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The transport coefficients of a dilute gas of inelastic hard spheres immersed in a gas of
elastic hard spheres (molecular gas) are determined. We assume that the number density
of the granular gas is much smaller than that of the surrounding molecular gas, so that
the latter is not affected by the presence of the granular particles. In this situation, the
molecular gas may be treated as a thermostat (or bath) of elastic hard spheres at a fixed
temperature. The Boltzmann kinetic equation is the starting point of the present work.
The first step is to characterise the reference state in the perturbation scheme, namely
the homogeneous state. Theoretical results for the granular temperature and kurtosis
obtained in the homogeneous steady state are compared against Monte Carlo simulations
showing a good agreement. Then, the Chapman–Enskog method is employed to solve
the Boltzmann equation to first order in spatial gradients. In dimensionless form, the
Navier–Stokes–Fourier transport coefficients of the granular gas are given in terms of the
mass ratio m/mg (m and mg being the masses of a granular and a gas particle, respectively),
the (reduced) bath temperature and the coefficient of restitution. Interestingly, previous
results derived from a suspension model based on an effective fluid–solid interaction force
are recovered in the Brownian limit (m/mg → ∞). Finally, as an application of the theory,
a linear stability analysis of the homogeneous steady state is performed showing that this
state is always linearly stable.
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1. Introduction

A challenging problem in statistical physics is the understanding of multiphase flows,
namely the flow of solid particles in two or more thermodynamic phases. Needless to
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say, these types of flows occur in many industrial settings (such as circulating fluidised
beds) and can also affect our daily lives due to the fact that the comprehension of them
may ensure vital needs of humans such as clean air and water (Subramaniam 2020).
Among the different types of multiphase flows, a particularly interesting set corresponds
to the so-called particle-laden suspensions in which small, immiscible and typically dilute
particles are immersed in a carrier fluid. The dynamics of gas–solid flows is rich and
extraordinarily complex (Gidaspow 1994; Jackson 2000; Koch & Hill 2001; Fox 2012;
Tenneti & Subramaniam 2014; Fullmer & Hrenya 2017; Lattanzi et al. 2020) so their
understanding poses a great challenge. Even the study of granular flows in which the effect
of interstitial fluid is neglected (Campbell 1990; Goldhirsch 2003; Brilliantov & Pöschel
2004; Rao & Nott 2008; Garzó 2019) entails enormous difficulties.

In the case that the particle-laden suspensions are dominated by collisions
(Subramaniam 2020), the extension of the classical kinetic theory of gases (Chapman
& Cowling 1970; Ferziger & Kaper 1972; Résibois & de Leener 1977) to granular
suspensions can be considered as an appropriate tool to model these systems. In this
context and assuming nearly instantaneous collisions, the influence of gas-phase effects
on the dynamics of solid particles is usually incorporated in the starting kinetic equation
in an effective way via a fluid–solid interaction force (Koch 1990; Gidaspow 1994; Jackson
2000). Some models for granular suspensions (Louge, Mastorakos & Jenkins 1991; Tsao &
Koch 1995; Sangani et al. 1996; Wylie et al. 2009; Parmentier & Simonin 2012; Heussinger
2013; Wang et al. 2014; Saha & Alam 2017; Alam, Saha & Gupta 2019; Saha & Alam
2020) only consider the Stokes linear drag law for gas–solid interactions. Other models
(Garzó et al. 2012) include also an additional Langevin-type stochastic term.

For small Knudsen numbers, the Langevin-like suspension model mentioned above
(Garzó et al. 2012) has been solved by means of the Chapman–Enskog method
(Chapman & Cowling 1970) adapted to dissipative dynamics. Explicit expressions for
the Navier–Stokes–Fourier transport coefficients have been obtained in terms of the
coefficient of restitution and the parameters of the suspension model (Garzó et al. 2012;
Gómez González & Garzó 2019). Knowledge of the forms of the transport coefficients has
allowed an assessment of not only the impact of inelasticity on them (which was already
analysed in the case of dry granular fluids Brey et al. 1998; Garzó & Dufty 1999) but
also the influence of the interstitial gas on the momentum and heat transport. Beyond
the Navier–Stokes domain, this type of suspension model has also been considered to
compute the rheological properties in sheared gas–solid suspensions (see e.g. Tsao &
Koch 1995; Sangani et al. 1996; Parmentier & Simonin 2012; Heussinger 2013; Seto et al.
2013; Kawasaki, Ikeda & Berthier 2014; Chamorro, Vega Reyes & Garzó 2015; Hayakawa,
Takada & Garzó 2017; Saha & Alam 2017; Alam et al. 2019; Hayakawa & Takada 2019;
Gómez González & Garzó 2020; Saha & Alam 2020; Takada et al. 2020).

The quantitative and qualitative accuracies of the (approximate) analytical results
derived from the kinetic-theory two-fluid model (Garzó et al. 2012) have been confronted
against computer simulations in several problems. In particular, the critical length for the
onset of velocity vortices in the homogeneous cooling state of gas–solid flows obtained
from a linear stability analysis presents an acceptable agreement with molecular dynamics
(MD) simulations carried out for strong inelasticity (Garzó et al. 2016). Simulations
using a computational fluid dynamics solver (Capecelatro & Desjardins 2013; Capecelatro,
Desjardins & Fox 2015) of Radl & Sundaresan (2014) have shown a good agreement in
the mean slip velocity with the kinetic-theory predictions (Fullmer & Hrenya 2016). On
the other hand, kinetic theory has also been assessed for describing clustering instabilities
in sedimenting fluid–solid systems; good agreement is found at high solid-to-fluid density
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ratios although the agreement is weaker for intermediate and low density ratios (Fullmer
et al. 2017). In the case of non-Newtonian flows, the theoretical results (Saha & Alam 2017;
Alam et al. 2019; Saha & Alam 2020) derived from the Stokes drag model for the
ignited–quenched transition and the rheology of a sheared gas–solid suspension have been
shown to compare very well with computer simulations. Regarding the Langevin-like
model (Garzó et al. 2012), the rheological properties of a moderately dense inertial
suspension computed by a simpler version of this model exhibit a quantitatively good
agreement with MD simulations in the high-density region (Takada et al. 2020). In
addition, the extension to binary mixtures of this suspension model has been tested against
Monte Carlo data and MD simulations for both time-dependent and steady homogeneous
states with an excellent agreement (Khalil & Garzó 2014; Gómez González, Khalil &
Garzó 2020; Gómez González & Garzó 2021).

In spite of the reliability of the generalised Langevin and Stokes drag models for
capturing in an effective way the impact of gas phase on grains, it would be desirable
to propose a suspension model that considers the real collisions between solid and gas
particles. In the context of kinetic theory and as already mentioned in previous works
(Gómez González et al. 2020), a possibility would be to describe gas–solid flows in terms
of a set of two coupled kinetic equations for the one-particle velocity distribution functions
of the solid and gas phases. Nevertheless, the determination of the transport coefficients
of the solid particles starting from the above suspension model is a very intricate problem.
A possible way of overcoming the difficulties inherent to the description of gas–solid
flows when one attempts to involve the different types of collisions is to assume that
the properties of the gas phase are unaffected by the presence of solid particles. In fact,
although sometimes not explicitly stated, this is one of the overarching assumptions in
most of the suspension models reported in the granular literature. This assumption can be
clearly justified in the case of particle-laden suspensions where the granular particles (or
‘granular gas’) are sufficiently rarefied (dilute particles), and hence the properties of the
interstitial gas can be supposed to be constant. This means that the background gas can be
treated as a thermostat at a constant temperature Tg.

Under these conditions and inspired by the work of Biben, Martin & Piasecki
(2002), we propose here the following suspension model. We consider a set of granular
particles immersed in a bath of elastic particles (molecular gas) at equilibrium at a
certain temperature Tg. While the collisions between granular particles are inelastic (and
characterised by a constant coefficient of normal restitution α), the collisions between the
granular and gas particles are considered to be elastic. In the homogeneous steady state
(HSS), the energy lost by the solid particles due to their collisions among themselves is
exactly compensated for by the energy gained by the grains due to their elastic collisions
with particles of the molecular gas. In other words, the gas of inelastic hard spheres
(granular gas) is thermostatted by a bath of elastic hard spheres. The dynamic properties
of this system in HSSs were studied years ago independently by Biben et al. (2002) and
Santos (2003). Our goal here is to go beyond the homogeneous state and determine the
transport coefficients of a granular gas immersed in a molecular gas when the magnitude
of the spatial gradients is small (Navier–Stokes domain).

It is quite apparent that this suspension model (granular particles plus molecular gas) can
be seen as a binary mixture in which the concentration of one of the species (tracer species
or granular particles) is much smaller than the other one (excess species or molecular
gas). In these conditions, it is reasonable to assume that the state of the background gas
(excess species) is not perturbed by the presence of the tracer species (granular particles).
In addition, although the density of grains is very small, we will take into account not
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only the collisions between solid and gas particles, but also the grain–grain collisions in
the kinetic equation of the one-particle distribution function f (r, v; t) of the granular gas.
In spite of the simplicity of the model, it can be considered sufficiently robust since it
retains most of the basic features of granular suspensions such as the competition between
the different spatial and time scales. As we show in this paper, in contrast to previous
suspension models reported in the granular literature (Koch 1990; Gidaspow 1994; Jackson
2000), the present model incorporates a new parameter: the ratio between the mass m of a
granular particle and the mass mg of a particle of the molecular gas (modelled as an elastic
gas of hard spheres).

The objective of the present paper is twofold. On the one hand, we want to determine
the conditions under which the expressions for the transport coefficients derived from a
Langevin-like suspension model (Garzó et al. 2012; Gómez González & Garzó 2019) are
consistent with those achieved here from a collisional model. A careful analysis shows that
the present results reduce to those previously found (Garzó et al. 2012; Gómez González
& Garzó 2019) when m � mg (Brownian limit). Apart from assessing the consistency, the
analysis allows one to express the drift or friction coefficient γ (which is a free parameter
in the Langevin-like model) in terms of the mass ratio m/mg and the bath temperature
Tg. On the other hand, beyond the Brownian limit, we extend the expressions of transport
properties to arbitrary values of the mass ratio. This allows us to offer a theory that can
be employed not only in gas–solid systems for relatively massive particles (for which the
analytical results obtained from the Langevin model are quite useful) but also in situations
where the mass of granular particles is comparable to that of the elastic gas.

However, surprisingly, the results derived here for the transport coefficients are
practically indistinguishable from those obtained from the Langevin model (Gómez
González & Garzó 2019) for not relatively large values of the mass ratio (for a typical
value of the reduced bath temperature T∗

g = 1000, the Langevin results converge to those
reported here for m/mg � 50). This means that the range of mass (or size) ratios where the
collisional suspension model offers new results not covered by the Langevin-like model
(Gómez González & Garzó 2019) is constrained to situations where the mass (or size)
ratios of grains and gas particles are comparable. This is of course an important limitation
of our model, especially if one is interested in real applications (fine aerosol particles in
air) where the mass ratio m/mg is large.

Regarding the above point, some doubts are raised concerning the mechanisms that
govern a gas–solid collision when the mass of the solid particles and that of the
surrounding gas are comparable. Two different options are equally valid: either grains
are no longer of a mesoscopic size, or the gas particles become granular ones. In the
first case, we are dealing with a binary mixture of molecular gases, while the second case
corresponds to a mixture of granular gases. In both cases, we assume that the concentration
of one of the species is negligible (tracer limit), and so the state of the excess species is
not affected by the other one. Although the limitation of comparable mass ratios reduces
the applicability of the present model, it is well known that a vast number of parameters
influence the dynamics of a collision. The sizes, surface properties and material that
constitute the particles may perturb the processes of fracture, friction or internal vibrations
that regulate the loss of energy in each collision to a greater or lesser extent. Through an
appropriate selection of the particles’ features, the granular suspension can therefore still
be modelled as a granular gas immersed in an ensemble of elastic hard spheres. Although
this latter situation is not likely quite frequent in nature or in industrial set-ups (however,
it seems feasible in protoplanetary disks Schneider et al. 2021), we think that the results
reported in this paper for comparable masses or sizes may prove to be still useful for
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analysing computer simulation results where the granular gas may be thermostatted by a
bath of elastic hard spheres (Biben et al. 2002).

The plan of the paper is as follows. The Boltzmann kinetic equation for a granular
gas thermostatted by a bath of elastic hard spheres is presented in § 2 along with the
corresponding balance equations for the densities of mass, momentum and energy. The
Brownian limit (m/mg → ∞) is also considered; in this limit the Boltzmann–Lorentz
operator (accounting for the rate of change of f due to the elastic collisions between
grains and gas particles) reduces to the Fokker–Planck operator (Résibois & de Leener
1977; McLennan 1989), which is the basis of the Langevin-like suspension model (Garzó
et al. 2012). Section 3 is devoted to the study of the HSS. Although the HSS was
already analysed by Santos (2003) for a three-dimensional system (d = 3), we revisit here
this study by extending the analysis to an arbitrary number of dimensions d. Section 4
addresses the application of the Chapman–Enskog-like expansion (Chapman & Cowling
1970) to the Boltzmann kinetic equation. Since the system is slightly disturbed from the
HSS, the expansion is around the local version of the homogeneous state which is in
general a time-dependent distribution. Explicit expressions for the Navier–Stokes–Fourier
transport coefficients are obtained in § 5 by considering the leading terms in a Sonine
polynomial expansion. As an application of the results reported in § 5, a linear stability
analysis of the HSS is carried out in § 6. As expected, the analysis shows that the HSS is
linearly stable regardless of the value of the mass ratio m/mg. Finally, in § 7 we summarise
our main conclusions.

2. Boltzmann kinetic equation for a granular gas surrounded by a molecular gas

We consider a gas of inelastic hard disks (d = 2) or spheres (d = 3) of mass m and
diameter σ . The spheres are assumed to be perfectly smooth, so that collisions between
any two particles of the granular gas are characterised by a (positive) constant coefficient
of normal restitution α ≤ 1. When α = 1 (α < 1), the collisions are elastic (inelastic).
The granular gas is immersed in a gas of elastic hard disks or spheres of mass mg and
diameter σg (‘molecular gas’). A collision between a granular particle and a particle of
the molecular gas is considered to be elastic. As discussed in § 1, we are interested here in
describing a situation where the granular gas is sufficiently rarefied (the number density
of granular particles is much smaller than that of the molecular gas) so that the state of
the molecular gas is not affected by the presence of solid (grains) particles. In this sense,
the background (molecular) gas may be treated as a thermostat, which is at equilibrium
at a temperature Tg. Thus, the velocity distribution function fg of the molecular gas is the
Maxwell–Boltzmann distribution:

fg(V g) = ng

(
mg

2πTg

)d/2

exp
(

− mgV2
g

2Tg

)
, (2.1)

where ng is the number density of the molecular gas and V g = v − Ug, in which Ug is
the mean flow velocity of the molecular gas. Note that here, for the sake of generality, we
have assumed that Ug /= U (U being the mean flow velocity of the granular gas; see its
definition in (2.7)). In addition, for the sake of simplicity, the Boltzmann constant kB = 1
throughout the paper.

In the low-density regime, the time evolution of the one-particle velocity distribution
function f (r, v, t) of the granular gas is given by the Boltzmann kinetic equation. Since
the granular particles collide among themselves and with the particles of the molecular
gas, in the absence of external forces the velocity distribution f (r, v, t) verifies the kinetic
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equation:

∂f
∂t

+ v · ∇f = J[v | f , f ] + Jg[v | f , fg]. (2.2)

Here, the Boltzmann collision operator J[v | f , f ] gives the rate of change of the
distribution f (r, v, t) due to binary inelastic collisions between granular particles. On the
other hand, the Boltzmann–Lorentz operator Jg[v | f , fg] accounts for the rate of change
of the distribution f (r, v, t) due to elastic collisions between granular and molecular gas
particles.

The explicit form of the nonlinear Boltzmann collision operator J[v | f , f ] is (Garzó
2019)

J[v1 | f , f ] = σ d−1
∫

dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)[α

−2f (v′′
1)f (v

′′
2) − f (v1)f (v2)],

(2.3)

where g12 = v1 − v2 is the relative velocity, σ̂ is a unit vector along the line of centres
of the two spheres at contact and Θ is the Heaviside step function. In (2.3), the double
primes denote pre-collisional velocities. The relationship between pre-collisional (v′′

1, v
′′
2)

and post-collisional (v1, v2) velocities is

v′′
1 = v1 − 1 + α

2α
(σ̂ · g12)σ̂ , v′′

2 = v2 + 1 + α

2α
(σ̂ · g12)σ̂ . (2.4a,b)

The form of the linear Boltzmann–Lorentz collision operator Jg[v | f , fg] is (Résibois &
de Leener 1977; Garzó 2019)

Jg[v1 | f , fg] = σ d−1
∫

dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)[ f (v′′

1)fg(v
′′
2) − f (v1)fg(v2)], (2.5)

where σ = (σ + σg)/2. In (2.5), the relationship between (v′′
1, v

′′
2) and (v1, v2) is

v′′
1 = v1 − 2μg(σ̂ · g12)σ̂ , v′′

2 = v2 + 2μ(σ̂ · g12)σ̂ , (2.6a,b)

where μg = mg/(m + mg) and μ = m/(m + mg).
The relevant hydrodynamic fields of the granular gas are the number density n(r; t),

the mean flow velocity U(r; t) and the granular temperature T(r; t). They are defined,
respectively, as

{n, nU, dnT} =
∫

dv{1, v, mV2}f (v), (2.7)

where V = v − U is the peculiar velocity. As said before, in general the mean flow
velocity U of solid particles is different from the mean flow velocity Ug of molecular gas
particles. As we show later, the difference U − Ug induces a non-vanishing contribution
to the heat flux.
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The macroscopic balance equations for the granular gas are obtained by multiplying
(2.2) by {1, v, mV2} and integrating over velocity. The result is

Dtn + n∇ · U = 0, (2.8)

ρDtU = −∇ · P + F [ f ], (2.9)

DtT + 2
dn

(∇ · q + P : ∇U) = −Tζ − Tζg. (2.10)

Here, Dt = ∂t + U · ∇ is the material derivative, ρ = mn is the mass density of solid
particles and the pressure tensor P and the heat flux vector q are given, respectively, as

P =
∫

dvmV V f (v), q =
∫

dv
m
2

V2V f (v). (2.11a,b)

Since the Boltzmann–Lorentz collision term Jg[v | f , fg] does not conserve momentum,
then the production of momentum F [ f ] is in general different from zero. It is defined as

F [ f ] =
∫

dvmV Jg[v | f , fg]. (2.12)

In addition, the partial production rates ζ and ζg are given, respectively, as

ζ = − m
dnT

∫
dvV2J[v | f , f ], ζg = − m

dnT

∫
dvV2Jg[v | f , fg]. (2.13a,b)

The cooling rate ζ gives the rate of kinetic energy loss due to inelastic collisions between
particles of the granular gas. It vanishes for elastic collisions. The term ζg gives the transfer
of kinetic energy between the particles of the granular and molecular gases. It vanishes
when the granular and molecular gases are at the same temperature (Tg = T).

The macroscopic size of grains entails that their gravitational potential energy is much
larger than the usual thermal energy scale kBT . For example, a grain of common sand at
room temperature (T = 300 K) would require a energy of the order of 105kBT to rise a
distance equal to its diameter when subjected to the action of gravity (Heinrich, Nagel &
Behringer 1996). Therefore, thermal fluctuations have a negligible effect on the dynamics
of grains, and so they are considered athermal systems. On the other hand, when particles
are subjected to a strong excitation (e.g. vibrating walls or air-fluidised beds), the external
energy supplied to the system can compensate for the energy dissipated by collisions
and the effects of gravity. In this situation (rapid-flow conditions), particles’ velocities
acquire some kind of random motion that looks much like the motion of the atoms or
molecules in an ordinary or molecular gas. The rapid-flow regime opens up the possibility
of establishing a relation between particles’ response to the external supply of energy and
some kind of temperature. In this context, the granular temperature T can be interpreted as
a statistical quantity measuring the deviations (or fluctuations) of the velocities of grains
with respect to its mean value U . Just as in the ordinary case, the velocity fluctuations
approach is the basic assumption in the construction of out-of-equilibrium theories such
as the kinetic theory. Since granular gases are athermal, the granular temperature T has
no relation to the conventional thermodynamic temperature associated with the second
thermodynamic law. On the other hand, although the classical ensemble averages provide
a thermodynamic interpretation for the temperature Tg of the bath (or molecular gas)
through the definition of entropy, statistical mechanics shows that the thermodynamic
temperature is the same as that obtained using the velocity fluctuations approach (up
to a factor including the mass of the particles and the Boltzmann constant) (see for
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instance the review paper of Goldhirsch (2008) for a more detailed discussion of this
issue). Moreover, coming back to the suspensions framework, the fluctuation–dissipation
theorem supports the athermal statistical interpretation of Tg since its value has been
demonstrated to coincide with an effective temperature derived from the Einstein relation
in both experiments and simulations (Puglisi, Baldassarri & Loreto 2002; Garzó 2004;
Chen & Hou 2014). Thus, Tg is treated also here in the same way as T . Namely, Tg
(defined through the distribution fg(v)) is used to assess the deviations of the velocities
of the molecular gas with respect to the mean value Ug. In addition, we also assume that
the values of m, n, T and Tg are such that a description based on classical mechanics is
appropriate.

2.1. Brownian limit (m/mg → ∞)
The Boltzmann equation (2.2) applies in principle for arbitrary values of the mass ratio
m/mg. On the other hand, a physically interesting situation arises in the so-called Brownian
limit, namely when the granular particles are much heavier than the particles of the
surrounding molecular gas (m/mg → ∞). In this case, a Kramers–Moyal expansion
(Résibois & de Leener 1977; Rodríguez, Salinas-Rodríguez & Dufty 1983; McLennan
1989) in the velocity jumps δv = (2/(1 + m/mg))(σ̂ · g12)g12 allows us to approximate
the Boltzmann–Lorentz operator Jg[v | f , fg] by the Fokker–Planck operator JFP

g [v | f , fg]
(Résibois & de Leener 1977; Rodríguez et al. 1983; McLennan 1989; Brey, Dufty & Santos
1999a; Sarracino et al. 2010):

Jg[v | f , fg] → JFP
g [v | f , fg] = γ

∂

∂v
·
(

v + Tg

m
∂

∂v

)
f (v), (2.14)

where the drift or friction coefficient γ is defined as

γ = 4π(d−1)/2

dΓ

(
d
2

) (
mg

m

)1/2 (
2Tg

m

)1/2

ngσ
d−1. (2.15)

While obtaining (2.14) and (2.15), it has been assumed that Ug = 0 and that the
distribution f (v) of the granular gas is a Maxwellian distribution.

Most of the suspension models employed in the granular literature to fully account for
the influence of an interstitial molecular fluid on the dynamics of grains are based on the
replacement of Jg[v | f , fg] by the Fokker–Planck operator (2.14) (Koch & Hill 2001). More
specifically, for general inhomogeneous states, the impact of the background molecular
gas on solid particles is through an effective force composed of three different terms: (i) a
term proportional to the difference ΔU = U − Ug, (ii) a drag force term mimicking the
friction of grains on the viscous interstitial gas and (iii) a stochastic Langevin-like term
accounting for the energy gained by grains due to their interactions with particles of the
molecular gas (neighbouring particles effect) (Garzó et al. 2012). This yields the following
kinetic equation for gas–solid suspensions:

∂f
∂t

+ v · ∇f − γΔU · ∂f
∂v

− γ
∂

∂v
· V f − γ

Tg

m
∂2f
∂v2 = J[v | f , f ]. (2.16)

Note that there are three different scalars (β, γ, ξ) in the suspension model proposed by
Garzó et al. (2012); each one of the coefficients is associated with the different terms of
the fluid–solid force. For the sake of simplicity, the results derived by Gómez González &
Garzó (2019) were obtained by assuming that β = γ = ξ .
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Kinetic theory of granular particles

Since the model attempts to mimic gas–solid flows where U /= Ug, note that
one has to make the replacement v → v − Ug in (2.14) to obtain (2.16). The
Boltzmann equation (2.16) has been solved by means of the Chapman–Enskog method
(Chapman & Cowling 1970) to first order in spatial gradients. Explicit forms for
the Navier–Stokes–Fourier transport coefficients have been obtained in steady-state
conditions, namely when the cooling terms are compensated for by the energy gained by
the solid particles due to their collisions with the bath particles (Garzó, Chamorro & Vega
Reyes 2013; Gómez González & Garzó 2019). Thus, the results derived in the present
paper must be consistent with those previously obtained by Gómez González & Garzó
(2019) when the limit m/mg → ∞ is considered in our general results.

3. Homogeneous steady state

As a first step and before studying inhomogeneous states, we consider the HSS. The HSS
is the reference base state (zeroth-order approximation) used in the Chapman–Enskog
perturbation method (Chapman & Cowling 1970). Therefore, its investigation is of great
importance. The HSS was widely analysed by Santos (2003) for a three-dimensional
granular gas. Here, we extend these calculations to a general dimension d.

In the HSS, the density n and temperature T are spatially uniform, and with an
appropriate selection of the frame reference, the mean flow velocities vanish (U = Ug =
0). Consequently, the Boltzmann equation (2.2) reads

∂f (v; t)
∂t

= J[v | f , f ] + Jg[v | f , fg]. (3.1)

Moreover, the velocity distribution f (v; t) of the granular gas is isotropic in v so that
the production of momentum F [ f ] = 0, according to (2.12). Thus, the only non-trivial
balance equation is that of the temperature (2.10), namely ∂t ln T = −(ζ + ζg). As
mentioned in § 2, since collisions among granular particles are inelastic, the cooling
rate ζ > 0. A collision between a particle of the granular gas and a particle of the
molecular gas is elastic, and so the total kinetic energy of two colliding particles in such
a collision is conserved. On the other hand, since in the steady state the background gas
acts as a thermostat, the mean kinetic energy of granular particles is smaller than that
of the molecular gas, and so T < Tg. This necessarily implies that ζg < 0. Therefore, in
the steady state, the terms ζ and |ζg| exactly compensate each other and one gets the
steady-state condition ζ + ζg = 0. This condition allows one to get the steady granular
temperature T . However, according to the definitions (2.13a,b), the determination of ζ and
ζg requires knowledge of the velocity distribution f (v). For inelastic collisions (α /= 1), to
date the solution of the Boltzmann equation (3.1) has not been found. On the other hand,
a good estimate of ζ and ζg can be obtained when the first Sonine approximation to f is
considered (Brilliantov & Pöschel 2004). In this approximation, f (v) is given by

f (v) � fMB(v)

{
1 + a2

2

[(
mv2

2T

)2

− (d + 2)
mv2

2T
+ d(d + 2)

4

]}
, (3.2)

where

fMB(v) = n
(

m
2πT

)d/2

exp
(

−mv2

2T

)
(3.3)

is the Maxwell–Boltzmann distribution and

a2 = 1
d(d + 2)

m2

nT2

∫
dvv4f (v) − 1 (3.4)
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R. Gómez González and V. Garzó

is the kurtosis or fourth cumulant. This quantity measures the departure of the distribution
f (v) from its Maxwellian form fMB(v). From experience with the dry granular case (van
Noije & Ernst 1998; Garzó & Dufty 1999; Montanero & Santos 2000; Santos & Montanero
2009), the magnitude of the cumulant a2 is expected to be very small, and so the Sonine
approximation (3.2) to the distribution f turns out to be reliable. In the case that |a2|
does not remain small for high inelasticity, one should include cumulants of higher order
in the Sonine polynomial expansion of f . However, the possible lack of convergence of
the Sonine polynomial expansion for very small values of the coefficient of restitution
(Brilliantov & Pöschel 2006a,b) puts in doubt the reliability of the Sonine expansion in
the high-inelasticity region. Here, we restrict ourselves to values of α where |a2| remains
relatively small.

The expressions of ζ and ζg can now be obtained by replacing in (2.13a,b) f by its Sonine
approximation (3.2). Retaining only linear terms in a2, the forms of the dimensionless
production rates ζ ∗ = (
ζ/vth) and ζ ∗

g = (
ζ/vth) can be written as (van Noije & Ernst
1998; Brilliantov & Pöschel 2006a)

ζ ∗ = ζ̃ (0) + ζ̃ (1)a2, ζ ∗
g = ζ̃ (0)

g + ζ̃ (1)
g a2, (3.5a,b)

where

ζ̃ (0) =
√

2π(d−1)/2

dΓ

(
d
2

) (1 − α2), ζ̃ (1) = 3
16

ζ̃ (0), (3.6a,b)

ζ̃ (0)
g = 2x(1 − x2)

(
μT
Tg

)1/2

γ ∗, ζ̃ (1)
g = μg

8
x−3[x2 (

4 − 3μg
) − μg]

(
μT
Tg

)1/2

γ ∗.

(3.7a,b)

Here, 
 = 1/(nσ d−1) is proportional to the mean free path of hard spheres, vth = √
2T/m

is the thermal velocity and we have introduced the auxiliary parameters

x =
(

μg + μ
Tg

T

)1/2

(3.8)

and

γ ∗ = ε

(
Tg

T

)1/2

, ε = 
γ√
2Tg/m

=
√

2πd/2

2ddΓ

(
d
2

) 1

φ
√

T∗
g

. (3.9a,b)

Here, φ = [πd/2/2d−1dΓ (d/2)]nσ d is the solid volume fraction and T∗
g = Tg/(mσ 2γ 2) is

the (reduced) bath temperature. The dimensionless coefficient γ ∗ characterises the rate at
which the collisions between grains and molecular particles occur. Equations (3.6a,b) and
(3.7a,b) agree with those obtained by Santos (2003) for d = 3.

To close the problem, we have to determine the kurtosis a2. In this case, one has to
compute the collisional moments

Λ ≡
∫

dvv4J[v | f , f ], Λg ≡
∫

dvv4Jg[v | f , fg]. (3.10a,b)

In the steady state, one has the additional condition Λ + Λg = 0. The moments Λ

and Λg have been obtained in previous works (van Noije & Ernst 1998; Brilliantov &
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Kinetic theory of granular particles

Pöschel 2006a; Garzó, Vega Reyes & Montanero 2009; Garzó 2019) by replacing f by its
first Sonine form (3.2) and neglecting nonlinear terms in a2. In terms of γ ∗, the expressions
of {Λ∗, Λ∗

g} = (
/(nv5
th)){Λ, Λg} are given by

Λ∗ = Λ(0) + Λ(1)a2, Λ∗
g = Λ(0)

g + Λ(1)
g a2, (3.11a,b)

where

Λ(0) = − π(d−1)/2

√
2Γ

(
d
2

) (
d + 3

2
+ α2

)
(1 − α2), (3.12)

Λ(1) = − π(d−1)/2

√
2Γ

(
d
2

) [
3
32

(
10d + 39 + 10α2

)
+ d − 1

1 − α

]
(1 − α2), (3.13)

Λ(0)
g = dx−1

(
x2 − 1

)
[8μgx4 + x2 (

d + 2 − 8μg
) + μg]

(
μT
Tg

)1/2

γ ∗, (3.14)

Λ(1)
g = d

8
x−5{4x6[30μ3

g − 48μ2
g + 3(d + 8)μg − 2(d + 2)] + μgx4[−48μ2

g

+ 3(d + 26)μg − 8(d + 5)] + μ2
gx2(d + 14 − 9μg) − 3μ3

g}
(

μT
Tg

)1/2

γ ∗.

(3.15)

For hard spheres (d = 3), equations (3.12)–(3.15) are consistent with those previously
obtained by Santos (2003).

Inserting (3.5a,b)–(3.7a,b) and (3.11a,b)–(3.15) into the steady-state conditions (ζ +
ζg = 0, Λ + Λg = 0), one gets a set of coupled equations:

ζ̃ (0) + ζ̃ (0)
g + (ζ̃ (1) + ζ̃ (1)

g )a2 = 0, (3.16)

Λ(0) + Λ(0)
g + (Λ(1) + Λ(1)

g )a2 = 0. (3.17)

Eliminating a2 in (3.16) and (3.17), one achieves the following closed equation for the
temperature ratio T/Tg:

(ζ̃ (1) + ζ̃ (1)
g )(Λ(0) + Λ(0)

g ) = (ζ̃ (0) + ζ̃ (0)
g )(Λ(1) + Λ(1)

g ). (3.18)

For given values of α, φ and T∗
g , the solution of (3.18) gives T/Tg. Once the temperature

ratio is determined, the cumulant a2 is simply given by

a2 = − ζ̃ (0) + ζ̃
(0)
g

ζ̃ (1) + ζ̃
(1)
g

= −Λ(0) + Λ
(0)
g

Λ(1) + Λ
(1)
g

. (3.19)

The set of dimensionless control parameters of the problem considered here (m/mg,
α, φ, T∗

g ) has been essentially chosen to perform a close and clean comparison with the
previous results obtained by Gómez González & Garzó (2019) by means of the suspension
model (2.16). On the other hand, another possible set of parameters are m/mg, α and
ω ≡ (nσ d−1)/(ngσ

d−1). The parameter ω represents the mean free path associated with
the grain–gas collisions relative to that associated with grain–grain collisions. In fact,
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R. Gómez González and V. Garzó

ω was considered independently by Biben et al. (2002) and Santos (2003) in their study of
the HSS. The relationship between ω and T∗

g is

ω = 2d+3/2
√

π

(mg

m

)1/2
φ
√

T∗
g . (3.20)

Note that ω encompasses the dependence on the volume fraction φ and the (reduced) bath
temperature T∗

g through the combination φ
√

T∗
g . For this reason, according to (3.9a,b), the

number of independent parameters in this set is α, m/mg and ω.

3.1. Brownian limit
Before illustrating the dependence of T/Tg and a2 on α for given values of m/mg, φ and
T∗

g , it is interesting to consider the Brownian limit m/mg → ∞. In this limiting case,
μg → 0, μ → 1, x → √

Tg/T and so

ζ̃ (0)
g → 2

(
1 − Tg

T

)
γ ∗, ζ̃ (1)

g → 0, (3.21a,b)

Λ(0)
g → d(d + 2)

(
Tg

T
− 1

)
γ ∗, Λ(1)

g → −d(d + 2)γ ∗. (3.22a,b)

Taking into account these results, the set of (3.16) and (3.17) can be written in the Brownian
limit as

2γ ∗
(

Tg

T
− 1

)
= ζ ∗, d(d + 2)

(
γ ∗a2 − 1

2
ζ ∗

)
= Λ∗. (3.23a,b)

These equations are the same as those derived by Gómez González & Garzó (2019)
(see (29) and (34) of that paper) by using the suspension model (2.16). This shows the
consistency of the present results in the HSS with those obtained in the Brownian limit.

3.2. Direct simulation Monte Carlo simulations
The previous analytical results have been obtained by using the first Sonine approximation
(3.2) to f . Thus, it is worth solving the Boltzmann kinetic equation by means of an
alternative method to test the reliability of the theoretical predictions for T/Tg (3.18) and
a2 (3.19). The direct simulation Monte Carlo (DSMC) method developed by Bird (1994)
is considered here to numerically solve the Boltzmann equation in the homogeneous state.
Some technical details of the application of the DSMC method to the system studied in
this paper are provided as supplementary material available at https://doi.org/10.1017/jfm.
2022.410.

The dependence of the temperature ratio χ ≡ T/Tg on the coefficient of restitution α is
plotted in figure 1 for d = 3, φ = 0.001, T∗

g = 1000 and several values of the mass ratio
m/mg. The value T∗

g = 1000 has been chosen to guarantee that the grain–grain collisions
play a relevant role in the dynamics of granular gas. Namely, that the value of the friction
coefficient γ is comparable to the value of the grain–grain collision frequency (ν = vth/
),
so that the dimensionless coefficient γ ∗ ≡ γ /ν is of the order of unity. This is fulfilled for
the system studied here (d = 3, φ = 0.001 and T∗

g = 1000) since γ ∗ � 10
√

Tg/T , Tg/T
being of the order of unity (see figure 1). Thus, although the results displayed in this
paper significantly differ from those found in the dry case (no gas phase), the effects of
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Kinetic theory of granular particles

0
0.80

0.85

0.90

0.95

1.00

0.2 0.4 0.6 0.8

m/mg = 1

10

5

50

Brownian limit

1.0

α

χ

Figure 1. Temperature ratio χ ≡ T/Tg versus the coefficient of normal restitution α for d = 3, φ = 0.001,
T∗

g = 1000 and four different values of the mass ratio m/mg (from top to bottom: m/mg = 50, 10, 5 and 1).
The solid lines are the theoretical results obtained by numerically solving (3.18) and the symbols are the Monte
Carlo simulation results. The dotted line is the result obtained by Gómez González & Garzó (2019) using the
Langevin-like suspension model (2.16) while black circles refer to DSMC simulations implemented using the
time-driven approach (see the supplementary material).

inelastic collisions still have importance for the dynamics of grains. The value T∗
g = 1000

will therefore be maintained throughout this work.
Theoretical results are compared against DSMC simulations in figure 1, which ensures

the reliability of the results derived in this section for two different reasons: (i) a good
agreement between theory and simulation is found and (ii) the convergence towards the
Brownian limit can be clearly observed. Surprisingly, this convergence is fully reached for
relatively small values of the mass ratio (m/mg ≈ 50). We also find that the departure of
χ from unity increases as the masses of the granular and gas particles are comparable.
However, this unexpected result is only due to the way of scaling the variables. This is
illustrated in figure 2 where we take ω instead of T∗

g as input as in figure 2 of Santos
(2003). In contrast to figure 1, as expected (Barrat & Trizac 2002; Dahl et al. 2002),
it is quite apparent that the lack of energy equipartition is more noticeable as m � mg.
In addition, we also see that the impact of the mass ratio on the temperature ratio is
apparently more significant when one fixes ω instead of T∗

g . The fact that the difference
1 − χ increases with decreasing mass ratio when T∗

g is fixed (see figure 1) can be easily
understood. According to (2.6a,b), the transmission of energy per individual collision from
a molecular particle to a grain is greater when their masses are similar. Nonetheless,
the constraint imposed by the way of scaling γ leads to a dependence of N/Ng on the
mass ratio m/mg for fixed σg. Thus, Ng/N ∝ m/mg, and so the number density of the
molecular gas increases with increasing mass ratio. In this way, the mean force exerted by
the molecular particles on the grains is greater, and therefore the thermalisation caused by
the presence of the interstitial fluid is much more effective. The steady temperature ratio χ

is reached when the energy lost by collisions is compensated for by the energy provided by
the bath. Hence, the non-equipartition of energy turns out then to be remarkable to small
values of m/mg and α. Finally, figure 3 shows the α dependence of the cumulant a2 for
the same parameters as in figure 1. As expected, we find that the magnitude of a2 is in
general small for not quite large inelasticity (for instance, α � 0.5); this result supports
the assumption of a low-order truncation (first Sonine approximation) in the polynomial
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Figure 2. Temperature ratio χ ≡ T/Tg versus the coefficient of normal restitution α for d = 3, φ = 0.001,
ω = 0.1 and four different values of the mass ratio m/mg: m/mg = 1 (solid line), m/mg = 10 (dashed
line), m/mg = 100 (dotted line) and m/mg = 1000 (dash-dotted line). The (reduced) bath temperature T∗

g =
61.36(m/mg).

0
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Figure 3. Plot of the fourth cumulant a2 as a function of the coefficient of normal restitution α for d = 3,
φ = 0.001, T∗

g = 1000 and four different values of the mass ratio m/mg (from top to bottom: m/mg = 1, 5, 10
and 50). The solid lines are the theoretical results obtained from (3.18) and the symbols are the Monte Carlo
simulation results. The dotted line is the result obtained by Gómez González & Garzó (2019) using the
Langevin-like suspension model (2.16) while black circles refer to DSMC simulations implemented using the
time-driven approach (see the supplementary material).

expansion of the distribution function. Figure 3 highlights the excellent agreement between
theory and simulations, except for m/mg = 1 where small differences are present for very
strong inelasticities. However, these discrepancies are of the same order as those found for
dry granular gases (Montanero & Garzó 2002).

4. Chapman–Enskog expansion. First-order approximation

We perturb now the homogeneous state by small spatial gradients. These perturbations
will give non-zero contributions to the pressure tensor and the heat flux vector. The
determination of these fluxes will allow us to identify the Navier–Stokes–Fourier transport

943 A9-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.410


Kinetic theory of granular particles

coefficients of the granular gas. For times longer than the mean free time, we assume
that the system evolves towards a hydrodynamic regime where the distribution function
f (r, v; t) adopts the form of a normal or hydrodynamic solution. This means that all space
and time dependence of f only occurs through the hydrodynamic fields n, U and T:

f (r, v, t) = f [v | n(t), U(t), T(t)] . (4.1)

The notation on the right-hand side indicates a functional dependence on the density, flow
velocity and temperature. For low Knudsen numbers (i.e. small spatial variations), the
functional dependence (4.1) can be made local in space by means of an expansion in
powers of the gradients ∇n, ∇U and ∇T (Chapman & Cowling 1970). In this case, f
can be expressed in the form f = f (0) + f (1) + f (2) + · · · , where the approximation f (k)

is of order k in spatial gradients. Here, since we are interested in the Navier–Stokes
hydrodynamic equations, only terms up to first order in gradients are considered in the
constitutive equations for the momentum and heat fluxes.

As has been noted in previous works on granular suspensions (Garzó et al. 2013;
Gómez González & Garzó 2019), although one is interested in computing transport
in steady conditions, the presence of the background molecular gas may induce a
local energy unbalance between the energy lost due to inelastic collisions and the
energy transfer via elastic collisions. Thus, we have to consider first the time-dependent
distribution f (0)(r, v; t) in order to arrive at the linear integral equations obeying the
Navier–Stokes–Fourier transport coefficients. Then, to get explicit forms for the transport
coefficients, the above integral equations are (approximately) solved under steady-state
conditions.

To collect the different approximations in (2.2), one has to characterise the magnitude
of the velocity difference ΔU relative to the gradients as well. In the absence of spatial
gradients, the production of momentum term F [ f ] ∝ ΔU (see (6.5)) and hence, according
to the momentum balance equation (2.9), the mean flow velocity U of the granular gas
relaxes towards that of the molecular gas Ug after a transient period. Thus, the term ΔU
must be considered to be at least of first order in the spatial gradients. In this case, the
Maxwellian distribution fg(v) must also be expanded as

fg(v) = f (0)
g (V ) + f (1)

g (V ) + · · · , (4.2)

where

f (0)
g (V ) = ng

(
mg

2πTg

)d/2

exp
(

− mgV2

2Tg

)
(4.3)

and

f (1)
g (V ) = −mg

Tg
V · ΔU f (0)

g (V ). (4.4)

According to the expansion (4.1), the pressure tensor Pij, the heat flux q and the partial
production rates ζ and ζg must also be expressed according to the perturbation scheme in
the forms

Pij = P(0)
ij + P(1)

ij + · · · , q = q(0) + q(1) + · · · ,

ζ = ζ (0) + ζ (1) + · · · , ζg = ζ (0)
g + ζ (1)

g + · · · .

⎫⎬⎭ (4.5a–d)

In addition, the time derivative ∂t is also given as ∂t = ∂
(0)
t + ∂

(1)
t + · · · . The action

of the operators ∂
(k)
t on the hydrodynamic fields can be identified when the expansions
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(4.5a–d) of the fluxes and the production rates are considered in the macroscopic balance
equations (2.8)–(2.10). This is the conventional Chapman–Enskog method (Chapman &
Cowling 1970; Garzó 2019) for solving the Boltzmann kinetic equation.

As usual in the Chapman–Enskog method (Chapman & Cowling 1970), the zeroth-order
distribution function f (0) defines the hydrodynamic fields n, U and T:

{n, nU, dnT} =
∫

dv{1, v, mV2}f (0)(V ). (4.6)

The requirements (4.6) must be fulfilled at any order in the expansion, and so the
distributions f (k) (k ≥ 1) must thus obey the orthogonality conditions∫

dv{1, v, mV2}f (k)(V ) = {0, 0, 0}. (4.7)

These are the usual solubility conditions of the Chapman–Enskog scheme.
The mathematical steps involved in the determination of the zeroth- and first-order

distributions are quite similar to those made in previous works (Brey et al. 1998; Garzó
& Dufty 1999; Garzó et al. 2012, 2013; Gómez González & Garzó 2019). Some of the
technical details involved in this derivation are given in the supplementary material.

4.1. Navier–Stokes transport coefficients
To first order in spatial gradients and based on symmetry considerations, the pressure
tensor P(1)

ij and the heat flux q(1) are given, respectively, by

P(1)
ij = −η

(
∂Ui

∂rj
+ ∂Uj

∂ri
− 2

d
δij∇ · U

)
, (4.8)

q(1) = −κ∇T − μ̄∇n − κUΔU . (4.9)

Here, η is the shear viscosity, κ is the thermal conductivity, μ̄ is the diffusive heat
conductivity and κU is the velocity conductivity. While η, κ and μ are the coefficients of
proportionality between fluxes and hydrodynamic gradients, the coefficient κU connects
the heat flux with the velocity difference ΔU (‘convection’ current). Although this
contribution is not present in dry granular gases (Garzó 2019), it also appears in the case of
driven granular mixtures (Khalil & Garzó 2013, 2018). The coefficient κU can be seen as
a measure of the contribution to the heat flow due to ‘diffusion’ (in the sense that we have
a ‘binary mixture’ of granular and gas particles where both species have different mean
velocities). In this context, κU can be regarded as an effect inverse to thermal diffusion
(diffusion thermo-effect) (Chapman & Cowling 1970). It is important to recall that ΔU
vanishes for HSSs, and hence one expects that ΔU can be expressed in terms of ∇T and
∇n in particular inhomogeneous situations.

The Navier–Stokes–Fourier transport coefficients η, κ and μ are defined, respectively,
as

η = − 1
(d − 1)(d + 2)

∫
dvRij(V )Cij(V ), (4.10)

κ = − 1
dT

∫
dvS(V ) · A(V ), μ̄ = − 1

dn

∫
dvS(V ) · B(V ), (4.11a,b)
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Kinetic theory of granular particles

while κU is

κU = −1
d

∫
dvS(V ) · E(V ). (4.12)

In (4.10)–(4.12), we have introduced the quantities

Rij(V ) = m
(

ViVj − 1
d

V2δij

)
, S(V ) =

(
m
2

V2 − d + 2
2

T
)

V . (4.13a,b)

5. Sonine polynomial approximation to the transport coefficients in steady-state
conditions

So far, all the results displayed in § 4 for the transport coefficients η, κ , μ̄ and κU are exact.
More specifically, their expressions are given by (4.10)–(4.12), where the unknowns A, B,
Cij, D and E are the solutions of a set of coupled linear integral equations displayed in the
supplementary material. However, it is easy to see that the solution for general unsteady
conditions requires one to solve numerically a set of coupled differential equations for η, κ ,
μ̄ and κU . Thus, in a desire of achieving analytical expressions of the transport coefficients,
we consider steady-state conditions. In this case, the constraint ζ (0) + ζ

(0)
g = 0 applies

locally, and so the transport coefficients can be explicitly obtained. The procedure for
deriving the expressions of the transport coefficients is described in the supplementary
material and only their final forms are provided here.

5.1. Shear viscosity
The shear viscosity coefficient η is given by

η = η0

ν∗
η + K′ν̃ηγ ∗ , (5.1)

where γ ∗ is defined in (3.9a,b), η0 = [(d + 2)Γ (d/2)/(8π(d−1)/2)]σ 1−d
√

mT is the
low-density value of the shear viscosity of an ordinary gas of hard spheres (α = 1)
and K′ = √

2(d + 2)Γ (d/2)/(8π(d−1)/2). Moreover, we have introduced the (reduced)
collision frequencies

ν∗
η = 3

4d

(
1 − α + 2

3
d
)

(1 + α), (5.2)

ν̃η = 1
(d − 1)(d + 2)

(
m
mg

)3

μg

(
Tg

T

)2

θ−1/2

× {2(d + 3)(d − 1)
(
μ − μgθ

)
θ−2(1 + θ)−1/2

+ 2d(d − 1)μgθ
−2(1 + θ)1/2 + 2(d + 2)(d − 1)θ−1(1 + θ)−1/2}, (5.3)

where θ = mTg/(mgT) is the ratio of the mean square velocities of granular and molecular
gas particles. It is important to recall that all the quantities appearing in (5.1) are evaluated
at the steady-state conditions.
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5.2. Thermal conductivity, diffusive heat conductivity and velocity conductivity
We consider here the transport coefficients associated with the heat flux. The thermal
conductivity coefficient κ is

κ = d − 1
d

κ0

ν∗
κ + K′ (ν̃κ + β) γ ∗ , (5.4)

where κ0 = [d(d + 2)/2(d − 1)](η0/m) is the low-density value of the thermal
conductivity for an ordinary gas of hard spheres and

β =
(

x−1 − 3x
)

μ3/2
(

Tg

T

)1/2

. (5.5)

In (5.4), we have introduced the (reduced) collision frequencies

ν∗
κ = 1 + α

d

[
d − 1

2
+ 3

16
(d + 8)(1 − α)

]
(1 + α), (5.6)

ν̃κ = 1
2(d + 2)

μ
θ

1 + θ

[
G − (d + 2)

1 + θ

θ
F
]

, (5.7)

where

F = (d + 2)(2δ + 1) + 4(d − 1)μgδθ
−1(1 + θ) + 3(d + 3)δ2θ−1

+ (d + 3)μ2
gθ

−1(1 + θ)2 − (d + 2)θ−1(1 + θ), (5.8)

G = (d + 3)μ2
gθ

−2(1 + θ)2 [d + 5 + (d + 2)θ]

− μg(1 + θ){4(1 − d)δθ−2 [d + 5 + (d + 2)θ] − 8(d − 1)θ−1}
+ 3(d + 3)δ2θ−2 [d + 5 + (d + 2)θ] + 2δθ−1[24 + 11d + d2 + (d + 2)2θ ]

+ (d + 2)θ−1 [d + 3 + (d + 8)θ] − (d + 2)θ−2(1 + θ) [d + 3 + (d + 2)θ] (5.9)

and δ ≡ μ − μgθ .
The diffusive heat conductivity μ̄ can be written as

μ̄ = K′T
n

κζ ∗

ν∗
κ + K′ν̃κγ ∗ . (5.10)

Finally, the velocity conductivity κU is given by

κU = −nT
2

K′μ(1 + θ)−1/2θ−1/2H
ν∗
κ + K′ν̃κγ ∗ γ ∗, (5.11)

where

H = (d + 2)(1 + 2δ) + 4(1 − d)μg(1 + θ)δ − 3(d + 3)δ2 − (d + 3)μ2
g(1 + θ)2.

(5.12)
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Kinetic theory of granular particles

5.3. Brownian limit
Equations (5.1), (5.4), (5.10) and (5.11) provide the expressions of the transport coefficients
η, κ , μ̄ and κU , respectively, for arbitrary values of the mass ratio m/mg. As before in
the homogeneous state, it is quite interesting to consider the limiting case m/mg → ∞
(Brownian limit). In this limit case, μg → 0, μ → 1, χ ≡ finite, and so θ → 0, x →
χ−1/2, δ → 1 − χ−1 and β → 1 − 3χ−1. This yields the results ν̃η → 2 and ν̃κ → 3,
so that in the Brownian limit (5.1), (5.4), (5.10) and (5.11) reduce to (note that there
is a typographical error in expression (78) of Gómez González & Garzó (2019) for the
coefficient μ̄ since the denominator should be ν∗

κ + 3K′γ ∗)

η → η0

ν∗
η + 2K′γ ∗ , κ → d − 1

d
κ0

ν∗
κ + K′

(
γ ∗ − 3

2ζ ∗
) , (5.13a,b)

μ̄ → κT
n

K′ζ ∗

ν∗
κ + 3K′γ ∗ , κU → 0. (5.14a,b)

Equations (5.13a,b) and (5.14a,b) agree with the results obtained by Gómez González &
Garzó (2019) by using the suspension model (2.16). This confirms the self-consistency of
the results obtained in this paper for general values of the mass ratio.

5.4. Some illustrative systems
In the steady state, the expressions of the Navier–Stokes–Fourier transport coefficients η,
κ , μ̄ and κU are provided by (5.1), (5.4), (5.10) and (5.11), respectively. As in previous
works on transport in granular gases (Brey et al. 1998; Garzó & Dufty 1999; Garzó et al.
2012; Gómez González & Garzó 2019), to highlight the α dependence of the transport
coefficients, they are scaled with respect to their values for elastic collisions. This scaling
cannot be made in the case of the diffusive heat conductivity μ̄ since this coefficient
vanishes for α = 1. In this case, we consider the scaled coefficient nμ̄/Tκ(1), where κ(1)

refers to the value of the thermal conductivity (5.4) for elastic collisions. All these scaled
coefficients exhibit a complex dependence on the coefficient of restitution α, the mass
ratio m/mg, the volume fraction φ (through the parameter ε defined by (3.9a,b)) and the
reduced temperature T∗

g of the molecular gas.
Figures 4–7 show η(α)/η(1), κ(α)/κ(1), nμ̄/Tκ(1) and κU(α)/κU(1), respectively, as

functions of the coefficient of restitution α. Here, η(1), κ(1) and κU(1) correspond to
the values of η, κ and κU for elastic collisions. Moreover, in those plots we consider a
three-dimensional system (d = 3) with φ = 0.001 (very dilute granular gas), T∗

g = 1000
and four different values of the mass ratio: m/mg = 1, 5, 10 and 50. We have also
plotted the results obtained by Gómez González & Garzó (2019) using the suspension
model (2.16). The results obtained from this model are expected to apply when m � mg
(Brownian limit).

We observe that the deviations of the transport coefficients from their elastic forms
are in general significant, especially when m = mg. While the (scaled) shear viscosity
and thermal conductivity coefficients exhibit a non-monotonic dependence on inelasticity,
the (scaled) heat diffusive and velocity conductivity coefficients increase with increasing
inelasticity, regardless of the value of the mass ratio considered. In addition, while η(α) <

η(1), the opposite happens for the thermal conductivity since κ(α) > κ(1). With respect to
the dependence on the mass ratio m/mg, at a fixed value of the coefficient of restitution, it is
quite apparent that while the (scaled) shear viscosity increases with increasing mass ratio,
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0
0.92

0.94

0.96

0.98

1.00

0.2 0.4 0.6 0.8

m/mg = 1

10

5

50

Brownian limit

1.0

α

η
(α

)/
η

(1
)

Figure 4. Plot of the (scaled) shear viscosity coefficient η(α)/η(1) versus the coefficient of normal restitution
α for d = 3, φ = 0.001, T∗

g = 1000 and four different values of the mass ratio m/mg (from top to bottom:
m/mg = 50, 10, 5 and 1). The solid lines are the results derived in this paper while the dotted line is the result
obtained by Gómez González & Garzó (2019) using the suspension model (2.16). Here, η(1) refers to the shear
viscosity coefficient when collisions between grains are elastic (α = 1).

0
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Figure 5. Plot of the (scaled) thermal conductivity coefficient κ(α)/κ(1) versus the coefficient of normal
restitution α for d = 3, φ = 0.001, T∗

g = 1000 and four different values of the mass ratio m/mg (from top to
bottom: m/mg = 1, 5, 10 and 50). The solid lines are the results derived in this paper while the dotted line is
the result obtained by Gómez González & Garzó (2019) using the suspension model (2.16). Here, κ(1) refers
to the thermal conductivity coefficient when collisions between grains are elastic (α = 1).

the (scaled) thermal conductivity decreases with increasing mass ratio. The same happens
for the (scaled) coefficients nμ̄/Tκ(1) and κU(α)/κU(1) since both scaled coefficients
decrease as the mass ratio increases. We also see that in the case m/mg = 50, the results
derived here for η(α)/η(1), κ(α)/κ(1) and nμ̄/Tκ(1) practically coincide with those
obtained in the Brownian limit by Gómez González & Garzó (2019). However, in the
case m/mg = 50, the (scaled) velocity conductivity coefficient κU(α)/κU(1) (κU = 0 for
any value of α in the Brownian limit) is still clearly different from zero.

Although the results obtained here for the (scaled) transport coefficients depend
on the values of the mass ratio and the (reduced) temperature of the molecular gas,
it is worthwhile comparing the present results with those obtained for dry granular
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Figure 6. Plot of the (scaled) diffusive heat conductivity coefficient nμ̄(α)/Tκ(1) versus the coefficient of
normal restitution α for d = 3, φ = 0.001, T∗

g = 1000 and four different values of the mass ratio m/mg (from
top to bottom: m/mg = 1, 5, 10 and 50). The solid lines are the results derived in this paper while the dotted
line is the result obtained by Gómez González & Garzó (2019) using the suspension model (2.16). Here, κ(1)

refers to the thermal conductivity coefficient when collisions between grains are elastic (α = 1).
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Figure 7. Plot of the (scaled) velocity conductivity coefficient κU(α)/κU(1) versus the coefficient of normal
restitution α for d = 3, φ = 0.001, T∗

g = 1000 and four different values of the mass ratio m/mg (from top to
bottom: m/mg = 1, 5, 10 and 50). Here, κU(1) refers to the velocity conductivity coefficient when collisions
between grains are elastic (α = 1).

gases (i.e. in the absence of the molecular gas). In the case of the shear viscosity, a
comparison between both systems (with and without the gas phase) shows significant
discrepancies (see, for instance, figure 3.1 of Garzó 2019) even at a qualitative level
since while η increases with inelasticity for dry granular gases, the opposite happens
here whatever the mass ratio considered. On the other hand, a more qualitative agreement
is found for the the thermal conductivity (see, for instance, figure 3.2 of Garzó 2019)
since κ increases with decreasing α in both systems. In any case, important quantitative
differences appear at strong dissipation since the influence of inelasticity on κ is more
relevant in the dry case than in the presence of the molecular gas. A similar conclusion
is reached for the heat diffusive coefficient μ̄ (see, for instance, figure 3.3 of Garzó 2019)
where the magnitude of this (scaled) coefficient for dry granular gases is much larger than
that found here for granular suspensions.
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6. Linear stability analysis of the HSS

Once the transport coefficients of the granular gas are known, the corresponding
Navier–Stokes hydrodynamic equations can be explicitly displayed. To derive them, one
has to take into account first that the the production of momentum F [ f ] (defined in (2.12))
to first order in spatial gradients can be written as

F (1)[ f (1)] =
∫

dvmV {Jg[ f (0), f (1)
g ] + Jg[ f (1), f (0)

g ]}

= −ξΔU +
∫

dvmV Jg[ f (1), f (0)
g ], (6.1)

where
ξ = ρμθ−1/2(1 + θ)1/2γ. (6.2)

By symmetry reasons, the contributions of the first-order distribution f (1)(V ) to the second
integral in (6.1) come from the terms A(V ), B(V ) and E(V ). In the leading Sonine
approximation (see the supplementary material), one gets∫

dvmV Jg[ f (1), f (0)
g ] = − 2

d(d + 2)

( m
nT2 κ∇ ln T + m

T3 μ̄∇ ln n + m
nT3 κUΔU

)
×

∫
dvmV · Jg[Sf (0), f (0)

g ]. (6.3)

The collision integral appearing in (6.3) can be computed with the result∫
dvmV · Jg[Sf (0), f (0)

g ] = −d
2

nT2μγ θ−1/2 (1 + θ)−1/2 . (6.4)

Substitution of (6.4) into (6.3) leads to the final expression of F (1)[ f (1)]:

F (1)[ f (1)] = −ξΔU + ρ

d + 2
μγ

(
κ

n
∇ ln T + μ̄

T
∇ ln n + κU

nT
ΔU

)
X, (6.5)

where
X(θ) = θ−1/2 (1 + θ)−1/2 . (6.6)

Thus, when the constitutive equations (4.8)–(4.9) and (6.5) are substituted into the (exact)
balance equations (2.8)–(2.10), one gets the Navier–Stokes hydrodynamic equations for a
granular gas immersed in a molecular gas:

Dtn + n∇ · U = 0, (6.7)

ρDtUi + ∂p
∂ri

= ∂

∂rj

[
η

(
∂Uj

∂ri
+ ∂Ui

∂rj
− 2

d
δij∇ · U

)]
− ξΔUi

+ ρ

d + 2
μγ X

(
κ

n
∂ ln T
∂ri

+ μ̄

T
∂ ln n
∂ri

+ κU

nT
ΔUi

)
, (6.8)

DtT + T(ζ (0) + ζ (0)
g ) = 2

dn
∇ · (κ∇T + μ̄∇n + κUΔU)

+ 2
dn

[
η

(
∂Uj

∂ri
+ ∂Ui

∂rj
− 2

d
δij∇ · U

)
∂Ui

∂rj
− 2

d
T∇ · U

]
.

(6.9)

As said in § 5, we have not considered in (6.9) the first-order contributions to ζ and
ζg since they vanish when non-Gaussian corrections to the distribution function f (0)
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are neglected. In addition, as already mentioned in several previous works (Garzó
2005; Garzó, Montanero & Dufty 2006), the above production rates should also include
second-order contributions in spatial gradients. However, in the case of a dry dilute
granular gas (Brey et al. 1998), it has been shown that these contributions are very small,
and hence they can be neglected in the hydrodynamic equations. We expect here that
the same happens for a granular suspension. Apart from the above approximations, the
Navier–Stokes hydrodynamic equations (6.7)–(6.9) are exact to second order in the spatial
gradients of n, U and T .

A simple solution of (6.7)–(6.9) corresponds to the HSS studied in § 2. A natural
question is whether actually the HSS may be unstable with respect to long enough
wavelength perturbations, as occurs for dry granular fluids in freely cooling flows
(Goldhirsch & Zanetti 1993; McNamara 1993). This is one of the most characteristic
features of granular gases; its origin is associated with the inelasticity of collisions. On
the other hand, the stability of the HSS was also analysed by Gómez González & Garzó
(2019) in the Brownian limit case showing that the HSS is always linearly stable. The
objective of this section is to check whether the HSS is still linearly stable for arbitrary
values of the mass ratio m/mg.

Given that the present analysis is quite similar to that previously made by Gómez
González & Garzó (2019), only the final results are provided here. Some mathematical
steps are displayed in the supplementary material. In Fourier space, as expected (Brey
et al. 1998; Garzó 2005), the d − 1 transverse velocity components wk⊥ = wk − (wk · k̂)k̂
(orthogonal to the wave vector k) decouple from the other three modes. In terms of the
dimensionless time τ , their evolution equation is ∂τ wk⊥ − λ⊥(k)wk⊥ = 0. The explicit
form of λ⊥(k) can be found in the supplementary material. A systematic analysis of the
dependence of λ⊥(k) on the parameter space of the system shows that λ⊥(k) is always
negative, and hence the transversal shear modes wk⊥(k, τ ) are linearly stable.

A careful analysis of the corresponding eigenvalues λ
(k) of the matrix M obeying the
remaining three longitudinal modes (ρk, θk and the longitudinal velocity component of the
velocity field, wk‖ = wk · k̂) shows that one of the longitudinal modes could be unstable
for values of the wavenumber k < kh. The expression of kh is

k2
h =

√
2(2ζ gγ

∗ − ζ ∗) + 2d
d + 2

μXγ ∗[2
(
ζ ∗D∗

T − ζ gμ
∗γ ∗) − ζ ∗μ∗]

μ∗ − D∗
T

, (6.10)

where all the quantities appearing in (6.10) are defined in the supplementary material. As
in the case of λ⊥(k), a study of the dependence of kh on the parameters of the system shows
that k2

h is always negative. Consequently, there are no physical values of the wavenumber
for which the longitudinal modes become unstable, and hence the longitudinal modes are
also linearly stable.

In summary, the linear stability analysis of the HSS carried out here for a dilute
granular gas surrounded by a molecular gas shows no surprises relative to the earlier study
performed in the Brownian limit: the HSS is linearly stable for arbitrary values of the mass
ratio m/mg. However, the dispersion relations defining the dependence of the eigenvalues
λ⊥(k) and λ||(k) on the parameter space are very different from those previously obtained
when m/mg → ∞ (Gómez González & Garzó 2019). As an illustration, figure 8 shows the
real parts of the eigenvalues λi,|| (i = 1, 2, 3) and λ⊥ as a function of the wavenumber k for
φ = 0.001, T∗

g = 1000, m/mg = 1 and α = 0.8. It is quite apparent that all the eigenvalues
are negative, as expected. In particular, although the longitudinal mode λ1,|| is quite close
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Figure 8. Dispersion relations for a three-dimensional granular gas with φ = 0.001, T∗
g = 1000, m/mg = 1

and α = 0.8. From top to bottom, the curves correspond to the longitudinal mode λ1,||, the two degenerate shear
(transversal) modes λ⊥ (dotted line) and the two remaining longitudinal modes λ3,|| and λ2,||. The dependence
of λ1,||, λ3,|| and λ⊥ on k is shown more clearly in the insets. Only the real parts of the eigenvalues are plotted.

to 0, the inset clearly shows that it is always negative. In addition, we also observe that
in general the eigenvalues exhibit a very weak dependence on k; this contrasts with the
results obtained for dry granular fluids (see, for instance, figure 4.7 of Garzó 2019).

7. Summary and concluding remarks

The main goal of this paper has been to determine the Navier–Stokes–Fourier transport
coefficients of a granular gas (modelled as a gas of inelastic hard spheres) immersed
in a bath of elastic hard spheres (molecular gas). We have been interested in a situation
where the solid particles are sufficiently dilute, and hence one can assume that the state of
the bath (molecular gas) is not affected by the presence of the granular gas. Under these
conditions, the molecular gas can be considered as a thermostat kept at equilibrium at a
temperature Tg. This system (granular gas thermostatted by a gas of elastic hard spheres)
was originally proposed years ago by Biben et al. (2002) and it can be considered as an
idealised collisional model for particle-laden suspensions. Thus, in contrast to the previous
suspension models employed in the granular literature (Tsao & Koch 1995; Sangani et al.
1996; Garzó et al. 2012; Saha & Alam 2017) where the effect of the interstitial fluid on
grains is accounted for via an effective fluid–solid force, the model considered here takes
into account not only the inelastic collisions among grains themselves but also the elastic
collisions between particles of the granular and molecular gases. Moreover, we have also
assumed that the volume fraction occupied by the suspended solid particles is very small
(low-density regime). In this case, the one-particle velocity distribution function f (r, v; t)
of grains verifies the Boltzmann kinetic equation.

Before analysing inhomogeneous states, we have considered first homogeneous
situations. The study of this state is important because it plays the role of the reference
base state in the Chapman–Enskog solution to the Boltzmann equation. In this simple
situation, the granular ‘temperature’ T tends to thermalise to the bath temperature Tg.
In the steady state, both competing effects (characterised by the cooling rates ζ and ζg)
cancel each other and a breakdown of energy equipartition appears (T < Tg). In the HSS,
the temperature ratio T/Tg and the kurtosis a2 (measuring the deviation of the distribution
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function from its Maxwellian form) have been here estimated by considering the so-called
first Sonine approximation (3.2) to the distribution function f (v). In this approximation,
the temperature ratio is obtained by solving the steady-state condition ζ + ζg = 0
while the kurtosis is given by (3.19). These equations provide the dependence of T/Tg
and a2 on the parameter space of the system. Our theoretical results extend to arbitrary
dimensions the results obtained by Santos (2003) for hard spheres (d = 3). To assess the
accuracy of the (approximate) analytical results, a suite of Monte Carlo simulations have
been also performed. Comparison between theory and simulations shows in general a very
good agreement, especially in the case of the temperature ratio.

Once the homogeneous state is characterised, the next step has been to solve the
Boltzmann equation by means of the Chapman–Enskog-like expansion to first order
in spatial gradients (Chapman & Cowling 1970; Brilliantov & Pöschel 2004; Garzó
2019). The Navier–Stokes–Fourier transport coefficients have been explicitly determined
by considering the leading terms in a Sonine polynomial expansion when steady-state
conditions apply. Their forms are given by (5.1) for the shear viscosity η, (5.4) for the
thermal conductivity κ , (5.10) for the diffusive heat conductivity μ̄ and (5.11) for the
so-called velocity conductivity coefficient κU . This latter coefficient takes into account a
contribution to the heat flux coming from the velocity difference ΔU . It is quite apparent
that the expressions for the transport coefficients show a complex dependence on α, m/mg,
T∗

g and φ (see figures 4–7). The dependence on the latter two parameters appears via the
dimensionless drift coefficient γ ∗; this coefficient provides a characteristic rate for the
elastic collisions between granular and bath particles. In general, we find that significant
quantitative differences between dry granular gases (Brey et al. 1998; Garzó & Dufty
1999; Garzó 2013, 2019; Gupta 2020) and granular suspensions appear as the inelasticity
in collisions increases. Thus, the impact of the gas phase on the transport coefficients of
the granular gas cannot be in general neglected.

Interestingly, in the Brownian limit (m/mg → ∞), a careful analysis shows that the
expressions of η, κ and μ̄ reduce to those previously derived by Gómez González & Garzó
(2019) using the Langevin-like model (2.16) for the instantaneous gas–solid force. In this
limiting case, the present results show that the coefficient κU vanishes, in agreement with
Gómez González & Garzó (2019). Therefore, the results reported in this paper extend to
arbitrary values of the mass ratio m/mg the results derived in previous works (Garzó et al.
2012; Gómez González & Garzó 2019). Nonetheless, the convergence to the Brownian
limit is reached for relatively small values of the mass ratio (m/mg � 50 for T∗

g = 1000).
Thus, from a practical point of view, it seems that in most cases the Langevin-like model
is able to assess the effect of the interstitial gas on transport properties of granular gas. As
discussed in § 3.2, the convergence of the present results to the Brownian limit depends
on the way of scaling the variables. Here, since we have been interested in recovering
the results provided by Gómez González & Garzó (2019) in the Brownian limit, T∗

g has
been used as the control parameter regarding the force exerted by the molecular gas on
grains. This fact implies that the influence of the mass ratio m/mg appearing in γ (see
(2.15)) on the thermalisation process is absorbed in the selection of T∗

g . On the other
hand, following the scaling proposed by Biben et al. (2002) and Santos (2003), another
possibility could have been to choose ω (see (3.20)) as the bath parameter. In such a way,
an extra dependence on the mass ratio in the coefficient γ ∗ emerges and leads to a different
dependence of both the temperature ratio (see figure 2) and the transport coefficients on
the mass ratio.

Knowledge of the forms of the transport coefficients opens up the possibility of
performing a linear stability analysis on the resulting continuum hydrodynamic equations.
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As in the Brownian limit case (Gómez González & Garzó 2019), the analysis shows that
the HSS is always linearly stable whatever the mass ratio considered.

Although in real experiments the energy input for keeping rapid-flow conditions is
usually done either by driving through the boundaries (Yang et al. 2002) or by bulk
driving (as in air-fluidised beds; Schröter, Goldman & Swinney 2005; Abate & Durian
2006), these ways of supplying energy produce in many cases strong spatial gradients in
the bulk domain, and so the Navier–Stokes hydrodynamics does not hold. To overcome
this difficulty, it is quite common in computer simulations (see e.g. Puglisi et al. 1998;
Paganobarraga et al. 2002; Prevost, Egolf & Urbach 2002; Fiege, Aspelmeier & Zippelius
2009; Shaebani, Sarabadani & Wolf 2013) to heat the system homogeneously by the
presence of an external driving force or thermostat (Evans & Morriss 1990). A different
(and likely more realistic) way of thermostatting a granular gas is by means of a sea of
elastic hard spheres (Biben et al. 2002). In this context, given that in most of the computer
simulation works the effects of the thermostat on the properties of the granular gas are
ignored, the results derived in this paper may be useful for simulators when studying
problems in granular fluids thermostatted by a bath of elastic hard spheres. Regardless
of practical applications, needless to say a complete comprehension of gas–solid flows
is still missing (Fullmer & Hrenya 2017; Morris 2020; Han et al. 2021). For this reason,
the development of theoretical models for granular suspensions where collisions play a
significant role becomes of great relevance to understand from a more fundamental view
the results derived by means of effective models such as the Langevin-like model (Garzó
et al. 2012).

One of the main limitations of the results derived in this paper is its restriction to the
low-density regime. The extension of the present theory to a moderately dense granular
suspension described by the Enskog kinetic equation is an interesting project for the
future. These results could stimulate the performance of MD simulations to assess the
reliability of the theory for finite densities. Furthermore, in an attempt to model gas–solid
flows in fluidised beds where the fluid–solid interactions are governed not only by the
drag force (Stokes drag force) but also by the Archimedes force (gas pressure gradient),
the present model could be also extended to account for these new ‘additional forces’.
Another challenging work could be the determination of the non-Newtonian rheological
properties of a granular suspension under simple shear flow. This study would allow the
extension of previous studies (Tsao & Koch 1995; Sangani et al. 1996; Chamorro et al.
2015; Saha & Alam 2017; Alam et al. 2019; Takada et al. 2020) to arbitrary values of
the mass ratio m/mg. The accuracy of the results for the shear viscosity can be tested by
means of DSMC simulations. For instance, by performing local deviations of the velocity
field from its value in the homogeneous state and analysing the relaxation process (Brey,
Ruiz-Montero & Cubero 1999b; Brey & Cubero 2001). Another possible project could be
to revisit the results obtained in this paper by considering the charge transport equation
recently considered by Ceresiat, Kolehmainen & Ozel (2021). Work along these lines will
be carried out in the future.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.410.
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