g2 and replace ν
with g−1

2 νg2. From (1) it follows that the Hodge filtration Fil1
X is a {µ}-filtration

for µ = (σ−1)∗ν−1. Conversely, if Fil1
X is a {µ}-filtration, then it suffices, by (1),
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to show the existence of a cocharacter µ : Gm → GW (over W , not just over
Fp) that induces Fil1

X. To show the existence of such µ, note that there exists,
by definition of {µ}-filtration, a cocharacter µ0 ∈ {µ} over W such that Fil1

X is
given by the conjugate of the special fibre µ̄0 : Gm → GFp

by some ḡ ∈ G(Fp).
Now, we choose a lift g ∈ G(W ) of ḡ and let µ denote the conjugate of µ0 by g.
This proves (2).

By Lemma 2.2.10, (3) follows from (2).

REMARK 2.5.9. We use the notation in Lemma 2.5.8. Then Lemma 2.5.8 asserts
that for any X := XΛ

b with b ∈ G(K0), there exists a unique conjugacy class of
cocharacters {µ} such that the Hodge filtration Fil1

X is a {µ}-filtration.
Since there is no obstruction of lifting {µ}-filtrations (cf. Lemma 2.2.8), there

exists a {µ}-filtration Fil1
X̃ ⊂ MΛ

b lifting Fil1
X. If p > 2, then such a lift Fil1

X̃
gives rise to a p-divisible group X̃ over W . For such a lift X̃, the tensors (tα) ⊂
D(X̃)(W )⊗ = (MΛ

b )
⊗ lie in the 0th filtration with respect to the Hodge filtration

for X̃; cf. Lemma 2.2.10.

We consider (G, b) and Λ as in Definition 2.5.5, and choose finitely many
tensors (sα) ⊂ Λ⊗ defining G ⊂ GL(Λ) as in Proposition 2.1.5. Then to
(G, b) and Λ, we have associated (X, (tα)) and an isomorphism ς : W ⊗Zp Λ

∗ ∼=

D(X)(W ), where X := XΛ
b is a p-divisible group over κ , (tα) ⊂ D(X)(W )⊗

are F-invariant tensors (cf. Lemma 2.5.6), and ς is a W -linear isomorphism
which matches (1 ⊗ sα) and (tα). Note that we can recover (G, b) from
(X, (tα), ς). In the setting of Example 2.1.6 (when G = GSp2g andΛ = Z2g

p is the
standard representation), we can interpret (X, (tα)) as a principally quasipolarized
p-divisible group.

We now interpret X G(b) = X G
{σ ∗µ−1}

(b) in terms of quasi-isogenies of p-
divisible groups with F-invariant tensors over κ . For a coset in G(K0)/G(W )

belonging to X G(b), we pick a representative g and set b′ := g−1bσ(g). Consider
MΛ

b′ = W ⊗Zp Λ
∗ with F given by b′ ∈ G(K0), and F-invariant tensors (t′α) =

(1 ⊗ sα) ⊂ (MΛ
b′)
⊗. The condition b′ ∈ G(W )pσ

∗µ−1
G(W ) implies that MΛ

b′

corresponds to a p-divisible group X′ := XΛ
b′ , whose Hodge filtration is a {µ}-

filtration with respect to (t′α) by Lemma 2.5.8. We also obtain a quasi-isogeny
ι : X 99K X′ corresponding to

MΛ
b′[

1
p ] = K0 ⊗Zp Λ

∗
g
−→ K0 ⊗Zp Λ

∗
=MΛ

b [
1
p ],

which matches (t′α) ⊂ (MΛ
b′)
⊗ with (tα) ⊂ (MΛ

b )
⊗. The tuple (X′, (t′α), ι) only

depends on gG(W ) up to isomorphism of p-divisible respecting the tensors and
quasi-isogeny.
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PROPOSITION 2.5.10. The map defined above gives a bijection from X G(b) to
the set of isomorphism classes of tuples (X′, (t′α), ι) which satisfy the following

• X′ is a p-divisible group over κ and (t′α) ⊂ D(X′)(W )⊗ are F-invariant tensors,
such that there exists a W -linear isomorphism ς ′ : D(X′)(W )

∼

−→ W ⊗Zp Λ
∗

that matches (1⊗sα) and (t′α), and the Hodge filtration Fil1
X′ is a {µ}-filtration

with respect to (t ′α).

• ι : X 99K X′ is a quasi-isogeny such that D(ι) : D(X′)(W )[ 1
p ]
∼

−→ D(X)(W )[ 1
p ]

matches (t′α) with (tα).

Proof. We define the inverse map. By construction of X = XΛ
b , we have an F-

equivariant isomorphism ς : D(X)(W )
∼

−→ MΛ
b = (W ⊗Zp Λ

∗, Fb) matching
(tα) with (1 ⊗ sα). Let (X′, (t′α), ι) be a tuple as in the statement, and we
choose a W -linear isomorphism ς ′ : D(X′)(W )

∼

−→ W ⊗Zp Λ
∗ that matches

(1 ⊗ sα) and (t′α), which exists by assumption on (X′, (t′α), ι). Then one can find
a unique b′ ∈ G(K0) depending on ς ′, such that ς ′ induces an F-equivariant
isomorphism D(X′)(W )

∼

−→ MΛ
b′ . Let g ∈ G(K0) be an element that defines the

middle isomorphism below

D(ι) : D(X′)(W )[ 1
p ]

∼=

ς ′
//βb′(Λ

∗
[

1
p ])

∼=

ρ(g)
//βb(Λ

∗
[

1
p ])

∼=

ς−1
//D(X)(W )[ 1

p ] .

Note that the underlying K0-vector space of βb′(Λ
∗
[

1
p ]) and βb(Λ

∗
[

1
p ]) is

K0 ⊗Zp Λ
∗, so ρΛ∗[ 1

p ]
(g) defines the middle isomorphism above. Since D(ι) is

F-equivariant, we obtain gb′σ = bσ(g)σ (that is, b′ = g−1bσ(g)). Lastly, since
the Hodge filtration for X′ is a {µ}-filtration, we have b′ ∈ G(W )pσ

∗µ−1
G(W ).

The choice of tensor-preserving W -linear isomorphism ς ′ : D(X′)(W )
∼

−→

W ⊗Zp Λ
∗ is not canonical, but any other choice of ς ′ is of the form ς ′ ◦ h for

some h ∈ G(W ), which would replace g by gh. One can easily check that map
sending the isomorphism class of (X′, (t′α), ι) to gG(W ) is well defined, and gives
the desired inverse map.

The following notion, which is the local analogue of Hodge-type Shimura data,
turns out to provide a group-theoretic invariant associated to X G(b) up to bijection
given by (2.5.3):

DEFINITION 2.5.11. Let G be a reductive group over Zp, and b ∈ G(K0). We
associate to any (G, b) a tuple (G, [b], {µ−1

}), where [b] is the σ -conjugacy class
of b in G(K0) and {µ−1

} is the unique G(W )-conjugacy class of cocharacters
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Gm → GW such that b ∈ G(W )pσ
∗µ−1

G(W ). (The unique existence of such {µ}
is by the Cartan decomposition.)

If there is a faithful representation Λ ∈ RepZp
(G) as in Definition 2.5.5 (that

is, there exists a p-divisible group XΛ
b as in Definition 2.5.5), then we call the

associated triple (G, [b], {µ−1
}) an (unramified) local Shimura datum of Hodge

type. We take the obvious notion of morphism.

To an unramified Hodge-type local Shimura datum, one can easily associate a
local Shimura datum as defined in Rapoport and Viehmann by replacing G with
GQp [43, Definition 5.1]. (Since G is split over W , geometric conjugacy classes of
cocharacters can be viewed as G(W )-conjugacy classes of cocharacters defined
over W .)

If (G, [b], {µ−1
}) is an unramified Hodge-type local Shimura datum viaΛ, then

the inclusion G ↪→ GL(Λ) induces a morphism (G, [b], {µ−1
})→ (GL(Λ), [b],

{µ−1
}) of unramified Hodge-type local Shimura data.

Let (G ′, [b′], {µ′−1
}) be another unramified local Shimura datum of Hodge

type induced by (G ′, b′) and a faithful G-representation Λ′ (giving rise to a
p-divisible group XΛ′

b′ ). Then the product (G × G ′, [(b, b′)], {(µ−1, µ′−1)}) is
again an integral unramified Hodge-type local Shimura datum. (Indeed, we can
associate the following p-divisible group XΛ×Λ′

(b,b′)
∼= XΛ

b × XΛ′

b′ .)

EXAMPLE 2.5.12. Assume that G comes from a reductive group over Z(p), which
we also denote by G. Assume that there exists a Hodge-type Shimura datum
(GQ,H). Let Kp := G(Zp) be the hyperspecial maximal subgroup of G(Qp). By
construction, the integral canonical model SKp(GQ,H), when it exists, carries
a ‘universal’ abelian scheme depending on some auxiliary choices. See [50,
Section 1.4] or [32, Section 2.3] for more details on the construction. Pick any
point valued in W := W (Fp), and let X̃ be the p-divisible group associated to the
corresponding abelian scheme over W . Let Λ := T (X̃) denote the (integral) Tate
module. Then by construction there exist finitely many Galois-invariant tensors
(sα) ⊂ Λ⊗ whose pointwise stabilizer is GZp . By a conjecture of Milne (proved
independently in [51, Main Theorem 1.2] and [32, Proposition 1.3.4]) there exists
a W -isomorphism

W ⊗Zp Λ
∗ ∼= D(X̃)(W )

which takes (1 ⊗ sα) to the F-invariant tensors (tα) obtained from (sα) via
crystalline comparison isomorphism. Choosing such an isomorphism, we can
extract b ∈ G(K0) from the matrix representation of F .

As tα : 1 → (MΛ
b )
⊗ are morphisms of ‘strongly divisible modules’, we may

apply Wintenberger’s theory of canonical splitting [53, Théorème 3.1.2] and
obtain a unique cocharacter µ : Gm → GW such that µ gives the Hodge filtration
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for X̃ and b ∈ G(W )pν with ν = σ ∗µ−1; cf. Lemma 2.5.8. Therefore, the triple
(GZp , [b], {µ

−1
}) obtained from SKp(GQ,H)(W ) is an unramified Hodge-type

local Shimura datum in the sense of Definition 2.5.5. Note that the geometric
conjugacy class {µ} corresponds to the geometric conjugacy class associated to
the Shimura datum (GQ,H).

3. Faltings’s construction of universal deformation

In this section we review Faltings’ explicit constructions of a ‘universal’
deformation of p-divisible groups with crystalline Tate tensors (depending on
some auxiliary choices). Furthermore, we also show that the underlying formal
scheme of the deformation space of p-divisible groups with crystalline Tate
tensors is independent of auxiliary choices (such as the choice of Λ and tensors
(sα) ⊂ Λ⊗) and satisfies some functoriality properties (cf. Proposition 3.7.2). We
crucially use this formal local construction to obtain the natural closed formal
subscheme of a Rapoport–Zink space where some natural crystalline Tate tensors
are defined. Most results in this section (except Propositions 3.7.2 and 3.8) can be
found in [19, Section 7] and [41, Section 4].

Let κ be an algebraically closed field of characteristic p > 2, with W := W (κ).
We consider a p-divisible group X over κ . Recall that ARW is the category of
artin local W -algebras with residue field κ .

DEFINITION 3.1. We define a functor DefX : ARW → (Sets) as follows: for any
R ∈ ARW we set

DefX(R) := {(X/R, ι) : ι : X
∼

−→ Xκ)}/∼=,

where X is a p-divisible group over R, and an isomorphism of tuples (X, ι)
∼

−→

(X ′, ι) means an isomorphism X
∼

−→ X ′ lifting ι′ ◦ ι−1. We often suppress the
isomorphism ι : X ∼

−→ Xκ , and write X ∈ DefX(R).

3.2. Explicit construction in characteristic p. The functor DefX can be
prorepresented by the formal power series ring over W with d · d∨ variables,
where d and d∨ are respectively the dimensions of X and X∨; cf. [26,
Corollaire 4.8(i)]. Faltings made such an identification via explicitly describing a
‘universal Dieudonné crystal’ when p > 2; cf. [41, Section 4.8], [32, Section 1.5],
which we recall now.

For a p-divisible group X over κ , we write (M, F) := D(X)(W ) for the
contravariant Dieudonné module. Choosing a lift X̃ over Spf W , we obtain a direct
factor Fil1

X̃ ⊂ D(X̃)(W ) ∼= M from the Hodge filtration for X̃. We also fix a
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splitting of this filtration; or equivalently, we choose a cocharacter µ : Gm →

GLW (M∗) which induces Fil1
X̃ and have weights in {0,−1}. (Note our sign

convention in Definition 2.2.1.) Using the choice of splitting, we can define the
‘opposite unipotent subgroup’ U (µ−1) (that is, U (µ−1) is the unipotent radical
of the parabolic subgroup opposite to the stabilizer P(µ) of Fil1

X̃; note that we
have U (µ−1) = UGL(Λ)(µ

−1) using the notation of (2.2.2)). Let AGL be such that
Spf AGL

∼= Û (µ−1) is the formal completion of U (µ−1) at the identity section.
We choose an isomorphism AGL

∼= W [[ui j ]], and define a lift of Frobenius
σ : AGL → AGL by σ(ui j) = u p

i j .
Let ut ∈ Û (µ−1)(AGL) be the tautological point and we define the following:

MGL := AGL ⊗W M; Fil1MGL := AGL ⊗W Fil1
X̃; F := u−1

t ◦ (AGL ⊗ F).

More concretely, if we choose an isomorphism M ∼= MΛ
b (with the notation of

Definition 2.5.5 for G = GL(Λ)) then the matrix representation of F on MGL
∼=

AGL ⊗Zp Λ
∗ is u−1

t b.
As discussed in [41, Section 4.5], Faltings constructed a unique integrable

connection ∇ on MGL which commutes with F . In particular, the tuple (MGL, F,
∇) is a crystalline Dieudonné module in the sense of [15, Definition 2.3.4] and
gives rise to a p-divisible group XGL over Spec AGL/(p) by [15, Main Theorem 1].
Since σ ∗(Fil1MGL/(p)) is the kernel of F on MGL/(p), it follows that
Fil1MGL/(p) is the Hodge filtration of XGL. (Crystalline Dieudonné modules
over AGL correspond to Dieudonné crystals over Spec AGL/(p), not Spf AGL/(p).
The distinction between Spec and Spf will be important, especially for verifying
the effectivity property Section 6.1(4).)

Faltings also showed that XGL is a universal mod p deformation of X via the
Kodaira–Spencer theory. Implicit in the proof is the following lemma, which
compares the tangent space of AGL/(p) and the deformations over κ[ε]/(ε2) given
by the Grothendieck–Messing deformation theory. We give a proof of the lemma
as we need it later (cf. Proposition 3.8).

LEMMA 3.2.1. Let B := κ[ε]/(ε2), and we give the square-zero PD structure on
b := εB. For any γ ∈ Û (µ−1)(B) = HomW (AGL, B), we set γ X := γ ∗XGL. Then
γ X is the lift of X which corresponds, via the Grothendieck–Messing deformation
theory, to the lift of the Hodge filtration γ (B ⊗κ Fil1

X) ⊂ B ⊗κ D(X)(κ) =
D(X)(B), where γ (B ⊗κ Fil1

X) is the filtration translated by γ ∈ Û (µ−1)(B).

Proof. Let B̃ := W [ε]/(ε2), and we give the square-zero PD structure on ε B̃,
which is compatible with the standard PD structure on (p). We also define a lift
of Frobenius σ : B̃ → B̃ by letting σ(ε) := ε p

= 0. Since B̃ is a (compatible)
PD thickening of both κ and B, there exists a natural Frobenius-equivariant
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isomorphism D(γ X)(B̃)
∼

−→ D(X)(B̃) such that after reducing modulo p the
Hodge filtration for γ X on the left hand side maps to the lift of the Hodge filtration
for X which corresponds to γ X via the Grothendieck–Messing deformation theory.
Note that choosing a lift γ̃ ∈ Û (µ−1)(B̃) of γ , we obtain natural isomorphisms

D(γ X)(B̃) ∼= B̃ ⊗γ̃ ,AGL MGL
∼= B̃ ⊗W D(X)(W ) (3.2.2)

and the crystalline Frobenius action on the left hand side corresponds to γ̃ −1
◦

(B̃⊗F) on the right hand side. (Recall that we used the inverse of the tautological
point to define Frobenius action on MGL.) Thus, the natural Frobenius-equivariant
isomorphism D(γ X)(B̃)

∼

−→ D(X)(B̃) can be translated as g ∈ 1 + ε EndW (M)

which makes the following diagram commute:

D(γ X)(B̃) ∼

(3.2.2)
// B̃ ⊗W D(X)(W )

∼

g
// B̃ ⊗W D(X)(W ) D(X)(B̃)∼oo

B̃ ⊗σ,W D(X)(W )
∼

σ ∗g
//

γ̃−1
◦(B̃⊗F)

OO

B̃ ⊗σ,W D(X)(W ).

B̃⊗F

OO

By chasing the top row, the Hodge filtration of γ̃ X in D(γ̃ X)(B̃) maps to g(B̃⊗W

Fil1
X̃) ⊂ D(X)(B̃). So to prove the lemma, it suffices to prove that g = γ̃ . Indeed,

note that σ ∗(g) = id because g ≡ id mod(ε) and σ(ε) = 0, so the commutative
square above induces

(g · γ̃ −1) ◦ (B ⊗ F̃) = (B ⊗ F̃).

Since (B ⊗ F̃) becomes an isomorphism after inverting p, we obtain g = γ̃ from
the displayed equation.

3.3. Explicit construction: lifting Hodge filtration. Since XGL is a universal
mod p deformation of X (cf. Lemma 3.2.1), any lift XGL of XGL over Spf(AGL,

(p)) is a universal deformation of X. Note that the Frobenius endomorphism and
∇ on D(XGL)(AGL) only depends on XGL; that is, we naturally have a Frobenius-
equivariant horizontal isomorphism D(XGL)(AGL) ∼=MGL.

We now turn to the Hodge filtration for XGL. Since the Hodge filtration for XGL

is the image of Fil1MGL in MGL/(p), the Grothendieck–Messing deformation
theory gives us an AGL-lift XGL of XGL with Hodge filtration Fil1MGL if p > 2.

To sum up, we have proved the following result:

THEOREM 3.4 (Faltings). Assume that p > 2. Then the p-divisible group
XGL over AGL, corresponding to the filtered crystalline Dieudonné module
(MGL,Fil

1MGL, F,∇), is a universal deformation of X.
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3.5. Deformation with Tate tensors. In this section, we return to the
‘unramified Hodge-type’ setting (cf. Definition 2.5.5): namely, we let G ⊂ GL(Λ)
be a reductive subgroup over Zp, and assume that there exists an isomorphism
X ∼= XΛ

b for some b ∈ G(K0). (In particular, we assume that there exists an
isomorphism M ∼= MΛ

b of Dieudonné modules.) For finitely many tensors
(sα) ⊂ Λ⊗ whose stabilizer is G, we let (tα) ⊂ M⊗ denote the image of
(1⊗ sα) ∈ (MΛ

b )
⊗ via the isomorphism M ∼= MΛ

b . Note that (tα) are F-invariant
after inverting p.

Let us now recall Faltings’ construction of the ‘universal’ deformation of
(X, (tα))when p > 2. We can choose a W -lift X̃ whose Hodge filtration is induced
by some cocharacter µ : Gm → GW ; cf. Remark 2.5.9. Then (tα) lies in the 0th
filtration with respect to the Hodge filtration for X̃ by Lemma 2.2.10.

Let UG(µ
−1) := U (−µ) ∩ GW be the scheme-theoretic intersection. Since

µ is valued in GW , this definition coincides with (2.2.2), so it follows that
UG(µ

−1) is a smooth affine W -group with connected unipotent fibres (cf. [14,
Proposition 2.1.8(3)]). Let AG be the quotient of AGL corresponding to the formal
subgroup ÛG(µ

−1) ⊂ Û (µ−1). Then, AG is a formal power series over W . We
also choose‘coordinates’ for AGL so that the kernel of AGL � AG is stable under
σ . (In particular, we get a lift of Frobenius σ on AG induced by σ on AGL.)

Let XG denote the pull-back of XGL over Spf(AG, (p)). Then, D(XG)(AG)with
the Hodge filtration and Frobenius action corresponds to the following quotient
of (MGL,Fil

1MGL, F):

MG := AG⊗W M; Fil1MG := AG⊗W Fil
1
X̃; F := u−1

t ◦(AG⊗F), (3.5.1)

where (M, F) := D(X)(W ) and ut ∈ UG(µ
−1)(AG) is the tautological point.

From this explicit description, it is immediate that the tensors (1 ⊗ tα) ⊂
(MG)

⊗
[

1
p ] are F-invariant, and the pointwise stabilizer of (1 ⊗ tα) is G AG ⊂

GL(M)AG . Since Fil1MG is a {µ}-filtration, the tensors (1 ⊗ tα) lie in the 0th
filtration by Lemma 2.2.10. It is also known that (1 ⊗ tα) are horizontal (cf. [32,
Section 1.5.4]). So for each α we obtain a morphism

t̂univ
α : 1→ D(XG)

⊗ (3.5.2)

of crystals over Spf(AG, (p)) such that t̂univ
α (AG) = 1⊗ tα on the AG-sections by

the usual dictionary [15, Corollary 2.2.3].
Now we can rephrase the theorem of Faltings as follows (cf. [19, Section 7],

[41, Theorem 4.9]):

THEOREM 3.6 (Faltings). Let A be either W [[u1, . . . , uN ]] or W [[u1, . . . , uN ]]/

(pm) for arbitrary N > 1 and m > 1, and choose a p-divisible group X over A
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which lifts X. Let f : AGL → A be the morphism induced by X (via Spf AGL
∼=

DefX). Then f factors through AG if and only if the map 1→M⊗ sending 1 to tα
has a (necessarily unique) lift to a morphism of crystals over Spf(A, (p))

tα : 1→ D(X)⊗

which is Frobenius-equivariant up to isogeny and has the property that its A-
section tα(A) ∈ D(X)(A)⊗ lies in the 0th filtration with respect to the Hodge
filtration. If this holds, then we necessarily have f ∗ t̂univ

α = tα.
Furthermore, the image of the closed immersion Spf AG ↪→ DefX, given by XG ,

is independent of the choice of (tα) and µ ∈ {µ}.

Proof. The universal property for AG for test rings of the form A = W [[u1, . . . ,

uN ]] was proved by Faltings (cf. [41, Theorem 4.9]). When A = W [[u1, . . . ,

uN ]]/(pm), we choose a lift X̃ over Ã := W [[u1, . . . , uN ]] corresponding to a
{µ}-filtration (with respect to (tα( Ã))) in D(X)( Ã) lifting the Hodge filtration of
X . Then tα also defines a unique morphism 1→ D(X̃)⊗ (as it only depends on the
mod p fibre of X̃ ), and we obtain the desired claim by applying [41, Theorem 4.9]
to (X̃ , (tα)).

The closed immersion Spf AG ↪→ DefX is clearly independent of the choice of
(tα), and the independence claim on µ ∈ {µ} follows from the universal property.

3.7. Functoriality of deformation spaces. We identify the deformation
functor DefX with the formal spectrum of complete local noetherian ring which
prorepresents DefX.

DEFINITION 3.7.1. Using the notation from Theorem 3.6, we define DefX,G
to be the formally smooth closed formal subscheme of DefX which classify
deformations of (X, (tα)) over formal power series rings over W or W/(pm) in
the sense of Theorem 3.6. Note that for any cocharacter µ : Gm → GW giving
rise to the Hodge filtration of X, we get an isomorphism ÛG(µ

−1)
∼

−→ DefX,G
induced by XG , and the closed formal subscheme DefX,G ⊂ DefX is independent
of the choice of (tα).

Note that for any isomorphism (X, (tα))
∼

−→ (XΛ
b , (1 ⊗ sα)), we have a natural

isomorphism DefX,G
∼

−→ DefXΛb ,G . Therefore, we fix an identification X = XΛ
b

for the moment, and show that DefX,G only depends on (G, b), not on Λ, in a
canonical way, and that it is functorial with respect to (G, b). (See Remark 3.7.4
for the discussion on the choice of isomorphism (X, (tα))

∼

−→ (XΛ
b , (1⊗ sα)).)
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We consider another pair (G ′, b′) and Λ′ as in Definition 2.5.5, and consider
X′ := XΛ′

b′ . We also obtain a subfunctor DefX′,G ′ ⊂ DefX′ , such that for any
cocharacter µ′ : Gm → G ′W that induces the Hodge filtration of X′ we have a
natural isomorphism ÛG ′(µ

′−1)
∼

−→ DefX′,G ′ induced by X ′G ′ . We do not assume
the existence of any morphism between X and X′.

PROPOSITION 3.7.2. In the above setting, the natural monomorphism DefX ×
DefX′ → DefX×X′ , defined by taking the product of deformations, induces an
isomorphism

DefX,G ×DefX′,G ′
∼

−→ DefX×X′,G×G ′ .

Let f : GW → G ′W be a homomorphism over W such that f (b) = b′. We
choose a cocharacter µ : Gm → GW inducing the Hodge filtration of X := XΛ

b .
(Since f (b) = b′, it follows that f ◦ µ induces the Hodge filtration of X′.) Then
the morphism DefX,G → DefX′,G ′ , corresponding to f |ÛG (µ−1) : ÛG(µ

−1) →

ÛG ′( f ◦ µ−1), depends only on f , not on the choice of µ.

Before we begin the proof, let us make some remarks on the statement.

REMARK 3.7.3. One can apply this proposition to the identity map on (G, b)
with different choice of Λ and Λ′ to obtain a natural functorial isomorphism
DefXΛb ,G

∼

−→ DefXΛ′b ,G . Under this identification, the morphism DefXΛb ,G →

DefXΛ′b′ ,G
′ associated to f : (G, b) → (G ′, b′) depends only on f , not on the

choice of Λ and Λ′.

Proof of Proposition 3.7.2. For the first assertion on the product decomposition,
observe that we have XG×G ′

∼= XG × X ′G ′ , which follows from the explicit
description (Section 3.5). The claim now follows.

Let us now show that for a fixed choice ofΛ andΛ′ the map DefX,G →DefX′,G ′
induced by f |ÛG (µ−1) is independent of the choice of µ. For this, we factor the
map DefX,G → DefX′,G ′ as follows, and show that each arrow on the top row is
independent of the choice of µ:

DefX,G
∼=��

DefX×X′,Gpr1

oo � � //

∼=��

DefX×X′,G×G ′

∼=��

DefX,G ×DefX′,G ′

pr1

rr

∼=

oo
pr2 // //

∼=��

DefX′,G ′
∼=��

ÛG

f

22ÛG
idoo � � (id, f )

// ÛG×G ′ ÛG × ÛG ′
∼=oo // // ÛG ′ .
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Here, we write ÛG := ÛG(µ
−1), and so forth, and view Λ × Λ′ as a faithful

G-representation by G
(id, f )
−−→ G × G ′, so we have X× X′ = XΛ×Λ′

b .
Note that the third arrow on the top is the isomorphism defined by taking

the product of deformations, which is independent of the choice of µ since the
subspaces DefX,G ⊂ DefX and DefX′,G ′ ⊂ DefX′ are independent of the choice
of cocharacters (cf. Theorem 3.6). Similarly, it follows that the projection maps
on the top row (pr1 and pr2) are independent of the choice of µ, as they are the
restrictions of the natural projections DefX×DefX′ � DefX and DefX×DefX′ �
DefX′ to a closed subspace independent of the choice of cocharacter.

The second arrow on the top row can be obtained from the universal property
for DefX×X′,G×G ′ , hence it is independent of the choice of µ. This shows that
the first arrow does not depend on the choice of µ as it can be obtained as the
compositions of maps independent of µ. Furthermore, it is an isomorphism as
it corresponds to the identity map of ÛG(µ

−1). Now, chasing the diagram, we
conclude that the map DefX,G →DefX′,G ′ does not depend on the choice ofµ.

REMARK 3.7.4. We remark on the effect of different choice of isomorphism X ∼=
XΛ

b in Proposition 3.7.2. For g ∈ G(W ), we write b′ := g−1bσ(g) and X′ := XΛ
b′ .

Then g induces an F-equivariant isomorphism g : MΛ
b′ → MΛ

b , so we get an
isomorphism

(X, (1⊗ sα))
∼

−→ (X′, (1⊗ sα)),

preserving tensors, where X := XΛ
b as before. This induces an isomorphism

DefX,G
∼

−→ DefX′,G . We want to give a group-theoretic interpretation of this
isomorphism via the explicit construction of universal deformations with Tate
tensors.

Choose a cocharacter µ : Gm → GW which induces the Hodge filtration of X.
Then, µ′ := g−1µg induces the Hodge filtration of X′, so we have an isomorphism
ÛG(µ

′−1) = Spf A′G
∼

−→ DefX′,G defined by the deformation X ′G of X′. Let ut ∈

ÛG(µ
−1)(AG) ⊂ G(AG) and u ′t ∈ ÛG(µ

′−1)(A′G) ⊂ G(A′G) be the tautological
points.

We have an isomorphism jg : ÛG(µ
−1)

∼

−→ ÛG(µ
′−1), defined by the

conjugation by g−1, and we have u ′t = g−1( j∗g ut)g as an elements in G(A′G).
So we have

(u ′t)
−1(g−1bσ(g)) = (g−1 j∗g (u

−1
t )g) · (g

−1bσ(g)) = g−1 j∗g (u
−1
t b)σ (g).

In particular, by identifying the underlying Aµ
′

G -modules of M′G and j∗g MG

with A′G ⊗Zp Λ
∗, the isomorphism g : M′G

∼

−→ j∗g MG is horizontal, filtered,
and F-equivariant. In short, we obtain the following commutative diagram of
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isomorphisms

ÛG(µ
−1)

∼

jg
//

XG

��

ÛG(µ
′−1)

X ′G
��

DefX,G
∼ // DefX′,G,

where the bottom isomorphism is induced by (X, (1⊗sα))
∼

−→ (X′, (1⊗sα))which
corresponds to g :MΛ

b′ →MΛ
b .

Let us return to the setting of Proposition 3.7.2, and consider a homomorphism
f : G → G ′. Then it follows without difficulty that for any g ∈ G(W ) the
following diagram commutes

DefXΛb ,G

∼=

��

// DefXΛ′f (b),G ′

∼=

��

DefXΛ
g−1bσ(g)

,G
// DefXΛ′

f (g−1bσ(g))
,G ′,

(3.7.5)

where the vertical isomorphisms are as constructed above associated to g ∈ G(W )

and f (g) ∈ G ′(W ), respectively, and the horizontal arrows are associated to f :
G → G ′ via Proposition 3.7.2.

We now study deformation theory for points of DefX,G valued in complete local
noetherian rings. Let R be a complete local noetherian W/pm-algebra for some
m, with residue field κ , and consider a W -morphism f : Spf R → DefX,G . We
set (X R, (tα)) := ( f ∗XG, ( f ∗ t̂univ

α )). Let B � R be a square-zero thickening with
finitely generated kernel b (so that B is complete local noetherian ring as well),
and give the square-zero PD structure on b; that is, a[i] = 0 for any i > 1 and a ∈ b.
Then we can define the B-sections (tα(B)) ⊂ D(X R)(B)⊗ as in Definition 2.3.4.
Let f̃ : Spf B → DefX,G be a lift of f , and set (X B, (t̃α)) := ( f̃ ∗XG, ( f̃ ∗ t̂univ

α )).
Then we have a natural isomorphism D(X B)(B) ∼= D(X R)(B), which matches
(t̃α(B)) with (tα(B)).

PROPOSITION 3.8. Assume that p > 2. Let (X R, (tα)) and B � R be as above.
Then a B-lift X B of X R defines a Spf B-point of DefX,G if and only if the Hodge
filtration

Fil1
X B
⊂ D(X B)(B) ∼= D(X R)(B)

is a {µ}-filtration with respect to (tα(B)), where µ : Gm → GW is the cocharacter
in the definition of XG .
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Let us outline the basic strategy of the proof. The proposition when B = κ[ε]�
R = κ can be deduced from Lemma 3.2.1. When B � R is a small thickening
(that is, b is of B-length 1) then we prove the proposition using the fact that the set
of B-lifts of f is a torsor under the reduced tangent space of DefX,G . The general
case can be deduced by filtering B � R into successive small thickenings.

Before beginning the proof of the proposition, let us review fibre products of
rings. Let B � R be a small thickening of rings in ARW with kernel b ⊂ B. Let
κ[b] denote the κ-algebra whose underlying κ-vector space is κ⊕b, such that b is
the augmentation ideal. If we pick a generator ε ∈ b then we have κ[b] = κ[ε]/ε2.

We have the following isomorphism

B ×κ κ[b]
∼

−→ B ×R B =: B ′; (a, ā + a′) 7→ (a, a + a′), (3.8.1)

where a ∈ B, a′ ∈ b, and ā ∈ κ is the image of a. The inverse is given by
(a, a′) 7→ (a, ā + (a′ − a)).

Let F : ARW → (Sets) be a prorepresentable functor. (For example, F =DefX
or F = DefX,G .) Then we have a natural bijection

F(B ×R B ′)
∼

−→ F(B)×F(R) F(B ′)

for any B, B ′ � R. So we obtain from (3.8.1) a natural bijection

F(B)×F(κ[b]) ∼−→ F(B)×F(R) F(B), (3.8.2)

which defines an F(κ[b])-action on F(B) (where F(κ[b]) has a natural structure
of a κ-vector space by [45, Lemma 2.10]), and makes the set of f̃ ∈ F(B) lifting
a fixed f ∈ F(R) into a F(κ[b])-torsor.

Let us consider the case when F = DefX. For any R ∈ ARW , we set MR :=

R ⊗W M and Fil1MR := R ⊗W Fil1
X̃ ⊂ MR . Via the Grothendieck–Messing

deformation theory, we have a natural bijection

Û (µ−1)(κ[b]) ∼= DefX(κ[b]). (3.8.3)

Indeed, we associate to γ ∈ Û (µ−1)(κ[b]) the lift γ X ∈ DefX(κ[b]) which
corresponds to the filtration γ (Fil1Mκ[b]); cf. Lemma 3.2.1.

Now we give the square-zero PD structure on b. (We still assume that p > 2.)
We define the Û (µ−1)(κ[b])-action on DefX(B) to be the one induced from the
natural Û (µ−1)(κ[b])-action on the Hodge filtration of X B via the Grothendieck–
Messing deformation theory.

LEMMA 3.8.4. In the above setting, the actions of Û (µ−1)(κ[b]) and DefX(κ[b])
on DefX(B), which are defined above, coincide via the isomorphism (3.8.3).

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


Rapoport–Zink spaces of Hodge type 33

Proof. Let us give the square-zero PD structure on the kernel of B ′ := B×R B �
R so that both projections B ′ ⇒ B are PD morphisms. Let γ X ∈ DefX(κ[b]) be
the deformation corresponding to γ ∈ Û (µ−1)(κ[b]). Then the action of γ X maps
X B to the pull-back of X B ×X

γ X ∈ DefX(B ′) via the second projection B ′ � B.
Meanwhile, X B ×X

γ X corresponds to the filtration

Fil1
X B
×Fil1Mκ

[
γ (Fil1Mκ[b])

]
⊂ D(X R)(B)×Mκ

Mκ[b]
∼= D(X R)(B ′), (3.8.5)

using the notation as above. Now from the isomorphism (3.8.1) it follows that the
image of the filtration (3.8.5) under the second projection is γFil1

X B
.

Proof of Proposition 3.8. If B = κ[ε] then the proposition is clear from
Lemma 3.2.1. Now assume that B � R is a small thickening (that is, the
B-length of b is 1). We let f : Spec R → DefX,G denote the map induced by X R .
For any lift f̃ : Spec B → DefX,G of f (with X B := f̃ ∗XG) the Hodge filtration

Fil1
X B
⊂ D(X B)(B) ∼= D(X R)(B)

is a {µ}-filtration with respect to (tα(B)); indeed, Fil1
X B

and (tα(B)) are
respectively the images of Fil1MG and (t̂univ

α (AG)). (Note that we have a natural
isomorphism D(X B)(B) = f̃ ∗MG .) So we obtain a map

{ f̃ ∈ DefX,G(B) lifting f } → {{µ}-filtrations in D(X R)(B) lifting Fil1
X R
},

sending f̃ to Fil1
f̃ ∗XG

. By Lemma 3.8.4, this map is a morphism of
ÛG(µ

−1)(κ[b])-torsors, so it has to be a bijection. This proves the proposition
when B � R is a small thickening.

Now let B � R be any square-zero thickening with B ∈ ARW , and consider an
quotient R′ of B which surjects onto R. Then b′ := ker(B � R′) is a square-zero
ideal, so by giving the ‘square-zero PD structure’, b′ is a PD subideal of b. We fix
a lift f ′ ∈ DefX,G(R′) of f and set (X R′, (t ′α)) := ( f ′∗XG,b, ( f ′∗ t̂univ

α )).
Since b′ is a (nilpotent) PD subideal, we have a natural isomorphism

D(X R)(B) ∼= D(X R′)(B), which matches (tα(B)) and (t ′α(B)). Indeed, for
any maps f̃ ∈ DefX,G(B) lifting f ′ (and hence, f ) and (X B, (t̃α)) pulling back
the universal objects, we have natural isomorphisms D(X R)(B) ∼= D(X R′)(B) ∼=
D(X B)(B) matching (tα(B)), (t ′α(B)), and (t̃α(B)). Therefore, the proposition
for B � R with B ∈ ARW is obtained by filtering it with successive small
thickenings.

When B is a complete local noetherian W/pm-algebra (for some m) with
residue field κ , we filter B � R by square-zero thickenings of artin local rings
Bn � Rn (for example, Bn := B/mn

B and Rn := Bn ⊗B R), and the proposition
follows from applying the artin local case of the proposition to the lift X Bn of X Rn

for any n.
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4. Moduli of p-divisible groups with Tate tensors

In this section, we state the main results on the Hodge-type analogue RZΛG,b of
Rapoport–Zink spaces (Theorem 4.9.1). This construction recovers EL and PEL
Rapoport–Zink spaces if (G, b) is associated to an unramified EL and PEL datum
(Section 4.7).

Let κ be an algebraically closed field of characteristic p, and set W := W (κ)

and K0 := Frac W . The most interesting case is when κ = Fp. Let X be a p-
divisible group over κ .

We begin with the review of the formal moduli schemes classifying p-divisible
groups up to quasi-isogeny [44, Ch. II], which is the starting point of the
construction of RZΛG,b.

DEFINITION 4.1 [44, Definition 2.15]. Let RZX : NilpW → (Sets) be a covariant
functor defined as follows: for any R ∈ NilpW , RZX(R) is the set of isomorphism
classes of (X, ι), where X is a p-divisible group over R and ι : XR/p 99K X R/p is
a quasi-isogeny. (We take the obvious notion of isomorphism of (X, ι).)

For h ∈ Z, let RZX(h) : NilpW → (Sets) be a subfunctor of RZX defined by
requiring that the quasi-isogeny ι has height h.

REMARK 4.1.1. Let X̃ be any p-divisible group over W which lifts X := XΛ
b .

Then for any (X, ι) ∈ RZX(R), ι uniquely lifts to

ι̃ : X̃R 99K X (4.1.2)

by rigidity of quasi-isogenies; cf. (2.3.2). (Recall that pR is a nilpotent ideal killed
by some power of p.) So we may regard RZX(R) as the set of isomorphism classes
of (X, ι̃) where ι̃ : X̃R 99K X is a quasi-isogeny.

THEOREM 4.2 (Rapoport, Zink). The functor RZX can be represented by
a separated formal scheme which is locally formally of finite type (cf.
Definition 2.1.1) and formally smooth over W . We also denote by RZX the
formal scheme representing RZX. For h ∈ Z, the subfunctor RZX(h) can be
represented by an open and closed formal subscheme (also denoted by RZX(h)).
Furthermore, any irreducible component of the underlying reduced scheme
(RZX)red of RZX is projective.

Proof. The representability of RZX is proved in [44, Theorem 2.16]. It is clear
that RZX(h) is an open and closed formal subscheme of RZX. The assertion on the
irreducible components of (RZX)red is proved in [44, Proposition 2.32].
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For each h ∈ Z, we can write RZX(h) as the direct limit of subfunctors
representable by closed schemes, as follows. Let (XRZX(h), ιRZX(h)) denote the
universal p-divisible group up to height-h quasi-isogeny.

DEFINITION 4.3. We fix a W -lift X̃ of X, and view RZX(R) as a set of
{(X, ι̃ : X̃R 99K X)}/ ∼= (cf. Remark 4.1.1). Then for any m > 0 and n ∈ Z,
we define RZX(h)m,n ⊂ RZX(h) to be the subfunctor defined as follows: for
any W/pm-algebra R, RZX(h)m,n(R) is the set of (X, ι̃) ∈ RZX(h)(R) such that
pn ι̃ : X̃R 99K X is an isogeny of p-divisible group. (We set RZX(h)m,n(R) = ∅ if
pm R 6= 0.)

As explained in [44, §2.22], RZX(h)m,n can be realized as a closed subscheme
of certain grassmannian, hence it can be represented by a projective scheme
over W/pm . And it is a closed subscheme of RZX(h) such that RZX(h) =
lim
−→m,n

RZX(h)m,n .
We now recall the deformation-theoretic interpretation of the completed local

ring of RZX.

LEMMA 4.3.1. For x = (X x , ιx) ∈ RZX(κ), the formal completion (RZX)̂x at x
represents the functor DefXx

, using the notation above.

Proof. We have a morphism (RZX)̂x → DefXx
given by forgetting the quasi-

isogeny. By rigidity of quasi-isogenies (2.3.2), we have a natural morphism of
functors DefXx

→ (RZX)̂x defined by sending X ∈ DefXx
(R) to (X, ι) ∈ RZX(R)

where ι : XR/p → X R/p is the unique quasi-isogeny that lifts ιx . It also follows
from rigidity that the composition (RZX)̂x → DefXx

→ (RZX)̂x is an identity
morphism. To finish the proof, note that both are representable by formal power
series rings over W with same dimension. (The dimension of (RZX)̂x can be
obtained from [44, Proposition 3.33].)

4.4. Let us return to the setting of Section 2.5. Let (G, b) and Λ be as in
Definition 2.5.5, so we have a p-divisible group X := XΛ

b with the contravariant
Dieudonné module MΛ

b . We choose finitely many tensors (sα) ⊂ Λ⊗ which
defines G as a subgroup of GL(Λ); cf. Proposition 2.1.5. We also choose a W -
lift X̃(= X̃Λ

b ) of X as in Remark 2.5.9.

DEFINITION 4.5. Let (X, ι̃) ∈ RZX(R) with R ∈ NilpW , where ι̃ : X̃R 99K X
is a quasi-isogeny; cf. Remark 4.1.1. We define sα,D : 1 → D(X)⊗[ 1

p ] to be the
composition

1 1 7→1⊗sα //D(X̃R)
⊗
[

1
p ] ∼

D(ι̃)−1
//D(X)⊗[ 1

p ],
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where the first morphism is the pull-back of the map 1→ D(X̃)⊗ which induces
1 7→ 1⊗ sα on the W -sections.

Note that sα,D : 1 → D(X)⊗[ 1
p ] only depends on (X, ι) ∈ RZX(R) but not on

the choice of X̃. Indeed, the morphism

1 1 7→1⊗sα //D(XR/p)
⊗
[

1
p ] ∼

D(ι)−1
//D(X R/p)

⊗
[

1
p ]

uniquely determines sα,D.
It is clear that each sα,D is Frobenius-equivariant, but it may not come from a

morphism of crystals tα : 1 → D(X)⊗. Even if it does, such a morphism tα of
(integral) crystals may not be uniquely determined by sα,D due to the existence
of nonzero p-torsion morphism when the base ring R is not nice enough. (See
Appendix in [5] for such an example.) To deal with this problem, we work only
with a morphism of (integral) crystals tα : 1→ D(X)⊗ giving rise to sα,D which
is ‘liftable’ in some suitable sense that we now describe.

Let Nilpsm
W denote the category of formally smooth formally finitely generated

W/pm-algebras A for some m, endowed with the J -adic topology where J is the
Jacobson radical of A. For example, (W/pm)[[u1, . . . , um]][v1, . . . , vn] ∈ Nilpsm

W ,
and we give the (u1, . . . , um)-adic topology. (We emphasize here that R ∈ NilpW
is always given a discrete topology, while A ∈ Nilpsm

W is equipped with the J -adic
topology.)

REMARK 4.5.1. Let A be a formally smooth formally finitely generated
algebra over either W or W/pm . In this remark, we give a convenient moduli
interpretation of the set of A-points of RZX. Recall that we have

HomW (Spf A,RZX) = lim
−→

n

RZX(A/J n),

so we may view HomW (Spf A,RZX) as the set of isomorphism classes of
(X, ι), where X is a p-divisible group over A and ι is a quasi-isogeny defined
over Spf A/p. By rigidity of quasi-isogenies (2.3.2), giving such ι is equivalent to
giving an quasi-isogeny ιA/J : XA/J 99K X A/J for some ideal of definition J ⊂ A
containing p. (Recall that J/J n is nilpotent and killed by some power of p.)

We remind that there is a natural equivalence of categories between the
categories of p-divisible groups over Spec A and Spf A, so we may view the
p-divisible group X either over Spec A or Spf A. On the other hand, the quasi-
isogeny ι over Spf A/p may not be defined over Spec A/p, and we only require
ι to be defined over Spf A/p, not over Spec A/p. And we have just shown
that quasi-isogenies over Spf A/p are uniquely determined by their restriction
to Spec A/J for some ideal of definition J containing p.
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Recall that there exists a p-adically separated and complete formally smooth
W -algebra Ã which lifts A; indeed, we apply [15, Lemma 1.3.3] to obtain a p-
adic W -lift Ã of A/p, which is formally smooth over W by construction, so we
may view Ã as a lift of A. By formal smoothness over W , any two such lifts are
(not necessarily canonically) isomorphic.

DEFINITION 4.6. For any A ∈ Nilpsm
W , we define

RZ(sα)X,G(A) ⊂ HomW (Spf A,RZX)

as follows: Let f : Spf A→ RZX be a morphism, and X a p-divisible group over
Spec A which pulls back to f ∗XRZX over Spf A. Then we have f ∈ RZ(sα)X,G(A) if
and only if there exist morphisms of integral crystals (over Spec A)

tα : 1→ D(X)⊗

such that

(1) For some ideal of definition J of A (or equivalently by Lemma 4.6.3, for
any ideal of definition J ), the pull-back of tα over A/J induces the map of
isocrystals sα,D : 1→ D(X A/J )

⊗
[

1
p ].

(2) We choose a formally smooth p-adic W -lift Ã of A, endowed with the
standard PD structure on ker( Ã� A)= pm Ã for some m. Let (tα( Ã)) denote
the Ã-section of (tα) (cf. Definition 2.3.4). Then the Ã-scheme

P Ã := Isom Ã

[
(D(X)( Ã), (tα( Ã))], [ Ã ⊗Zp Λ

∗, (1⊗ sα)]
)
,

classifying isomorphisms matching (tα( Ã)) and (1 ⊗ sα), is a G-torsor. (Cf.
(2.2.6).) Note that this condition is independent of the choice of Ã, since any
choices of Ã are isomorphic.

(3) The Hodge filtration Fil1
X ⊂ D(X)(A) is a {µ}-filtration with respect to

(tα(A)) ⊂ D(X)(A)⊗, where {µ} is the unique G(W )-conjugacy class of
cocharacters such that b ∈ G(W )pσ

∗µ−1
G(W ).

We thus obtain a functor RZ(sα)X,G : Nilpsm
W → (Sets). For (X, ι) ∈ RZ(sα)X,G(A), we

call (tα) as above crystalline Tate tensors or Tate tensors on X .
If Ã is formally smooth and formally finitely generated over W , we write

RZ(sα)X,G( Ã) := lim
←−

m

RZ(sα)X,G( Ã/pm) ⊂ HomW (Spf Ã,RZX) = lim
−→

n

RZX( Ã/ J̃ n),
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where J̃ is the Jacobson radical of Ã. When f̃ ∈ RZ(sα)X,G(A) and X̃ is the p-
divisible group over Ã given by f̃ ∗XRZX , then we have a morphism t̃α : 1 →
D(X̃)⊗ of crystals over Spf( Ã, (p)) satisfying the same conditions (1)–(3), where
(A, J, (tα)) is replaced by ( Ã, J̃ , (t̃α)) everywhere. (Recall that we define D(X̃)
over Spf( Ã, (p)) to be the projective system {D(X̃ Ã/pm )}. On the other hand, note
that for any m > 1 we have D(X̃ Ã/pm )( Ã) = D(X̃ Ã/p)( Ã) with extra structure,
so we indeed have D(X̃)( Ã) = D(X̃ Ã/p)( Ã) and all the objects appearing in the
definition of f̃ ∈ RZ(sα)X,G except the Hodge filtration Fil1

X̃ ⊂ D(X̃)( Ã) depends
only on X̃ Ã/p.)

We give more motivations for the definition in Remark 4.6.2. In the meantime,
let us emphasize that (tα) are required to be morphisms of crystals over Spec A
(not just over Spf A), while we work with the quasi-isogeny ι defined only
over Spf A (or equivalently by Remark 4.5.1, the quasi-isogeny defined over
Spec A/J ). In particular, we do not claim that an arbitrary quasi-isogeny ι

(defined only over Spf A) induces an F-equivariant map 1 → D(X)⊗[ 1
p ] over

Spec A. We still show later (in Lemma 4.6.4) that if the crystalline Tate tensors
(tα) in Definition 4.6 do exist (which is an assumption), then (tα) are uniquely
determined by f ∈ HomW (Spf A,RZX); in other words, (tα) are uniquely
determined by the quasi-isogeny ι : XA/J → X A/J defined over Spec A/J .

EXAMPLE 4.6.1. If G = GL(Λ), we may choose (sα) to be the empty set.
Then we claim that RZX represents RZ∅X,G . Indeed, we only need to check
Definition 4.6(3), which is clear since for any (X, ι) ∈ RZX(R) the dimension
of X is constant on R and consistent with {µ} associated to (G, b); cf.
Remark 2.2.7.

In Section 4.7, we recall how to attach (G, b) and (sα) to an EL (respectively,
PEL) datum, and compare RZ(sα)X,G with the moduli functor considered by Rapoport
and Zink. Roughly speaking, we verify the following in the (P)EL case (cf.
Proposition 4.7.1):

(1) The existence of the crystalline Tate tensors (tα) satisfying Definition 4.6(2)
corresponds to the existence of an action of the given semisimple Qp-algebra
B on X up to isogeny (and the quasipolarization with certain properties in the
PEL case).

(2) Definition 4.6(1) means that the quasi-isogeny ι is ‘B-linear’ (and commutes
with the quasipolarization in the PEL case).

(3) Definition 4.6(3) corresponds to the ‘Kottwitz determinant condition’.
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Note that the tensors (tα) coming from endomorphisms or quasipolarizations over
Spf A automatically give Tate tensors of crystals defined over Spec A; cf. [15,
Proposition 2.4.8].

REMARK 4.6.2. Let us now explain the motivations and intuitions for the
conditions in Definition 4.6 defining RZ(sα)X,G(A) ⊂ HomW (Spf A,RZX) for A ∈
Nilpsm

W . We consider f : Spf A → RZX, which corresponds to (X, ι) as in
Remark 4.5.1.

Let us begin with the existence of (tα) satisfying Definition 4.6(1). Recall that
tα : 1→ D(X)⊗ is a morphism of crystals over Spec A, not over Spf A. Since the
quasi-isogeny ιmay not be defined over Spec A, we may not have an isomorphism
between D(X)[ 1

p ] and D(XA/p)[
1
p ]. In particular, it is unclear whether for any

f : Spf A → RZX corresponding to (X, ι), the tensors (sα,D) induce Frobenius-
equivariant morphisms 1 → D(X)⊗[ 1

p ]. (If the tensor sα,D corresponds to a
quasipolarization or an endomorphism of X, then any f : Spf A → RZX
corresponding to (X, ι) gives rise to tα : 1→ D(X)⊗[ 1

p ] defined over Spec A by
[15, Proposition 2.4.8]. On the other hand, the author does not know whether such
a statement should hold for more general tensors (sα,D).) Therefore, the existence
of (tα) satisfying Definition 4.6(1) can be seen as integrality and algebraizability
of (sα,D) in the following sense: for any ideal of definition J containing p
the tensors (sα,D) are integral with respect to the F-crystal lattice D(X A/J )

⊗

of D(XA/J )
⊗
[

1
p ] (defined via ι), and tα : 1 → D(X)⊗ is an algebraization of

sα,D : 1→ D(X A/J )
⊗ in the sense that tα is a common lift of sα,D independent of

the choice of J .
It is natural to expect such integrality and algebraizability condition for tensors

(sα,D) to appear in the definition of RZ(sα)X,G . To explain, assume that (X, (sα,D))
arise from a mod p point of Hodge-type Shimura varieties with good reduction
embedded in some Siegel modular variety. Once we represent RZ(sα)X,G by a formally
smooth formal scheme (cf. Theorem 4.9.1) and the Rapoport–Zink uniformization
(cf. [30]), then for any (X, ι) ∈ RZ(sα)X,G(A) there exists an A-valued point in the
integral canonical model such that X is the p-divisible group associated to the
pull-back of the universal abelian variety and (tα) can be obtained by pulling
back the universal de Rham tensors on universal abelian scheme on the integral
canonical model (obtained in [32, Corollary 2.3.9]).

Now, we choose a formally smooth W -lift Ã of A. Definition 4.6(2) is needed
for defining {µ}-filtrations in D(X)( Ã/pm) for any m > 1; in particular, in
D(X)(A). We need to obtain the G-torsor P Ã over Ã, not just over A, because
we would like any point in RZ(sα)X,G(A) to be liftable over Ã/pm for m � 1. Finally,
Definition 4.6(3) assert that the Hodge filtration Fil1

X ⊂ D(X)(A) should be a
{µ}-filtration.
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LEMMA 4.6.3. Let R ∈ NilpW and I be a nilpotent ideal of R. Let X be a p-
divisible group and consider Frobenius-equivariant morphisms of isocrystals

t, t ′ : 1→ D(X)⊗[ 1
p ].

Then we have t = t ′ if and only if the equality holds over R/I .

In particular, Definition 4.6(1) for some ideal of definition J implies
Definition 4.6(1) for any ideal of definition J ′; indeed, if J ′ ⊂ J then we
apply the lemma to R := A/J ′ and I := J/J ′.

Proof. We may assume that pR = 0. Then by Frobenius equivariance, one can
replace X by σ n∗X for some n, while σ n∗X only depends on X R/I if σ n(I ) = 0;
cf. the proof of [15, Corollary 5.1.2].

LEMMA 4.6.4. Let X be a p-divisible group over A ∈ Nilpsm
W . Then given any

morphisms of isocrystals t, t ′ : 1→ D(X)⊗[ 1
p ], we have t = t ′ if and only if they

restrict to the same morphism of isocrystals over A/J for some ideal of definition
J ⊂ A.

In particular, if (X, ι) ∈ RZ(sα)X,G(A) for some A ∈ Nilpsm
W (using the convention

as in Remark 4.5.1), then the Tate tensors tα : 1→ D(X)⊗ in Definition 4.6 are
uniquely determined by (X, ι), and induce Frobenius-equivariant morphisms on
the isocrystals.

Note that this lemma holds if we replace A with a formally smooth formally
finitely generated W -algebra Ã; indeed, for a p-divisible group X̃ over Ã, t :
1→ D(X̃)⊗ only depends on its restriction t : 1→ D(X̃ Ã/p)

⊗ over Spec Ã/p.

Proof. Let us choose a p-adic W -flat lift Ã of A, and a lift of Frobenius
endomorphism σ : Ã → Ã. Given an ideal of definition J ⊂ A, let D � A/J
be the p-adically completed PD hull of Ã � A/J . Then σ extends to a lift of
Frobenius of D. Using Lemma 2.3.6 (together with Remarks 2.3.8 and 2.3.9), the
first claim can be reduced to the injectivity of the natural map

Ã[ 1
p ] → D[ 1

p ].

To see the injectivity, note that D[ 1
p ] can be embedded into some affinoid algebra

containing Ã[ 1
p ]; cf. [15, Section 5.5].

To show the rest of the lemma, we first note that the Tate tensors (tα) are
uniquely determined by the map it induces on the isocrystals tα : 1→ D(X)⊗[ 1

p ].
(Using the ‘dictionary’ given by Lemma 2.3.6 and Remark 2.3.8, the claim
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follows from the W -flatness of Ã.) Therefore, if (tα) and (t ′α) are two sets of Tate
tensors for (X, ι) ∈ RZ(sα)X,G(A) (using the notation of Remark 4.5.1), then tα and
t ′α induce the same map on the isocrystals 1 → D(X A/J )

⊗ by Definition 4.6(1).
By the first part of the lemma, we obtain tα = t ′α for any α. The Frobenius
equivariance of (tα) can be similarly obtained by applying the first part of
the lemma to (tα) and (F(σ ∗tα)), where F is the crystalline Frobenius map
F : σ ∗D(X)⊗[ 1

p ]
∼

−→ D(X)⊗[ 1
p ].

4.7. Example: unramified EL and PEL cases. To a (not necessarily
unramified) EL or PEL datum, Rapoport and Zink formulated a suitable moduli
problem of p-divisible groups with extra structure, and constructed a representing
formal scheme [44, Theorem 3.25]. (See also [20] for the exposition that is just
focused on the unramified case of type A and C.) In this section, we show that
when (G, b) comes from an unramified EL or PEL datum, the formal moduli
schemes constructed by Rapoport and Zink represents RZ(sα)X,G for some suitable
choice of (Λ, (sα)).

Let us first recall the setting of [44, Ch. 3] in the unramified case. Let OB be
a product of matrix algebras over finite unramified extensions of Zp, and Λ be a
faithful OB-module which is finite flat over Zp. We consider the following data
(cf. [44, Section 1.38], [20, Ch. 2]):

unramified EL case (OF ,OB,Λ,G), where (OB,Λ) is as before, OF is the
centre of OB , and G = GLOB (Λ) is a reductive group over Zp.

unramified PEL case (OF ,OB, ∗,Λ, ( , ),G), where (OF ,OB,Λ,G) is an
unramified EL-type Rapoport–Zink datum, ( , ) is a perfect alternating
Zp-bilinear form on Λ, ∗ : a 7→ a∗ is an involution on OB such that
(av,w) = (v, a∗w) for any v,w ∈ Λ, and

G = GUOB (Λ, ( , ))) := GLOB (Λ) ∩ GUZp(Λ, ( , ))

where the (scheme-theoretic) intersection takes place inside GLZp(Λ).

(To make the comparison with Definition 4.6 more direct, we work over Zp

instead of over Qp as in the aforementioned references.)
For G as above, consider b ∈ G(K0) such that we have a p-divisible group

X := XΛ
b (cf. Definition 2.5.5), and choose a conjugacy class {µ} so that b ∈

G(W )pσ
∗µ−1

G(W ); Definition 2.5.11. In the PEL case, we additionally assume
that ordp(c(b)) = −1, where c : G → Gm is the similitude character. This
assumption is to ensure that the pairing ( , ) induces a quasipolarization of X via
crystalline Dieudonné theory and a 7→ a∗ corresponds to the Rosati involution;
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cf. [44, Section 3.20]. (Note that our choice of b is the transpose-inverse of the
Frobenius matrix (cf. the remark above Definition 2.5.5), so in our convention we
have ordp(c(b)) = −1, which differs by sign from [44, Section 3.20].)

Under this setting, Rapoport and Zink formulated a concrete moduli problem
for p-divisible groups, and constructed a formal moduli scheme M̆ := M̆G,b,
which turns out to be a formally smooth closed formal subscheme of RZX. See
[44, Definition 3.21, Theorem 3.25, Section 3.82] for more details.

For the unramified EL case, we choose a Zp-basis (sα) of OB and view them
as elements in Λ⊗Λ∗ ⊂ Λ⊗. For the unramified PEL-type case, we additionally
include a tensor s0 ∈ Λ

⊗2
⊗ Λ∗⊗2

⊂ Λ⊗ associated to the pairing ( , ) up to
similitude, as in Example 2.1.6. Now we consider the subfunctor RZ(sα)X,G of RZX
using this choices (Λ, (sα)); cf. Definition 4.6.

PROPOSITION 4.7.1. Assume that p > 2. In the unramified EL and PEL cases,
the subfunctor RZ(sα)X,G of RZX can be represented by the formal moduli scheme M̆
constructed by Rapoport and Zink (cf. [44, Theorem 3.25, Section 3.82]).

Proof. Let us first handle the unramified EL case. By considering simple factors
of B and applying the Morita equivalence, it suffices to handle the case when
OB = OF = W (κ0) and Λ = On

F , where κ0 is a finite extension of Fp. Let us
assume this.

Let (X, ι) denote a p-divisible group over A ∈ Nilpsm
W with quasi-isogeny

defined over A/J for some (or any) ideal of definition J containing p. We choose
(sα) corresponding to a Zp-basis of OB . If (X, ι) corresponds to Spf A → M̆,
then the induced OB-action on X gives rise to Tate tensors (tα). If we have
(X, ι) ∈ RZ(sα)X,G(A), then the Tate tensors (tα) do correspond to an OB-action
by the full faithfulness of the Dieudonné theory over A/p (cf. [15]) and the
Grothendieck–Messing deformation theory.

From now on, we assume that X is equipped with an OB-action corresponding
to a certain set of morphisms of crystals tα : 1 → D(X)⊗, and we translate
Definition 4.6 in terms of the OB-action and Kottwitz determination condition.

Firstly, Definition 4.6(1) is equivalent to the B-linearity of the quasi-isogeny ι
over A/J for any ideal of definition containing p by full faithfulness up to isogeny
of the crystalline Dieudonné functor over A/J (cf. [15, Corollary 5.1.2]).

We next show that under Definition 4.6(1) (or equivalently, under the B-
linearity of ι over A/J ) the scheme P Ã (with the notation as in Definition 4.6(2))
is a GLOB (Λ)-torsor. Since OB ⊗Zp Ã =

∏
τ :κ0↪→Fp

Ã, it follows that PÃ is a
GLOB (Λ)-torsor if and only if D(X)( Ã) is a free OB⊗Zp Ã-module with the same
rank asΛ. On this other hand, the rank can be computed after the scalar extension
to D[ 1

p ], where D � A/J is the p-adically completed PD hull of Ã � A/J
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(since Ã[ 1
p ] → D[ 1

p ] is injective by the proof of Lemma 4.6.4), the existence of
B-linear quasi-isogeny ι over A/J implies the desired freeness and rank equality.

Let us show that Fil1
X is a {µ}-filtration with respect to (tα(A))

(Definition 4.6(3)) if and only if the ‘Kottwitz determinant condition’ holds
for X A/J n for each n [44, Definition 3.21(iv)]. For this, it suffices to show that for
a fixed n and R := A/J n , Fil1

X R
is a {µ}-filtration if and only if the ‘Kottwitz

determination condition’ holds. Since the claim is étale-local on Spec R, we may
assume that the torsor PR is trivial. (The notion of {µ}-filtration is étale-local
on the base. The Kottwitz determinant condition can be phrased in terms of the
ranks of certain vector bundles, and ranks can be computed étale-locally.) Since
OB = W (κ0) for some finite extension κ0 of Fp, we can decompose

D(X R)(R) =
∏

τ∈Hom(κ0,Fp)

D(X R)(R)τ

Fil1
X R
=

∏
τ∈Hom(κ0,Fp)

Fil1
X R ,τ

.

It follows that the G(R)-conjugacy classes of (minuscule) cocharacters µ exactly
correspond to certain integer tuples (aτ )τ with aτ ∈ [0, rkR⊗Zp OB D(X R)(R)τ ], and
Fil1

X R
is a {µ}-filtration if and only if aτ = rkR Fil

1
X R ,τ

, which is exactly the
Kottwitz determinant condition.

Let us turn to the unramified PEL case. Since ordp(c(b)) = 1, there exists
u ∈ W× such that c(b) = p−1σ(u)−1u. Then we obtain an F-equivariant perfect
pairing

u( , ) :MΛ
b ⊗MΛ

b
( ,)
−→Mc(b)−1

u
−→Mp = 1(−1),

where Mz for z ∈ Gm(K0) denotes the F-crystal on W with F given by
multiplication by z. (Recall that MΛ

b = W ⊗Zp Λ
∗, so the similitude character for

the pairing ( , ) on MΛ
b is c−1.) Then u( , ) induces a principal quasipolarization

λ0 : X→ X∨, and Z×p · λ0 is well defined independent of the choice of u.
Conversely, given an OB-linear principal quasipolarization λ : X → X∨ of a p-

divisible group over A ∈ Nilpsm
W , we obtain a tensor tλ : 1→ D(X)⊗2

⊗ D(X)∗⊗2

only depending on Z×p · λ; cf. Example 2.1.6. By the full faithfulness result as
before, the existence of a principal quasipolarization λ : X → X∨ is equivalent to
the existence of a certain Tate tensor tλ. If s0 ∈ Λ

⊗ is the tensor corresponding to
Z×p · ( , ) and t0 the Tate tensor on X corresponding to s0, then we have t0 = tλ0 .

We choose a W -lift X̃ of X which lifts the OB-action and λ0. We let λ0 and t0

also denote their lifts over W . For any (X ′, ι′) ∈ RZX(R′) with R′ ∈ NilpW , we
choose the unique lift ι̃′ : XR′ 99K X ′.
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We now claim the following are equivalent:

(1) For any n, the quasi-isogeny ι̃ : X̃A/J n 99K X A/J n matches the Tate tensors
t0 for X̃ and tλ for X . Furthermore, the scheme P Ã, constructed as in
Definition 4.6(2) using (tα( Ã)) and tλ( Ã), is a GUOB (Λ)-torsor;

(2) The quasipolarization λ is OB-linear, and for any n the following diagram
commutes up to the multiple by some Zariski-locally constant function c :
Spec A/J n

→ Q×p :

X A/J n
λ // X∨A/J n

ι̃∨

��

X̃A/J n
λ0 //

ι̃

OO

X̃∨A/J n .

(4.7.2)

Granting this claim, it follows that M̆ represents RZ(sα)X,G in the unramified PEL
case; indeed, the ‘Kottwitz determinant condition’ and Definition 4.6(3) can be
matched in the identical way as in the unramified EL case.

Let us first show that (1)⇒(2). For this, we may replace Spf A by some étale
covering (of formal schemes) to assume that the torsor P Ã is trivial. Then the OB-
linearity of λ follows from the full faithfulness of the Dieudonné theory over A/p
(cf. [15]) and Grothendieck–Messing deformation theory.

Now, let ( , )0 : D(X̃)⊗2
→ 1(−1) and ( , )λ : D(X)⊗2

→ 1(−1) denote
the perfect symplectic F-equivariant pairing induced by the principal
quasipolarizations. To simplify the notation, set R := A/J n . By definition
of t0 and tλ, the quasi-isogeny ι̃ over R matches t0 and tλ if and only if
there exists a Zariski-locally constant function c : Spec R → Q×p such that
c( , )λ,R = ( , )0,R ◦ (D(ι̃)⊗2) as pairings on D(X R)[

1
p ]. (Indeed, c is Q×p -valued

because the automorphism of the F-isocrystal 1(−1) over a finite type κ-scheme
is Q×p – a very degenerate case of [15, Main Theorem 2].) On the other hand,
D(λ−1

0 ι̃
∨λ) : D(X̃R)[

1
p ] → D(X R)[

1
p ] is the ‘transpose’ of D(ι̃) in the sense that

( , )0,R◦(D(ι̃)⊗id)= ( , )λ,R◦(id⊗D(λ−1
0 ι̃
∨λ)) : D(X R)[

1
p ]⊗D(X̃R)[

1
p ] → 1(−1).

Therefore, we have c( , )λ,R = ( , )0,R ◦ (D(ι̃)⊗2) if and only if we have
D(λ−1

0 ι̃
∨λι̃) = c id. By full faithfulness of Dieudonné theory up to isogeny

over R, this is equivalent to ι̃∨λR ι̃ = cλ0,R . This shows that (1)⇒(2).
To show (2)⇒(1), it remains to show that (2) implies that P Ã is a GUOB (Λ)-

torsor. Since M̆ is formally smooth, we may lift (X, ι) so that A = Ã is
formally smooth and formally finitely generated over W . Then, it suffices to
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show that PA/J n is a GUOB (Λ)-torsor for each n, which follows from [44,
Theorem 3.16].

4.8. ‘Closed points’ and deformation theory for RZ(sα)X,G . We choose (G, b),
Λ, and (sα) ⊂ Λ⊗ as before. Let (G, [b], {µ−1

}) denote the unramified Hodge-
type local Shimura datum associated to (G, b); cf. Definition 2.5.11. In this
section, we show that the moduli functor RZ(sα)X,G ⊂ RZX interpolates X G(b) ⊂
XGL(Λ)(b) on κ-points and DefXx ,G ⊂ DefXx

on ‘formal neighbourhoods’.

REMARK 4.8.1. This remark is to justify why we restrict our focus on the set
of closed points and the formal neighbourhoods thereof. Since the underlying
reduced scheme RZred

X of RZX is Jacobson (being locally of finite type over κ),
any closed subscheme Z ⊂ RZred

X is determined by the subset Z(κ) ⊂ RZX(κ) of
closed points.

Now, given a formal closed subscheme Z ⊂ RZX, we can recover the completed
local ring ÔZ,η at any η ∈ Zred (not necessarily a closed point) from the closed
point z ∈ {η} and the quotient ÔZ,z of ÔRZX,z as follows. Choosing a preimage
η̂ ∈ Spec ÔZ,z ⊂ Spec ÔRZX,z of η, we can recover ÔZ,η as the image of the map
ÔRZX,η ↪→ (ÔRZX,z )̂η̂ � (ÔZ,z )̂η̂.

By Proposition 2.5.10, we have a natural bijection

X G(b) ∼= RZ(sα)X,G(κ). (4.8.2)

Recall that X G(b) satisfies functorial properties with respect to (G, b)
(Lemma 2.5.4). We also have the following cartesian diagram:

X G(b) �
�

//

∼=

��

XGL(Λ)(b)

∼=

��

RZ(sα)X,G(κ)
� � // RZX(κ),

(4.8.3)

where the vertical isomorphisms are given by Proposition 2.5.10, and the
horizontal map on the bottom row is the forgetful map.

Consider (X x , ιx) ∈ RZ
(sα)
X,G(κ) corresponding to a closed point x ∈ RZX(κ). We

define the ‘formal completion’ (RZ(sα)X,G )̂x of RZ(sα)X,G at x to be the set-valued functor
on the category of formal power series rings over W/(pm) (for some m) defined
as follows: for any formal power series ring A over W/(pm), (RZ(sα)X,G )̂x(A) is the
subset of elements in RZ(sα)X,G(A) which lift x . Equivalently, we have the following
description

(RZ(sα)X,G )̂x
∼= RZ(sα)X,G ×RZX (RZX)̂x , (4.8.4)
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where the right hand side is viewed as the fibre product of functors on the category
of formal power series rings over W/(pm). If RZ(sα)X,G can be represented by a
formal scheme formally smooth and locally formally of finite type over W , then
(RZ(sα)X,G )̂x can be represented by its formal completion at x .

Choose a coset representative gx ∈ G(K0) of x ∈ X G(b) ⊂ G(K0)/G(W ), and
write bx := g−1

x bσ(gx) (so that we have (X x , (tα,x)) ∼= (XΛ
bx
, (1⊗ sα))). Then for

a suitable choice of µ ∈ {µ}, the universal deformation with Tate tensors (XG,x ,

(t̂univ
α,x )) of (X x , (tα,x)), together with the quasi-isogeny ιx : X 99K X x , defines an

element RZ(sα)X,G(AG,x), where AG,x was defined in Section 3.5. (This can be verified
by the explicit construction of MG,x . Note that we have added the subscript
x to the notation of Section 3.5 to indicate that we are deforming X x .) Now,
Theorem 3.6 shows that the isomorphism DefXx

∼

−→ (RZX)̂x (cf. Lemma 4.3.1)
induces the following isomorphism

DefXx ,G
∼

−→ (RZ(sα)X,G )̂x (4.8.5)

of functors on formal power series rings over W/(pm); note that the deformations
coming from DefXx ,G automatically satisfy the condition on the Hodge filtrations
(Definition 4.6(3)) thanks to the explicit construction of the universal deformation
over DefXx ,G . In particular, (RZ(sα)X,G )̂x can be prorepresented by a formal power
series ring over W . If RZ(sα)X,G can be represented by a formal scheme which
is formally smooth and locally formally of finite type over W , then the above
isomorphism gives an identification of the formal completion at a closed point x
with DefXx ,G .

For A ∈ Nilpsm
W , let f : Spf A → RZX such that f ∈ RZ(sα)X,G(A). Then for any

closed point x in Spf A, f induces

f̂x : Spf Âx → DefXx ,G

by (4.8.5). If we let X denote the p-divisible group over A corresponding to f ,
then we have a morphism of crystals tα : 1→ D(X)⊗ for each α, which exists by
the definition of RZ(sα)X,G ; cf. Definition 4.6.

LEMMA 4.8.6. The pull-back of tα over Spec Âx (for a closed point x in Spf A)
coincides with the pull-back ( f̂x)

∗(t̂univ
α,x ) of the universal deformation of Tate

tensors. The same statement holds if we replace A with a formally smooth
formally finitely generated W -algebra Ã.

Proof. This follows from Lemma 4.6.4 applied to f̂x ∈ RZ
(sα)
X,G( Âx).
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Let us record some functorial properties that DefXx ,G enjoys. To explain, let
(G ′, b′) and Λ′ be as in Definition 2.5.5. (We do not assume the existence of any
‘equivariant’ morphism Λ→ Λ′.) We write X′ := XΛ′

b′ .
For any x ′ ∈ X G ′(b′) and the corresponding element (X ′x ′, ι) ∈ RZX′(κ) (via the

embedding X G ′(b′) ↪→ XGL(Λ′)(b′), we have a natural isomorphism

DefXx ,G ×DefXx ′ ,G ′
∼

−→ DefXx×Xx ′ ,G×G ′, (4.8.7)

defined by taking the product of deformations. This isomorphism is compatible
with the morphism RZX × RZX′ → RZX×X′ defined by taking the product of p-
divisible groups and quasi-isogenies.

Let f : G→ G ′ be a homomorphism over Zp which takes b to b′, and consider
the map X G(b) → X G ′(b′) associated to f by Lemma 2.5.4. We choose x ∈
X G(b) and let x ′ ∈ X G ′(b′) denote its image by this natural map. We choose
a coset representative gx ∈ G(K0) of x ∈ X G(b) ⊂ G(K0)/G(W ), and write
bx := g−1

x bσ(gx) and b′x ′ := f (bx). Then by the choice of gx (and f (gx)), we
obtain isomorphisms

DefXx ,G
∼= DefXΛbx ,G

, DefX ′x ′ ,G
′
∼= DefXΛ′

b′
x ′
,G ′ .

So by Proposition 3.7.2 we obtain a morphism

DefXx ,G → DefX ′x ′ ,G
′ (4.8.8)

By Remark 3.7.4 it follows that the morphism above does not depend on the
choice of the coset representative gx of x ∈ X G(b) ⊂ G(K0)/G(W ).

4.9. Main Statements. We are ready to state the main result, which asserts
that the subset RZ(sα)X,G(κ) ⊂ RZX(κ) and the subspaces (RZ(sα)X,G )̂x ⊂ (RZX)̂x for
x ∈ RZ(sα)X,G(κ) patch to give a closed formal subscheme RZΛG,b ⊂ RZX, and the
functorial properties enjoyed by X G(b) ∼= RZ(sα)X,G(κ) and DefXx ,G

∼= (RZ(sα)X,G )̂x

patch to give the corresponding functorial properties for RZΛG,b.

THEOREM 4.9.1. Let p > 2. Then there exists a closed formal subscheme
RZΛG,b ⊂ RZX which is formally smooth over W and represents the functor RZ(sα)X,G
for any choice of (sα) ⊂ Λ⊗ with pointwise stabilizer G. More precisely, for any
sα there exist ‘universal Tate tensors’

tuniv
α : 1→ D((XRZX)|RZΛG,b)

⊗,

such that for A ∈ Nilpsm
W , a map f : Spf(A, J ) → RZX factors through RZΛG,b

if and only if f ∈ RZ(sα)X,G(A), in which case (tα) as in Definition 4.6 recovers
( f ∗tuniv

α ).
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For another pair (G ′, b′) and Λ′ ∈ RepZp
(G ′) that give rise to a p-divisible

group (as in Definition 2.5.5), we consider the closed formal subscheme RZΛ
′

G ′,b′ ⊂

RZX′ which was just constructed. Then the following properties hold:

(1) The morphism RZX ×Spf W RZX′ → RZX×X′ , defined by the product of p-
divisible groups with quasi-isogeny, induces an isomorphism

RZΛG,b ×Spf W RZΛ
′

G ′,b′
∼

−→ RZΛ×Λ
′

G×G ′,(b,b′)

such that it induces the product decomposition of affine Deligne–Lusztig
sets (Lemma 2.5.4) and the deformation spaces (Proposition 3.7.2) via the
isomorphisms (4.8.2) and (4.8.5), respectively.

(2) Let f : G → G ′ be a homomorphism which takes b to b′. Then there exists
a (necessarily unique) morphism RZΛG,b → RZΛ

′

G ′,b′ which induces the maps
that fit in the following cartesian diagrams:

X G(b) Lem 2.5.4 //

(4.8.2)∼=
��

X G ′(b′)
(4.8.2)∼=
��

DefXx ,G
(4.8.8)

//

(4.8.5)∼=
��

DefXx ′ ,G ′

(4.8.5)∼=
��

RZΛG,b(κ) // RZΛ
′

G ′,b′(κ) (RZΛG,b )̂x
// (RZΛ

′

G ′,b′ )̂x ′,

where x ′ ∈ RZΛ
′

G ′,b′(κ) is the image of x, and the arrows on the top row are
the natural maps induced by f .

Furthermore, if G ′ = GL(Λ), then the natural inclusion (G, b)→ (GL(Λ),
b) induces the natural inclusion RZΛG,b → RZΛGL(Λ),b = RZX (cf.
Example 4.6.1).

We prove this theorem in Sections 5 and 6.

REMARK 4.9.2. When the pair (G, b) and the choice of (Λ, (sα)) correspond to
the unramified EL or PEL case (cf. Section 4.7), then RZΛG,b ⊂ RZX coincides
with the formal moduli subscheme M̆ ⊂ RZX constructed by Rapoport and Zink,
often referred to as an EL or PEL Rapoport–Zink space.

REMARK 4.9.3. Just as in the (P)EL case, we construct (in Section 7.4) coverings
of the rigid generic fibre (RZΛG,b)

rig by adding suitable level structure, and obtain
a rigid analytic tower with Hecke G(Qp)-action. We verify in Section 7 that
this covering has the extra structure expected for the ‘local Shimura variety’
{M(G, [b], {µ−1

})K}K⊂G(Zp) associated to (GQp , [b], {µ
−1
}) as stated in [43,

Section 5.1]. In this viewpoint, we can view Theorem 4.9.1 as a construction
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of a (formally smooth) formal model of the local Shimura variety M(G, [b],
{µ−1
})G(Zp) with ‘hyperspecial level structure’, when the local Shimura datum is

of Hodge type.
Formal smoothness of RZΛG,b is compatible with our expectation that the

conjectural local Shimura variety M(G, [b], {µ−1
})K should admit a formally

smooth formal model if G is an unramified reductive group over Qp and K ⊂
G(Qp) is hyperspecial. (This is a local analogue of good reduction of Shimura
varieties).

REMARK 4.9.4. The argument to ‘algebraize and glue’ the deformation spaces
DefXx ,G for x ∈ X G(b) in Sections 5 and 6 makes use of the functor RZ(sα)X,G
using Nilpsm

W as ‘test rings’ (cf. Definition 4.6). Implicit in this approach is the
expectation that RZΛG,b should be formally smooth (as explained in the previous
remark).

REMARK 4.9.5. Choose g ∈ G(K0) such that b′ := g−1bσ(g) also defines a p-
divisible group X′ := XΛ

b′ . We let ιg : X 99K X′ denote the quasi-isogeny induced
by g : MΛ

b′[
1
p ]
∼

−→ MΛ
b [

1
p ]. Then we have a natural isomorphism RZ(sα)X′,G

∼

−→ RZ(sα)X,G
by postcomposing ιg (or rather, the suitable base change of it). In particular, we
obtain an isomorphism RZΛG,b′

∼

−→ RZΛG,b.

REMARK 4.9.6. Applying Theorem 4.9.1(2) to f = id : (G, b) → (G, b), we
obtain a canonical isomorphism RZΛG,b

∼

−→ RZΛ
′

G,b which respects the identifications
of κ-points with X G(b) and the formal completion at a κ-point x with DefΛG,bx

.
Combining this with Remark 4.9.5, it follows that RZΛG,b only depends on

the associated unramified Hodge-type local Shimura datum (G, [b], {µ−1
}) up to

(usually noncanonical) isomorphism. Furthermore, if (G ′, [b′], {µ′−1
}) is another

unramified Hodge-type local Shimura datum, then for any map f : (G, [b],
{µ−1
}) → (G ′, [b′], {µ′−1

}), we have a morphism RZΛG,b → RZΛ
′

G ′,b′ for some
suitable choice of (b,Λ) and (b′,Λ′).

REMARK 4.9.7. In the setting of Theorem 4.9.1(2), the association

[(G, b)→ (G ′, b′)] [RZΛG,b → RZΛ
′

G ′,b′]

respects compositions and products of morphisms (in the obvious sense), since
the analogous statement is true for X G(b) and DefΛG,bx

.

REMARK 4.9.8. If f : G → G ′ is a closed immersion (so we write b′ = b),
then the associated map RZΛG,b → RZΛ

′

G ′,b is a closed immersion. Indeed, by

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


W. Kim 50

Remark 4.9.6 we may take Λ = Λ′, and the natural inclusion RZΛG,b ↪→ RZX
factors as RZΛG,b → RZΛG ′,b ↪→ RZX by Remark 4.9.7.

REMARK 4.9.9. If (G, b) comes from an unramified EL or PEL datum, then
it follows from Proposition 4.7.1 that our construction of RZΛG,b is compatible
with the original construction of Rapoport and Zink. On the other hand, the
‘functoriality’ aspect of Theorem 4.9.1 produces morphisms between EL and PEL
Rapoport–Zink spaces which cannot be constructed as a formal consequence of
the (P)EL moduli problem. For example, consider an exceptional isomorphism
GSp(4) ∼= GSpin(3, 2) of split reductive Z(p)-groups, and set G := GSp(4)Zp . Let
(G, [b], {µ−1

}) be a unramified Hodge-type local Shimura datum, coming from a
(global) Shimura datum for GSp(4)/Q as in Example 2.5.12. Recall that we have
another faithful G-representation Λ; namely, the even Clifford algebra for a split
rank-5 quadratic space over Zp. It turns out that there exists a perfect alternating
form ψ such that the natural G-action on Λ induces a closed immersion f : G =
GSpin(3, 2) ↪→ GSp(Λ,ψ) =: G ′ and the local Shimura datum (G ′, [ f (b)],
{ f ◦ µ−1

}) is of PEL-type. Then Theorem 4.9.1 produces a closed immersion
RZG,b ↪→ RZG ′, f (b).

REMARK 4.9.10. Since the first version of this paper became available, there has
been a lot of progress in understanding RZΛG,b. For example, given the formal
closed subscheme RZΛG,b ⊂ RZX as in Theorem 4.9.1, then we can describe
RZΛG,b(κ

′) group-theoretically, where κ ′ is either a perfect field extension of
κ (cf. [54, Proposition 3.11]) or a finitely generated extension of κ (cf. [24,
Theorem 2.4.10]).

5. Descent and Extension of Tate tensors from a complete local ring to a
global base

In this section, we prove the technical results (especially, Propositions 5.2
and 5.6) which allow us to ‘globalize’ the Faltings deformation spaces.

Let Nilpft
W be the category of finitely generated W/pm-algebras for some m. We

first define the following subfunctor RZΛG,b of RZX, where X = XΛ
b . (So we have

RZX = RZΛGL(Λ),b.) We show in Section 6 that this subfunctor can be represented
by a closed formal scheme of RZX which satisfies the desired properties stated in
Theorem 4.9.1.

DEFINITION 5.1. In the setting of Section 4.4, we define a functor
RZΛG,b : Nilpft

W → (Sets) as follows: for any R ∈ Nilpft
W , RZΛG,b(R) ⊂ RZX(R)

consists of (X, ι) ∈ RZX(R) such that for any x : Spec κ → Spec R, we have
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(X x , ιx) ∈ RZ(sα)X,G(κ) and the map Spf R̂x → DefXx
, induced by X R̂x , factors

through DefXx ,G .

For (X, ι) ∈ RZΛG,b(R) with R ∈ Nilpft
W , we set

t̂α,x : 1→ D(X R̂x )
⊗ (5.1.1)

to be the pull-back of the universal Tate tensors t̂univ
α,x (3.5.2) via Spf R̂x →DefXx ,G .

From the definition of RZΛG,b, it is not clear whether RZΛG,b is formally smooth,
and whether we have RZ(sα)X,G(A) ∼= lim

←−n
RZΛG,b(A/J n) for A ∈ Nilpsm

W with ideal

of definition J , where RZ(sα)X,G is defined in Definition 4.6 (cf. Proposition 5.2(3)).
Also it is unclear how to rule out the possibility that RZΛG,b is the disjoint union
of DefXx ,G when the closure of RZΛG,b(κ) in RZred

X is positive-dimensional (cf.
Proposition 5.6). These issues will be resolved by the technical results proved
in this section.

Let us first state our descent result:

PROPOSITION 5.2. Assume that p > 2.

(1) Let (X, ι) ∈ RZΛG,b(R) for R ∈ Nilpft
W . Then for each α, there exists a unique

morphism of crystals
tα : 1→ D(X)⊗

which induces sα,D on the isocrystals (cf. Definition 4.5), and pulls back to
t̂α,x for each closed point x in Spec R (cf. (5.1.1)).

(2) Let R ∈ Nilpft
W and choose a presentation A/J ∼= R where A is formally

smooth formally finitely generated over W and J is an ideal of definition.
Let (X, ι) ∈ RZΛG,b(R) and let f : Spec R → RZX denote the corresponding
morphism. Then there exists a lift f̃ : Spf A → RZX of f such that f̃ ∈
RZ(sα)X,G(A). Furthermore, if we let X̃ denote the p-divisible group over A
obtained by pulling back the universal p-divisible group via f̃ , then for any
α the Tate tensor t̃α : 1→ D(X̃)⊗ (which exists by the definition of RZ(sα)X,G; cf.
Definition 4.6) pulls back to tα constructed in (1) via restriction.

(3) Let A be a formally smooth formally finitely generated W -algebra with ideal
of definition J . We consider a projective system (X (i), ι(i)) ∈ RZX(A/J i),
which corresponds to a map f̃ : Spf(A, J )→ RZX. Then we have (X (i), ι(i))

∈ RZΛG,b(A/J i) for each i if and only if f̃ ∈ RZ(sα)X,G(A). The same holds if we
replace A with A/pm

∈ Nilpsm
W .
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We prove this proposition in Sections 5.3–5.4, and for now we remark that the
claims (1)–(3) will be proved simultaneously; we first prove a weaker analogue
of (1) (cf. Proposition 5.4.1), from which we deduce (3) (cf. Proposition 5.4.11,
Lemma 5.4.12), and using (3) we prove the rest of Proposition 5.2 (cf.
Lemma 5.4.13).

Let us now begin the proof of Proposition 5.2.

5.3. Preparation: Liftable PD thickenings.

DEFINITION 5.3.1. Let B � R be a PD thickening of Z/pm-algebras for some
m > 1. We call B a liftable PD thickening of R if there exist a Zp-flat p-adic PD
thickening Dfl � R and a surjective PD morphism Dfl � B.

The most important class of liftable PD thickening to us is square-zero liftable
PD thickenings, by which we mean a square-zero thickening B � R equipped
with the ‘square-zero PD structure’ on ker(B � R), such that B � R is liftable
as a PD thickening. (If we assume that p > 2, then any square-zero PD structure
is compatible with the standard PD structure on pZp.)

The following lemma is obvious from the definition.

LEMMA 5.3.2. Let R′′ � R′ � R be square-zero thickenings of Z/pm-algebras
for some m > 1. If R′′ � R is a square-zero liftable PD thickening, then so are
R′′ � R′ and R′ � R.

Note that there exists a ring R of characteristic p which does not admit a Zp-
flat p-adic PD thickening (so the trivial thickening R

=

−→ R is not liftable for
such R). See [48, Remark 4.1.6] for such an example, which is the quotient of a
perfect Fp-algebra by an infinitely generated ideal. On the other hand, the trivial
thickening of a reduced κ-algebra is liftable, as W (R) � R is a W -flat p-adic
PD thickening.

LEMMA 5.3.3. Let R′ � R be a square-zero thickening of finitely generated
W/pm-algebras for some m > 1. We choose a formally smooth W -algebra
A� R′ and let D � R denote the p-adically completed PD hull of A� R.

Then R′ � R is a square-zero liftable PD thickening if and only if the natural
PD morphism D � R′ factors through the image Dfl of D in D[ 1

p ].

The author knows whether D� R factors through Dfl if R is finitely generated
over W/pm for some m, or if there is any counterexample.
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Proof. Let Dtor := ker(D � Dfl). If D � R′ factors through Dfl, then we have
Dtor ⊂ ker(D � R), and it is a PD subideal as the PD structure preserves the p-
power torsion elements. Therefore, Dfl is the W -flat p-adic PD thickening, which
admits a PD surjection onto R′.

Conversely, if R′ � R is liftable, then by assumption there exist a W -flat
p-adic PD thickening D′ � R and a surjective PD morphism D′ � R′. By
choosing a lift A→ D′ of A� R′, we can natural extending it to a PD morphism
D → D′. Therefore D � R′ factors through Dfl, as it factors through a flat
W -algebra D′.

The aim of this section is to show that ‘sufficiently many’ rings in
characteristic p admit lots of liftable PD thickenings (although we cannot
handle all finitely generated κ-algebras). In general, it seems quite hard to
produce a p-torsion free PD thickening, and our approach is to embed our finitely
generated κ-algebra into some f-semiperfect ring and use some construction of
p-torsion free PD thickening available for some f-semiperfect rings.

Recall that a ring R̃ of characteristic p is called semiperfect if the Frobenius
map σ : R̃ → R̃ is surjective. To a semiperfect ring R̃ we can form a inverse
perfection

R̃[
:= lim
←−
σ

R̃, (5.3.4)

complete with respect to the natural projective limit topology. Let J̃ ⊂ R̃[ denote
the kernel of the natural projection R̃[ � R̃.

The following definition is from [48, Definition/Proposition 4.1.2] and [35]:

DEFINITION 5.3.5. A semiperfect ring R̃ is called f-semiperfect if there is a
finitely generated ideal J̃0 ⊂ R̃[ such that for some n � 0 we have σ n( J̃0) ⊂

J̃ ⊂ J̃0.
A semiperfect ring R̃ is balanced if

(
ker(σ )

)p
= 0. This is equivalent to require

that J̃ := ker(R̃[ � R̃) satisfies J̃ p
= σ( J̃ ); cf. [35, Lemma 4.6].

Note that any f-semiperfect ring R̃0 admits a surjective map ψ : R̃0 � R̃ to
a balanced f-semiperfect ring R̃ such that σ N (ker(ψ)) = 0 for some N � 0; cf.
[48, Definition/Proposition 4.1.2].

LEMMA 5.3.6. Let R̃ be a balanced semiperfect ring. Then there exists a Zp-flat
quotient W̃ (R̃) of W (R̃[) such that W̃ (R̃)/p = R̃.

Note that W̃ (R̃) was denoted as WPD,0(R̃) in [48, proof Lemma 4.1.7]. We see
from the construction that we have W (R̃[)� W̃ (R̃)� W (R̃).
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Proof. This lemma can be extracted from [48, proof Lemma 4.1.7]. (See also [35,
proof of Lemma 4.6].) To explain, let J̃ := ker(R̃[ � R̃), and define

[ J̃ ] :=
{∑

i>0

[ri ]pi
= (r0, r

p
1 , . . . , r

pi

i , . . .)| ri ∈ J̃
}
⊂ W ( J̃ ) ⊂ W (R̃[),

which turns out to be an ideal of W (R̃[) since we have σ( J̃ )= J̃ p by balancedness
of R̃. (The nontrivial part is to show that [ J̃ ] is stable under addition if we have
σ( J̃ ) = J̃ p. See [35, proof of Lemma 4.6] for the verification.)

Now, we set W̃ (R̃) := W (R̃[)/[ J̃ ]. Clearly (from the definition of [ J̃ ]), there
is no nonzero p-torsion in W̃ (R̃), and we have W̃ (R̃)/p = R̃[/ J̃ = R̃.

LEMMA 5.3.7. Let ψ : R̃′ � R̃ be a nilpotent thickening of balanced f-
semiperfect rings such that we have (ker(ψ))p

= 0. We give a PD structure on
ker(ψ) determined by f [p] = 0 for any f ∈ ker(ψ).

Then there exists a unique PD structure on ker(W̃ (R̃′) � R̃) such that the
natural projection W̃ (R̃′) � R̃′ is a PD morphism. In particular, ψ : R̃′ � R̃ is
a liftable PD thickening (cf. Definition 5.3.1).

Proof. Since σ(ker(ψ)) ⊂ ker(ψ)p
= 0 (that is, ψ factors σ : R̃→ R̃), it follows

that ψ induces an isomorphism R̃′[
∼

−→ R̃[. We let J̃ ′ := ker(R̃[ � R̃′) and J̃ :=
ker(R̃[ � R̃). Since both R̃ and R̃′ are balanced, the ideals [ J̃ ], [ J̃ ′] ⊂ W (R̃)
make sense (cf. proof of Lemma 5.3.6), and we have J̃ ⊃ J̃ ′ ⊃ J̃ p

= σ( J̃ ).
We write a := ker(W̃ (R̃′) � R̃), which is generated by p and the image of
[ J̃ ]. Since W̃ (R̃′) := W (R̃[)/[ J̃ ′] is Zp-flat, there exists at most one PD structure
on a, and the only candidate of the PD structure is the restriction of the unique
divided power of a in W̃ (R̃′)[ 1

p ] = (W (R̃[)/[ J̃ ′])[ 1
p ]. Therefore, to show that a

has a PD structure, it suffices to show that for any α ∈ (p, [ J̃ ]) ⊂ W (R̃[) we
have α p

p! ∈ a+ [ J̃ ′][ 1
p ] ⊂ W (R̃[)[ 1

p ]. (Note that the same claim for αn

n! with n > p
follows from the case with n = p.)

Since any α ∈ (p, [ J̃ ]) can be written as α = [r0] + pβ, for r0 ∈ J̃ and β ∈
W (R̃[), we have

α p

p!
=
([r0] + pβ)p

p!
=

p∑
i=0

[r i
0]

i !
p p−i

(p − i)!
β p−i
≡
[σ(r0)]

p!
mod pW (R̃[).

Since we have σ( J̃ ) ⊂ J̃ ′ by assumption, [σ(r0)]

p! maps to zero in W̃ (R̃′)[ 1
p ], and

we have ᾱ p

p! ∈ pW̃ (R̃′) for any ᾱ ∈ a. Therefore, a ⊂ W̃ (R̃′) is a PD ideal and the
mod p reduction W̃ (R̃′)� R̃′ is a PD morphism.
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COROLLARY 5.3.8. Let κ be an algebraically closed field of characteristic p,
and let B be a reduced ring which is formally finitely generated over κ (cf.
Remark 2.1.2). Let J ⊂ B be an ideal contained in an ideal of definition for
B such that R := B/J is reduced. (Note that we have B = lim

←−i
B/J i .)

Then there exists a sequence of square-zero liftable PD thickenings (in the sense
of Definition 5.3.1):

B � · · ·� Bi+1 � Bi � · · ·� B0 = R

such that B = lim
←−i

Bi .

In practice, B will be either formally smooth over κ (with J some suitable
closed subideal of some ideal of definition), or a reduced complete local
noetherian κ-algebra with residue field κ (with maximal ideal J , so R = κ).

Proof. We write B̃ := lim
−→σ

B, and R̃0 := B̃/J B̃ (which is clearly f-semiperfect).
Then we have

R̃[

0 := lim
←−
σ

R̃0
∼= lim
←−

n

B̃/σ n(J )B̃ ∼= lim
←−

m

B̃/J m B̃, (5.3.9a)

where the last isomorphism follows since for any n, we have σ n+N (J )B̃ ⊂
J pn+N

B̃ ⊂ σ n(J )B̃, if J can be generated by pN elements; cf. [48, proof of
Proposition 4.1.2]. In particular, B injects into R̃[

0.
Let J̃ :=

⋃
n σ
−n(J pn

R̃[

0), which an ideal of R̃[

0 because it is a rising union
of ideals. Then we have J̃ p

= σ( J̃ ) and J R̃[

0 ⊂ J̃ ⊂ σ−N (J R̃[

0), if J can
be generated by pN elements. We set R̃ = R̃0/ J̃ . Note that R̃ is a balanced f-
semiperfect ring, and we have

R̃[

0 = R̃[
= lim
←−

n

R̃[/σ n( J̃ ) = lim
←−

n

R̃[/( J̃ )pn
; cf. [48, Proposition 4.1.2]. (5.3.9b)

We next show that R injects into R̃. Indeed, the kernel of B � R→ R̃ consists
of elements f ∈ B such that σ n( f ) = f pn

∈ J pn for some n, but this condition
forces f ∈ J as J is its own radical.

Observe that {( J̃ )i} is a fundamental system of neighbourhoods of 0 in R̃[,
as it is cofinal with {J i R̃[

}; cf. (5.3.9a) and (5.3.9b). We set B̃i := R̃[/ J̃ i , and
let Bi ⊂ B̃i denote the image of B. Note that B̃i is balanced for any i since
σ(( J̃ )i) = (σ ( J̃ ))i = ( J̃ )pi . As B injects into R̃[, we have B = lim

←−i
Bi . (Recall

that B is J -adically complete, and {J i R̃[
} and {( J̃ )i} are cofinal.)

It remains to show that for any i the PD thickening Bi+1 � Bi (with respect to
the ‘square-zero PD structure’) is liftable, which we deduce from the liftability
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of the square-zero PD thickening of balanced f-semiperfect rings B̃i+1 � B̃i

(cf. Lemma 5.3.7). We choose a formally smooth formally finitely generated W -
algebra A surjecting onto B and ker(A � R) is an ideal of definition. (Indeed,
we choose a polynomial algebra A0 over W which surjects onto B/J 2, and let A
denote the completion of A0 with respect to ker(A0 � R).) Let Di � Bi denote
the p-adically completed PD hull of A � B � Bi , then we obtain a natural
PD morphism Di � Bi+1. By Lemma 5.3.3, it suffices to show that Di → Bi+1

factors through the image Dfl
i of Di in Di [

1
p ].

We choose a lift A→ W (R̃[) of A� B ↪→ R̃[. Then by the universal property
of Di , the map A → W (R̃[) � W̃ (B̃i+1) naturally extends to a PD morphism
Di → W̃ (B̃i+1); cf. Lemma 5.3.7. Now, we consider the following diagram

A

����

//

��

W (R̃[) // // W̃ (B̃i+1)

����

Di
// //

33

B // // Bi+1
� � // B̃i+1.

(5.3.10)

Note that the two possible solid arrows A→ B̃i+1 coincide since the composed
map A → W (R̃[) � B̃i factors through B and Bi+1 is the image of B in
B̃i+1. Now the universal property of Di applied to the two possible solid arrows
A → B̃i+1 shows that two possible maps Di → B̃i+1 coincide; that is, Di →

W̃ (B̃i+1)� B̃i+1 factors through Bi+1. Furthermore, the natural map Di → B̃i+1

factors through the Zp-flat closure Dfl
i (as Di → W̃ (B̃i+1) factors through Dfl

i by
Zp-flatness of W̃ (B̃i+1)). This shows that ker(Di � Bi+1) contains the p-power
torsion of Di .

REMARK 5.3.11. Unfortunately, Corollary 5.3.8 does not show that any finitely
generated κ-algebra R admits a p-adic W -flat PD thickening, as there are
examples of R that cannot occur as one of Bi ’s as in Corollary 5.3.8.

COROLLARY 5.3.12. Let W := W (κ) for an algebraically closed field κ of
characteristic p > 2. Let A be a formally smooth formally finitely generated
W -algebra, and let J ⊂ A be an ideal contained in an ideal of definition for A,
such that R := A/J is a reduced κ-algebra. (Note that we have A = lim

←−i
A/J i .)

Then there exists a sequence of square-zero liftable PD thickenings {Am,i} indexed
by (m, i) ∈ Z2

>1, where each Am,i is a nilpotent thickening of A1,1 := R killed by
pm , such that Am+1,i � Am,i and Am,i+1 � Am,i are liftable square-zero PD
thickenings for any (m, i), and we have A/pm

= lim
←−i

Am,i for any m > 1.
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Proof. We set B = A/p, which is a reduced κ-algebra (cf. [15, Lemma 1.3.3]),
so by Corollary 5.3.8 we obtain A1,i := Bi . Furthermore, we construct R̃[, B̃i , etc,
as in the proof of Corollary 5.3.8, and we have the commutative diagram (5.3.10).

For the chosen lift A → W (R̃[) of A/p ↪→ R̃[, we set Am,i to be the image
of A in W̃ (B̃i)/pm . Then we have A/pm

= lim
←−i

Am,i for any m > 1. (Injectivity
is clear from A/pm ↪→ W (R̃[)/pm

= lim
←−i

W̃ (B̃i)/pm , and surjectivity can be
checked modulo p; cf. Corollary 5.3.8.)

Finally, the liftability of square-zero PD thickenings Am′,i ′ � Am,i with
(m ′, i ′) ∈ {(m+1, i), (m, i+1)} can be verified via diagram chasing analogous to
(5.3.10). To explain, let Dm,i � Am,i denote the p-adically completed PD hull of
A� Am,i , so we obtain the PD morphisms Dm,i → Am′,i ′ for (m ′, i ′) ∈ {(m+1, i),
(m, i+1)}, where the targets are given the ‘square-zero PD structure’ on the kernel
of the projection onto Am,i . And we have the following diagrams

A

## ##

//

��

W (R̃[) // // W̃ (B̃i)

����

Dm,i
// //

44

Am+1,i
� � // W̃ (B̃i)/pm+1

A

## ##

//

��

W (R̃[) // // W̃ (B̃i+1)

����

Dm,i
// //

44

Am,i+1
� � // W̃ (B̃i+1)/pm .

By the same diagram chasing as in the proof of Corollary 5.3.8, it follows that the
map Dm,i → Am′,i ′ for (m ′, i ′) ∈ {(m+1, i), (m, i+1)} factors through the Zp-flat
closure Dfl

m,i by Zp-flatness of W̃ (B̃i) and W̃ (B̃i+1), which implies the liftability
of Am′,i ′ � Am,i for (m ′, i ′) ∈ {(m + 1, i), (m, i + 1)} by Lemma 5.3.3.

5.4. Proof of Proposition 5.2. Proving the following proposition is the key
step of the proof of Proposition 5.2:

PROPOSITION 5.4.1. Let R′ � R be a square-zero thickening of finitely
generated W/pm-algebras for some m. We give the square-zero PD structure on
ker(R′ � R). Let (X, ι) ∈ RZΛG,b(R).

Then there exist a unique section tα(R′) ⊂ D(X)(R′)⊗ for each α, such that its
image in D(X R̂x )(R̂

′

x)
⊗ coincides with t̂α,x(R̂′x) for any closed point x in Spec R,

where (t̂α,x) is as in (5.1.1).

Before we prove the proposition, let us record the following lemma:

LEMMA 5.4.2. Let R′ be a noetherian ring. Then the product
∏

x R̂′x over all
closed points x ∈ Spec R′ is faithfully flat over R′.

Proof. By [10, Theorem 2.1], any direct product of flat modules over a noetherian
ring is again flat, which shows that

∏
x R̂′x is flat over R′ when R′ is noetherian.
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Now, given any η ∈ Spec R′ and a closed point m specializing η, there exists
η̂ ∈ Spec R̂x mapping to η, and we can view η̂ as a point in Spec(

∏
x R̂x). This

shows the desired faithful flatness.

Let us outline the strategy to prove Proposition 5.4.1. By Lemma 5.4.2, we need
to show that the collection {t̂α,x(R̂′x)}x respects the descent datum with respect
to R′ →

∏
x R̂′x , where x runs over all closed points of Spec R. We want to

obtain this compatibility from the quasi-isogeny ι : XR/p → X R/p, which is only
possible if R′ � R is a liftable PD thickening in the sense of Definition 5.3.1. In
particular, we can prove Proposition 5.4.1 if both R and R′ are one of Am,i as in
Corollary 5.3.12. In general, we use some fibre product construction to reduce to
the square-zero thickenings appearing in Corollary 5.3.12.

LEMMA 5.4.3. Proposition 5.4.1 holds if R′ � R is a liftable PD thickening.

Proof. Let us set up the notation. We choose a formally smooth formally finitely
generated W -algebra A � R′. Let D � R be the p-adically completed PD hull
of A� R′ � R. By liftability, the natural PD morphism D� R′ factors through
the W -flat closure Dfl of D; cf. Lemma 5.3.3.

For a closed point x in Spec R, we consider the square-zero thickening R̂′x �
R̂x (with the ‘square-zero PD structure). The completion Âx (viewing x as a
closed point of Spf A) surjects onto R̂′x , and if we set

Dfl
x := lim
←−

m

Dfl/pm
⊗A/pm Âx/pm (5.4.4)

turns out to be a W -flat p-adic PD thickening of R̂x , admitting a PD surjection
onto R̂′x . (Indeed, since A/pm

→ Âx/pm is flat for any m, the PD surjection
Dfl/pm � R′ for m � 1 naturally extends to a PD surjection Dfl/pm

⊗A/pm

Âx/pm � R′ ⊗A/pm Âx/pm
= R̂′x ; cf. [4, Corollary 3.22]. The W -flatness of Dfl

x
follows from the W -flatness of Dfl.)

Let us choose a finite-rank direct factor E ⊂ D(X)⊗ where all (tα) factor
through, so that E (Dfl) is a finitely generated projective Dfl-module. Then∏

x(t̂α,x(D
fl
x )) defines an element in

∏
x E (Dfl

x )
∼= E (Dfl) ⊗Dfl (

∏
x Dfl

x ), and its
image in E (R′)⊗R′ (

∏
x R̂′x) is given by

∏
x(t̂α,x(R̂

′

x)). Here, x runs over all closed
points x in Spec R. Now, by faithfully flat descent and Lemma 5.4.2, we have a
left exact sequence

E (R′) //E (R′)⊗R′ (
∏

x R̂′x) // //E (R′)⊗R′ (
∏

x R̂′x)
⊗2 . (5.4.5)

So to prove the lemma, it suffices to show that
∏

x(t̂α,x(R̂
′

x)) is in the equalizer
of the double arrows. We verify this using its lift

∏
x(t̂α,x(D

fl
x )) ∈ E (Dfl) ⊗Dfl

(
∏

x Dfl
x ).
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We first claim that
∏

x(t̂α,x(D
fl
x )) lies in the image of

E (Dfl)[ 1
p ] → E (Dfl)[ 1

p ] ⊗Dfl

(∏
x

Dfl
x

)
.

In fact, recall that the quasi-isogeny ι : XR/p → X R/p induces the morphism of
F-isocrystals sα,D : 1→ D(X R̂x )

⊗
[

1
p ] (cf. Definition 4.5). We claim that t̂α,x : 1→

D(X R̂x /p)
⊗ induces sα,D on the isocrystals. Indeed, by [17, Lemma 4.3] any map

of F-isocrystals 1→ D(X R̂x )
⊗
[

1
p ] is determined by its fibre at the closed point x ,

and sα,D and t̂α,x coincide at any closed point x in Spec R by definition of RZΛG,b; cf.
Definition 5.1. (Although [17, Lemma 4.3] is stated for isocrystals over R̂x/p, we
can apply it to isocrystals over R̂x since the restriction by Spec R̂x/p ↪→ Spec R̂x

is an equivalence of categories on the categories of (iso)crystals.) This shows
that after inverting p,

∏
x(t̂α,x(D

fl
x )) coincides with the image of ‘sα,D(Dfl

[
1
p ])’∈

E (Dfl)[ 1
p ], so we have

∏
x

(t̂α,x(Dfl
x )) ∈ ker

(
E (Dfl)⊗Dfl

(∏
x

Dfl
x

)
⇒ E (Dfl)⊗Dfl

(∏
x

Dfl
x

)⊗2)
.

We now conclude since the natural map induced by the reduction

ker
(
E (Dfl)⊗Dfl

(∏
x

Dfl
x

)
⇒ E (Dfl)⊗Dfl

(∏
x

Dfl
x

)⊗2)
σ n∗

−→ ker
(
E (R′)⊗R′

(∏
x

R̂′x

)
⇒ E (R′)⊗R′

(∏
x

R̂′x

)⊗2)
∼

← E (R′),

sends
∏

x(t̂α,x(D
fl
x )) to

∏
x(t̂α,x(R̂

′

x)), so we obtain the desired tensor tα(R′) ∈
E (R′) from

∏
x(t̂α,x(R̂

′

x)) by faithfully flat descent theory (cf. (5.4.5)).

To prove Proposition 5.4.1 in general, we need more lemmas on lifting (X, ι)
∈ RZΛG,b(R) under nilpotent thickenings (cf. Lemmas 5.4.6, 5.4.8).

LEMMA 5.4.6. Let R′ � R and (X, ι) ∈ RZΛG,b(R) be as in Proposition 5.4.1,
and assume that there exists tα(R′) ∈ D(X)(R′)⊗ for each α glueing t̂α,x(R̂′x) for
any closed point x in Spec R. (In other words, we assume that the conclusion of
Proposition 5.4.1 holds for (X, ι) and R′ � R.)

(1) The following R′-scheme is a G-torsor:

PR′ := IsomR′
(
[D(X)(R′), (tα(R′))], [R′ ⊗Zp Λ

∗, (1⊗ sα)]
)
,
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(2) The Hodge filtration Fil1
X ⊂ D(X)(R) is a {µ}-filtration with respect to the

image (tα(R)) ⊂ D(X)(R)⊗ of (tα(R′)).

(3) Let (X ′, ι′) ∈ RZX(R′) be a lift of (X, ι). Then we have (X ′, ι′) ∈ RZΛG,b(R
′)

if and only if the Hodge filtration Fil1
X ′ ⊂ D(X ′)(R′) ∼= D(X)(R′) is a {µ}-

filtration with respect to (tα(R′)).

Furthermore, (X, ι) can be lifted to some (X ′, ι′) ∈ RZΛG,b(R
′).

By Lemma 5.4.3, the assumption of the proposition is satisfied if R′ � R is a
liftable PD thickening.

Proof. To show (1), it suffices to show that PR′ ×Spec R′ Spec R̂′x is a (necessarily
trivial) G-torsor for any closed point x . Let f̂x : Spf R̂x → DefXx ,G = Spf AG,x be
the map corresponding to the deformation X R̂x of X x , and let [MG,x , (t̂univ

α,x (AG,x))]

be the universal deformation of [D(X x)(W ), (tα,x(W ))]; cf. Section 3.5. Then for
any lift f̂ ′x : Spf R̂′x → Spf AG,x of f̂x , we have an isomorphism D(X R̂x )(R̂

′

x)
∼=

f̂ ′∗x MG,x preserving the tensors, and by construction we have an isomorphism
MG,x

∼= AG,x ⊗Zp Λ matching (t̂univ
α,x (AG,x)) with (1⊗ sα); cf. (3.5.1), (3.5.2).

By (1), we have a notion of {µ}-filtration on D(X)(R) and D(X)(R′)
compatible with the notion of {µ}-filtration on the formal neighbourhood
of a closed point x in Spec R defined by (t̂α,x). Note that R̂x ⊗R Fil1

X =

f̂ ∗x (Fil
1MG,x) is a {µ}-filtration with respect to (t̂α,x(R̂x)) for any closed point x

in Spec R (cf. (3.5.1)), so we obtain (2) by Corollary 2.2.9.
By Corollary 2.2.9 and the definition of RZΛG,b (cf. Definition 5.1)), (3) is

equivalent to the claim that for any closed point x in Spec R, X ′R̂′x comes from

a lift f̂ ′x : Spf R̂′x → Spf AG,x if and only if its Hodge filtration is a {µ}-filtration,
which is proved in Proposition 3.8.

Since Fil1
X ⊂ D(X)(R) can be lifted to a {µ}-filtration of D(X)(R′) by

Lemma 2.2.8, the existence of lift (X ′, ι′) ∈ RZΛG,b(R
′) of (X, ι) now follows from

(3) and the Grothendieck–Messing deformation theory.

Let R, R′, and B be finitely generated W/pm-algebras for some m > 1, and we
have morphisms B → R and R′ → R of W/pm-algebras. Assume that B → R
is surjective with the kernel b killed by the nil-radical of B, and R′red � Rred is
surjective. We set B ′ := B ×R R′, which is finitely generated over W/pm . By
assumption, we can regard any closed point x ∈ Spec R as a point of Spec R′,
Spec B and Spec B ′. Since RZX is representable by a formal scheme, we have a
natural bijection (cf. [1, Corollary 5.4]);

RZX(B ′)
∼

−→ RZX(B)×RZX(R) RZX(R′). (5.4.7)
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LEMMA 5.4.8. In the above setting, the natural map RZΛG,b(B
′) →

RZΛG,b(B)×RZΛG,b(R)
RZΛG,b(R

′), obtained by restricting the isomorphism (5.4.7), is
a bijection.

Proof. The lemma follows from the isomorphism

DefXx ,G(B̂
′

x)
∼

−→ DefXx ,G(B̂x)×DefXx ,G (R̂x ) DefXx ,G(R̂
′

x),

which holds since DefXx ,G is a formal scheme and we have B̂ ′x
∼

−→ B̂x ×R̂x R̂′x .

Proof of Proposition 5.4.1. Let R′ → R be a square-zero thickening of finitely
generated W/pm0 -algebras for some m0 > 1. We choose a formally smooth
formally finitely generated W -algebra A surjecting onto R′ with ker(A � R′)
an ideal of definition. (To obtain this, we choose a polynomial algebra A0 over W
surjecting onto R′ and let A be the completion of A0 for ker(A0 � R′); cf. [15,
Section 1.3].)

Let us choose a sequence of square-zero liftable PD thickenings {Am,i} of A as
in Corollary 5.3.12. Since we have A/pm0 = lim

←−i
Am0,i by construction of Am0,i

(cf. Corollary 5.3.12), there exist (m0, i0) such that Am0,i0 � R′ � R � Rred =

A1,1. We consider the following sequence of square-zero liftable PD thickenings

AN := Am0,i0 � · · ·� A j+1 � A j � · · · A0 = Rred

obtained by refining the sequence Am0,i0 � Am0,i0−1 � · · · Am0,1 � Am0−1,1 �
· · ·� Rred so that ker(A j+1 � A j) is killed by the nil-radical for any j . Since any
refinement of square-zero liftable PD thickening is still liftable (cf. Lemma 5.3.2),
A j+1 � A j is a liftable square-zero PD thickening for any j .

Recall that Proposition 5.4.1 is already proved for the thickenings A j+1 � A j

by liftability (cf. Lemma 5.4.3). To utilize this special case to obtain the general
case of Proposition 5.4.1, we show that any (X, ι) ∈ RZΛG,b(R) can be lifted to
(X AN , ι) ∈ RZ

Λ
G,b(AN ) by AN � R.

We write J := ker(A � R). For any j , we set I j := ker(A � A j) and define
R j := A/(J + I j), which is a simultaneous quotient of R and A j . Let (X R j , ι)

∈ RZΛG,b(R j) denote the pull-back of (X, ι) ∈ RZΛG,b(R) by R � R j . (To ease the
notation, we do not keep track of the base ring of ι under nilpotent thickenings as
ι’s uniquely lift by rigidity of quasi-isogenies.)

Assuming that there exists (X A j , ι) ∈ RZΛG,b(A j) lifting (X R j , ι) for some j ,
we want to construct a simultaneous lift (X A j+1, ι) ∈ RZ

Λ
G,b(A j+1) of (X A j , ι) and

(X R j+1, ι). (Note that the induction hypothesis is automatic for j = 0 since A0 =

R0 = Rred.)
We define

B j+1 := A/((J ∩ I j)+ I j+1)
∼

−→ R j+1 ×R j A j = A/(J + I j+1)×A/(J+I j ) A/I j .
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To see the nontrivial isomorphism, note that, for any ring A and ideals a, a′ ⊂ A
the diagonal map

A/(a ∩ a′)→ A/a×A/(a+a′) A/a′ (5.4.9)

is an isomorphism, and we apply it to a = J + I j+1 and a′ = I j . (Indeed, the
injectivity of the map A/(a∩a′)→ A/a×A/(a+a′) A/a′ is clear. It remains to show
that for a, a′ ∈ A such that a ≡ a′ mod a+ a′, the element (a mod a, a′ mod a′)
is in the image of A/(a ∩ a′). For this, we may replace (a, a′) with (0, a′ − a),
where a′−a ∈ a+a′. Now the claim follows from the isomorphism (a+a′)/a′ ∼=
a/(a ∩ a′).)

Let us give a diagram of the rings that appeared thus far:

AN
// //

## ##����

· · · // // A j+1
// //

'' ''

B j+1 = R j+1 ×R j A j
// //

����

A j

����

R′ // // R = RN
// // · · · // // R j+1

// // R j

(5.4.10)

And we have (X R j+1, ι) ∈ RZ
Λ
G,b(R j+1) and (X A j , ι) ∈ RZ

Λ
G,b(A j), both of which

lift (X R j , ι) ∈ RZ
Λ
G,b(R j).

Since ker(A j+1 � A j) is killed by the nil-radical by assumption, we can
apply Lemma 5.4.8 to obtain (X B j+1, ι) ∈ RZΛG,b(B j+1) which simultaneously
lifts (X R j+1, ι) and (X A j , ι). Now, since A j+1 � A j is a square-zero liftable
PD thickening, so is A j+1 � B j+1 (by applying Lemma 5.3.2 to the top row
of (5.4.10). Therefore, by Lemmas 5.4.6 and 5.4.3, there exists a lift (X A j+1,

ι) ∈ RZΛG,b(A j+1) of (X B j+1, ι). This completes the induction claim.
By induction on j , we eventually obtain a lift (X AN , ι) ∈ RZ

Λ
G,b(AN ) of (X, ι)

∈ RZΛG,b(R). (Since AN � R, we have R = RN .) Note that the trivial thickening

AN
id
−→ AN is liftable in this case (cf. Corollary 5.3.12, Lemma 5.3.2), so we get

(tα(AN )) ⊂ D(X AN )(AN )
⊗ glueing {t̂α,x( ÂN ,x)}x by Lemma 5.4.3 (applied to the

trivial thickening AN
id
−→ AN ). Since we chose AN to also surject onto R′, we

have R′ ⊗AN D(X AN )(AN ) ∼= D(X)(R′). Therefore, for any α the image tα(R′) ∈
D(X)(R′)⊗ of tα(AN ) glues {t̂α,x(R̂′x)}x , as claimed in Proposition 5.4.1.

To sum up, we have proved Proposition 5.4.1 for any square-zero thickenings
of Nilpft

W (not just for square-zero liftable PD thickenings), so it follows from
Lemma 5.4.6 that RZΛG,b is formally smooth as a functor on Nilpft

W .
Let us now prove Proposition 5.2(3).

PROPOSITION 5.4.11. Let A be a formally smooth formally finitely generated
W -algebra with ideal of definition J . For any f̃ : Spf(A, J ) → RZX, we have
f̃ ∈ RZ(sα)X,G(A) if and only if f̃ |Spec A/J i ∈ RZX(A/J i) lies in RZΛG,b(A/J i) for any
i > 1.
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This proposition shows Proposition 5.2(3) for formally smooth W -algebras.
Later, we deduce Proposition 5.2(3) for Nilpsm

W from this case.

Proof. The ‘only if’ direction is trivial, and we show the ‘if’ direction
now. Assume that we have (X (i), ι(i)) ∈ RZΛG,b(A/J i), where (X (i), ι(i))

corresponds to f̃ |Spec A/J i . To show that f̃ ∈ RZ(sα)X,G(A), we need to produce
morphisms t̃α : 1→ D(X̃)⊗ of crystals over Spf(A, (p)) satisfying Definition 4.6.
(Recall that this morphism is determined by its restriction t̃α : 1 → D(X̃ A/p)

⊗

over Spec A/p.) Now, by Lemma 2.3.6 (applied to morphisms of crystals over
Spec A/p), giving a morphism t̃α : 1 → D(X̃)⊗ of crystals over Spf(A, (p)) is
equivalent to giving a horizontal section t̃α(A) ∈ D(X̃)(A) with respect to the
crystalline connection ∇ (2.3.5).

Let us first construct a candidate for t̃α(A). For each (X (i), ι(i)) ∈ RZΛG,b(A/J i),
we obtain (tα(A/J i)) ⊂ D(X (i))(A/J i) by Proposition 5.4.1. We claim that
tα(A/J i)’s are compatible with respect to the natural projections induced by
A/J i+1 � A/J i , so we get a section

t̃α(A) := lim
←−

i

tα(A/J i) ∈ lim
←−

i

D(X (i))(A/J i) ∼= D(X̃)(A).

Indeed, tα(A/J i)’s are determined by {t̂α,x((A/J i )̂x)}’s where x runs over closed
points of Spf A (cf. Proposition 5.4.1), and these formal local tensors are
compatible with varying i by the construction of t̂α,x ; cf. (5.1.1). Now, we obtain
the desired compatibility with varying i as tα(A/J i)’s are uniquely determined by
{t̂α,x((A/J i )̂x)}x for all closed points x in Spec A/J i .

We have just obtained a section t̃α(A) ∈ D(X̃)(A). Furthermore, the image of

t̃α(A) in D(X̃ Âx )( Âx) coincides with the pull-back ˆ̃f ∗x (t̂
univ
α,x ) of the universal Tate

tensor t̂univ
α,x (cf. (3.5.2), (5.1.1)) via the map ˆ̃fx : Spf Âx → DefXx ,G induced by f̃ .

We next claim that for any α, t̃α(A) is horizontal with respect to the crystalline
connection ∇ (that is, ∇(t̃α(A)) = 0). Since the crystalline connection ∇ is J -
adically continuous (cf. Remark 2.3.7), we can check the vanishing of∇(t̃α(A))=
0 on the formal neighbourhood of any closed point x in Spf A. On the other hand,

since the image of t̃α(A) in D(X̃ Âx )( Âx)
⊗ coincides with ( ˆ̃f ∗x (t̂

univ
α,x )( Âx), which is

horizontal (cf. (3.5.2)), we conclude that t̃α(A) is horizontal.
By horizontality of t̃α(A) ∈ D(X̃)(A), we obtain a morphism of crystals t̃α :

1→ D(X̃)⊗ over Spf(A, (p)) associated to t̃α(A). Now, we verify Definition 4.6
for f̃ : Spf A → RZX and (t̃α). (That is, we verify Definition 4.6 for f̃m :

Spf A/pm
→ RZX induced by f̃ and (t̃α) for any m.) We first note that (2) and

(3) of Definition 4.6 can be verified for ˆ̃fx and (t̃α| Âx ) for each closed point x of
Spf A. (Indeed, the A-scheme PA is a G-torsor if and only if this holds over any
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Âx . Likewise, Corollary 2.2.9 show that Definition 4.6(3) can be verified for Âx

at each x .) On the other hand, since ˆ̃fx : Spf Âx → DefXx ,G and t̃α| Âx =
ˆ̃f ∗x (t̂

univ
α,x ),

it follows that ˆ̃fx and (t̃α| Âx ) satisfy (2) and (3) of Definition 4.6; cf. (4.8.5).
It remains to show that both t̃α and sα,D define the same map of F-isocrystals

1 → D(X R/p)
⊗
[

1
p ] (cf. Definition 4.6(1)). Let D � R/p denote the p-adically

completed PD hull of A � R/p. Then by [4, Proposition 3.21], the p-adic
completion of D ⊗A Âx (for any closed point x in Spf A) is the p-adically
completed PD hull of Âx � R̂x/p. Since the maps 1 → D(X R/p)

⊗
[

1
p ] induced

by t̃α and sα,D are determined by their sections over D, they can be compared at
the formal neighbourhood at each closed point x in Spf A. But since any map of
isocrystals over excellent local ring is determined by the fibre at the closed point
(cf. [17, Lemma 4.3]), it suffices to show that t̃α and sα,D induce the same map
1→ D(X x)

⊗
[

1
p ] on the fibre of any closed point x in Spf A. But this is clear from

the definition of RZΛG,b(R); cf. Definition 5.1.

The following lemma handles the remaining case of Proposition 5.2(3).

LEMMA 5.4.12. Let B ∈ Nilpsm
W with the maximal ideal of definition JB . Then for

any f : Spf(B, JB) → RZX, we have f ∈ RZ(sα)X,G(B) if and only if f |Spec B/J i
B
∈

RZX(B/J i
B) lies in RZΛG,b(B/J i

B) for any i > 1.

Proof. The ‘only if’ direction is trivial. To show the ‘if’ direction, we choose
a formally smooth p-adic W -lift A of B (so that we have A/pm

= B for
some m), and set J := ker(A � B/JB), which is the maximal ideal of
definition of A. Assume that we have (X (i), ι(i)) ∈ RZΛG,b(B/J i

B), where (X (i),

ι(i)) corresponds to f |Spec B/J i
B
. By Proposition 5.4.11, it suffices to find a lift

(X̃ (i), ι(i)) ∈ RZΛG,b(A/J i
B) of (X (i), ι(i)) so that {(X̃ (i), ι(i))}i forms a projective

system. Granting this, the projective system {(X̃ (i), ι(i))}i corresponds to a map
f̃ : Spf A → RZX lifting f , and by Proposition 5.4.11 we have f̃ ∈ RZ(sα)X,G(A).
Therefore we have f ∈ RZ(sα)X,G(B).

It remains to construct a lift (X̃ (i), ι(i)) ∈ RZΛG,b(A/J i) inductively on i . In other
words, given a lift (X̃ (i), ι(i)) of (X (i), ι(i)) for some i , we want to find (X̃ (i+1),

ι(i+1)) ∈ RZΛG,b(A/J i+1) simultaneously lifting (X (i+1), ι(i+1)) and (X̃ (i), ι(i)). For
this, we consider

Ri := A/(J i
∩(pm, J i+1))

∼

−→ A/J i
×B/J i

B
B/J i+1

B = A/J i
×A/(pm ,J i )A/(pm, J i+1),
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where the isomorphism follows since (pm, J i) = (pm, J i+1) + J i ; cf. (5.4.9).
By Lemma 5.4.8, there is a unique element (X Ri , ιRi /p) ∈ RZΛG,b(Ri)

simultaneously lifting (X (i+1), ι(i+1)) and (X̃ (i), ι(i)).
Now, by the formal smoothness property of RZΛG,b applied to A/J i+1 � Ri , we

can find a lift (X̃ (i+1), ι(i+1)) ∈ RZΛG,b(A/J i+1) of (X Ri , ιRi /p). By repeating this
for all i , we obtain a desired projective system {(X̃ (i), ι(i)) ∈ RZΛG,b(A/J i)} lifting
{(X (i), ι(i)) ∈ RZΛG,b(B/J i

B)}.

We are now ready to conclude the proof of Proposition 5.2::

LEMMA 5.4.13. Proposition 5.4.11 implies Proposition 5.2(1) and (2).

Proof. Let (X, ι) ∈ RZΛG,b(R) for some finitely generated W/pm-algebra R for
some m. We want to deduce the following claims from Proposition 5.4.11:

Proposition 5.2(1) For any α, there exists a unique morphism of crystals

tα : 1→ D(X)⊗

that glues {t̂α,x} (5.1.1) and induces sα,D : 1 → D(X)⊗[ 1
p ] on the F-

isocrystals.

Proposition 5.2(2) Let f : Spec R → RZX be the map corresponding to (X, ι).
Then for any formally smooth formally finitely generated W -algebra
A surjecting onto R, there exists a lift f̃ : Spf A → RZX with f̃ ∈
RZ(sα)X,G(A). Furthermore, if we let X̃ denote the p-divisible group over
A corresponding to f̃ , then the unique tensor tα : 1 → D(X)⊗ (as in
Proposition 5.2(1)) lifts to a map t̃α : 1→ D(X̃)⊗ (as in Definition 4.6).

Given any R ∈ Nilpft
W , we choose a formally smooth formally finitely generated

W -algebra A so that A/J ∼= R for some ideal of definition J . (For example, A can
be constructed as a completion of some polynomial algebra.) Let (X, ι) ∈ RZΛG,b,
which corresponds to a map f : Spec R → RZX. By the formal smoothness of
RZΛG,b as a functor on Nilpft

W (cf. Lemma 5.4.6, Proposition 5.4.1), we obtain a
projective system of lifts {(X (i), ι(i)) ∈ RZΛG,b( Ã/ J̃ i)} of (X, ι) ∈ RZΛG,b(R). Then
by Proposition 5.4.11, such a projective system gives rise to f̃ ∈ RZ(sα)X,G(A), and
furthermore, if we let X̃ denote the pull-back of the universal p-divisible group
by f̃ , then we have Tate tensors t̃α : 1 → D(X̃)⊗ satisfying Definition 4.6. By
Definition 4.6(1) and Lemma 4.8.6, the restriction of the Tate tensors t̃α : 1 →
D(X̃)⊗ over Spec R satisfies the requirements for (tα).
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Now, it remains to show the uniqueness of tα : 1→ D(X)⊗. Let t ′α : 1→ D(X)⊗
be another morphism satisfying the requirements for tα as in Proposition 5.2(1).
Let D � R denote the p-adically completed PD hull of A � R, and let Dx be
the p-adic completion of D ⊗A Âx for any closed point x in Spec R, which is
a p-adic PD thickening of R̂x . (The argument is identical for Dfl

x in the proof of
Lemma 5.4.3.) Then by the compatibility with sα,D, it follows that uα := tα(D)−
t ′α(D) ∈ D(X)(D)⊗ is killed by some power of p, and its image in D(X R̂x )(Dx)

⊗

is zero for any closed point x . We choose a finitely generated p-power torsion A-
submodule M ⊂ D(X)(D)⊗ containing all uα’s, then (M⊗A Â)x ⊂ D(X R̂x )(Dx)

⊗.
Therefore, uα ∈ M has the property that its image in M ⊗A Âx is zero for any
closed point x in Spec R. This forces uα = 0 since M injects into

M ⊗A

(∏
x

Âx

)
∼=

∏
x

(M ⊗A Âx)

by faithful flatness of A→
∏

x Âx ; cf. Lemma 5.4.2. (We have the isomorphism
in the displayed equation since M is finitely presented over A.) This shows the
desired uniqueness of tα by Lemma 2.3.6.

Proof of Proposition 5.2. Proposition 5.2(3) follows from Proposition 5.4.11 and
Lemma 5.4.12. This implies the rest of Proposition 5.2 by Lemma 5.4.13.

5.5. We extend RZΛG,b to a functor on NilpW as follows.

DEFINITION 5.5.1. For any R′ ∈ NilpW , (X ′, ι′) ∈ RZX(R′) lies in RZΛG,b(R
′)

if and only if for some finitely generated W -subalgebra R ⊂ R′, there exists
(X, ι) ∈ RZΛG,b(R) which descends (X ′, ι′).

LEMMA 5.5.2. The functor RZΛG,b on NilpW commutes with filtered direct limits.

Proof. Let {Rξ } be a filtered direct system of rings in NilpW , and set R := lim
−→ξ

Rξ .
We want to show that for any (X, ι) ∈ RZΛG,b(R) there exists (Xξ , ιξ ) ∈ RZΛG,b(Rξ )
which pulls back to (X, ι). Such (Xξ , ιξ ) is essentially unique in the sense that if
there is another point (Xξ ′, ιξ ′) ∈ RZΛG,b(Rξ ′) for some ξ ′, there exists ξ ′′ > ξ, ξ ′

such that both (Xξ , ιξ ) and (Xξ ′, ιξ ′) map to the same point in RZΛG,b(Rξ ′′); indeed,
this property can be checked for RZX as RZΛG,b is a subfunctor of RZX, and RZX
commutes with filtered direct limits in NilpW as it is locally formally of finite type
over W .

Let us first handle the case when R and Rξ are finitely generated over W . In
that case, there exists ξ such that the natural map Rξ → R is surjective and admits
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a section R → Rξ . (Indeed, we can choose ξ0 such that Rξ0 surjects onto R. Let
I := ker(Rξ0 � R), and choose finitely many generators fi ∈ I . Then since
R = lim
−→ξ

Rξ , each fi should map to 0 in Rξi for some ξi > ξ0. Therefore, there
exists ξ > ξ0 so that the transition map Rξ0 → Rξ factors through Rξ0/I ∼= R.)
Now, we set (Xξ , ιξ ) ∈ RZΛG,b(Rξ ) to be the pull-back of (X, ι), which has the
desired property (by the essential uniqueness of (Xξ , ιξ )).

The general case can be reduced to this special case; indeed, we may replace
R with some finitely generated W -subalgebra R0 ⊂ R, and work with a filtered
direct system of finitely generated W -subalgebras of Rξ ’s whose direct limit is
R0.

DEFINITION 5.5.3. Let R ∈ NilpW , and choose a finitely generated W -subalgebra
R0 ⊂ R (X, ι) ∈ RZΛG,b(R) descends to (X R0, ι) ∈ RZ

Λ
G,b(R0). Then we define

tα : 1→ D(X)⊗

by pulling back tα : 1 → D(X R0)
⊗, constructed in Proposition 5.2(1). By the

uniqueness part of Proposition 5.2(1) (and Lemma 5.5.2), it follows that tα on X
is independent of the choice of R0 ⊂ R and (X R0, ι).

COROLLARY 5.5.4. The functor RZΛG,b on NilpW is formally smooth.
Furthermore, the statement of Lemma 5.4.6 holds even when R′ � R be a
square-zero thickening of (not necessarily finitely generated) W/pm-algebras for
some m.

Proof. Given (X, ι) ∈ RZΛG,b(R) and a square-zero thickening R′ � R of W/pm-
algebras, we can find a finitely generated W/pm-subalgebra R′0 ⊂ R′ such that
(X, ι) descends to (X R0, ιR0/p) ∈ RZΛG,b(R0), where R0 ⊂ R is the image of R′0. By
Lemma 5.4.6 and Proposition 5.4.1, there is an (X R′0, ιR

′

0/p) ∈ RZΛG,b(R
′

0) lifting
(X R0, ιR0/p), and its base change via R′0 → R′ is an R′-lift of (X, ι).

The rest of the statements of Lemma 5.4.6 can be similarly generalized for any
square-zero thickening R′ � R of W/pm-algebras as all the objects involved can
be descended over some finitely generated W/pm-subalgebras of R′ and R.

Let us now move on to the other main result of this section on ‘effectiveness’:

PROPOSITION 5.6. Let S be a complete local noetherian W/pm-algebra with
residue field κ , and let (X S, ιS/p) ∈ RZX(S). (In particular, ιS is defined over
Spec S/p.) Then we have (X S, ιS/p) ∈ RZΛG,b(S) if and only if (X S/mi

S
, ιS/(p,mi

S)
) ∈

RZΛG,b(S/m
i
S) for any i .
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The ‘only if’ direction is trivial, and we now prove the ‘if’ direction for now
on. Conceptually, this proposition asserts that formal-locally defined Tate tensors
extend over some finite-type base ring if the quasi-isogeny does.

For the Artin representability theorem [1, Corollary 5.4], we need to generalize
this proposition for complete local noetherian W/pm-algebras S with residue field
finitely generated over κ . We obtain such a generalization in Lemma 6.1.2, using
the idea in Remark 4.8.1

5.7. Preparation. For any x ∈ X G(b) = RZΛG,b(κ), we write AGL,x := ÔRZX,x ,
which can be viewed as a universal deformation ring of X x , and we let AG,x denote
the quotient of Ax prorepresenting DefXx ,G .

We consider (X S, ιS/p) ∈ RZX(S) given by a (necessarily local) map fS :

AG,x → S for some x ∈ RZΛG,b(κ). In particular, X S is the pull-back of the
universal deformation of (X x , (tα,x)) and the universal deformation of Tate tensors
pull back to give morphisms of crystals t̂α,x : 1 → D(X S)

⊗ over Spec S; cf.
(5.1.1). Therefore, by construction of the universal deformation in Section 3.5,
the following S-scheme

PS := IsomS

(
[D(X S)(S), (t̂α,x(S))], [S ⊗Zp Λ

∗, (1⊗ sα)]
)
,

is a trivial G-torsor, and the Hodge filtration Fil1
X S
⊂ D(X S)(S) is a {µ}-filtration

with respect to (t̂α,x(S)).
To prove Proposition 5.6, we need to construct (X, ι) ∈ RZΛG,b(R) for some

finitely generated W/pm-subalgebra R ⊂ S, such that (X, ι) pulls back to (X S,

ιS/p). As a starting point, we begin with a finitely generated W -subalgebra R ⊂ S
with the following properties, which exists by standard argument:

(1) There exists (X, ι) ∈ RZX(R) which pulls back to (X S, ιS/p) over S; this is
possible since RZX is locally formally of finite type over W .

(2) The (finitely many) tensors (t̂α,x(S)) ⊂ D(X S)(S)⊗ lie in the image of
D(X)(R)⊗; indeed, this can be arranged by considering a finite-rank direct
factor of D(X S)(S)⊗ containing (t̂α,x(S)), and possibly by increasing R by
adjoining finitely many elements in S. We let

(tα(R)) ⊂ D(X)(R)⊗

denote the tensors which (injectively) map to (t̂α,x(S)).

(3) The following R-scheme is a PG(µ)-torsor for some µ ∈ {µ}:

PFil•X
:= IsomR

(
[D(X)(R), (tα(R)),Fil1

X ], [R ⊗Zp Λ
∗, (1⊗ sα),Fil1

µ]
)
;
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in other words, the Hodge filtration Fil1
X ⊂ D(X)(R) is a {µ}-filtration

with respect to (tα(R)). In fact, the natural PG(µ)-action on PFil•X
is

already transitive, and by increasing R if necessary we can ensure that
PFil•X

is smooth with nonempty fibre everywhere. (Cf. [22, EGA IV4,
Proposition 17.7.8, Théorème 8.10.5].)

This assumption also ensures that the following R-scheme is a G-torsor:

PR := IsomR

(
[D(X)(R), (tα(R))], [R ⊗Zp Λ

∗, (1⊗ sα)]
)
.

If R ⊂ S satisfies the above conditions, then any finitely generated W -subalgebra
of S containing R satisfies the same conditions.

To prove Proposition 5.6, it suffices to prove the following proposition.

PROPOSITION 5.8. There exists a finitely generated W -subalgebra R ⊂ S such
that the properties listed in Section 5.7 are satisfied and we have (X, ι) ∈
RZΛG,b(R).

As a biproduct of the proof, we also obtain that (tα(R)) coincides with the R-
sections of (tα) constructed in Proposition 5.2.

5.9. Proof of Proposition 5.8. Assume that S is reduced for the moment.
Since the κ-subalgebra R ⊂ S is also reduced, we can consider the perfections
R̃ := lim

−→σ
R and S̃ := lim

−→σ
S. We extend the injective map R ↪→ S to an injective

map R̃ ↪→ S̃.
We consider (1 ⊗ sα) ⊂ W (R̃)[ 1

p ] ⊗Zp Λ
⊗ ∼= D(X R̃)(W (R̃))⊗[ 1

p ], where the
isomorphism is induced by the quasi-isogeny ιR̃ : XR̃ 99K X R̃ .

LEMMA 5.9.1. In the above setting, we have (1 ⊗ sα) ⊂ D(X R̃)(W (R̃))⊗. In
particular, sα,D for each α (cf. Definition 4.5) comes from a unique morphism of
integral crystals, which we also denote by sα,D : 1→ D(X R̃)

⊗. Furthermore, the
R̃-sections (sα,D(R̃)) ∈ D(X R̃)(R̃)⊗ of (sα,D) coincide with the image of (tα(R))
in D(X R̃)(R̃)⊗.

Proof. Let us first show that the isomorphism

D(ιS̃) : D(X S̃)(W (S̃))[ 1
p ]
∼

−→ W (S̃)[ 1
p ] ⊗W D(X)(W )

matches (tα(W (S̃)) ⊂ D(X S̃)(W (S̃))⊗ with (1⊗ sα) ⊂ W (S̃)[ 1
p ] ⊗Zp Λ

⊗. Recall
that any F-equivariant homomorphism between constant F-isocrystals over S̃
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(that is, F-isocrystals obtained as a scalar extension from F-isocrystals over κ) is
defined over κ (cf. [42, Lemma 3.9]). Therefore, to show that D(ιS̃) preserves
the tensors, it suffices to check the claim for D(ικ); that is, after reducing
modulo W (mS̃). And the claim for D(ικ) follows from the assumption that
x ∈ RZΛG,b(κ).

This shows D(ιS̃) matches (t̂α,x(W (S̃)) with (1 ⊗ sα). Since we have W (R̃) =
W (R̃)[ 1

p ] ∩ W (S̃), it follows the that each of 1 ⊗ sα lies in D(X R̃)(W (R̃))⊗.
The integrality claim for (sα,D) now follows from the standard dictionary (cf.
[23, IV Section 4]). To verify the last claim, we may compare the images
of both in D(X S̃)(S̃)⊗, where the claim is obvious from the construction; cf.
Section 5.7(2).

For any closed point y ∈ Spec R (which may not lie in the image of Spec S→
Spec R), we have a natural map R ↪→ R̃ � κ(y) = κ . By taking the image of
tα(W (R̃)) in D(X R̃)(W (R̃))⊗W (R̃) W ∼= D(X y)(W ), we obtain

(tα,y) ⊂ D(X y)(W )⊗, (5.9.2)

which induces (sα,D) on the isocrystals.

LEMMA 5.9.3. For any closed point y in Spec R, we have (X x ′, ιx ′) ∈ RZ
(sα)
X,G(κ).

Furthermore, the images of (tα,y) and (tα(R)) in D(X y)(κ) coincide.

Proof. The only assertion which may not directly follow from the construction
is to verify Definition 4.6(2) for (X y, ιy). We consider the following scheme over
W (R̃):

PW (R̃) := IsomW (R̃)

(
[D(X R̃)(W (R̃)), (tα(W (R̃)))], [W (R̃)⊗Zp Λ

∗, (1⊗ sα)]
)
.

Note that its mod p fibre PR̃ is a G-torsor since it is the pull-back of PR (cf.
Section 5.7(3)), and PW (R̃)[ 1

p ]
is a trivial G-torsor by the quasi-isogeny ιR̃ . The

assumption on (X R̃, ιR̃) implies that the base change PW (S̃) is a G-torsor. (To
see this, note that [D(X R̃)(W (R̃)), (tα(W (R̃)))] pulls back to [D(X S̃)(W (S̃)),
(t̂α,x(W (S̃)))], which is in turn the pull-back of the crystalline Dieudonné modules

with Tate tensors [MG,x , (t̂univ
α,x (AG,x))] by any lift AG,x → W (S̃) of AG,x

fS
−→ S→

S̃ (where fS is the map corresponding to the deformation X S). Now we can pull
back the isomorphism [MG,x , (t̂univ

α,x (AG,x))] ∼= [AG,x ⊗Zp Λ, (1⊗ sα)] over W (S̃),
which exists by construction (cf. Section 3.5).

For any closed point y in Spec R̃, we set PW (y) to be the fibre of PW (R̃) by
W (y) : W (R̃) → W (induced by y). We want to show that PW (y) is a G-torsor
over W for any closed point y of Spec R. Since each fibre of PW (y) is known to
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be a G-torsor, it suffices to show the W -flatness of PW (y), for which it suffices to
show that PW (y) ×Spec W Spec W/pm is flat over W/pm for any m > 1. Therefore,
it suffices to show that PWm (R̃) is flat over Wm(R̃) := W (R̃)/pm for any m > 1.
This can be shown by local flatness criterion.

We consider the following map for any m > 0

γm : OPR̃
� pmOPW (R̃)

/pm+1OPW (R̃)
,

induced by the surjective map OPW (R̃)
� pmOPW (R̃)

given by multiplication by pm .
By local flatness criterion (cf. [37, Theorem 22.3]), PWm (R̃) is flat over Wm(R̃) if
and only if γm′ is an isomorphism for any m ′ < m and PR̃ is flat over R̃. Since we
already have the R̃-flatness of PR̃ , it remains to show the injectivity of γm for any
m > 0. Now, let us consider the following commutative diagram

OPR̃

γm

����

� � // OPS̃

∼=S̃⊗γm

��

pmOPW (R̃)
/pm+1OPW (R̃)

// pmOPW (S̃)
/pm+1OPW (S̃)

.

The right vertical arrow is an isomorphism since PW (S̃) is flat over W (S̃), and
it coincides with S̃ ⊗ γm since OPW (S̃)

= W (S̃) ⊗W (R̃) OPW (R̃)
. The top arrow is

injective since it is the scalar extension of the injective map R̃ ↪→ S̃ by a flat
ring extension R̃ → OPR̃

. By this diagram, ker(γm) ⊂ OPR̃
maps injectively

into the kernel of the isomorphism S̃ ⊗ γm , which shows that γm should also be
injective.

PROPOSITION 5.9.4. Proposition 5.8 holds when S is reduced.

Proof. We work in the setting of Section 5.7 with S reduced. For any closed
point y ∈ Spec R (corresponding to a maximal ideal my ⊂ R), we have (X y, ιy)

∈ RZΛG,b(κ) by Lemma 5.9.3. Now we want to show that the map f̂y : Spf R̂y →

DefX y
, induced by X R̂y , factors through DefX y ,G .

Applying Corollary 5.3.8 to (B, J ) := (R̂y,my), we obtain a sequence
of square-zero liftable PD thickenings of artin local rings (in the sense of
Definition 5.3.1):

R̂y � · · ·� Ry,i+1 � Ry,i � · · ·� Ry,0 = κ.

We choose a formal power series ring A over W with a surjection A � R̂y , and
let Dy,i � Ry,i denote the p-adically completed PD hull of Ã � R̂y � R/mi

y .

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


W. Kim 72

We chose {Ry,i} so that the natural PD morphism Dy,i → Ry,i+1 factors through
the Zp-flat closure Dfl

y,i of Dy,i , which is also a PD thickening of Ry,i (cf.
Corollary 5.3.8, Lemma 5.3.3).

We set X (i)
y := X Ry,i , and let (tα(Ry,i)) ⊂ D(X (i)

y )(Ry,i)
⊗ denote the image of

(tα(R)). (Note that we have not constructed a map of crystals tα : 1 → D(X)⊗,
and we only have a section tα(R).) To prove the proposition, we need to prove that
for any i we have X (i)

y ∈ DefX y ,G(Ry,i), and (tα(Ry,i)) ∈ D(X (i)
y )(Ry,i)

⊗ coincides
with the Ry,i -section of t̂ (i)α,y : 1→ D(X (i)

y )
⊗, where t̂ (i)α,y = f (i)∗y (t̂univ

α,y ) is the pull-
back of the universal Tate tensor t̂univ

α,y by f (i)y : Spec Ry,i → DefXx ,G .
We show this claim by induction on i . The base case with i = 0 is exactly

Lemma 5.9.3. Now, we assume the claim for i (that is, X (i)
y ∈ DefX y ,G(Ry,i) and

tα(Ry,i) = t̂ (i)α,y(Ry,i)) and want to deduce the claim for i + 1. Since Ry,i+1 � Ry,i

is liftable, we have (t̂ (i)α,y(D
fl
y,i)) ⊂ D(X (i)

y )(D
fl
y,i)
⊗ lifting (t̂ (i)α,y(Ry,i+1)).

Let us consider the following commutative diagram:

1⊗ sα tα(W (R̃))�Lemma 5.9.1

D(ιR̃)
oo � // tα(R̃) tα(R)

�Lemma 5.9.1oo

W (R̃)[ 1
p ] ⊗Zp Λ

⊗ D(X R̃)(W (R̃))⊗? _oo // // D(X R̃)(R̃)⊗ D(X R)(R)⊗? _oo

tα(R)7→tα(Ry,i+1)

����

Λ⊗

OO

// Dfl
y,i [

1
p ] ⊗Zp Λ

⊗ D(X (i)
y )(D

fl
y,i)
⊗? _oo // D(X (i)

y )(Ry,i+1)
⊗

sα
� // 1⊗ sα t̂ (i)α,y(D

fl
y,i)

�Lem 4.6.3

D(ιy,i )
oo � // t̂ (i)α,y(Ry,i+1).

(5.9.5)
The commutativity of this diagram follows from the fact that ιR̃ : XR̃ 99K X R̃

descends to ιR : XR 99K X R , which lifts ιRy,i : XRy,i 99K X Ry,i .
Indeed, the diagram shows that tα(Ry,i+1) (respectively, t̂ (i)α,y(Ry,i+1)) is uniquely

determined by sα by chasing the top row and the right vertical arrow (respectively,
by chasing the bottom row), so we have tα(Ry,i+1) = t̂ (i)α,y(Ry,i+1).

Now Proposition 3.8 shows that X (i+1)
y ∈ DefX y ,G(Ry,i+1) since the Hodge

filtration of X (i+1)
y corresponds to a {µ}-filtration with respect to (tα(Ry,i+1)) by

assumption (cf. Section 5.7). The equality t̂ (i+1)
α,y (Ry,i+1) = tα(Ry,i+1) follows from

t̂ (i)α,y(Ry,i+1) = tα(Ry,i+1) and the fact that t̂ (i+1)
α,y lifts t̂ (i)α,y (where t̂ (i+1)

α,y is the pull-
back of t̂univ

α,y ).
By induction on i , we have just shown that X (i)

y ∈ DefX y ,G(Ry,i) for any i > 0.
so we obtain f̂y : Spf R̂y → DefX y ,G , as desired.

We are ready to prove Proposition 5.8.
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Proof of Proposition 5.8. Let us first handle the case when S admits the following
sequence of square-zero liftable PD thickenings (in the sense of Definition 5.3.1):

S := AN � · · ·� A j+1 � A j � · · · A0 = S/n, (5.9.6)

where n is the nil-radical of S.
We choose R ⊂ S, (X, ι) ∈ RZX(R), and (tα(R))⊂ D(X)(R)⊗ as in Section 5.7.

or 0 6 j 6 N , we set R j to be the image of R in A j . We choose a polynomial
ring A0 over W which surjects onto R (so it surjects onto R j for each j). By
adding more variables if necessary, we also assume that the completion AS of A0

with respect to the kernel of A0 � R → S � κ surjects onto S. For any 0 6
j 6 N we define D j � R j to be the p-adically completed PD hull of A0 � R j ,
and DS, j � A j to be the p-adically completed PD hull of AS � S � A j . By
the assumption on A j (cf. Corollary 5.3.12), the natural PD surjection DS, j �
A j+1 factors through the flat closure Dfl

S, j of DS, j . Now, since the map D j �
R j+1 ↪→ A j+1 factors as D j → Dfl

S, j � A j+1, the p-power torsion of D j lies in
the kernel of D j � R j+1 and we get Dfl

j � R j+1. (In other words, R j+1 � R j

is a square-zero liftable PD thickening for any 0 6 j < N ; cf. Lemma 5.3.3.)
We set DS := DS,N � AN = S, which also factors through Dfl

S (by considering
DS → Dfl

S,N−1 � AN = S).
By Proposition 5.9.4, when j = 0 we have (X R0, ι) ∈ RZ

Λ
G,b(R0), and the image

tα(R0) ∈ D(X R0)(R0)
⊗ of tα(R) (as in Section 5.7) coincides with the section of

t (0)α : 1→ D(X R0)
⊗ constructed in Proposition 5.2.

We now proceed inductively on j . Let us assume (as the induction hypothesis)
that we have (X ( j), ι) ∈ RZΛG,b(R j) and t ( j)

α (R j) = tα(R j) in D(X R j )(R j)
⊗,

where tα(R j) is the image of tα(R) and t ( j)
α : 1 → D(X R j )

⊗ is as constructed
in Proposition 5.2(1). We first claim that the natural isomorphism R j+1 ⊗R

D(X)(R) ∼= D(X R j )(R j+1) matches (tα(R j+1)) and (t ( j)
α (R j+1)), by the following

diagram:

1⊗ sα t̂α,x(Dfl
S)

�D(ιS/p)
oo � // t̂α,x(S) tα(R)

�Section 5.7(2)
oo

Dfl
S[

1
p ] ⊗Zp Λ

⊗ D(X S)(Dfl
S)
⊗? _oo // // D(X S)(S)⊗ D(X R)(R)⊗? _oo

����

Λ⊗

OO

// Dfl
j [

1
p ] ⊗Zp Λ

⊗ D(X R j )(D
fl
j )
⊗? _oo // D(X R j )(R j+1)

⊗

sα
� // 1⊗ sα t̂ ( j)

α (D
fl
j )

�D(ιR j /p)
oo � // t̂ ( j)

α (R j+1),

where DS � S is the PD hull of AS � S, and Dfl
S is the Zp-flat closure of S, and

we used the notations from Section 5.7. Note that ιS/p : XS/p 99K X S/p matches
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t̂α,x : 1 → D(X S)
⊗ and sα,D by [17, Lemma 4.3], and ιR j /p : XR j /p 99K X R j /p

matches t ( j)
α : 1→ D(X R j )

⊗ and sα,D because (X R j , ιR j /p) and (t ( j)
α ) can be lifted

over some A ∈ Nilpsm
W (cf. Proposition 5.2(2)), where the desired compatibility

follows from Definition 4.6(1).
By the diagram, the image of tα(R) in D(X R j )(R j+1) coincides with t ( j)

α (R j+1).
Since the Hodge filtration Fil1

X R
is a {µ}-filtration for (tα(R)) by assumption (cf.

Section 5.7(3)), it follows that (X R j+1, ιR j+1/p) ∈ RZΛG,b(R j+1) by Lemma 5.4.6(3).
Therefore, by induction on j and the assumption that S = AN (so R = RN ), we
conclude that (X, ι) = (X (N ), ι(N )) ∈ RZΛG,b(R).

Now we handle the general case of the proposition, without assuming the
existence of (5.9.6). Let AS be a formal power series ring over W surjecting
onto S, and we set J := ker(AS � S/n). Applying Corollary 5.3.12 to (AS, J ),
we obtain a sequence square-zero liftable PD thickenings {Am,i} indexed by
(m, i) ∈ Z2

>1 with A1,1 = S/n. Since we have A/pm
= lim
←−i

Am,i for any m > 1
by construction of Am0,i , there exists (m ′, i ′) such that we have Am′,i ′ � S� S/n.
Let S′ := Am′,i ′ .

Now, given (X S, ιS/p) ∈ RZX(S) where X S is given by fS : AG,x → S, we
can choose a lift f ′S′ : AG,x → S′ := Am0,i0 of fS , which corresponds to some
p-divisible group X ′S′ over S′. Since S′ � S is a nilpotent thickening, the quasi-
isogeny ιS/p uniquely lifts to a quasi-isogeny ι′S′/p over S′/p, so we have (X ′S′,
ι′S′/p) ∈ RZΛG,b(S

′) lifting (X S, ιS/p). Since S′ := Am′,i ′ admits a sequence of
thickenings as in (5.9.6) where A j := Am j ,i j for some suitable (m j , i j) for any
j , we have just shown the existence of (X ′, ι′) ∈ RZΛG,b(R

′) that pulls back to
(X ′S′, ι

′

S′/p), where R′ ⊂ S′ is a finitely generated W/pm′-subalgebra. By setting
R ⊂ S to be the image of R′, we obtain (X, ι) := (X ′R, ι

′

R/p) ∈ RZ
Λ
G,b(R), which

pulls back to (X S, ιS/p).

6. Construction of the moduli of p-divisible groups with Tate tensors

We give a proof of Theorem 4.9.1 in this section, applying the technical results
proved in Section 5.

6.1. Artin representability theorem. Let p > 2. We choose a W -lift X̃ of
X as in Remark 2.5.9, and define RZΛG,b(h)

m,n
:= RZΛG,b ×RZX RZX(h)m,n as a

functor on the category of W/pm-algebras; that is, for a W/pm-algebra R, we
set RZΛG,b(R) := RZΛG,b(R) ∩ RZX(h)m,n(R). Similarly, we define RZΛG,b(h) :=
RZΛG,b ×RZX RZX(h) as a functor on NilpW .

We first prove (Theorem 6.1.6) that RZΛG,b(h)
m,n is a separated algebraic

space locally of finite type over W/pm using the Artin representability
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theorem [1, Corollary 5.4]. (See also [13] for some clarifications.) See [33,
Section 2] for the definition of algebraic spaces.

To apply the Artin representability theorem as stated in [1, Corollary 5.4], it
suffices to verify the following conditions, some of which will be more precisely
stated when they are verified. (The conditions that we state here are slightly
stronger than the ones given in [1, Corollary 5.4].)

(1) RZΛG,b(h)
m,n is separated; that is, the diagonal map

RZΛG,b(h)
m,n
→ RZΛG,b(h)

m,n
× RZΛG,b(h)

m,n

is representable by a closed immersion. More concretely, for any W/pm-
algebra R and given two points x, y ∈ RZΛG,b(h)

m,n(R), the locus over which
x and y coincide is a closed subscheme of Spec R. This follows since
RZΛG,b(h)

m,n is a subfunctor of a separated scheme RZX(h)m,n .

(2) RZΛG,b(h)
m,n commutes with filtered direct limits of W/pm-algebras (that is,

locally of finite presentation over W/pm); indeed, this follows because both
RZX(h)m,n and RZΛG,b commute with filtered direct limits (cf. Lemma 5.5.2).

(3) RZΛG,b(h)
m,n is an fppf sheaf; cf. Lemma 6.1.1.

(4) RZΛG,b(h)
m,n satisfies the ‘effectivity property’; namely, for any complete

local noetherian W/pm-algebra (R,mR) such that its residue field is a finitely
generated field extension of κ , the following natural map is bijective:

RZΛG,b(h)
m,n(R)→ lim

←−
i

RZΛG,b(h)
m,n(R/mi

R);

cf. Lemma 6.1.2.

(5) RZΛG,b(h)
m,n satisfies some suitable generalization of Schlessinger’s criterion

(that is, Conditions (S1′) and (S2) in [1, Section 2]); namely, Lemma 6.1.3
holds and the tangent space at any x ∈ RZΛG,b(h)

m,n(κ) is finite-dimensional
over κ . Finiteness of tangent spaces is obvious since RZΛG,b(h)

m,n is a
subfunctor of RZX(h)m,n .

(6) If n � 0 then for any m > 1 there exists an obstruction theory for
RZΛG,b(h)

m,n in the sense of [1, (2.6), (4.1)]. Indeed, we verify some variant
of this (exploiting the flexibility to increase n), which would still imply the
representability of RZΛG,b(h)

m,n; cf. Lemma 6.1.5, the proof of Theorem 6.1.6.

We have already verified the first two conditions, so it remains to verify the
remaining four conditions.
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To show that RZΛG,b(h)
m,n is an fppf sheaf, it suffices to show that RZΛG,b is

an fppf sheaf (as the height of a quasi-isogeny can be computed fppf-locally, and
whether pn ι̃ is an isogeny can be verified fppf-locally). Since RZΛG,b is a subfunctor
of RZX, which is an fppf sheaf (as it can be represented by a formal scheme), the
following lemma shows that RZΛG,b is an fppf sheaf.

LEMMA 6.1.1. Let (X, ι) ∈ RZX(R) for R ∈ NilpW . Assume that for a faithfully
flat R-algebra R′ the pull-back (X R′, ιR′/p) lies in RZΛG,b(R

′). Then we have (X, ι)
∈ RZΛG,b(R).

Proof. We may assume that R is finitely generated. Since whether (X, ι) ∈
RZΛG,b(R) is decided by the pull-back over all artinian quotients of R, we may
assume that R ∈ ARW . Then (X, ι) defines a map Spec R → (RZX)̂x

∼= DefXx

for some closed point x ∈ RZX(κ). This map factors through DefXx ,G if and only
if it does after precomposing with a faithfully flat map Spec R′ → Spec R, since
DefXx ,G is a closed formal subscheme of DefXx

.

Next, we verify the ‘effectivity property’ (4).

LEMMA 6.1.2. The functor RZΛG,b(h)
m,n satisfies the ‘effectivity property’, as

stated above in Section 6.1(4).

Proof. Let (R,mR) be a complete local noetherian W/pm-algebra such that its
residue field is a finitely generated field extension of κ . We want to show that the
following natural map is bijective:

RZΛG,b(h)
m,n(R)→ lim

←−
i

RZΛG,b(h)
m,n(R/mi

R).

Note that this property holds for RZX(h)m,n (cf. [44, Section 2.22]), which shows
the injectivity. It remains to show the surjectivity.

Let (X, ι) ∈ RZX(h)m,n(R), and assume that over R/mi
R for each i we have

(X R/mi
R
, ι) ∈ RZΛG,b(R/m

i
R). We want to show that we have (X, ι) ∈ RZΛG,b(R).

(By the effectivity property for RZX(h)m,n , this implies the desired surjectivity.
Also recall that RZΛG,b(h)

m,n(R) := RZΛG,b(R) ∩ RZX(h)m,n(R).)
Let η ∈ |RZX(h)m,n| denote the point in the underlying topological space where

(X R/mR , ιR/mR ) ∈ RZX(h)m,n(R/mR) is supported. We claim that the closure {η}
of η contains a closed point x in RZΛG,b(κ). Indeed, by assumption there exists a
finitely generated κ-subdomain R0 ⊂ R/mR where the R/mR-point (X, ι) extends
to (X R0

, ι) ∈ RZΛG,b(R0). Then the corresponding map of schemes Spec R0 →

RZX(h)m,n sends the generic point to η. Now, we may choose x in the image of a
closed point in Spec R0.
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By Lemma 6.1.1, we have (X, ι) ∈ RZΛG,b(R) if and only if for some faithfully
flat R-algebra R′ we have (X R′,ιR′/p) ∈ RZΛG,b(R

′). Let us write Ax := ÔRZX,x for
x as in the previous paragraph. Let us now construct a faithfully flat R-algebra
R′ such that the natural map Spec R′ → RZX(h)m,n factors through Spec Ax . We
choose a preimage η̂ ∈ Spec Ax of η, and let κ ′ be the compositum of R/mR

and the residue field κ(η̂) of Ax at η̂. Let C and C ′ be Cohen rings R/mR and
κ ′, respectively, and we choose a C-algebra structure on R and C ′ (lifting the
natural one mod p). Then for the completion R′ of R ⊗C C ′, the natural map
Spec R′→ RZX(h)m,n factors through Spec(Ax )̂η̂.

Let AG,x denote the quotient of Ax corresponding to DefXx ,G . By construction
we have (X R′/mi

R′
, ι) ∈ RZΛG,b(R

′/mi
R′) for all i (that is, the map Ax → R′/mi

R′

factors through AG,x for any i), so Ax → R′ factors through AG,x . Let S ⊂ R′ to
be the image of AG,x . Then the residue field of S is κ , and the R′-point (X R′, ι)

∈ RZX(h)m,n(R′) is actually defined over S. By Proposition 5.6, this S-point lies in
RZΛG,b(S), which in turn shows that (X, ι) ∈ RZX(h)m,n(R) also lies in RZΛG,b(R).

LEMMA 6.1.3 (Cf. Condition (S1′) in [1, (2.2)]). Assume that p > 2, and consider
B, R, R′ ∈ NilpW such that B � R is a square-zero thickening with the kernel
annihilated by the nil-radical of B, and R′→ R is a W -algebra map that induces
a surjective map R′→ Rred. Set B ′ := B ×R R′. Let F be one of RZΛG,b, RZΛG,b(h)
and RZΛG,b(h)

m,n , where in the last case we assume pm B = 0 and pm R′ = 0. Then
the natural map

F(B ′)→ F(B)×F(R) F(R′) (6.1.4)

is a bijection.

Proof. The map (6.1.4) is injective, because the analogous maps for RZX, RZX(h),
and RZX(h)m,n are bijections.

To show the surjectivity of (6.1.4) for RZΛG,b, we may assume that both B and R′

are finitely generated over W , in which case the claim follows from Lemma 5.4.8.
To show the surjectivity of (6.1.4) for RZΛG,b(h) and RZΛG,b(h)

m,n , we observe that
a cofibre product of quasi-isogenies of height h is again of height h, and that a
cofibre product of isogenies is again an isogeny.

LEMMA 6.1.5 (‘Obstruction theory’). Let U ⊂ RZX(h) be a quasicompact open
formal subscheme, and choose an integer n large enough so that the natural map
Ω̂U/W |U∩RZX(h)1,n → ΩU∩RZX(h)1,n/κ is an isomorphism. Let B � R be any square-
zero thickening such that its kernel b is killed by the nil-radical of B, and let
(X, ι̃) ∈ U(R) ∩ RZΛG,b(h)

m,n(R).
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Then there exists a B-point (X B, ι̃) ∈ RZΛG,b(h)
m,n(B) lifting (X, ι̃) if and only

if there exists a B-point (X B, ι̃) ∈ RZX(h)m,n(B) lifting (X, ι̃).

(Note that there exists n such that Ω̂U/W |U∩RZX(h)1,n → ΩU∩RZX(h)1,n/κ is an
isomorphism as U is noetherian; indeed, as U×Spf W Spec κ = lim

−→n
(U∩RZX(h)1,n),

we may choose n so that U ∩ RZX(h)1,n contains the closed subscheme of
U ×Spf W Spec κ cut out by the square of the maximal ideal of definition. Note
that RZX(h) may not be quasicompact.)

Note that RZX(h)m,n has an obstruction theory that satisfies the conditions in
[1, (2.6), (4.1)] (given by the theory of cotangent complex, for example). The
lemma shows that any obstruction theory for the U ∩ RZX(h)m,n (which exists)
also provides an obstruction theory for U∩RZΛG,b(h)

m,n satisfying [1, (2.6), (4.1)]
if n is large enough (depending on U).

Proof. It suffices to prove the ‘if’ direction. Let (X, ι̃) ∈ U(R), and assume that
there exists a B-point (X B, ι̃) ∈ RZX(h)m,n(B) lifting (X, ι̃). Set R0 := Rred, and
write (X R0, ι̃) ∈ U(R0) denote the pull-back.

Let f0 : Spec R0 → U denote the map induced by (X R0, ι̃). Then the set of B-
points of RZX(h)m,n lifting (X, ι̃), which is nonempty by assumption, is a torsor
under the R0-module f ∗0 (Ω̂

∗

U/W ) ⊗R0 b by the assumption on n in the statement.
(Recall that any lift of (X, ι̃) lies in U.) Therefore, any B-lift (X ′B, ι̃

′) ∈ RZX(B) of
(X, ι̃) actually lie in RZX(h)m,n(B), as the set of such B-lifts is also a torsor under
the same R0-module f ∗0 (Ω̂

∗

U/W ) ⊗R0 b. Now if we also have (X, ι̃) ∈ RZΛG,b(R),
then Corollary 5.5.4 produces a B-point

(X B, ι̃) ∈ RZ
Λ
G,b(B) ∩ RZX(h)m,n(B) = RZΛG,b(h)

m,n(B)

lifting (X, ι̃), as desired.

We are ready to prove the following:

THEOREM 6.1.6. The functor RZΛG,b(h)
m,n can be represented by a separated

scheme locally of finite type over Spec W/pm .

Proof. Choose a quasicompact open U ⊂ RZX(h) which contains RZX(h)m,n .
(Recall that RZX(h)m,n is quasicompact.) Then we have verified the criterion in
[1, Corollary 5.4] to show that U ∩ RZΛG,b(h)

m,n′ is a separated algebraic space
locally of finite type over W/pm for any n′ � n. Since we have

RZΛG,b(h)
m,n
= (U ∩ RZΛG,b(h)

m,n′)×RZX(h)m,n
′ RZX(h)m,n,

it follows that RZΛG,b(h)
m,n is also a separated algebraic space locally of finite type

over W/pm .
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Since the natural inclusion RZΛG,b(h)
m,n ↪→ RZX(h)m,n is a monomorphism

which is locally of finite type, it is separated and locally quasifinite. (By looking
at étale charts, this claim reduces to the case of schemes, which is standard.) By
[36, Théorème (A.2)], RZΛG,b(h)

m,n is a scheme.

6.2. Closedness.

THEOREM 6.2.1. The natural monomorphism RZΛG,b(h)
m,n ↪→ RZX(h)m,n is a

closed immersion of schemes for any m, n, and h. Also, the functor RZΛG,b is
representable by a formal scheme locally formally of finite type over W , and the
natural inclusion RZΛG,b ↪→ RZX is a closed immersion of formal schemes.

Note that RZΛG,b → RZX is a closed immersion if and only if RZΛG,b(h)
m,n ↪→

RZX(h)m,n is a closed immersion for any m and n. Since a proper monomorphism
is a closed immersion, we want to show that RZΛG,b(h)

m,n
→ RZX(h)m,n is proper.

For this, we need to show that RZΛG,b(h)
m,n is quasicompact (cf. Corollary 6.2.5),

and verify the valuative criterion for properness (Lemma 6.2.2).

LEMMA 6.2.2. Let R be a κ-algebra which is a discrete valuation ring, and L :=
Frac(R). Let (X, ι) ∈ RZX(h)m,n(R) be such that (X L, ιL) ∈ RZΛG,b(h)

m,n(L). Then
we have (X, ι) ∈ RZΛG,b(h)

m,n(R).

Proof. It suffices to show that (X, ι) ∈ RZΛG,b(R) in the setting of the statement. As
both RZX and RZΛG,b commute with filtered direct limits in NilpW , we may assume
that L is a finitely generated field extension of κ , and (X, ι) ∈ RZX(R) extends to
(X R0, ιR0) ∈ RZX(R0) for some smooth κ-subalgebra R0 ⊂ R with L = Frac R0.
By smoothness, there exists a p-adic topologically smooth W -algebra A0 with
A0/p = R0. By localizing A0 at the ideal corresponding to the closed point of
Spec R and p-adically completing it, we obtain a p-adic flat W -algebra A with
A/p = R.

By the assumption on (X, ι), the map of isocrystals sα,D : 1→ D(X)⊗[ 1
p ] comes

from a unique map of integral crystals tα : 1→ D(X L)
⊗ on the generic fibre. So

we obtain the following horizontal section for any α:

(tα( Â(p))) ⊂ D(X L)( Â(p))⊗ ∩ D(X)(A)⊗[ 1
p ] = D(X)(A)⊗,

since we have A = A[ 1
p ] ∩ Â(p). We rename this section as tα(A) ∈ D(X)(A)⊗.

Since (X, ι) is defined over R0, it follows that tα(A) ∈ D(X)(A)⊗[ 1
p ] lies

in the image of D(X R0)(A0)
⊗
[

1
p ]. Since we also have A0 = A0[

1
p ] ∩ A (as

A0/p = R0 ↪→ A/p = R by assumption), it follows that tα(A) is the image
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of tα(A0) ∈ D(X R0)(A0)
⊗. Since (tα(A0)) are horizontal (as they are after inverting

p), it follows that (tα) on X L extend to maps of crystals tα : 1 → D(X R0)
⊗ by

Lemma 2.3.6.
Now consider the following finitely generated A0-scheme

PA0 := IsomA0
[(D(X R0)(A0), (tα(A0))], [A0 ⊗Zp Λ

∗, (1⊗ sα)]).

By construction, PA0 restricts to a trivial G-torsor over A0[
1
p ] since the quasi-

isogeny over R0 gives a splitting.
Let us now show that the pull-back PA of PA0 is a G-torsor over A. It suffices to

show that its pull-back PA′ is a G-torsor for some suitable faithfully flat A-algebra
A′. To construct such A′, let R′ be a complete discretely valued R-algebra whose
residue field is an algebraic closure κ ′ of the residue field of R, and we identify
R′ = κ ′[[u]]. We set A′ := W (κ ′)[[u]] and choose a lift A→ A′ of R→ R′.

We now show that PA′ is a (necessarily trivial) G-torsor. We already have that
PA′[1/p] is a trivial G-torsor. Since (X L, ιL) ∈ RZΛG,b(L), it follows that PW (L̄ ′) is
a G-torsor where L ′ := Frac(R′), so P Â′

(p)
is a G-torsor. (Note that Â′(p) is a p-

adic discrete valuation ring with Â′(p)/p = L ′, so we have a faithfully flat map
Â′(p) → W (L

′

).) Therefore, we have that PU ′ is a G-torsor, where U ′ ⊂ Spec A′

is the complement of the closed point.
By [12, Théorème 6.13], PU ′ extends to some G-torsor P ′A′ over A′. But since

A′ is strictly henselian, P ′A′ is a trivial G-torsor, which implies that PU ′ is a trivial
G-torsor. Therefore there exists an isomorphism of vector bundles

ς : OU ′ ⊗A′ D(X A′)(A′)
∼

−→ OU ⊗Zp Λ
∗

matching tα(A′)|U ′ with 1 ⊗ sα. Since ς is defined away from a codimension-2
subset in a normal scheme, ς extends to an A′-section of PA′ by taking the global
section. This shows an isomorphism G A′

∼= PA′ . (This argument is adapted from
‘Step 5’ of the proof of [32, Proposition 1.3.4].)

Furthermore, since PA0 pulls back to a smooth scheme over A, it has to be
smooth over some open formal subscheme Spec A′0 ⊂ Spec A0 containing the
closed point of Spec R, with nonempty fibres at any point in Spec A′0; that is, the
restriction PA′0 is a G-torsor. By replacing A0 with the p-adic completion of A′0,
we may assume that PA0 is a G-torsor.

By Lemma 2.2.8, the Hodge filtration Fil1
X R0
⊂ D(X R0)(R0) is a {µ}-filtration.

(Indeed, Fil1
X L

is a {µ}-filtration so Fil1
X R0

is a {µ}-filtration over the closure of

the generic point, which is Spec R0.) This shows that (X R0, ιR0) ∈ RZ
(sα)
X,G(R0), so

we have (X, ι) ∈ RZΛG,b(R).
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It remains to show the quasicompactness of RZΛG,b(h)
m,n . We begin with the

following proposition.

PROPOSITION 6.2.3. Let R be a smooth domain over κ , and let (X, ι) ∈ RZX(R).
Assume that there exists a dense subset of closed points Σ ⊂ Spec R, such that
for any x ∈ Σ we have (X x , ιx) ∈ RZΛG,b(κ). Then there exists a dense open
subscheme Spec R′ ⊂ Spec R such that (X R′, ιR′) ∈ RZΛG,b(R

′).

Proof. Let us choose a formally smooth p-adic W -lift A of R. By the standard
dictionary [15, Corollary 2.2.3], the morphism sα,D : 1→ D(X)⊗[ 1

p ], constructed
in Definition 4.5, corresponds to a horizontal section tα(A) ∈ D(X)(A)⊗[ 1

p ]. Let
us first show that tα(A) ∈ D(X)(A)⊗; that is, tα(A) is the A-section of a (unique)
map of crystals tα : 1→ D(X)⊗.

We endow the p-adic filtration with A[ 1
p ] and identify the associated

graded algebra gr•A[ 1
p ]
∼= R((u)) by sending p to u. Then we define

{t (m)α ∈ D(X)(R)⊗}m∈Z so that
∑

m∈Z t (m)α um is the image of tα(A) via the
map

D(X)(A)⊗[ 1
p ] → gr•(D(X)(A)⊗[ 1

p ])
∼=

⊕
m∈Z, m�−∞

umD(X)(R)⊗,

where gr• is with respect to the p-adic filtration.
Note that tα(A) ∈ D(X)(A)⊗ if and only if t (m)α = 0 for any m < 0. On the other

hand, if m < 0 then t (m)α vanishes at a dense set of points Σ , so t (m)α = 0; indeed,
for any x ∈ Σ , any map x̃ : A→ W lifting R � R/mx

∼= κ pulls back tα(A) to
a (p-integral) tensor in D(X x)(W )⊗ because (X x , ιx) ∈ RZ

(sα)
X,G(κ) = RZΛG,b(κ).

We next consider the following A-scheme (as in Definition 4.6(2)):

PA := IsomA([D(X)(A), (tα(A))], [A ⊗Zp Λ
∗, (1⊗ sα)]).

By construction, each fibre of PA at a point of Spec A is either a G-torsor or
empty. Since the fibre Px at x ∈ Σ is a G-torsor and PA[ 1

p ]
is a trivial G-torsor, it

follows that the fibre Pη at the generic point η of Spec R ⊂ Spec A is a G-torsor
(by semicontinuity of fibre dimensions, for example).

By generic flatness, we find a localization R′ of R such that PR′ is a G-torsor,
and we choose an A-algebra A′ which lifts R′. (If R′ = R[1/ f ] then we let A′ to
be the p-adic completion of A[1/ f̃ ] where f̃ is some lift of f .) We want to show
that PA′ is a G-torsor. Indeed, PR′ and PA′[ 1

p ]
are G-torsors so it remains to show

that PA′ is flat over A′. By local flatness criterion [37, Theorem 22.3] it suffices
to show that the following surjective map of OPR′

-modules is an isomorphism for
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each m:

OPR′
∼= (pm A′/pm+1 A′)⊗R′ OPR′

� pmOPA′
/pm+1OPA′

. (6.2.4)

LetΣ ′ := Σ ∩Spec R′, which is a dense set of closed points. For any x ′ ∈ Σ ′, we
choose a lift x̃ ′ : Spec W → Spec A′. By the defining condition of Σ ′ it follows
that the map (6.2.4) pulls back to an isomorphism

OPx ′

∼

−→ pmOPx̃ ′
/pm+1OPx̃ ′

.

Since
⋃

x ′∈Spec R′ Px ′ is dense in PR′ , it follows that the kernel of (6.2.4) is
supported in some proper closed subset of PR′ . On the other hand, OPR′

is a
domain, which forces (6.2.4) to be an isomorphism.

To see that Fil1
X R′

is a {µ}-filtration with respect to (tα(R′)), it suffices to check
this at dense set of points (namely, Σ ′). This shows (X R′, ιR′) ∈ RZ

(sα)
X,G(R

′).

Now, Theorem 6.2.1 follows from Lemma 6.2.2 and the corollary below:

COROLLARY 6.2.5. The scheme RZΛG,b(h)
m,n is quasicompact for any m, n, h.

Proof. We may assume m = 1 since quasicompactness only depends on the
underlying topological space. Let Z0 ⊂ RZX(h)

1,n
red denote the reduced closed

subscheme whose underlying topological space is the Zariski closure of the image
of |RZΛG,b(h)

1,n
|. Since RZX(h)1,n is quasicompact (cf. [44, Section 2.22]), Z0

is necessarily quasicompact. Then by Proposition 6.2.3 (applied to the natural
inclusion of the smooth locus of Z0 into RZX), there exists a dense open
subscheme U0 ⊂ Z0 (so U0 is necessarily quasicompact) such that the open
immersion U0 ↪→ Z0 factors through RZΛG,b(h)

1,n
red . We can check that the map thus

obtained U0→ RZΛG,b(h)
1,n
red is an étale monomorphism, so it is an open immersion.

To show quasicompactness of RZΛG,b(h)
1,n , it remains to show quasicompactness

of the (reduced) complement RZΛG,b(h)
1,n
red \ U0. (Indeed, if the complement is

quasicompact, then |RZΛG,b(h)
1,n
| can be covered by |U0| and finitely many affine

open subsets |Ui |’s of |RZΛG,b(h)
1,n
| covering the complement of |U0|.) For this,

we observe that the injective map of topological spaces

|RZΛG,b(h)
1,n
| → |Z0| (6.2.6)

is bijective, which follows from the valuative criterion (Lemma 6.2.2) and the
existence of U0 as above. Now, let Z1 ⊂ Z0 denote the reduced complement of
U0. By applying Proposition 6.2.3 to the smooth locus of Z1 and the set of closed
points Σ ⊂ |V1|, there exists a dense open subscheme U1 ⊂ Z1 (necessarily
quasicompact) such that the open immersion V1 ↪→ Z1 can be factored by an
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open immersion U1 → RZΛG,b(h)
1,n
red \ U0, being an étale monomorphism. We

may repeat this process to obtain a strictly decreasing sequence of closed subsets
|Z0| ) |Z1| ) · · · such that the preimage of |Z0| \ |Zr | in |RZΛG,b(h)

1,n
| is a

quasicompact open subset for any r > 1. Now, note that Zr = ∅ for some r since
Z0 is noetherian, which shows that |RZΛG,b(h)

1,n
| is quasicompact.

6.3. Independence of auxiliary choices and functoriality. We now finish the
proof of Theorem 4.9.1. We have constructed a closed formal scheme RZΛG,b ⊂
RZX (Theorem 6.2.1), which enjoys the following properties:

(1) RZΛG,b ⊂ RZX represents RZ(sα)X,G as in the statement of Theorem 4.9.1. The
universal tensors tuniv

α : 1→ D(XRZX |RZΛG,b
)⊗ can be obtained by glueing the

unique Tate tensors over some affine open covering of RZΛG,b. This claim
follows from Proposition 5.2(3).

(2) RZΛG,b ⊂ RZX does not depend on the choice of (sα) ∈ Λ⊗; indeed, the subset
RZΛG,b(κ) ⊂ RZX(κ) and the completion at any κ-point do not depend on (sα).

(3) If G = GL(Λ) then RZΛG,b = RZX; cf. Example 4.6.1.

(4) For any closed reductive Zp-subgroup G ′ ⊂ G with b ∈ G ′(K0), the
closed formal subscheme RZΛG ′,b ⊂ RZX is contained in RZΛG,b. Indeed, this
claim amounts to verifying analogous claims on the set of κ-points and the
completions thereof; cf. Lemma 2.5.4, Proposition 3.7.2.

It remains to verify the functoriality assertions; namely, (1) and (2) in
Theorem 4.9.1. These assertions will immediately follow from Lemma 6.3.1
and Proposition 6.3.2, hence we conclude the proof of Theorem 4.9.1.

Let (G ′, b′) andΛ′ be another datum as in Definition 2.5.5, and write X′ := XΛ′

b′ .
We have constructed a natural formal closed subscheme RZΛ

′

G ′,b′ ⊂ RZX′ .
Recall that XΛ×Λ′

(b,b′)
∼= XΛ

b × XΛ′

b′ = X × X′. Then we have a closed immersion
RZX ×Spf W RZX′ ↪→ RZX×X′ , defined by the product of deformations up to quasi-
isogeny, and a closed formal subscheme RZΛ×Λ

′

G×G ′,(b,b′) ⊂ RZX×X′ .

LEMMA 6.3.1. We have RZΛ×Λ
′

G×G ′,(b,b′) = RZΛG,b ×Spf W RZΛ
′

G ′,b′ as closed formal
subschemes of RZX×X′; in particular, Theorem 4.9.1(1) holds.

Proof. As both are closed formal subschemes of RZX×X′ , it suffices to show the
equality of the set of κ-points and the completions thereof, which follows from
Lemma 2.5.4 and Proposition 3.7.2.
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PROPOSITION 6.3.2. Given a map f : G→ G ′ which maps b to b′, there exists a
map RZΛG,b → RZΛ

′

G ′,b′ which induces the desired maps on the set of κ-points and
completions thereof as described in Theorem 4.9.1(2).

The proposition in the case when f is an identity map asserts that the formal
scheme RZΛG,b depends only on (G, b), not on the auxiliary choice of (Λ, (sα)),
up to canonical isomorphism.

Proof. We follow the structure of the proof of Proposition 3.7.2. The case when
f is a closed immersion and Λ = Λ′ was already handled at the beginning of
Section 6.3. For a natural projection pr2 : (G×G ′, (b, b′))→ (G ′, b′), the natural
projection

RZΛ×Λ
′

G×G ′,(b,b′)
∼= RZΛG,b ×Spf W RZΛ

′

G ′,b′ � RZΛ
′

G ′,b′

has the desired properties on κ-points and completions thereof. (The same holds
for the first projection.)

Now, let f : (G, b) → (G ′, b′) be any morphism, and consider the graph
morphism

(1, f ) : (G, b)→ (G × G ′, (b, b′)),

which is a closed immersion on the reductive Zp-groups. By letting G act via
(1, f ) on the faithful G×G ′-representationΛ×Λ′, we obtain the closed subspace
RZΛ×Λ

′

G,b ⊂ RZX×X′ . We claim that we have the following commutative diagram:

RZΛG,b

∃!

��

RZΛ×Λ
′

G,b
//

∼=

00

RZΛ×Λ
′

G×G ′,(b,b′)
∼= RZΛG,b ×Spf W RZΛ

′

G ′,b′

pr1

55 55

pr2
// // RZΛ

′

G ′,b′,

(6.3.3)

where the solid arrows are already defined. By looking at the sets of κ-points
and the completions thereof (cf. Proposition 3.7.2; especially, the diagram in
the proof), it follows that pr1 restricts to an isomorphism RZΛ×Λ

′

G,b
∼

−→ RZΛG,b as
claimed in the diagram. Therefore, the broken arrow is well defined and satisfies
the desired properties on κ-points and the completions thereof.

7. Extra structures on the moduli of p-divisible groups

We assume that p > 2, and set κ = Fp, W = Ẑur
p , and K0 = Q̂ur

p . We fix (G, b) as
in Definition 2.5.5 (with associated unramified Hodge-type local Shimura datum
(G, [b], {µ−1

})). With some suitable choice of Λ (which gives rise to X := XΛ
b ),
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we construct the closed formal subscheme RZΛG,b ⊂ RZX. From now on, we write
RZG,b := RZΛG,b as it does not depend on Λ up to canonical isomorphism.

In this section, we define a Weil descent datum, the action of Jb(Qp), ‘étale
realizations’ of crystalline Tate tensors, the rigid analytic tower {RZKG,b}, and the
Grothendieck–Messing period map—in other words, we construct ‘local Shimura
varieties’ as conjectured in Rapoport and Viehmann [43, Section 5]. Since RZG,b

is locally formally of finite type over Spf W (cf. Theorem 4.9.1), Berthelot’s
construction of rigid generic fibre RZrig

G,b can be applied; cf. [2], [15, Section 7].
We then construct the period morphism on the rigid generic fibre RZrig

G,b, which
is an étale morphism (highly transcendental in general). When RZG,b is an EL
or PEL Rapoport–Zink space, the extra structure on RZG,b that we define is
compatible with the one defined by Rapoport and Zink in [44]. (We leave readers
to verify this, which is more or less straightforward.)

The category of rigid analytic varieties can naturally be viewed as a full
subcategory of the category of adic spaces (cf. [25, Section 1.1.11]), so we may
regard all the rigid analytic varieties as adic spaces. (In light of the recent work
on ‘infinite-level Rapoport–Zink spaces’ in [48] and [47, Section 6], the theory
of adic spaces is the most natural framework to study the rigid analytic tower
{RZKG,b}.)

For the EL and PEL case, Scholze and Weinstein [48] constructed an infinite-
level Rapoport–Zink space. We construct an ‘infinite-level Rapoport–Zink space’
RZ∞G,b associated to (G, b) using the infinite-level Rapoport–Zink space for
GLQp(Λ[

1
p ]) and the rigid analytic tower {RZKG,b}. This construction is rather ad

hoc, and there should be a more natural construction, as alluded in the introduction
of [48].

7.1. More notation on adic spaces and p-divisible groups. We work with
the notion of adic spaces in the sense of Huber. (See [48, Section 2] for basic
definitions.) Although it is possible to work with classical rigid analytic geometry
for most part of this section (except Section 7.6), the flexibility of the theory of
adic spaces could be useful (for example, to define geometric points).

For any formal scheme X locally formally of finite type over Spf W , we let
Xrig denote the rigid analytic generic fibre constructed by Berthelot (cf. [15,
Section 7.1]), and we implicitly view it as an adic space.

Let us recall the functorial characterization of Xrig; cf. [15, Proposition 7.1.7].
For any adic space Y (topologically) of finite type over K0, we have

HomK0(Y,Xrig)
∼

← lim
−→

Y; Yrig=Y

HomW (Y,X), (7.1.1)
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where Y runs through formal models of Y . This property uniquely determines
Xrig by the rigid analytic Yoneda lemma [15, Lemma 7.1.5], so the adic space
associated to Berthelot’s generic fibre Xrig coincides with Huber’s construction
of the generic fibre of the adic space associated to the formal scheme X; cf. [48,
Proposition 2.2.2].

REMARK 7.1.2. Let K be a complete extension of K0 (with rank 1 valuation),
and let OK denote its valuation. (We often use C instead of K for algebraically
closed complete extension of Qp.) Then one can check without difficulty that any
point x : Spa(K ,OK ) → Xrig comes from a unique map x : Spf OK → X of
formal schemes, also denoted by x .

Let X be a p-divisible group over X. Then, X [pn
]

rig is a finite étale covering of
X := Xrig, and it is an abelian group object in the category of adic spaces.

DEFINITION 7.1.3. Let T (X) denote the lisse Zp-sheaf on X defined by the
projective system {X [pn

]
rig
}, and define V (X) to be the lisse Qp-sheaf associated

to T (X); that is, T (X) viewed in the isogeny category. (See [46, Definition 8.1]
for the definition of lisse Zp-sheaf on an adic space.)

As lisse Zp- or Qp- sheaves, it is possible to form tensor products, symmetric
and alternating products, and duals (so T (X)⊗ and V (X)⊗ make sense). The
formation of T (X) and V (X) commutes with any base change Y → X for
reasonable formal scheme Y. In particular, for any geometric point x̄ : Spa(C,
OC)→ X the fibre T (X)x̄ , as a Zp-module, only depends on the pull-back X x̄ of
X by x̄ : Spf OC → X. (Here, we use the convention as in Remark 7.1.2.)

REMARK 7.1.4. Let us make explicit the adic space generic fibre RZrig
X of RZX.

For any analytic space (or adic space) X topologically of finite type over K0,
the set HomK0(X ,RZ

rig
X ) can be interpreted as the set of equivalence classes of

f ∈ HomW (X,RZX) for any formal model X of X , where for any morphism
π : X′→ X of formal models of X , f ∈ HomW (X,RZX) is equivalent to f ◦π ∈
HomW (X

′,RZX).
If we set XRZX to be the universal p-divisible group over RZX and

f rig
: X → RZrig

X to the map given by f : X → RZX, then we have
T ( f ∗XRZX)

∼= f rig∗(T (XRZX)); in particular, the Zp-local system T ( f ∗XRZX)

on X is independent of the choice of formal model. A similar discussion holds
for RZrig

G,b in the place of RZrig
X .

Let X be a connected component of RZrig
G,b. For a geometric point x̄ of X (that

is, x̄ : Spa(C,OC)→ X for some algebraically closed complete extension C of
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K0), let π fét
1 (X , x̄) denote the algebraic fundamental group of X with base point

x̄ in the terminology of [16]. (In [46, Section 3] the algebraic fundamental group
is called the ‘profinite fundamental group’.)

Quite formally, one obtains a natural equivalence of categories from the
category of lisse Z`-sheaves on X to the category of finitely generated Z`-
modules with continuous π fét

1 (X , x̄)-action, where the equivalence is defined by
F  Fx̄ . (Cf. [16, Section 4], [46, Proposition 3.5].) Similarly, one obtains a
natural equivalence of categories from the category of lisse Q`-sheaves on X (that
is, lisse Z` sheaves viewed up to isogeny) to the category of finite-dimensional
Q`-vector spaces with continuous π fét

1 (X , x̄)-action. Here, ` can be any prime
(including ` = p).

Let 1 denote either the constant rank-1 Zp- or Qp-sheaf.

DEFINITION 7.1.5. An étale Tate tensor on X is a morphism tét : 1 → V (X)⊗

of lisse Qp-sheaves on X . An étale Tate tensor is called integral if it restricts to a
map 1→ T (X)⊗ of lisse Zp-sheaves on X .

It follows that when X is connected, giving an étale Tate tensor tét is equivalent
to giving an π fét

1 (X , x̄)-invariant element tét,x̄ ∈ V (X)⊗x̄ , and tét is integral if and
only if tét,x̄ ∈ T (X)⊗x̄ for a single geometric point x̄ .

We now claim that crystalline Tate tensors have ‘étale realizations’.

THEOREM 7.1.6. Assume that X is formally smooth and locally formally of finite
type over Spf W , and let t : 1 → D(X)⊗ be a morphism of crystals which is
Frobenius-equivariant up to isogeny and such that t (R) ∈ Fil0D(X)(R)⊗. Then
there exists a unique morphism tét : 1→ T (X)⊗ of lisse Zp-sheaves on X , such
that at each geometric point x̄ supported at a classical point x with residue field
K , the (classical) crystalline comparison isomorphism matches tét,x̄ ∈ T (X x̄)

⊗

with tx : 1→ D(X x)
⊗ (where tx is the fibre of t at x).

If x̄ is as in the theorem, then tét,x̄ ∈ T (X)⊗x̄ is invariant under the π fét
1 (X ′, x̄)-

action, not just the Gal(K 0/K )-action, where X ′ ⊂ X is the connected
component containing x̄ . Indeed, one can see that the requirement for tét in
Theorem 7.1.6 uniquely determines tét.

The main idea of the proof of Theorem 7.1.6 is to construct tét using the
(relative) crystalline comparison for p-divisible groups over X, and show the p-
integrality using the theory of Kisin modules (over a p-adic discrete valuation
ring). Although the proof is quite ‘standard’, it takes a long digression to set up
the notation. We give a proof in Section 8.
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It should be possible to compare the fibres tét,x̄ ∈ T (X)⊗x̄ and tx̄ : 1→ D(X x̄)
⊗ at

any geometric point x̄ of X , using the theory of vector bundles over the Fargues–
Fontaine curve. We will not work in this generality, as geometric points supported
at classical points are sufficient to uniquely determine tét.

7.2. The action of Jb(Q p). Recall from (2.4.3) that Jb(Qp) is the group of
quasi-isogenies γ : X 99K X which preserves the tensors (sα,D). Then RZG,b has
a natural left Jb(Qp)-action defined as follows: for any (X, ι) ∈ RZG,b(R) for
R ∈ NilpW and γ ∈ Jb(Qp), we have γ (X, ι) = (X, ι ◦ γ −1) ∈ RZX(R). To see
γ (X, ι) ∈ RZG,b(R), it suffices to observe that for R = Fp we recovers the natural
Jb(Qp)-action on X G(b) ∼= RZG,b(Fp) (cf. Proposition 2.5.10), and γ induces
γ : (RZX)̂x

∼

−→ (RZX)γ̂ x (as γ does not modify the underlying p-divisible group.)
By functoriality of adic space generic fibre, Jb(Qp) naturally acts on RZrig

G,b.
The Jb(Qp)-action on RZG,b has a kind of ‘continuity’ property in the sense of

[20, Définition 2.3.10]; indeed, the proof of [20, Proposition 2.3.11] works in the
more general setting of ours.

7.3. Weil descent datum. Let (G, [b], {µ−1
}) denote the unramified Hodge-

type local Shimura datum associated to (G, b). The following definition is the
local analogue of the reflex field for a Shimura datum. (Cf. [44, Section 1.31].)

DEFINITION 7.3.1. The (local) reflex field or (local) Shimura field for (G, [b],
{µ−1
}) is the subfield E = E(µ) ⊂ K0 which is the field of definition of the

G(K0)-conjugacy class of the cocharacter µ. Note that E is a finite unramified
extension of Qp (as µ descends over some finite subextension of Qp in K0).

Put d := [E : Qp], and let q = pd be the cardinality of the residue field of E .
Let τ = σ d

∈ Gal(K0/E) denote the q-Frobenius element (that is, the lift of the
qth power map on Fp).

REMARK 7.3.2. By the definition of E , we can deduce the following. For a
cocharacter µ ∈ {µ} (defined over W ), we have µτ ∈ {µ} where µτ := τ ∗µ.

For any formal scheme X over Spf W , we write Xτ
:= X ×Spf W,τ Spf W . We

similarly define X τ for an adic space over (K0,W ).

DEFINITION 7.3.3. Let X be a formal scheme over Spf W . A Weil descent datum
on X over OE is an isomorphism over Spf W :

Φ : X
∼

−→ Xτ .
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Similarly, we define a Weil descent datum over E for a rigid analytic space X
over K0 as an isomorphism Φ : X ∼

−→ X τ over K0.

For any positive integer r , let Er ⊂ K0 denote the (unramified) subextension
of degree r over E . Then for any Weil descent datum Φ over OE for X, we can
define a Weil descent datum over OEr as follows:

Φr
: X

Φ
−→
∼

Xτ Φτ

−→
∼

· · ·
Φτ

r−1

−−−→
∼

Xτ r
. (7.3.4)

The same construction works for rigid analytic spaces over K0.
Let X0 be a formal scheme over Spf OE , and X := X0×Spf OE Spf W . Then there

exists a natural Weil descent datum over OE on X. We say that a Weil descent
datum Φ over OE is effective if there exists a formal scheme X0 over OE such
that Φ is isomorphic to the one naturally associated to X0. We similarly define
effective Weil descent data over E for adic spaces X over K0.

Let X be a formal scheme locally formally of finite type over Spf W , equipped
with a Weil descent datum Φ over OE . Then on the adic space generic fibre X :=
Xrig we obtain a Weil descent datum Φ rig

: X ∼

−→ X τ induced by Φ. If Φ is
effective, then so is Φ rig.

We define a Weil descent datum on RZG,b over OE by restricting the natural
Weil descent datum on RZX, which we now recall. For R ∈ NilpW with the
structure morphism f : W → R, we define Rτ

∈ NilpW to be R as a ring with
structure morphism f ◦ τ . Then we have RZτG,b(R) = RZG,b(Rτ ).

DEFINITION 7.3.5. For any (X, ι) ∈ RZX(R), we define (XΦ, ιΦ) ∈ RZX(Rτ ),
where XΦ is X viewed as a p-divisible group over Rτ , and ιΦ is defined as follows:

ιΦ : XRτ /p = (τ
∗X)R/p

Frob−d

99K XR/p
ι
99K X R/p = XΦ

R/p,

where Frobd
: X→ τ ∗X is the relative q-Frobenius (with q = pd). This defines a

Weil descent datum Φ : RZX
∼

−→ RZτX over OE ; cf. [44, Section 3.48].
Note that for x = (X x , ιx) ∈ RZG,b(Fp), we have xΦ := (XΦ

x , ι
Φ
x ) ∈ RZG,b(F

τ

p);
indeed, Definition 4.6(3) is satisfied for (XΦ

x , ι
Φ
x ) by Remark 7.3.2. Then it is

clear from the construction that for x ∈ RZG,b(Fp), the morphism Φ : (RZX)̂x
∼

−→

(RZτX)x̂Φ induces Φ : (RZG,b )̂x
∼

−→ (RZτG,b)x̂Φ . Therefore we have (XΦ, ιΦ) ∈

RZG,b(Rτ ) for any R ∈ NilpW by definition of RZG,b (cf. Definitions 5.1, 5.5.1),
so we get a Weil descent datum Φ : RZG,b

∼

−→ RZτG,b over OE defined by sending
(X, ι) ∈ RZG,b(R) to (XΦ, ιΦ) ∈ RZG,b(Rτ ).
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Although the Weil descent datum for RZG,b is not effective, it induces a natural
action of the Weil group WE on the `-adic cohomology of RZrig

G,b. Alternatively,
one can ‘complete’ the components of RZG,b so that the Weil descent datum would
become effective (cf. [44, Theorem 3.49]).

The Weil descent datum commutes with the natural action of Jb(Qp), as the
relative q-Frobenius Frobd

: X → τ ∗X commutes with any quasi-isogenies. In
particular, we have a WE × Jb(Qp)-action on the `-adic cohomology of RZrig

G,b.

7.4. Étale Tate tensors and rigid analytic tower. For any open compact
subgroup K ⊂ G(Zp), we construct a finite étale cover RZKG,b of RZrig

G,b that
naturally fits into a G(Qp)-equivariant tower {RZKG,b} with Galois group G(Zp).

For any geometric point x̄ of RZrig
G,b we let π fét

1 (RZ
rig
G,b, x̄) denote the algebraic

fundamental group of the connected component of RZrig
G,b containing x̄ .

Let XG,b denote the universal p-divisible group over RZG,b. By Theorem 7.1.6,
we have a morphism of lisse Zp-sheaves

tα,ét : 1→ T (XG,b)
⊗

corresponding to each tα.

PROPOSITION 7.4.1. Let x̄ be a geometric point of RZrig
G,b supported at a classical

point x. Then the following Zp-scheme

Pét,x̄ := IsomZp
([Λ, (sα)], [T (XG,b)x̄ , (tα,ét,x̄)])

is a trivial G-torsor. (Here, we view Λ and T (XG,b)x̄ as vector bundles over
SpecZp.)

Proof. Note that any G-torsor over Zp is trivial; indeed, since Zp is a henselian
local ring, a G-torsor over Zp is trivial if its special fibre is trivial. But any G-
torsor over a finite field is trivial if G is reductive (so its fibres are connected by
definition).

It remains to show that Pét,x̄ is a G-torsor. Let K be the residue field at x , and
let X x0 denote the pull-back of XG,b by x0 : Spec κ → Spf OK

x
−→ RZG,b. Then by

[32, Proposition 1.3.4], we have a W -linear isomorphism

W ⊗Zp T (XG,b)x̄
∼= D(X x0)(W )∗

matching (1⊗ tα,ét,x̄) and (tα,x0(W )). Therefore, (Pét,x̄)W := Pét,x̄ ×SpecZp Spec W
is isomorphic to the G-torsor PW defined using (D(X x0)(W ), (tα,x0(W ))).

Let K(0) := G(Zp) and K(i) := ker(G(Zp)→ G(Z/pi)) for any i > 0.
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DEFINITION 7.4.2. We set RZK(0)G,b := RZ
rig
G,b. For any i > 0 we define the following

rigid analytic covering of RZrig
G,b:

RZK
(i)

G,b = IsomRZ
rig
G,b
([Λ/piΛ, (sα)], [XG,b[pi

]
rig, (tα,ét)],);

that is, for an analytic space (or adic space) X over K0, its X -point u classifies
isomorphisms of Z/pi -local systems matching tensors after pulling back to X .
Here, we use the identification XG,b[pi

]
rig ∼= T (XG,b)/(pi) to view the mod pi

reduction of (tα,ét) as tensors of XG,b[pi
]

rig. Since RZK(i)G,b is an open and closed
subspace of IsomRZ

rig
G,b
(Λ/piΛ, XG,b[pi

]
rig), one can see that RZK(i)G,b is a finite

étale Galois cover of RZrig
G,b. When G = GL(Λ), this definition of level structure

recovers the usual one.
We let the finite group G(Z/pi) = K(0)/K(i) act on the right on RZK(i)G,b as follows:

an element g ∈ G(Z/pi) acts as ς (i) 7→ g−1
◦ ς (i) on sections ς (i) of RZK(i)G,b. This

makes RZK(i)G,b an étale Galois cover of RZrig
G,b with Galois group G(Z/pi). When

G = GL(Λ), this action is compatible with the natural action as defined in [44,
Section 5.34].

For any open subgroup K ⊂ K(0) which contains K(i) for some i > 0, we set

RZKG,b = RZK
(i)

G,b/(K/K
(i)).

This definition is independent of the choice of i � 0. The Jb(Qp)-action and the
Weil descent datum over E on RZrig

G,b pull back to RZKG,b.

Let us now define the ‘right G(Qp)-action’ of the rigid analytic tower
{RZKG,b} (that is, Hecke correspondences). We follow [44, Section 5.34] and [20,
Section 2.3.9.3]. Let g ∈ G(Qp), and choose K ⊂ G(Zp) so that g−1Kg ⊂ G(Zp).
For a fixed g, the assumption on K can be arranged by replacing K by some
finite index open subgroup; indeed, for an open compact subgroup K0 ⊂ G(Zp),
K := K0 ∩ gK0g−1 satisfies this assumption. By a (right) G(Qp)-action on the
tower {RZKG,b}, we mean a collection of isomorphisms

[g] : RZKG,b
∼

−→ RZg−1Kg
G,b ,

for any g ∈ G(Qp) and K ⊂ G(Zp) with g−1Kg ⊂ G(Zp), which commutes
with the map RZK′G,b � RZKG,b for K′ ⊂ K, and we have [g′] ◦ [g] = [gg′] for any
g, g′ ∈ G(Qp) whenever it makes sense.

Let us first describe the map [g] on K -points, where K is a finite extension
of K0. Recall that RZrig

G,b(K ) = Hom(Spf OK ,RZG,b), so a point u ∈ RZKG,b(K )
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can be interpreted as a p-divisible group Xu := u∗XG,b over OK , a quasi-isogeny
ι : X 99K Xu,Fp

, and a Gal(K/K )-stable right coset ũK of isomorphisms

ũ : Λ
∼

−→ T (Xu)η̄,

where η̄ : Spa(K̂ ,OK̂ ) → Spa(K ,OK ) is a geometric point. Since ũK is
Gal(K/K )-stable, the Gal(K/K )-action on Λ via ũ has its image in K.

Since we assumed that g−1Kg ⊂ G(Zp), it follows that gΛ ⊂ Λ[ 1
p ] is stable

under the action of K, so ũ(gΛ) ⊂ V (Xu)η̄ is Gal(K/K )-stable. This means that
we can find a p-divisible group Xu·g over OK with quasi-isogeny g : Xu 99K Xu·g

such that gΛ is the image of the following map

T (Xu·g)η̄ ↪→ V (Xu·g)η̄
∼

←−
∗g

V (Xu)η̄
∼

←−
ũ
Λ[ 1

p ]. (7.4.3)

Indeed, for n so that pnΛ ⊂ gΛ, gΛ/pnΛ corresponds to the geometric generic
fibre of some finite flat OK -subgroup G of Xu[pn

]. We set Xu·g := Xu/G and

g : Xu
p−n

99K Xu � Xu/G =: Xu·g. (7.4.4)

Then the pair (Xu·g, g) satisfies the desired property (7.4.3). Now we obtain the
following K -valued point of RZrig

X :

(Xu·g, g,Fp
◦ ι) ∈ HomW (Spf OK ,RZX) ∼= RZrig

X (K ). (7.4.5)

LEMMA 7.4.6. In the above setting, let us write (X, ι) := (Xu, ι) and (X ′, ι′) :=
(Xu·g, g,Fp

◦ ι); cf. (7.4.5). Then (X ′, ι′) corresponds to a Spf OK -point of RZG,b.

Proof. By construction, we have étale Tate tensors (t ′α,ét) ⊂ T (X ′)⊗ and an
isomorphism Λ

∼

−→ T (X ′)η̄ matching (t ′α,ét) and (sα). Let S be the p-adically
completed PD hull of some surjection W [u] � OK . Then by Kisin theory, one
associate (t ′α(S)) ⊂ D(X ′)(S)⊗ from (t ′α,ét) such that its pointwise stabilizer is
isomorphic to G S; indeed, (t ′α(S)) can be constructed using Theorems 1.2.1 and
1.4.2 in [32], and the assertion on the pointwise stabilizer follows from [32,
Proposition 1.3.4].

By compatibility between Kisin modules and DdR(V (X ′)) ∼= DdR(V (X)) [32,
Theorem 1.2.1(1)], the isomorphism D(X ′)(OK )[

1
p ]

∼

−→ D(X)(OK )[
1
p ] induced

by g sends the tensor (t ′α(OK )) to (tα(OK )), where t ′α(OK ) is the image of t ′α(S).
This shows that the Hodge filtration FilX ′ ⊂ D(X ′)(OK ) is a {µ}-filtration (via
valuative criterion and Lemma 2.2.8). Therefore, by compatibility between Kisin
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modules and Dcris(V (X ′)) ∼= Dcris(V (X)), it follows that x ′0 := (X ′Fp
, ι′Fp

) ∈

RZG,b(Fp). Finally, [32, Proposition 1.5.8] shows that the map Spf OK → (RZX)x̂ ′0 ,
defined by (X ′, ι′), factors through (RZG,b)x̂ ′0 .

Now we can lift (Xu·g, g,Fp
◦ ι) ∈ RZrig

X (K ) to RZg−1Kg
G,b (K ) by adding the level

structure corresponding to the right g−1Kg-coset of the isomorphism:

Λ
∼

−→
g

gΛ
∼

−−−→
(7.4.3)

T (Xu·g)η̄. (7.4.7)

By construction, the associated right g−1Kg-coset is Gal(K/K )-stable, so we
obtain a map [g] : RZKG,b(K )→ RZg−1Kg

G,b (K ). If g ∈ G(Zp) then this action clearly
recovers the natural ‘Galois action’ of the covering.

The construction (7.4.5) and (7.4.7) can be generalized to X -valued points in a
functorial way for topologically finite-type K0-analytic space (or adic space) X .
Then the p-divisible group Xu is defined over some formal model X of X . By
replacing X with some admissible blow up if necessary, we can find a finite flat
group scheme G of Xu whose rigid analytic generic fibre gives the local system
corresponding to gΛ/pnΛ; cf. [6]. Now by rigid analytic Yoneda lemma [15,
Lemma 7.1.5], we obtain a morphism [g] : RZKG,b → RZrig

X , which factors through
RZrig

G,b by considering the image of classical points (cf. Lemma 7.4.6). And by
considering the suitable generalization of (7.4.7), we obtain a map [g] : RZKG,b →

RZg−1Kg
G,b .

Assume furthermore that g′−1Kg′ ⊂ G(Zp) for some g′ ∈ G(Qp). (This can
be arranged by shrinking K further if necessary.) Then we can show that the map
[g′] : RZKG,b → RZg′−1Kg′

G,b is equal to the composition

RZKG,b
[g]
−→ RZg−1Kg

G,b
[g′g−1

]

−−−→ RZg′−1Kg′

G,b .

By setting g′ = id ∈ G(Qp), we see that [g] : RZKG,b→ RZg−1Kg
G,b is an isomorphism.

Now the following proposition is immediate from the construction:

PROPOSITION 7.4.8. The assignment g 7→ ([g] : RZKG,b → RZg−1Kg
G,b ) defines a

right G(Qp)-action on the tower {RZKG,b} extending the Galois action of G(Zp),
which commutes with the natural Jb(Qp)-action and the Weil descent datum
over E.

This shows that on the ‘`-adic’ cohomology of the tower {RZKG,b}, we have a
natural action of WE × Jb(Qp)× G(Qp).
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7.5. Period morphisms. Set EG,b := D(XG,b)RZG,b , which is a vector bundle on
RZG,b equipped with a filtration Fil1

XG,b
. From the universal Tate tensors tα : 1→

E ⊗G,b, we get morphisms of rigid analytic F-isocrystals t rig
α : 1 → (E rig

G,b)
⊗. Note

that the (universal) quasi-isogeny ιred : (X)(RZG,b)red 99K (XG,b)(RZG,b)red induces an
isomorphism of vector bundles on RZrig

G,b

E rig
G,b

∼

−→ ORZ
rig
G,b
⊗Zp Λ

which matches (t rig
α ) with the maps (1 7→ 1 ⊗ sα); indeed, the rigid analytic

F-isocrystal E rig
G,b only depends on D((XG,b)(RZG,b)red)[

1
p ], as explained in [15,

Section 5.3].
Let FlG,{µ} denote the projective rigid analytic variety over K0 obtained from

the analytification of FlK0⊗Λ
∗,(1⊗sα)

G K0 ,{µ}
(cf. Section 2.2). It follows that the Hodge

filtration (Fil1
XG,b
)rig ⊂ E rig

G,b defines a natural map

π : RZrig
G,b → FlG,{µ}, (7.5.1)

which we call the period map. By letting Jb(Qp) act on FlG,{µ} via embedding
Jb(Qp) ⊂ G(K0) the period map π is Jb(Qp)-equivariant. In order to have
compatibility with Weil descent data, one has to modify the target of the period
map as in the case of (P)EL Rapoport–Zink spaces. To explain, the map ℵ :
RZG,b → ∆ := HomZ(X ∗(G)Gal(Qp/Qp),Z) in the (P)EL case [44, Section 3.52]
can be generalized to the unramified Hodge-type case by [11, Lemma 2.2.9];
indeed, loc. cit. gives a functorial map HomW (Spf A,RZG,b) → π1(G) for
formally smooth formally finitely generated W -algebra A, noting that for a
maximal torus T ⊂ GW the natural projection X∗(T ) � π1(G) defines a map
π1(G)→ ∆ via evaluation. (One can explicitly describe ℵ on Fp-point as follows:
it is the map that sends gG(W ) ∈ X G(b) to the homomorphism [χ 7→ ordp χ(g)]
where χ : GQp → Gm is a homomorphism over Qp and g is any representative
of gG(W ).) We then define a Weil descent datum on FlG,{µ} ×∆ using the same
formula as in [44, Section 5.43]. One can show that (π,ℵ) is compatible with the
Weil descent datum, generalizing the (P)EL case [44, Section 5.46].

PROPOSITION 7.5.2. The period map π is étale in the sense of [44, Section 5.9].

Proof of Proposition 7.5.2. The proof is almost identical to the proof of [44,
Proposition 5.15], if we use Corollary 5.5.4 in place of the Grothendieck–Messing
deformation theory.

As in the case of schemes of finite type over a field, étaleness can be checked
via infinitesimal lifting property for nilpotent thickenings supported at classical
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points by [44, Proposition 5.10]. To unwind this criterion, let A′ � A be a square-
zero thickenings of local K0-algebras which are finite-dimensional over K0. Let
A◦ ⊂ A and A′◦ ⊂ A′ respectively denote the subrings of power-bounded elements
[48, Definition 2.1.1]. Then we claim that the dotted arrow in the commutative
diagram below can be uniquely filled:

Spa(A, A◦) //
� _

��

RZrig
G,b

π

��

Spa(A′, A′◦) //

∃!

88

FlG,{µ}

Let us translate this diagram in more concrete terms. Let Fil1
A′ ⊂ A′ ⊗Zp Λ be

a {µ}-filtration such that for a finite flat W -subalgebra R0 ⊂ A there exists a map
f : Spf R0 → RZG,b such that the isomorphism

A ⊗R0 D(X)(R0)
∼

−−→
D(ι)A

A ⊗Zp Λ, (7.5.3)

takes the Hodge filtration A⊗R0Fil
1
X to A⊗A′Fil

1
A′ , where (X, ι) is the pull-back

of the universal object (XG,b, ι) by f , and D(ι)A is the isomorphism induced by ι.
The existence of the dotted arrow means the existence of a finite flat W -subalgebra
R′ ⊂ A′ and a map f ′ : Spf R′ → RZG,b lifting f in some suitable sense, such
that the Hodge filtration A′ ⊗R′ Fil

1
X ′ corresponds to Fil1

A′ by the isomorphism
D(ι′)A′ , where (X ′, ι′) is the pull-back of (XG,b, ι) by f ′. (Note that the uniqueness
of the dotted arrow follows from the Grothendieck–Messing deformation theory.)

We choose a finite flat W -subalgebra R′ ⊂ A′, and let R ⊂ A denote the image
of R′ in A. Assume that R contains R0. Note that the pull-back of the universal
quasi-isogeny induces an isomorphism

A′ ⊗R′ D(X R)(R′)
∼

−−−→
D(ι)A′

A′ ⊗Zp Λ, (7.5.4)

where we give the square-zero PD structure on R′ � R.
By increasing R′ if necessary, we may assume that the intersection

Fil1
R′ := Fil1

A′ ∩ D(X R)(R′)

is a {µ}-filtration with respect to (tα(R′)), where (tα) is the pull-back of the
universal Tate tensors over RZG,b. To see this, note that A′◦ is the preimage
of the valuation ring of the residue field of A′. Then by valuative criterion for
properness applied to the projective R′-scheme FlD(X R)(R′),(tα(R′))

G,{µ} , the A′-point
corresponding to Fil1

A′ uniquely extends to an A′◦-point, which has to be defined
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over some finite R′-subalgebra R′′ ⊂ A′◦ (as A′◦ is the union of such R′′’s). We
rename R′′ to be R′. Now, the existence of (X ′, ι′) lifting (X R, ι) follows from
Corollary 5.5.4.

REMARK 7.5.5. One defines étale maps for adic spaces to be maps locally
of finite presentation satisfying the usual infinitesimal lifting property for
formal étaleness using any affinoid (K0,W )-algebras as test objects; cf. [25,
Definition 1.6.5]. By [25, Example 1.6.6(ii)] and [44, Proposition 5.10],
this definition coincides with the definition of étale morphisms given in
Proposition 7.5.2.

7.6. Infinite-level Rapoport–Zink spaces. In this section, all the rigid
analytic spaces are regarded as adic spaces in the sense of [48, Definition 2.1.5].

Since we will not directly work with the definitions of (pre)perfectoid
spaces, we refer to [48, Section 2.1] for basic definitions. Roughly speaking,
a preperfectoid space over Spa(K0,W ) is an adic space over Spa(K0,W ) which
becomes a perfectoid space after base change over any perfectoid extension
(K ,OK ) of (K0,W ) and take the ‘p-adic completion’; cf. [48, Definition 2.3.9].
In particular, preperfectoid spaces may be nonreduced as explained in [48,
Remark 2.3.5].

Scholze and Weinstein [48, Theorem D] constructed a preperfectoid space RZ∞X
over RZrig

X , which can be viewed as the ‘infinite-level’ Rapoport–Zink space. (In
[48] RZ∞X is denoted as M∞.) By definition, RZ∞X parametrizes Zp-equivariant
morphism over RZrig

X

Λ→ (lim
←−

XRZX[p
n
])ad
(K0,W )

which induces an isomorphism Λ
∼

−→ (lim
←−

XRZX[p
n
])ad
(K0,W )(K , K+) of

Zp-modules on the fibres at each point Spa(K , K+) → RZrig
X . Here,

(lim
←−

XRZX[p
n
])ad
(K0,W ) is the generalized adic space over (K0,W ) associated

to the formal scheme lim
←−

XRZX[p
n
], constructed in [48, Section 2.2].

For any open compact subgroup K′ ⊂ GLZp(Λ)(Zp), there exists a natural
projection RZ∞X → RZK

′

X respecting the tower. It may not be known whether
RZ∞X represents the projective limit of RZK′X as sheaves (or even, whether one
should expect this), since taking projective limits of adic spaces is problematic
as explained in [48, Section 2.4]. In other words, although any map Spa(A, A+)
→ RZ∞X gives rise to an isomorphism Λ

∼

−→ T (XRZX)(A,A+) of lisse Zp-sheaves
on Spa(A, A+), obtained from the natural maps RZ∞X � RZK

′

X , it is not known
whether the ‘converse’ holds.
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Instead of working with a problematic notion of projective limit, Scholze
and Weinstein [48, Theorem 6.3.4] showed that a weaker notion of equivalence
RZ∞X ∼ lim

←−
RZK

′

X holds, where ∼ is defined in [48, Definition 2.4.1]. To simplify
the description of the equivalence, note that any projection RZ∞X → RZK

′

X has the
property that there exists an affinoid open cover {Spa(Aξ , A+ξ )} of RZ∞X whose
image in RZK

′

X is an affinoid open cover {Spa(AK′,ξ , A+K′,ξ )} for each K′. (This
follows from the cartesian square in the first paragraph of the proof of [48,
Theorem 6.3.4].) By the equivalence RZ∞X ∼ lim

←−
RZK

′

X we mean that:

• The natural map on the topological space |RZ∞X | → lim
←−
|RZK

′

X | is a
homeomorphism.

• The image of lim
−→

AK′,ξ in Aξ is dense for each ξ .

Let K(i) ⊂ G(Zp) and K′(i) ⊂ GLZp(Λ)(Zp) respectively denote the kernel of
reduction modulo pi . We define RZ∞G,b to be the ‘projective limit’ of RZ∞X ×RZK

′(i)
X

RZK
(i)

G,b; more concretely, we let RZ∞G,b be the closed adic subspace of RZ∞ cut out
by the equations defining RZ∞X ×RZK

′(i)
X

RZK
(i)

G,b for all i .

Note that the natural projection RZ∞X � RZK
′(i)

X restricts to RZ∞G,b � RZK
(i)

G,b,
which factors as

RZ∞G,b ↪→ RZ∞X ×RZK
′(i)

X
RZK

(i)

G,b � RZK
(i)

G,b.

Therefore, a morphism Spa(A, A+)→ RZ∞G,b gives rise to an isomorphism Λ
∼

−→

T (XG,b)(A,A+) of lisse Zp-sheaves on Spa(A, A+), which matches (sα) and (tα,ét),
where XG,b is the universal p-divisible group over RZG,b.

PROPOSITION 7.6.1. The generalized adic space RZ∞G,b is a preperfectoid, and
we have RZ∞G,b ∼ lim

←−K
RZKG,b.

Proof. Since any closed subspace of a preperfectoid space is a preperfectoid space
[48, Proposition 2.3.11] it remains to show RZ∞G,b ∼ lim

←−K
RZKG,b.

On the underlying topological space we clearly have a natural homeomorphism.

|RZ∞G,b|
∼

−→ lim
←−
K

|RZKG,b|.

To verify the other condition, let {Spa(Aξ , A+ξ )} be an affinoid open covering
of RZ∞X whose image in RZK

′(i)

X is an affinoid open cover {Spa(Ai,ξ , A+i,ξ )}. Let
Spa(Bξ , B+ξ ) ⊂ RZ∞G,b be the pull-back of Spa(Aξ , A+ξ ), and we similarly define
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Spa(Bi,ξ , B+i,ξ ) ⊂ RZK
(i)

G,b. Then we have the following commutative diagram

lim
−→

Ai,ξ
//

����

Aξ

����

lim
−→

Bi,ξ
// Bξ ,

where the right vertical arrow is a quotient map and the upper horizontal arrow
has a dense image. It thus follows that the lower horizontal arrow also has a dense
image. This shows RZ∞G,b ∼ lim

←−K
RZKG,b.

REMARK 7.6.2. As remarked in the introduction of [48], it should be possible
to obtain an ‘infinite-level Rapoport–Zink space’ RZ∞G,b for (G, b) (or at least, an
adic space equivalent to RZ∞G,b) directly without going through finite levels, and
obtain an ‘explicit description’ of RZ∞G,b using the theory of vector bundles on
Fargues–Fontaine curves (in the spirit of [48, Theorem D]). Such a construction
should work for more general class of ‘local Shimura data’ (G, [b], {µ−1

}).

8. Digression on crystalline comparison for p-divisible groups

The goal of this section is to prove Theorem 7.1.6, for which we need to recall
the basic constructions and crystalline comparison theory for p-divisible groups.
We use the notation and setting as in Section 7.1. and we additionally assume
that X = Spf R is a connected formal scheme which is formally smooth and
formally of finite type over W , Ω̂R/W is free over R, and one can take an R-
basis dui such that ui ∈ R× for all i . The choice of R is more general than [7]
(where various natural properties of (relative) period rings are proved), but one
can rather easily deduce the properties of crystalline period rings that are relevant
for us. (The properties of Bcris(R) that will be used can be rather easily deduced
by the same proof as in [7]. More subtle properties which require refined almost
étaleness, such as R[ 1

p ]-flatness and the π1-invariance, will not be used in this
paper, although they are obtained in [29, Section 5] by slightly extending refined
almost étaleness and repeating the proof of [7].)

In this section we allow p = 2. Although all the results hold when κ is a perfect
field (instead of an algebraically closed field) with little modification in the proofs,
we continue to assume that κ is algebraically closed for the notational simplicity.

8.1. Crystalline period rings. Choose a separable closure E of Frac(R), and
define R to be the union of normal R-subalgebras R′ ⊂ E such that R′[ 1

p ] is finite

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


Rapoport–Zink spaces of Hodge type 99

étale over R[ 1
p ]. Set R̂ := lim

←−n
R/(pn). (When R is a finite extension of W , we

have R = OK 0
.) We let η̄ denote the geometric generic point of any of Spec R[ 1

p ],

Spec R[ 1
p ], and Spec R̂[ 1

p ].
Let us briefly discuss the relation between the étale fundamental group of

Spec R[ 1
p ] and the algebraic fundamental group of (Spf R)rig. For any finite étale

R[ 1
p ]-algebra A, let RA be the normalization of R in A. Since R is excellent, RA

is finite over R. (Note that R is a quotient of some completion of a polynomial
algebra over W by [15, Lemma 1.3.3], and such a ring is known to be excellent;
cf. [49, Theorem 9].) By construction, (Spf RA)

rig is finite étale over (Spf R)rig, so
we obtain a functor Spec A (Spf RA)

rig from finite étale covers of Spec R[ 1
p ] to

finite étale covers of (Spf R)rig. This induces a natural map of profinite groups

π fét
1 ((Spf R)rig, x̄)→ π ét

1 (Spec R[1/p], x̄), (8.1.1)

for any geometric closed point x̄ of Spec R[1/p], which can also be viewed as a
‘geometric point’ of (Spf R)rig.

REMARK 8.1.2. In the case we care about (such as T (X)x̄ for a p-divisible group
X over R), the action of π fét

1 ((Spf R)rig, x̄) factors through π ét
1 (Spec R[1/p], x̄).

We set
R
[
:= lim
←−

x 7→x p

R/(p),

which is a perfect O [

K 0
-algebra equipped with a natural action of π ét

1 (Spec R[ 1
p ],

η̄).
For any (xn)n∈Z>0 ∈ R

[
, define

x (n) := lim
m→∞

(x̃m+n)
pm

for any lift x̃m+n ∈ R̂ of xm+n ∈ R/(p). Note that x (n) is well defined and
independent of the choices involved. Consider the following W -algebra map

θ : W (R
[
)→ R̂, θ(a0, a1, . . .) :=

∞∑
n=0

pna(n)n . (8.1.3)

over the classical map W (O [

K 0
)� OK̂ 0

. The kernel of θ (8.1.3) is a principal ideal
generated by an explicit element p − [p[], where p[ = (an) with an =‘p1/n mod
p’. This claim can be obtained from Lemma 8.1.4 below, since p − [p[] also
generates the kernel of W (O [

K 0
)� OK̂ 0

.
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Let θR : R ⊗W W (R
[
)� R̂ be the R-linear extension of θ , and define Acris(R)

to be the p-adic completion of the PD envelop of R ⊗W W (R
[
) with respect to

ker(θR). We let Fil1 Acris(R) denote the kernel of Acris(R)� R̂, which is an PD
ideal. (Note that the notation is incompatible with Acris(R) for f-semiperfect ring
R introduced in Section 5.3. In this section, Acris(R) as in Section 5.3 will not
appear.)

By choosing a lift of Frobenius σ : R → R (which exists by the formal
smoothness of R), one defines a lift of Frobenius σ on R ⊗W W (R

[
), which

extends to Acris(R). The universal continuous connection d : R→ Ω̂R/W extends
(by usual divided power calculus) to a p-adically continuous connection ∇ :
Acris(R) → Acris(R) ⊗R Ω̂R/W . Finally Acris(R) has a natural π ét

1 (Spec R[ 1
p ], η̄)-

action, which extends the natural action on R
[

and fixes R.

LEMMA 8.1.4. The natural map

(R⊗̂W W (R
[
))⊗̂W (O[

K 0
)
Acris(W )→ Acris(R)

is an isomorphism, where ⊗̂ denote the p-adically completed tensor product.

Proof. We want to show that the above map is an isomorphism modulo pm for
each m. Since Acris(R)/pm is the PD envelop of (θR mod pm) over W/pm , it
suffices to show that R ⊗W Wm(R

[
) is flat over Wm(O

[

K 0
) for each m by [4,

Proposition 3.21]. By local flatness criterion, it suffices to show that R
[

is flat
over O [

K 0
. (Note that R is flat over W .) Since O [

K 0
is a valuation ring (of rank 1),

O [

K 0
-flatness is equivalent to torsion-freeness, but clearly R

[
has no nonzero O [

K 0
-

torsion.

Lemma 8.1.4 allows us to deduce explicit descriptions of Acris(R) from
Acris(W ), which is well known; cf. [21, Section 5].

Since Acris(R) is an Acris(W )-algebra, the element t ∈ Acris(W ), which is
‘Fontaine’s p-adic analogue of 2π i’, can be viewed as an element of Acris(R).
We define

B+cris(R) := Acris(R)[ 1
p ], Bcris(R) := B+cris(R)[

1
t ] = Acris(R)[ 1t ].

The Frobenius endomorphism σ and the connection ∇ extends to B+cris(R) and
Bcris(R). For any r ∈ Z, we define the filtration Filr B+cris(R) (for r > 0) to be the
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ideal generated by the r th divided power ideal of Acris(R), and set

Filr Bcris(R) :=
∑
i>−r

t−iFili+r B+cris(R).

LEMMA 8.1.5. We have

Zp = Acris(R)σ=1;∇=0
;

Qp = (Fil
0 Bcris(R))σ=1;∇=0.

Idea of the proof. One may repeat the proof of [7, Corollaire 6.2.19]. Indeed, the
main ingredient of the proof is an explicit description of Acris(R) in terms of ‘t-
adic expansions’ [7, Proposition 6.2.13], which can be deduced, via Lemma 8.1.4,
from the classical result on Acris(W ) in [21, Section 5.2.7].

8.2. Crystalline comparison for p-divisible groups. Now, let X be a p-
divisible group over R, and let η̄ : R → E denote the geometric generic point,
where E is the separable closure of Frac R that contains R. We can consider
T (X) as a lisse Zp-sheaf on either Spec R[ 1

p ] or (Spf R)rig. (This will not lead
to any serious confusion as observed in Remark 8.1.2.)

Then we have
T (X)η̄ ∼= HomR̂(Qp/Zp, X R̂), (8.2.1)

which defines a natural map

ρX : T (X)η̄ → Hom(D(X R̂)(Acris(R)), Acris(R)) (8.2.2)

by sending f ∈ T (X)η̄ to the pull-back morphism f ∗ : D(X R̂) → 1 =
D(Qp/Zp) evaluated at Acris(R). First, note that D(X)(Acris(R)) is naturally
isomorphic to Acris(R)⊗R D(X)(R), and this identification respects the Frobenius
endomorphism and the connections. So for any f ∈ T (X)η̄, the morphism
ρX ( f ) : D(X)(R) → Acris(R) respects both the Frobenius action F and the
connections ∇, and ρX ( f ) maps the Hodge filtration Fil1

X ⊂ D(X)(R) into
Fil1 Acris(R). Furthermore, ρX is equivariant under the natural π ét

1 (Spec R[ 1
p ],

η̄)-action.
To summarize, the following map can be obtained by Bcris(R)-linearly

extending ρX and dualizing it:

Bcris(R)⊗R D(X)(R)→ Bcris(R)⊗Qp V (X)∗η̄. (8.2.3)

Furthermore, this map respects the naturally defined Frobenius actions,
connections, filtrations, and π ét

1 (Spec R[ 1
p ], η̄)-action. (Here, we declare that
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V (X)∗η̄ is horizontal, is fixed by the Frobenius action, and lies in the 0th filtration,
and D(X)(R) carries the trivial π ét

1 (Spec R[ 1
p ], η̄)-action.)

Let x : R→OK be a map where OK is a complete discrete valuation W -algebra
with residue field κ , and choose a ‘geometric point’ x̄ : R→ OK ↪→ OK̂ . We can

extend x̄ to R̂→ OK̂ , also denoted by x̄ .
We can repeat the construction of (8.2.3) for the p-divisible group X x over

OK , although OK is not necessarily formally smooth over W (that is, absolutely
unramified). Recall that we have a natural isomorphism of isocrystals D(X x)[

1
p ]
∼=

D((X x,κ)OK /p)[
1
p ] induced by

D(X x) ∼= D(X x,OK /p)
Frobr

OK /p
←−−−− D(σ r∗(X x,OK /p))

∼= D((σ r∗X x,κ)OK /p)
Frobr

κ
−−→ D((X x,κ)OK /p),

lifting the identity map on D(X x,κ)[
1
p ], where r is chosen so that the maximal ideal

of OK/p is killed by pr th power, and Frobr
OK /p and Frobr

κ respectively denote
the r th iterated relative Frobenius morphisms for X x,OK /p and X x,κ . With this
choice of r , we have σ r∗(X x,OK /p) ∼= (σ

r∗X x,κ)OK /p. The resulting isomorphism
D(X x)[

1
p ]
∼= D((X x,κ)OK /p)[

1
p ] is independent of the choice of r .

From this we get a natural isomorphism:

D(X x)(Acris(W ))[ 1
p ]
∼= B+cris(W )⊗W D(X x,κ)(W ). (8.2.4)

We also have a natural Gal(K/K )-isomorphism

T (X x)x̄
∼= HomK̂ (Qp/Zp, X x̄). (8.2.5)

Now, by repeating the construction of the map (8.2.3) we obtain

Bcris(W )⊗W D(X x,κ)(W )→ Bcris(W )⊗Qp V (X x)
∗

x̄ , (8.2.6)

which respects the naturally defined Frobenius action, connection, filtration, and
Gal(K/K )-action.

THEOREM 8.2.7. The maps (8.2.3) and (8.2.6) are isomorphisms.

More general version of this theorem is proved in [29, Theorem 5.3].

Idea of the proof. By Theorem 7 in [19, Section 6], it follows that (8.2.6) is an
isomorphism. To prove that (8.2.3) is an isomorphism, we repeat the proof of [19,
Theorem 7] to show that the following map

Acris(R)⊗R D(X)(R)→ Acris(R)⊗Qp V (X)∗η̄,
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induced by ρX (8.2.2), is injective with cokernel killed by t . One first handles
the case when X = µp∞ either by considering the PD completion of Acris(R)
as originally done by Faltings or by some explicit computation with the Artin–
Hasse exponential map as in [48, Section 4.2]. (See the footnote in the proof of
[29, Theorem 6.3] for slightly more details.) Now one deduces the general case
from this by some Cartier duality argument, as explained in [19, Section 6].

Let us now show that the (relative) crystalline comparison isomorphism (8.2.3)
interpolates the crystalline comparison isomorphisms at classical points (8.2.6).
For x as before, we set x̄ : R

x
−→ OK ↪→ OK̂ , and choose an extension x̄ : R̂→ K̂ .

(Indeed, we can lift the geometric point R[ 1
p ] → K to R[ 1

p ] → K , and R maps
to OK . We then take the p-adic completion.)

By (8.2.1) and (8.2.5), we get an isomorphism

T (X)η̄
∼

−→ T (X)x̄
∼= T (X x)x̄ , (8.2.8)

sending Qp/Zp → X R̂ to its fibre at x̄ : R̂→ OK̂ .

Note that x̄ induces a map x̄ [ : R
[
→ O [

K̂
. Choose x0 : R→ W such that x0 and

x induce the same κ-point of R (which is possible as R is formally smooth over
W ). Then the map x0 ⊗W (x̄ [) : R ⊗W W (R

[
)→ W (O [

K̂
) extends to Acris(R)→

Acris(W ), respecting all the extra structure possibly except σ ; indeed, x0 : R→ W
may not respect σ .

LEMMA 8.2.9. The following diagram commutes

Bcris(R)⊗R D(X)(R) ∼

(8.2.3)
//

��

Bcris(R)⊗Qp V (X)∗η̄

(8.2.8)
��

Bcris(W )⊗W D(X x,κ)(W )
∼

(8.2.6)
// Bcris(W )⊗Qp V (X)∗x̄ ,

where the left vertical arrow is induced from

B+cris(W )⊗Acris(R) D(X)(Acris(R))
∼= D(X x)(Acris(W ))[1/p] ∼= B+cris(W )⊗W D(X x,κ)(W ).

Here, the second isomorphism is (8.2.4).

Proof. Clear from the construction.
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We extend the isomorphism (8.2.3) to the following isomorphism:

Bcris(R)⊗R D(X)(R)⊗ ∼

−→ Bcris(R)⊗Qp (V (X)
∗

η̄)
⊗
= Bcris(R)⊗Qp V (X)⊗η̄ ,

(8.2.10)
respecting all the extra structures. Now, given t : 1→ D(X)⊗ as in Theorem 7.1.6,
the element

t (Acris(R)) = 1⊗ t (R) ∈ Acris(R)⊗R D(X)(R)⊗ ⊂ Bcris(R)⊗R D(X)(R)⊗

is fixed by the Frobenius and π ét
1 (Spec R[ 1

p ], η̄)-action, is killed by the connection,
and lies in the 0th filtration. By the isomorphism (8.2.10) and Lemma 8.1.5, the
above element 1 ⊗ t (R) corresponds to an element tét,η̄ ∈ V (X)⊗η̄ fixed by the
π ét

1 (Spec R[ 1
p ], η̄)-action. Therefore, by the usual dictionary there exists a unique

map of lisse Qp-sheaves
tét : 1→ V (X)⊗ (8.2.11)

such that it induces the map 1 7→ tét,η̄ on the fibre at η̄. By Lemma 8.2.9, tét,x̄

interpolates the étale Tate tensors associated to the fibre of t at classical points.
It remains to show that tét is ‘integral’; that is, we have tét : 1 → T (X)⊗. For

this, it suffices to show that tét,x̄ ∈ T (X)⊗x̄ for some geometric point x̄ (since R is
assumed to be a domain). By formal smoothness, we may choose x̄ that lies over
x : R→ W . In the next section, we verify the integrality claim using the theory of
Kisin modules. (The integral refinement of (8.2.10) a la Fontaine–Laffaille does
not work in general unless t factors through a factor of D(X x)

⊗ with the gradings
concentrated in [a, a + p − 2].)

8.3. Review of Kisin theory. For simplicity, we assume that OK = W . (The
rest of the discussion can be modified for OK that are finitely ramified.) We follow
the treatment of Sections 1.2 and 1.4 in [32]. Let S := W [[u]] and define σ :S→
S by extending the Witt vectors Frobenius by σ(u) = u p.

DEFINITION 8.3.1. By Kisin module we mean a finitely generated free S-module
M equipped with a σ -linear map ϕ :M→M[ 1

p−u ] whose linearization induces
an isomorphism 1⊗ ϕ : σ ∗M[ 1

p−u ] →M[ 1
p−u ].

For i ∈ Z we define Fili(σ ∗M[ 1
p ]) := (1 ⊗ ϕ)

−1((p − u)iM[ 1
p ]). There is a

good notion of subquotients, direct sums, ⊗-products, and duals.

We choose p[ ∈ O [

K 0
and define S → W (O [

K 0
)(⊂ Acris(W )) by sending u to

[p[]. The following can be extracted from the main results of [31]:

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


Rapoport–Zink spaces of Hodge type 105

THEOREM 8.3.2. There exists a covariant rank-preserving fully faithful exact
functor M : L 7→ M(L) from the category of Gal(K 0/K0)-stable Zp-lattices of
some crystalline representations to the category of Kisin modules, respecting ⊗-
products and duals. Furthermore, the functor M satisfies the following additional
properties:

(1) We have natural Gal(K 0/K0)-equivariant isomorphisms

L ∼= Fil0(Bcris(W )⊗σ,W M(L)/uM(L)
)ϕ=1

∼= Fil0(Bcris(W )⊗σ,S M(L)
)ϕ=1

,

which identifies Dcris(L[ 1
p ])
∼= σ ∗(M(L)/uM(L))[ 1

p ].

(2) We have a natural filtered isomorphism

DdR(L[1/p]) ∼= (σ ∗M(L)[ 1
p ])/(u − p),

where on the target we take the image filtration of Fil•(σ ∗M(L)[ 1
p ]).

(3) For two Zp-lattice crystalline Gal(K 0/K0)-representations L and L ′, let f :
M(L) → M(L ′) be an ϕ-equivariant map. Then there exists at most one
Gal(K 0/K0)-equivariant map f : L→ L ′ with M( f ) = f, and such f exists
if and only if the map

Bcris(W )⊗σ,S M(L)
1⊗f
−→ Bcris(W )⊗σ,S M(L ′)

is Gal(K 0/K0)-equivariant, in which case f [ 1
p ] is obtained from the ϕ-

invariance of the 0th filtration part of the isomorphism above.

Proof. The theorem can be read off from the statement and proof of [31,
Propositions 2.1.5, 2.1.12].

We continue to assume that OK = W , so we have Dcris(L[ 1
p ]) = DdR(L[ 1

p ]) as
K -modules. We clearly have that M(1) = (S, σ ) (where 1 denotes Zp equipped
with the trivial Gal(K 0/K0)-action). If there is no risk of confusion, we let 1 also
denote the Kisin module (S, σ ).

COROLLARY 8.3.3. For M := M(L), the isomorphisms in Theorem 8.3.2(1)
induce

L[1/p]Gal(K 0/K0) ∼= σ
∗M[1/p]ϕ=1 ∼= Fil0 DdR(L[1/p]) ∩ Dcris(L[1/p])ϕ=1,

which restrict to

LGal(K 0/K0) ∼= (σ
∗M)ϕ=1 ∼= Fil0 DdR(L[1/p]) ∩ (W ⊗σ,S M)ϕ=1.

https://doi.org/10.1017/fms.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.6


W. Kim 106

Proof. The first isomorphism is obtained by taking Gal(K 0/K0)-invariance
of the isomorphisms in Theorem 8.3.2(1). Indeed, we have (σ ∗M[ 1

p ])
ϕ=1
⊂

Fil0(σ ∗M[ 1
p ]) by definition of Fil0(σ ∗M[ 1

p ]).
Let us show the last integrality assertion. Note that we have 1 ⊗ ϕ :

(σ ∗M)ϕ=1 ∼
−→Mϕ=1. Now Theorem 8.3.2(3) gives the following isomorphism

LGal(K 0/K0) = HomGal(K 0/K0)
(1, L)→ HomS,ϕ(1,M(L)) =Mϕ=1,

sending f : 1→ L to M( f ) : 1→M, which is compatible with the isomorphism
L[ 1

p ]
Gal(K 0/K0)

∼

−→ σ ∗M[1/p]ϕ=1 ∼

−−→
1⊗ϕ

M[ 1
p ]
ϕ=1 that was just proved.

It remains to show that the mod u reduction (σ ∗M)ϕ=1
→ Fil0 DdR(L[1/p])∩

(W ⊗σ,SM)ϕ=1 is an isomorphism. Since the map becomes an isomorphism after
inverting p, it suffices to show that given m ∈ Fil0 DdR(L[1/p])∩(W⊗σ,SM)ϕ=1

its lift m̃ ∈ (σ ∗M)ϕ=1
[

1
p ] lies in (σ ∗M)ϕ=1.

Note that the natural inclusion LGal(K 0/K0) → L corresponds to the following
injective map of Kisin modules

S⊗Zp LGal(K 0/K0) ∼= S⊗Zp M
ϕ=1 ∼

←−−
1⊗ϕ

S⊗Zp (σ
∗M)ϕ=1 ↪→ σ ∗M,

and its cokernel is p-torsion free. Therefore for m̃ ∈ (σ ∗M)ϕ=1
[

1
p ], we have m̃ ∈

(σ ∗M)ϕ=1 if and only if its mod u reduction lies in W ⊗σ,S M; that is, any m ∈
Fil0 DdR(L[1/p]) ∩ (W ⊗σ,S M)ϕ=1 can be lifted to m̃ ∈ (σ ∗M)ϕ=1.

THEOREM 8.3.4. For any p-divisible group Y over W , the isomorphism
Dcris(V (Y )∗) ∼= D(Y )(W )[ 1

p ] restricts to an isomorphism of F-crystals

W ⊗σ,S M(T (Y )∗) ∼= D(Y )(W ).

If we invert p, then the Hodge filtration on the right hand side induces the image
filtration of Fil•σ ∗M(T (Y )∗)[ 1

p ] on the left hand side.

Proof. If p > 2 or X∨ is connected, then this is a result of Kisin (cf.
[32, Theorem 1.4.2]. The remaining case when p = 2 follows from [28,
Proposition 4.2(1)].

Proof of Theorem 7.1.6. Let us first show Theorem 7.1.6 when X is a p-divisible
group over R, where R is as in the beginning of Section 8. For t : 1→ D(X)⊗ as
in Theorem 7.1.6, let tét : 1→ V (X)⊗ denote its étale realization as constructed
in (8.2.11). We choose x : R → W and a ‘geometric point’ x̄ supported at x . Set
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Mx :=M(T (X x)
∗

x̄) and Mx := D(X x)(W ). By Theorem 8.3.4 we have a natural
F-equivariant isomorphism

W ⊗σ,S Mx
∼=Mx . (8.3.5)

Let tS,x̄ ∈ (M⊗

x [
1
p ])

ϕ=1 be the tensor corresponding to tét,x̄ ∈ (V (X)⊗x̄ )
Gal(K 0/K0) by

Corollary 8.3.3.
We want to show that tét is integral, for which it suffices to show that tS,x̄ ∈

(M⊗

x )
ϕ=1 by Corollary 8.3.3. Recall that tét,x̄ is constructed so that it corresponds

to the morphism tx : 1 → D(X x)
⊗ by the crystalline comparison isomorphism.

It now follows from Theorem 8.3.2(1) and (8.3.5) that the following natural
isomorphism

K0 ⊗σ,S[1/p]M
⊗

x [
1
p ]
∼=M⊗x [

1
p ]
(
∼= Dcris(V (X)∗x̄)

⊗
)

matches 1 ⊗ tS,x̄ with tx(W ). But since tx(W ) ∈ Fil0M⊗x (not just in M⊗x ),
we obtain tS,x̄ ∈ (M⊗

x )
ϕ=1 from Corollary 8.3.3 and (8.3.5). This shows

Theorem 7.1.6 when X = Spf R.
To prove Theorem 7.1.6 in general, note that X admits a Zariski open covering
{Uξ } where each Uξ = Spf Rξ satisfies the assumption as in the beginning of
Section 8. We have just proved that there exists a morphism tét|Urig

ξ
: 1→ T (XUξ )

⊗

for each ξ that satisfies the condition in the theorem, and these morphisms should
coincide at each overlap by uniqueness. So the locally defined tensors {tét|Urig

ξ
}

glue to give a tensor tét on X , which concludes the proof.
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