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Reynolds number dependence of turbulent flows
over a highly permeable wall
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Direct numerical simulations of turbulent flows over highly permeable porous walls
were performed at various Reynolds numbers to examine the effects of the Reynolds
number on permeable wall turbulence. The porous medium consisted of Kelvin cell
arrays with porosity 0.95, and the permeability Reynolds number ReK ranged from
approximately 7 to 50. Simulations with thin and thick porous walls were performed to
investigate the effects of spanwise roller vortices associated with the Kelvin–Helmholtz
instability. The results show that the effect of the Kelvin–Helmholtz instability becomes
more significant with increasing the permeability Reynolds number, and spanwise
rollers, for which length scale is an order of channel height, dominate turbulence when
ReK � 30. Spanwise rollers reinforce the negative correlation between the wall-normal
and streamwise velocity fluctuations close to the porous/fluid interface, and intensify
the turbulent velocity fluctuations away from the porous walls, leading to increased
frictional resistance. An investigation of the Reynolds number dependence of the modified
logarithmic law indicates that the zero-plane displacement and equivalent roughness
height are proportional to the square root of permeability, whereas the von Kármán
constant increases with the permeability Reynolds number because of the increased
mixing length resulting from the relatively large-scale velocity fluctuations induced by
spanwise rollers. We developed a model for the modified log law for permeable wall
turbulence based on permeability, and confirmed that the skin friction coefficient obtained
from the model reasonably predicts the skin friction coefficient for several types of
high-porosity porous media. Hence, permeability is a key parameter that characterizes
the logarithmic mean velocity profiles over a variety of porous media with high porosity.
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1. Introduction

Turbulent flows over permeable porous walls have attracted considerable scientific and
engineering interest because of the considerably enhanced momentum, heat and mass
transfer across the porous/fluid interface. In engineering applications, porous media
are encountered in the gas diffusion layers of proton-exchange membrane fuel cells,
catalytic converters for automobile exhaust systems, transpiration cooling systems, and
heat exchangers. In the context of the geophysical and environmental fields, flows over
vegetation and urban canopies (Finnigan 2000; Nepf & Ghisalberti 2008), and natural
river beds (Detert, Nikora & Jirka 2010), are affected by roughness and permeability.

One of the most notable characteristics of turbulent flows over permeable porous
walls that distinguishes the permeable wall turbulence from the rough wall turbulence
is the presence of spanwise roller vortices associated with the Kelvin–Helmholtz (K–H)
instability. It has been reported that spanwise roller vortices can develop over various
walls, such as foam media (Suga et al. 2010), cube arrays (Breugem & Boersma 2005;
Kuwata & Suga 2016b), longitudinal ribs (Garcia-Mayoral & Jiménez 2012; Kuwata
2022a), vegetation canopies (Finnigan 2000; White & Nepf 2007), and packed beds (Guan
et al. 2021), as well as rough walls (Stoesser et al. 2008; García-Mayoral & Jiménez 2011;
Endrikat et al. 2021), vegetation canopies (Finnigan 2000; White & Nepf 2007), and elastic
walls (Rosti & Brandt 2017; Jha & Steinberg 2021). In contrast with the quasi-streamwise
vortices in the near-wall turbulence, spanwise rollers accompany relatively large-scale
sweep and ejection motions, leading to a significantly enhanced momentum transfer
(Breugem, Boersma & Uittenbogaard 2006; Kuwata & Suga 2016b) and heat transfer
(Nishiyama, Kuwata & Suga 2020) across the porous/fluid interface. In addition, because
the characteristic length scale for spanwise rollers is comparable to the boundary layer
thickness (Kuwata & Suga 2017; Suga et al. 2018) or shear length scale (Finnigan 2000;
White & Nepf 2007), the effect of spanwise rollers has not been confined to the vicinity of
the porous/fluid interface but extends into the logarithmic region or beyond the boundary
layer (Kuwata & Suga 2019), which results in a modification of the von Kármán constant
(Poggi et al. 2004; Kuwata 2022b).

To approximate the mean velocity profiles over permeable porous walls, customarily the
modified logarithmic law (log law) is used:

Up+ = 1
κ

ln
(

y + dp

hr

)
, (1.1)

where κ , dp and hr are the von Kármán constant, the zero-plane displacement and
the equivalent roughness height, respectively. The streamwise mean velocity U with a
superscript ‘p+’ stands for the mean velocity normalized by the friction velocity at the
porous/fluid interface. Because the von Kármán constant κ does not necessarily coincide
with the standard value for smooth-wall turbulence, three unknown log-law parameters,
κ , dp, and hr, must be determined to approximate the mean velocity profiles. With respect
to dp and hr, the direct numerical simulations (DNS) studies by Kuwata & Suga (2017)
reported a close correlation between dp and hr, regardless of the Reynolds number. An
experimental study of a turbulent boundary layer over a highly permeable metal foam by
Esteban et al. (2022) showed that dp and hr are related closely to the pore size, whereas
experiments on foam media in Suga et al. (2010) and Manes, Poggi & Ridol (2011) showed
that dp and hr are expressed as functions of the square root of permeability

√
K. Here,

the permeability K for isotropic porous media is defined in low Reynolds number fully
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Re dependence of turbulence over a highly permeable wall

developed porous medium flows, that is, Darcy flow (Whitaker 1986):

− 1
ρ

∂P
∂x

= νK−1Ud, (1.2)

where ν and P are the kinematic viscosity and pressure, respectively. Darcian velocity Ud
is defined as the superficially averaged velocity over a representative elementary volume.
The parametrization of dp and hr was extended to anisotropic porous media by introducing
a pore length scale at the porous/fluid interface (Suga et al. 2018). Therefore, there is
consensus that the flow properties of dp and hr are related to the physical length scales of
porous media. However, the value of the von Kármán constant is controversial. Esteban
et al. (2022) showed that the standard value for smooth-wall turbulence can be used
straightforwardly for turbulent boundary layers over metal foams. This concept is common
in vegetation canopies (Nepf & Ghisalberti 2008). In contrast, DNS (Breugem et al. 2006;
Kuwata & Suga 2016b; Chu et al. 2021) and experimental studies (Suga et al. 2010, 2018;
Manes et al. 2011) have determined κ by collapsing the Up+ profiles into the modified
log law of (1.1) and suggested a considerably smaller κ value than the standard value for
smooth-wall turbulence. However, considering that the Reynolds numbers in most of these
studies were not sufficiently high to guarantee the logarithmic mean velocity profiles, the
direct fit of the Up+ profiles to the log law may be problematic. To avoid this problem,
Kuwata (2022b) employed a different method for determining κ , dp and hr based on the
Jackson model (Jackson 1981) where dp is defined as the level at which the mean drag by
the permeable walls acts. Kuwata (2022b) reported that the von Kármán constant becomes
larger than the smooth-wall value owing to an increase in the mixing length by spanwise
rollers.

Because the skin friction coefficient Cp
f at the porous/fluid interface is related directly to

the Up+ profile, exploring the scaling of Cp
f as an alternative to logarithmic mean velocity

profiles is crucial. Earlier studies were conducted on relatively dense porous media, such as
packed beads (Ho & Gelhar 1973) and sand beds (Lovera & Kennedy 1969). They showed
that Cp

f increases with the Reynolds number, even within the fully rough regime, where the
friction factor is normally independent of the Reynolds number. However, this is not true
for highly permeable porous media (Suga et al. 2010; Esteban et al. 2022). Esteban et al.
(2022) systematically measured turbulent boundary layers over metal foam with varying
pore sizes and permeabilities across a broad range of friction Reynolds numbers, from
Reτ � 2000 to Reτ � 18 000. They found that Cp

f depends on the characteristics of the
porous substrates and reaches a plateau beyond Reτ � 5000. A similar observation was
reported in a recent DNS study using modified wall boundary conditions (Motoki et al.
2022), where the wall-normal transpiration velocity is assumed to be proportional to the
local pressure fluctuation, as reported by Jiménez et al. (2001). They reported that Cp

f takes
a constant value in the sufficiently high Reynolds number regime, where spanwise rollers
with large-scale wall blowing and suction dominate the boundary layer.

Despite extensive research conducted over the last several decades, there is a lack of
consensus regarding the scaling of the mean velocity profiles over permeable walls. In
particular, the value of the von Kármán constant is controversial, which may be affected
by spanwise roller vortices associated with the K–H instability. The objective of this
study was to unveil the Reynolds number dependence on the emergence of the K–H
instability, and the consequent effects on the mean flow characteristics over permeable
walls. Particular attention was paid to the effects of spanwise rollers, which do not develop
for low-permeability Reynolds number ReK = √

Kuτ /ν flows but dominate turbulence
for high ReK flows (Breugem et al. 2006; Kuwata & Suga 2019). Hence we considered
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the turbulence over high-porosity porous media over a wide range of Reynolds number,
leading to ReK � 7–50, which covers low to considerably higher ReK flows than in
previous DNS studies (Breugem et al. 2006; Chu et al. 2021; Kuwata 2022b). An in-depth
discussion on the role of spanwise rollers was conducted by performing DNS for thick
and thin porous walls, where effectively the thin porous wall attenuates the velocity
fluctuations associated with the K–H instability (Kuwata & Suga 2016b).

2. The DNS methodology

2.1. Flow conditions and computational details
Following the DNS study by Kuwata (2022b), we considered fully developed turbulent
flows through a channel partially filled with arrays of Kelvin cells (polyhedra with
six square and eight hexagonal faces Thomson 1887). Although we adopted the same
computational method as that used by Kuwata (2022b), we explain it briefly for
comprehensiveness (a full description of the numerical methodology is provided in the
study performed by Kuwata 2022b). The sketch depicting the flow configuration is shown
in figure 1, where H and h denote the channel and porous wall heights, respectively. The
top and bottom walls were impermeable smooth walls, and we considered arrays of Kelvin
cells in −h < y < 0 as shown in figure 2(a) to mimic highly permeable foam media. The
choice of asymmetric wall boundary conditions is consistent with those reported by DNS
studies (Jiménez et al. 2001; Breugem et al. 2006; Kuwata & Suga 2016b; Chu et al. 2021),
and may yield results comparable to those of boundary layer flow experiments for porous
walls (Suga et al. 2010; Manes et al. 2011) and vegetation canopies (Finnigan 2000; Nepf
& Ghisalberti 2008). We did not select a channel with two parallel porous walls to avoid
interactions between spanwise rollers originating from the two parallel walls because the
effect of spanwise rollers over permeable walls usually extends beyond the boundary layer
(Kuwata & Suga 2019).

The porosity of the porous wall was ϕ = 0.95, and the size of a single unit of the Kelvin
cell was set to L = H/3, which yielded permeability K/H2 = 1.9 × 10−3. Here, porosity
is the volume fraction of the fluid phase over the representative elementary volume, while
permeability is a flow parameter that quantifies easiness of flow through porous media. In
this study, porosity is defined as the volume fraction of the fluid phase within a single unit
of the Kelvin cell, and the permeability is computed by a relation between pressure drop
and Darcian velocity in low Reynolds number fully developed porous medium flows using
(1.2).

The flow was periodic in the streamwise (x) and spanwise (z) directions. Simulations
were run by imposing a mean streamwise pressure difference. The mean pressure
difference was varied such that the friction Reynolds numbers based on the average friction
velocity uτ and channel height H were varied: Reτ = 141, 331, 626 and 955 (the definition
of uτ is given in § 2.2.)

To examine the effects of spanwise rollers, we considered thick (h = H) and thin
(h = H/3) porous walls, as shown in figure 1. A precursor study by Kuwata (2022b)
confirmed that for the present porous media, spanwise rollers are attenuated for the thin
porous wall with h = H/3, because the smooth wall beneath the thin porous substrate
attenuates the vertical transpiration velocity at the porous/fluid interface. Therefore, eight
simulation cases with different friction Reynolds numbers and wall thicknesses were
considered. In the following, for the sake of brevity, cases were named as follows: ‘A-B’,
where ‘A’ denotes the friction Reynolds number, and ‘B’ is either ‘thin’ (h = H/3) or
‘thick’ (h = H). The size of the computational domain of Lx(x) × (H + h)( y) × Lz(z) was
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(b)(a)

Lx = 6H
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Lz = 3H

Lx = 6H

Lz = 3H

Figure 1. Computational geometry of the porous-walled channel flows: (a) thick-walled case (h = H) and
(b) thin-walled case (h = H/3). The porous wall consists of Kelvin cell arrays with porosity 0.95, and the
top and bottom walls are impermeable smooth walls. Note that a double spanwise domain length Lz = 6H is
considered for cases 626-thick and 955-thick.

Lx = 6H and Lz = 3H, except for cases 626-thick and 955-thick, where we considered
double the spanwise domain length, Lz = 6H, to accommodate large-scale spanwise
rollers. The size of the domain is comparable to or larger than that used in previous
DNS studies on porous-walled channel flows (Jiménez et al. 2001; Breugem et al. 2006;
Chandesris et al. 2013) and was confirmed to be sufficient to accommodate spanwise
rollers associated with the K–H instability.

For the numerical method, following previous studies (Kuwata 2022b), we utilized the
three-dimensional 27-velocity multiple-relaxation-time lattice Boltzmann method (Suga
et al. 2015) with the imbalance-correction local grid refinement technique proposed by
Kuwata & Suga (2016a). The numerical method was validated against canonical turbulent
flows (Suga et al. 2015), and we confirmed that the results were in good agreement with the
experimental data for turbulent flows over porous walls (Kuwata & Suga 2017; Kuwata,
Tsuda & Suga 2020). Based on the recommendations for wall-bounded flows of Suga
et al. (2015), the grid resolution of the equidistant regular grid near the porous wall
was determined such that the grid spacing was approximately Δp+ < 2.5, where Δp+
denotes the grid spacing of the fine grid block normalized with the friction velocity at
the porous/fluid interface up

τ (the definition of up
τ is provided in § 2.2). This resolution

constraint was confirmed as valid for the present flow geometry (Kuwata 2022b). In
addition, to ensure the grid independence of the solutions, a grid sensitivity test was
performed for case 955-thick. A comparison of a coarser mesh with Δp+ = 2.9 and a finer
mesh with Δp+ = 2.1 yielded a change in the skin friction coefficient of approximately
2.6 %, confirming that the current resolution with Δp+ = 2.4 is sufficiently fine to
obtain grid-independent solutions. In addition, the following constraint was imposed: a
cross-section of a circular ligament of the Kelvin cell must be resolved using at least
8 × 8 grids to accurately resolve the geometry of the Kelvin cells. Figure 2(b) depicts
typical x–y plane velocity vectors around a ligament for this resolution (case 141-thick),
showing that the flow around a ligament appears to be simulated reasonably. We confirmed
that this resolution was sufficient to reproduce correctly the hydraulic characteristics of
the flow through a Kelvin cell with ϕ = 0.95 at Red < 25; doubling the number of grid
points in each direction yields changes in the permeability and Forchheimer coefficient of
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(b)(a)
L L

L
y
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d

y
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Figure 2. (a) Geometry of a single unit of a Kelvin cell with porosity 0.95. (b) Typical x–y plane velocity
vectors and grid around a ligament at z = L/4 for case 141-thick. Here, L denotes the size of the Kelvin cell,
and d is the diameter of the circular ligament of the Kelvin cell. The velocity vectors are reduced by skipping
every two points in the x direction.

Grid points (fine) Grid points (coarse)
Case Reτ h/H (x × y × z) (x × y × z) Δp+ d/Δ L/Δ

141-thick 141 1 1440 × 304 × 720 720 × 90 × 360 0.7 7.3 80
141-thin 141 1/3 1440 × 144 × 720 720 × 90 × 360 0.7 7.3 80
331-thick 331 1 1440 × 304 × 720 720 × 90 × 360 1.7 7.3 80
331-thin 331 1/3 1440 × 144 × 720 720 × 90 × 360 1.7 7.3 80
626-thick 626 1 1979 × 375 × 1979 990 × 144 × 990 2.4 10 110
626-thin 626 1/3 1979 × 155 × 990 990 × 144 × 495 2.3 10 110
955-thick 955 1 3239 × 589 × 3239 1620 × 248 × 1620 2.3 16.4 180
955-thin 955 1/3 3239 × 229 × 1620 1620 × 248 × 810 2.2 16.4 180

Table 1. Parameters of the simulations. We considered eight simulations with different friction Reynolds
numbers Reτ and wall thickness h/H. Here, Δp+ is the grid spacing for the fine grid block normalized with up

τ ,
d denotes the diameter of the circular ligament of the Kelvin cell, and L/Δ denotes the number of grid points
for resolving a single Kelvin cell unit in each direction.

approximately 2 % and 5 %, respectively. Here, Red is the Reynolds number based on the
Darcian velocity Ud and ligament diameter d.

The parameters of the simulations regarding the grid are presented in table 1. Notably,
we allocated the twice-coarser grids away from the porous wall using a grid-refinement
technique (Kuwata & Suga 2016a) to circumvent prohibitively high computing resources
for handling the entire computational domain with a single-grid resolution. The interface
between the fine and coarse grid blocks was located 100Δp+ off the porous wall at
Reτ = 331, 626 and 955, while the interface was located at y = 0.27H for the lowest Reτ

cases.

2.2. Flow characteristic parameters
For a porous-walled channel flow where the flow is bounded by a bottom porous wall
and top smooth wall, two friction velocities can be defined: the friction velocity at the
porous/fluid interface up

τ , and that at the smooth wall us
τ . For the top smooth wall, we

can directly compute the shear stress at the wall τ s
w, and the friction velocity is given by
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us
τ = √

τ s
w/ρ. The shear stress at the porous/fluid interface is obtained from the streamwise

momentum balance between the pressure drop ΔP and τ
p
w = ρ(up

τ )
2 as in Kuwata & Suga

(2016b):
LxLz(τ

p
w + τ s

w) = HLz ΔP. (2.1)

This yields

τ p
w = H

ΔP
Lx

− τ s
w. (2.2)

Notably, τ s
w denotes viscous shear stress at the top wall, while τ

p
w corresponds to the total

shear stress at the porous/fluid interface, including the viscous, turbulent and dispersion
stresses. The definition of τ

p
w is comparable to those used in previous experiments (Manes

et al. 2009; Suga et al. 2010). The average wall shear stress uτ = √
τw/ρ is given by the

average wall shear stress τw = (τ
p
w + τ s

w)/2, which is related to the streamwise pressure
difference:

τw = H
2

ΔP
Lx

. (2.3)

Hence, simulations with the same friction Reynolds number have the same pressure
difference. Note that because the wall thickness does not alter τ s

w significantly at the top
wall, simulations with the same Reτ prescribe almost the same τ

p
w at the porous/fluid

interface (a maximum difference in the viscous wall unit of approximately 5 %). In the
following, we discuss the non-dimensionalized values with the average friction velocity
uτ , friction velocity at the porous/fluid interface up

τ , and friction velocity at the smooth
wall us

τ , which are denoted by values with superscripts ‘+’, ‘p+’ and ‘s+’, respectively.
We chose normalization with uτ to discuss the turbulence modification at a given pressure
difference, and consider the values non-dimensionalized with up

τ and us
τ in discussing the

scaling of the turbulence statistics for the porous and smooth-wall sides, respectively. The
difference between the top and bottom walls results in an asymmetry in the mean velocity
profile in the clear flow region of 0 < y < H. The boundary layer thickness for the porous
wall side is defined as the distance from the porous/fluid interface to the location where
the total shear stress becomes zero (Breugem et al. 2006). Given that the total shear stress
profile in the clear flow region is linear with respect to y, the boundary layer thickness for
the porous wall side δp is given as

δp = τ
p
w

τ s
w + τ

p
w

H. (2.4)

2.3. Averaging procedure
For a fully developed turbulent channel flow bounded by a smooth wall, the turbulence
statistics vary one-dimensionally along the wall-normal direction. However, this is not the
case for the porous wall because the wall geometry is inhomogeneous in the streamwise
and spanwise directions. Hence, following the previous DNS studies (Kuwata 2022b), we
introduce the spatial averaging of variable φ in the x–z plane as

〈φ〉( y, t) = 1
A

∫
xf

∫
zf

φ(x, y, z, t) dx dz, (2.5)

where xf and zf denote the positions in the fluid phase, A = LxLz, and 〈φ〉 represents the
superficial average value. The intrinsic (fluid phase) average value is 〈φ〉 f = (A/Af )〈φ〉,
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Case Reτ h/H Rep
τ Reb ReK Cp

f × 10−2 Cs
f × 10−2

141-thick 141 1 117 1460 7.2 5.1 2.2
141-thin 141 1/3 114 1561 7.2 4.2 1.9
331-thick 331 1 315 4048 17.8 4.8 1.5
331-thin 331 1/3 300 4431 17.5 3.6 1.3
626-thick 626 1 647 7921 34.7 5.3 1.3
626-thin 626 1/3 581 9144 33.2 3.2 1.0
955-thick 955 1 1013 12 480 52.8 5.3 1.1
955-thin 955 1/3 912 14 608 51.0 3.1 0.9

Table 2. Global flow characteristic parameters: Rep
τ = δpup

τ /ν is the friction Reynolds number for the porous
wall side; Reb = UbH/ν is the bulk mean Reynolds number; ReK = √

K up
τ /ν is the permeability Reynolds

number; Cp
f = τ

p
w/(ρU2

b) and Cs
f = τ s

w/(ρU2
b) are the skin friction coefficients for the porous and smooth

walls, respectively.

which involves averaging over the x–z plane occupied by the fluid phase, and dispersion
from the intrinsically averaged value is denoted by φ̃ = φ − 〈φ〉 f , where Af denotes the
area of the x–z plane within the fluid phase. As the variable also fluctuates in time, we
consider Reynolds averaging over time. The Reynolds-averaged value of the variable φ

is denoted as φ̄, and φ′ denotes the fluctuation from the Reynolds-averaged value: φ′ =
φ − φ̄. For Reynolds averaging, the statistics were accumulated over approximately 4Lx/up

τ

for the cases at Reτ = 955, and 40Lx/up
τ for the cases at Reτ = 141.

3. Results and discussion

3.1. Skin friction coefficient
Before discussing the profiles of the turbulence statistics, we briefly examine how porous
walls affect the general flow characteristics. Table 2 lists the friction Reynolds number
for the porous wall side, Rep

τ = δpup
τ /ν, the bulk mean Reynolds number Reb = UbH/ν,

the permeability Reynolds number ReK = √
K up

τ /ν, and skin friction coefficients for the
porous wall Cp

f = τ
p
w/(ρU2

b) and the smooth wall Cs
f = τ s

w/(ρU2
b). Here, the bulk mean

velocity Ub is defined as Ub = Qc/H, where Qc is the flow rate in the clear flow region,
0 < y < H. The trends of Cp

f and Cs
f are also shown in figure 3 to facilitate understanding

of the effects of Reτ and h/H. Figure 3(a) shows that Cp
f is larger than Cs

f , as expected.
Notably, Cp

f for thin-wall cases decreases consistently with Reτ , whereas Cp
f for the thick

cases exhibits an increase trend when Reτ increases from 331 to 626. Given that ReK
in table 2 is significantly higher than the threshold value 3.0 (Suga et al. 2010), an
increase in Cp

f is attributed to the combined effects of wall roughness and permeability.
Another observation is that Cp

f for thick-wall cases tends to converge to a certain value at a
higher Reτ , which is similar to the DNS results for turbulent channel flows with modelled
permeable walls (Motoki et al. 2022) as well as experiments for ceramic foams (Suga et al.
2010) and metal foams (Esteban et al. 2022).

When attention is given to the effects of the wall thickness h/H, we observe from
figure 3(a) that both Cp

f and Cs
f are larger for the thick-wall cases. An increase in Cp

f with
wall thickness has also been reported in previous DNS studies (Kuwata & Suga 2016b) and
experiments (Zippe & Graf 1983; Manes et al. 2009). As a result, the thickening of the wall
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Figure 3. Skin friction coefficients at the porous/fluid interface (Cp
f ) and at the smooth wall (Cs

f ) against Reτ :
(a) Cp

f and Cs
f for the thick- and thin-wall cases, and (b) the ratios of Cp

f and Cs
f for the thick-wall cases divided

by the corresponding values for the thin-wall cases.

increases Rep
τ but decreases Reb, as shown in table 2. The effects of wall thickness on the

skin friction coefficient are illustrated in figure 3(b), where Cp
f and Cs

f for the thick-wall
cases are divided by the corresponding values for the thin-wall cases. Figure 3(b) confirms
that the effects of the wall thickness exhibit Reynolds number dependence; the ratio of Cp

f
increases abruptly with Reτ up to Reτ � 600, whereas a further increase in Reτ diminishes
this increasing trend. Interestingly, as shown in figure 3(b), the thickening of the wall also
increases Cs

f . This implies that the effects of wall thickness may reach the other side of the
top smooth wall. The underlying physics of the modification of Cp

f and Cs
f is discussed in

the following subsections.

3.2. Spanwise rollers
As argued earlier, turbulent flows over a permeable porous wall are characterized by
the presence of spanwise rollers associated with the K–H instability. Here, we focus
on the effect of the Reynolds number on the presence of spanwise rollers. Figure 4
shows snapshots of streamwise velocity fluctuations normalized by up

τ above a porous
wall at yp+ � 10. For all cases, the streamwise elongated high- and low-speed streaks
are disrupted by wall roughness or permeability, and the footprints of small-scale eddies,
which scale with viscous wall units ν/up

τ , decrease with increasing Reτ . More importantly,
for the thick-wall cases, with the exception of the lowest Reτ case, the high- and low-speed
regions tend to merge, and are considerably larger than those in the thin-wall cases. This
unique turbulence structure may be responsible for the K–H instability, which usually
occurs for turbulence over permeable walls (Jiménez et al. 2001; Breugem et al. 2006;
Kuwata & Suga 2016b), rough walls (Stoesser et al. 2008; García-Mayoral & Jiménez
2011; Endrikat et al. 2021), vegetation canopies (Finnigan 2000; White & Nepf 2007) and
elastic walls (Rosti & Brandt 2017; Jha & Steinberg 2021). In particular, the turbulence
structure for case 955-thick is similar to that in the experiments on turbulence over ceramic
foam (Suga, Nakagawa & Kaneda 2017; Suga et al. 2018) although the spanwise coherence
is visually weaker than reported by the DNS studies (Jiménez et al. 2001; Kuwata &
Suga 2019; Endrikat et al. 2021). The reduction in spanwise coherence is likely due to
the Reynolds number effects reported by Kuwata & Suga (2019), who showed that the
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spanwise-connected high- and low-speed regions became less obvious with increasing
ReK .

Qualitative discussions of the effects of wall thickness on the turbulence structures
are made with figure 5, which presents two-dimensional pre-multiplied cospectra of the
streamwise and wall-normal velocity fluctuations at yp+ � 10. For the lowest Reτ cases, we
see that the energy spectra for cases 141-thick and 141-thin are visually similar. However,
the energy spectra in the wavelength regions λx/δp � 4 and λz/δp � 3 appear to be more
energetic for the thick-wall case. This trend is more pronounced for the higher Reτ cases
(626-thick and 955-thick). For cases 626-thick and 955-thick, the energy spectra are
dominated by the velocity fluctuations associated with this wavelength region. Note that
the more energetic region compared with the thin-wall results is approximately λx/δp � 4,
which corresponds approximately to the characteristic wavelength of the K–H instability,
with λx/δp � 3–5.5 (Kuwata & Suga 2017; Suga et al. 2018), λx/δp � 1.5–3 (Manes et al.
2011) and λx/δp � 1–5 (Efstathiou & Luhar 2018). Therefore, for the present permeable
wall, the turbulent structure associated with the K–H instability develops for the thick-wall
cases; the effects of the K–H instability are weak at the lowest Reτ (case 141-thick),
whereas the velocity fluctuations associated with the K–H instability dominate turbulence
at higher Reτ (cases 626-thick and 955-thick). However, it should be cautioned that not
only the wall thickness but also the wall characteristic parameters related to flow resistance
and deformation are key parameters for the occurrence of the K–H instability (Jiménez
et al. 2001; White & Nepf 2007; Rosti & Brandt 2017). Indeed, the spanwise rollers
develop over the riblets of Endrikat et al. (2021) and elastic walls of Rosti & Brandt (2017),
which are considerably thinner than the thin walls used in this study. Notably, for cases
626-thick and 955-thick, the energetic regions λx/δp � 4 and λz/δp � 3 remain unchanged
by the Reynolds number. The corresponding large-scale motions for case 955-thick are
visualized in figure 6, where the spanwise average over 0 < z < 3δp is applied to the
velocity fluctuations to facilitate clear inspection of large-scale motions (Suga et al. 2018;
Motoki et al. 2022). We observe large-scale spanwise roller motion with a streamwise
extent of approximately λx/δp � 3–4. Visual inspection shows that this may be the
maximum possible size of spanwise rollers that can be accommodated in a porous-walled
channel. This may be why an increase in Reτ from 626 to 955 does not alter the energy
spectra significantly. In this sense, the turbulence for cases 626-thick and 955-thick can be
referred to as the ‘ultimate porous wall turbulence regime’. The maximum possible size of
the spanwise rollers depends on the flow configuration. The sizes of spanwise rollers scale
principally with shear length scales (Finnigan 2000; White & Nepf 2007); however, the
sizes of spanwise rollers are restricted by the flow confinement, such as the flow depth for
gravel flows (Roy et al. 2004; Manes et al. 2011) and vegetation height for canopy flows
(Nepf & Vivoni 2000).

To better understand the contribution of spanwise rollers to the Reynolds shear stress
in the clear flow region, following Endrikat et al. (2021), we analyse the Reynolds shear
stress contributed by relatively large-scale velocity fluctuations:

R12,L( y) =
∫ κ∗

x

1/Lx

∫ κ∗
z

1/Lz

Euv( y) dκx dκz, (3.1)

where the choices of κ∗
x and κ∗

z are arbitrary; we use κ∗
x = κ∗

z = 2/(3H), which
corresponds to wavelength approximately 2δp. That is, R12,L consists of the velocity
fluctuations in the wavelength regions λx � 2δp and λz � 2δp, which covers the
characteristic scale of spanwise rollers λx � 4δp and λz � 3δp. However, R12,L may
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Figure 4. Snapshots of streamwise velocity fluctuations u′p+ = u′/up
τ at yp+ � 10. The friction Reynolds

number increases from left to right. Results for the (a,b) thick-wall and (c,d) thin-wall cases.

10–1

101

100

101

100

101

100

101

100

101100

λx/δp

λ
z/

δ p

10–1 101100

λx/δp

10–1 101100

λx/δp

10–1 101100

10–1

101

100

101

100

101

100

101

100

101100

λ
z/

δ p

10–1 101100 10–1 101100 10–1 101

955-thin626-thin331-thin141-thin

955-thick

(Euvκxκz)
p+

0 0.14

626-thick331-thick141-thick

100

λx/δp

(b) (c) (d )(a)

( f ) (g) (h)(e)

Figure 5. Two-dimensional pre-multiplied cospectra of streamwise and wall-normal velocity fluctuations
(Euvκxκz)

p+ at yp+ � 10. The friction Reynolds number increases from left to right. The top and bottom rows
show the results for the thick- and thin-wall cases, respectively. The thin dashed lines indicate λx/δp = 3 and
5, λz/δp = 2 and 4.

not represent perfectly the contribution of spanwise rollers, but also contains velocity
fluctuations associated with irrelevant large-scale perturbations. The contributions of
relatively large-scale velocity fluctuations to the Reynolds shear stress are shown in
figure 7. Evidently, no major difference was observed between −Rp+

12 for the thick-
and thin-wall cases, whereas the effects of wall thickness are distinctly visible in the
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Figure 6. Snapshots of velocity fluctuations averaged over 0 < z < 3δp for case 955-thick. The contour shows
the spanwise-average wall-normal velocity fluctuations. The blue and red contours indicate v′p+ = −0.5 and
+0.5, respectively.

decomposed Reynolds shear stress −Rp+
12,L. In figures 7(a,c), −Rp+

12,L for the thick-wall
cases occupies a large portion of −Rp+

12 for the porous wall side, and the dominance of
−Rp+

12 is more pronounced at Reτ = 955 (case 955-thick). Considering that relatively
large-scale fluctuations are associated mostly with spanwise rollers owing to K–H
instability, we can deduce that spanwise rollers contribute to the enhancement of the
Reynolds shear stress. This is the leading cause of the increase in Cp

f with the Reynolds
number for the thick-wall cases. Indeed, for the thick-wall cases, the augmentation of Cp

f
with respect to the thin-wall case is more pronounced with the enhancement of the energy
spectra around λx � 4δp and λz � 3δp. In the ‘ultimate porous wall turbulence regime’ for
cases 626-thick and 955-thick, where the dominance of the velocity fluctuations associated
with the K–H instability is saturated, Cp

f is almost independent of the Reynolds number.

3.3. Effects of spanwise rollers on Reynolds stress
The above discussion confirms that spanwise rollers are the root cause of the increased Cp

f
for thick-wall cases. This subsection focuses on how spanwise rollers augment momentum
transfer. Figure 8 shows the streamwise and wall-normal turbulence intensities,

√
R11 and√

R22, respectively, normalized by the average friction velocity uτ , where the Reynolds
stress is defined as Rij = 〈u′

iu
′
j〉. For the clear flow region 0 < y/H < 1, the maximum

peak values of the turbulence intensities near the porous/fluid interface are unaffected
by the wall thickness. However, away from the porous wall, the thickening of the wall
tends to increase the turbulence intensity. An increase in

√
R22

+ is observed in a large
portion of the clear flow region, 0.2 < y/H < 0.9, whereas an increase in

√
R11

+ is
notable at approximately y/H � 0.8. The enhanced turbulence intensities away from the
wall are pronounced for cases 626-thick and 955-thick where spanwise rollers dominate
the turbulence.

The second moments that contribute to the momentum transfer are shown in
figure 9, which depicts the Reynolds shear stress R12 and dispersive covariance T12 =
〈˜̄u ˜̄v〉. In addition, we plot the correlation coefficient for the Reynolds shear stress
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Figure 7. Contributions of the decomposed Reynolds shear stress normalized by up
τ : (a) case 141-thick,

(b) case 141-thin, (c) case 955-thick, and (d) case 955-thin. The Reynolds shear stress is denoted by R12,
and R12,L is the contribution by relatively large-scale velocity fluctuations defined as (3.1).

Rcor = −R12/(
√

R11
√

R22). The dispersive covariance T12 consists of the mean velocity
dispersion, which results from the tortuous mean velocity caused by the obstruction of
the Kelvin cell arrays. When attention is paid to −T +

12 , figures 9(a,c) show that −T +
12 is

produced slightly below the porous/fluid interface, although we observe no perceptible
effects of wall thickness on −T +

12 . In other words, spanwise rollers do not significantly
alter the mean velocity distribution below the porous/fluid interface. Regarding −R+

12,
figures 9(a,c) show that in the clear flow region, −R+

12 for the thick-wall case shifts upwards
with respect to the thin-wall results, which is pronounced at Reτ = 955 in figure 9(c). As
the Reynolds shear stress dominates the momentum transfer, Cp

f in table 2 reflects the
trend of −R+

12; Cp
f for case 955-thick is 67 % larger than that for case 955-thin, whereas

the increase ratio for case 141-thick is reduced to 20 %. Interestingly, near the porous/fluid
interface (−0.3 < y/H < 0.3), the increased −R+

12 for case 955-thick can be attributed
to the increased correlation coefficient Rcor as shown in figure 9(b), which is most likely
a sign of a more organized turbulence structure over the thick wall for case 955-thick.
Above this region (0.3 < y/H < 0.7), the thickening of the wall does not increase Rcor
but increases R+

11 or R+
22, as shown in figure 8(d), suggesting that the enhanced turbulence

intensity contributes to an increase in −R+
12 in this region. The same but less distinct trend

is observed for case 141-thick in figure 9(b). Therefore, it is suggested that the increased
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Figure 8. Streamwise and wall-normal turbulence intensities: (a) Reτ = 141, (b) Reτ = 331, (c) Reτ = 626,
and (d) Reτ = 955.

Cp
f for the thick-wall cases, which is a result of the increased −R+

12, is attributed to the
combined effects of the enhanced turbulence intensity and organization.

To gain a better physical understanding of the modification of the correlation coefficient
Rcor, the joint probability density function (JPDF) of streamwise and wall-normal velocity
fluctuations at yp+ � 10 for cases 955-thick and 955-thin is presented in figure 10. As
interest is centred on the effects of spanwise rollers, the JPDF of the low-pass filtered
velocity fluctuations with cutoff wavenumber κ∗

x = κ∗
z = 2/(3H) is also presented in

figures 10(b,d). Here, the cutoff wavenumber was the same as that used in the earlier
analysis of the Reynolds shear stress decomposition in figure 7. We confirm from
figures 10(a,c) that the JPDF is characterized by the intense sweep motion (u′ > 0, v′ < 0)
and weak ejection motion (u′ < 0, v′ > 0). Attenuated wall-blocking effects result in
an intense sweep towards the permeable porous wall, which pushes a high-momentum
fluid into the porous wall leading to a seepage upward flow with a low-momentum fluid,
that is, weak ejection. From figures 10(a,c), no major difference is observed between the
Puv for the thick- and thin-wall cases. However, for case 955-thick, intense sweep and
weak ejection events occurred a little more frequently, and the JPDFs for inward (u′ < 0,
v′ < 0) and outward (u′ > 0, v′ > 0) interaction events appear to shrink. Consequently, the
correlation coefficient between u′ and v′ is 11 % larger for case 955-thick. Interestingly, the
effect of wall thickness is magnified for the JPDF of the low-pass filtered velocities Pûv̂ ,
as shown in figures 10(b,d). The probability density of the low-pass filtered velocities for
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Figure 9. (a,c) Shear stress due to the turbulent velocity fluctuations, i.e. the Reynolds shear stress R12 =
〈u′v′〉, and shear stress due to the tortuous mean velocity, i.e. the dispersive covariance T12 = 〈˜̄u ˜̄v〉. (b,d)
Correlation coefficient for the Reynolds shear stress Rcor = −R12/(

√
R11

√
R22). Plots for (a,b) Reτ = 141, and

(c,d) Reτ = 955.

case 955-thin in figure 10(b) is clustered near the origin. In contrast, for case 955-thick
in figure 10(d), the peak value of Pûv̂ decreases substantially, and the tails of Pûv̂ for
the sweep and ejection events are stretched, indicating that the intense sweep and ejection
events occur more frequently. Moreover, the negative correlation between û′ and v̂′ is more
significant than that for the unfiltered velocity fluctuations. Given that low-pass filtered
velocity fluctuations most likely result from spanwise rollers, as argued previously, it is
conjectured that the increase in Rcor for case 955-thick is attributed to highly correlated
large-scale velocity fluctuations, which are enhanced considerably by spanwise rollers.

These results indicate that two potential mechanisms may be involved in the increased
friction coefficient by spanwise rollers. The first is the reinforcement of the negative
correlation between the wall-normal and streamwise velocity fluctuations close to the
porous/fluid interface. The second is the enhanced wall-normal and streamwise velocity
fluctuations away from the porous/fluid interface. Both reinforce the Reynolds shear stress
above the porous/fluid interface, resulting in an augmentation of momentum transfer.

3.4. Logarithmic mean velocity profile
This subsection explores the effects of spanwise rollers on the mean velocity profiles. For
permeable or rough wall turbulence, the modified log law in (1.1) is used to characterize
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Figure 10. Joint probability density function (JPDF) of velocity fluctuations at yp+ � 10: (a,c) JPDF of
velocity fluctuations Puv ; (b,d) JPDF of low-pass filtered velocity fluctuations Pûv̂ . Plots for (a,b) case 955-thin,
and (c,d) case 955-thick.

the streamwise mean velocity profile. A common issue in permeable wall turbulence
studies is how we parametrize the log-law parameters κ , dp and hr. Several approaches
have been proposed and tested to determine the log-law parameters. Esteban et al. (2022)
determined those parameters with an assumption that κ for the permeable wall turbulence
is the same as that for smooth-wall turbulent boundary layers, κ0, whereas Breugem
et al. (2006), Suga et al. (2010) and Manes et al. (2011) determined the dp value that
forces γ = ( y + dp)(dUp+/dy) to be constant in the logarithmic region, which yields a
κ value smaller than κ0. Alternatively, Kuwata (2022b) determined the dp value based
on the Jackson model (Jackson 1981) and determined the value of κ using the profile of
the diagnostic function γ , which on the contrary yielded a κ value larger than κ0. The
controversy regarding the κ value resides in the fact that there are several possible sets
of parameters for plausibly approximating the mean velocity profiles over porous walls
because of the presence of three free parameters: κ , dp and hr. However, as κ is linked
originally to Prandtl’s mixing-length hypothesis, κ is no longer a free parameter; instead,
a physically appropriate value should be prescribed for κ . In this study, we do not resort
to κ = κ0 because spanwise rollers alter the turbulence statistics far from the porous/fluid
interface, as discussed in the previous subsection, which possibly modifies the κ value. In
addition, as the Reynolds number under consideration is not sufficiently high to perfectly
guarantee a logarithmic mean velocity profile (Jiménez & Moser 2007; Lee & Moser
2015), we do not rely on the assumption of constant γ in the logarithmic region. Therefore,
we follow the previous work of Kuwata (2022b), who did not assume γ to be constant, and
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did not rely on κ = κ0. This approach determines dp using the extended Jackson model for
pressure-driven turbulence boundary layers proposed by Breugem et al. (2006), where dp
is defined as the level at which the mean drag minus the mean pressure gradient acts as
follows:

dp =

∫ 0

−h
yfx dy∫ 0

−h
fx dy

, (3.2)

where fx denotes the x–z plane averaged streamwise drag force exerted by the porous wall
minus the mean pressure gradient (Breugem et al. 2006; Kuwata 2022b). The drag force
includes the viscous and pressure drag forces, and plays a crucial role in the momentum
transfer within the porous wall, which appears in the x–z plane averaged momentum
equations.

To determine the von Kármán constant κ using the diagnostic function γ = ( y +
dp)(dUp+/dy), figure 11 depicts the profiles of γ for the thin- and thick-wall cases.
For comparison, the smooth-wall results at comparable friction Reynolds numbers 150
and 300 from Iwamoto et al. (2002), 590 from Vreman & Kuerten (2014), and 944
from Hoyas & Jiménez (2008), are shown. As is evident from the smooth-wall results
shown in figure 11, the profiles do not exhibit a plateau value of γ owing to the low
Reynolds number effects. Thus a logarithmic region cannot be rigorously expected for
the present results. Nevertheless, the results have interesting implications regarding the
slope of the logarithmic mean velocity. The first notable observation is that in the middle
of the boundary layer, the γ profiles for the thin-wall cases collapse reasonably onto the
smooth-wall results, except for the lowest Reτ cases in figure 11(a). This suggests that
the slope of the mean velocity profile is not altered by the thin wall. Similar observations
were made for rough wall turbulence (Jiménez 2004), and this may substantiate the outer
layer similarity, in which the wall roughness retards the mean velocity, yet is not felt by
the turbulence far from rough walls (Townsend 1980). Thus, in this sense, the present thin
porous wall behaves more like a rough wall than a permeable wall. Note that the small
discrepancy with the smooth-wall results is due to the large size of the Kelvin cell and
the small Reτ because the similarity hypothesis holds only if the roughness elements are
sufficiently small and the Reynolds number is sufficiently high. The reasonable agreement
of γ with the smooth-wall results implies that the thin wall does not change κ from the
smooth-wall value κ0; that is, κ � κ0.

In contrast, γ for the thick-wall cases largely deviates from the smooth-wall results.
Interestingly, figures 11(b–d) confirm that γ is shifted downwards with respect to the
smooth-wall results. Given that γ in the logarithmic region is related to the inverse of
κ , the introduction of the downward shift Δγ , i.e. 1/κ = 1/κ0 + Δγ , may modify the von
Kármán constant as follows:

κ = κ0

1 − κ0 Δγ
. (3.3)

Evidently, the positive value of Δγ yields a larger κ value compared with the smooth-wall
value κ0. A physical explanation for the increase in κ can be provided based on the classical
mixing length model. The modelled Reynolds shear stress based on the concept of mixing
length hypothesis is expressed as

−R12 = −�2
M

∣∣∣∣dU
dy

∣∣∣∣ dU
dy

, (3.4)
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Figure 11. Comparison of the diagnostic function γ = ( y + dp)(dUp+/dy): (a) Reτ = 141, (b) Reτ = 331,
(c) Reτ = 626, and (d) Reτ = 955. For comparison, we include the smooth-wall results at Reτ = 150 from
Iwamoto, Suzuki & Kasagi (2002) in (a), Reτ = 300 from Iwamoto et al. (2002) in (b), Reτ = 590 from
Vreman & Kuerten (2014) in (c), and Reτ = 944 from Hoyas & Jiménez (2008) in (d).

where �M denotes the mixing length. For the thick-wall cases, where the effects of the K–H
instability emerge, figure 7 shows that the Reynolds shear stress is caused primarily by
relatively large-scale velocity fluctuations induced by spanwise rollers. Hence the mixing
length, which is related to the turbulent vortex scale, can presumably be increased by
spanwise rollers. This idea is consistent with that mentioned by Poggi et al. (2004), who
discussed the modelling of vegetation canopy turbulence based on an increased mixing
length. Assuming that the inner-scaled total stress, which consists of viscous and turbulent
stresses, is unity in the inner layer, the mean velocity gradient is expressed in terms of the
mixing length, as

dUp+

dyp+ = 2

1 +
√

1 + 4(�
p+
M )2

. (3.5)

This equation indicates that an increased mixing length leads to a decrease in the mean
velocity gradient and the diagnostic function γ = ( y + dp)(dUp+/dy), resulting in an
increase in the von Kármán constant κ through the relationship κ = γ −1. Therefore, it
can be argued that the emergence of the effects of the K–H instability is the main cause
of the increase in κ . Once κ and dp are known, the hr value is obtained by collapsing
the mean velocity profile into the modified log law. These parameters are summarized
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in figure 12, where parameters κ , dp+
p and hp+

r are plotted against ReK = √
K

p+
. Here,

κ0 = 0.4 is used as the smooth-wall value; thus κ for the thin-wall cases is assumed to
be κ = κ0 = 0.4. For the lowest Reτ cases, we assume that κ for case 141-thin remains
unchanged from the smooth-wall value, as in the other thin-wall cases, whereas κ for case
141-thick is estimated from the downshift value of γ with respect to the thin-wall result
from figure 11(a). The surrogate κ values and the resulting hp+

r values are denoted by the
open symbols in the figure. Figures 12(a,b) show that dp+

p and hp+
r are proportional to

ReK except for hp+
r at Reτ = 141 (cases 141-thick and 141-thin), indicating that dp ∝ √

K
and hr ∝ √

K. This means that parameters dp and hr are connected to a physical length
scale, even though these parameters are flow properties. This supports the findings of
previous experiments on turbulent flows over porous foams by Manes et al. (2011) and
Suga et al. (2010), although the proportionality constants of these studies disagree with
the present results because of the differences in the procedures for obtaining dp and hr.
Regarding the von Kármán constant κ in figure 12(c), κ for the thick-wall cases increases
with ReK and become saturated to κ � 0.6 at ReK > 30. This reflects the dominance of
spanwise rollers, as shown in figure 5; the effect of the K–H instability is weak for case
141-thick, but increases with the Reynolds number. The κ value increases correspondingly,
although eventually, κ reaches a plateau in the ‘ultimate porous wall turbulence regime’
for cases 626-thick and 955-thick where the dominance of velocity fluctuations associated
with the K–H instability is almost unaffected by the Reynolds number. The inner-scaled
mean velocity profiles along with the resulting log-law profiles are shown in figure 13.
For comparison, the smooth-wall results at Reτ = 944 from Hoyas & Jiménez (2008),
and Reτ = 109 from Iwamoto et al. (2002), are included. For the porous wall side, the
figure confirms that Up+ profiles over the porous walls can be approximated reasonably
using the modified log law of (1.1). The slope of the Up+ profile for the thick-wall cases
in figure 13(a) decreases with Reτ , whereas the slope does not change for thin-wall cases
in figure 13(b). For thin-wall cases, as the slopes of the Up+ profiles are unchanged and
dp ∝ √

K, the Up+ profiles can be expressed as smooth-wall profiles with a downward
shift of ΔUp+. This downward shift is referred to as roughness function ΔUp+ and is
expressed in terms of hr as

ΔUp+ = 1
κ

ln(hp+
r ) + B, (3.6)

where B is the log-law intercept for smooth-wall turbulence. Using the earlier observation
of hr ∝ √

K, we can cast (3.6) into the correlation for ΔUp+ in the fully rough regime
(Flack & Schultz 2010):

ΔUp+ = 1
κ

ln(kp+
s ) + B − 8.5, (3.7)

where the equivalent sand grain roughness can be related to ks = hr exp(8.5κ). The earlier
observation of hr ∝ √

K leads to ks ∝ √
K, suggesting that the equivalent sand grain

roughness is related to the square root of the permeability. The thin porous walls in
the present study yields ks � 13

√
K, although the proportional constant may depend on

the geometry of the porous walls. Hence, the earlier observations of κ = κ0, hr ∝ √
K

and dp ∝ √
K suggest that the mean velocity profiles over thin walls can be expressed

similarly to the rough wall turbulence in the fully rough regime, where the roughness is
no longer within the viscous sublayer but protrudes into the logarithmic region. Judging
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Figure 12. Parameters for modified log law versus the permeability Reynolds number ReK : (a) zero-plane
displacement dp+

p , (b) equivalent roughness height hp+
r , and (c) von Kármán constant κ . Open symbols denote

the surrogate values for the lowest Reτ cases. The linear fitted lines are added in (a,b).

from the roughness Reynolds number for case 141-thin of k+
s � 90, the turbulent flow for

case 141-thin may not be perfectly within the fully rough regime, although the onset of
the fully rough regime remains controversial (Flack, Schultz & Rose 2012). This is the
reason why hr ∝ √

K is not retained for case 141-thin. In contrast, for thick-wall cases,
the thick walls allow for the development of spanwise rollers, leading to an increased κ .
This makes it impossible to use the concept of the roughness function ΔUp+ because the
slopes of the Up+ profiles over the thick walls are no longer the same as those of the
smooth-wall profiles. Moreover, there may be an interaction between roughness-induced
turbulent vortices and spanwise rollers. Therefore, the equivalent roughness height hr for
the thick-wall cases differs from the corresponding values for the thin-wall cases as shown
in figure 12, despite the fact the geometry of the subsurface porous wall remains the same.
Interestingly, the effects of the wall thickness are also visible for the Us+ profile for the
smooth-wall side. We observe that the Us+ profile tends to be lower for the thick-wall
cases. The Us+ profiles for cases 626-thin and 955-thin in figure 13(b) are close to the
DNS results at Reτ = 109, whereas the corresponding profiles for the thick-wall cases in
figure 13(a) are below the DNS profiles. This is reflected in the skin friction coefficient,
as shown in figure 3, which shows that the thickening of the wall increases Cs

f . Although
the mechanisms are not clear, it is evident that spanwise rollers, which develop over thick
walls, affect the turbulence for the other side of the smooth wall.

3.5. Predictive model for the skin friction coefficient
The log-law parameters dp, hr and κ are crucial for predicting mean flows over porous
walls. Hence, in this subsection, we discuss predictive models for these parameters,
with the aid of the earlier findings for κ /= κ0, hr ∝ √

K and dp ∝ √
K for thick

walls. To develop widely applicable models, the validity of the developed model for a
variety of porous media must be assessed. However, a direct comparison of the log-law
parameters in the literature is meaningless because these parameters depend strongly on
the determination procedure. Alternatively, we assess Cp

f predicted by the modified log
law using the modelled log-law parameters, which enables us to briefly assess the validity
of the developed models of dp, hr and κ for large amounts of experimental and DNS
data. Assuming a flow with a high Reynolds number where a large portion of the clear
flow region is occupied by the logarithmic region, the bulk mean velocity Up+

b can be
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Figure 13. Inner-scaled mean velocity profiles for the porous wall side Up+ and smooth-wall side Us+: (a)
thick-wall cases, and (b) thin-wall cases. The mean velocity Up+ is plotted against ( y + dp)

p+, while Us+
is plotted against the distance from the smooth wall (H − y)s+. For comparison, the smooth-wall results at
Reτ = 944 from Hoyas & Jiménez (2008), and Reτ = 109 from Iwamoto et al. (2002), are included. The thin
solid lines denote the modified log-law profiles with the log-law parameters in figure 12.

approximated by integrating the modified log law:

Up+
b � 1

δp

∫ δp

0

1
κ

ln
(

y + dp

hr

)
dy = 1

κ

[
ln
(

δp + dp

hr

)
+ dp

δp
ln
(

δp + dp

dp

)
− 1

]
. (3.8)

This yields the skin friction coefficient Cp
f = 2/(Up+

b )2:

Cp
f = 2κ2

[
ln
(

δp + dp

hr

)
+ dp

δp
ln
(

δp + dp

dp

)
− 1

]−2

. (3.9)

An important implication of (3.9) is that for high Reynolds number flows over a porous
wall where we assume κ = const., dp ∝ √

K and hr ∝ √
K, the skin friction coefficient

depends on the square root of the Darcy number,
√

Da = √
K/δp, but does not depend on

the Reynolds number:

Cp
f = 2κ2

[
ln

(
1 + C1

√
Da

C2
√

Da

)
+ C1

√
Da ln

(
1 + C1

√
Da

C1
√

Da

)
− 1

]−2

, (3.10)

where C1 and C2 are the proportionality constants for dp and hr with
√

K, respectively.
The Reynolds number independence of Cp

f is consistent with observations in experimental
(Suga et al. 2010; Esteban et al. 2022) and DNS (Motoki et al. 2022) studies.

For the present porous wall (thick-wall cases), we obtain a set of correlations of the
log-law parameters in the ‘ultimate porous wall turbulence regime’ as shown in figure 12:

κ = 0.6,

dp+
p = 2.2 ReK − 10,

hp+
r = 0.21 ReK + 4.3.

⎫⎪⎪⎬⎪⎪⎭ (3.11)

For low ReK flows (ReK < 30), hp+
r is lower than the linear correlation in (3.11), and κ

approaches the smooth-wall value asymptotically. To reproduce a low ReK limit where
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Figure 14. Comparison of the predicted and actual Cp
f . The predicted Cp

f is given by (3.9) with (3.12) and
(3.13). For reference data, we include the experimental data for ceramic foam (Suga et al. 2010), metal foam
(Manes et al. 2011; Esteban et al. 2022), packed beds of spheres (Manes et al. 2009), rod array (Dunn, López &
García 1996) and plate array (Nezu & Sanjou 2008). Moreover, we include the DNS data for a modelled cube
array (Breugem et al. 2006), modelled porous wall (Rosti, Cortelezzi & Quadrio 2015), cube arrays (Breugem
& Boersma 2005; Kuwata & Suga 2016b), cylinder array (Chu et al. 2021) and perforated matrix (Kuwata &
Suga 2017). The thin line denotes that the predicted Cp

f is equal to the actual Cp
f .

the modified log law returns to the standard log law, that is, κ = κ0, dp+
p = 0 and hp+

r =
exp(−Bκ), we introduced damping functions to correct the limiting behaviour of the set
of correlations:

κ = 0.6f1 + κ0(1 − f1),

dp+
p = max(2.2 ReK − 10, 0),

hp+
r = (0.21 ReK + 4.3)f2 + exp(−Bκ)(1 − f2).

⎫⎪⎪⎬⎪⎪⎭ (3.12)

Here, we employ simple expressions for the damping functions f1 and f2:

f1 = 1 − exp(−Re1.5
K /164),

f2 = 1 − exp(−Re1.5
K /22.6),

}
(3.13)

where the damping functions are tuned based on the present DNS results for the thick-wall
cases. To test the applicability of the models, Cp

f predicted by (3.9) with a set of modelled
correlations was compared with the available experimental and DNS results. The results
are shown in figure 14, which includes 38 reference data for 20 porous media, including
experimental data for ceramic foams (Suga et al. 2010), metal foams (Manes et al. 2011;
Esteban et al. 2022), packed beds of spheres (Manes et al. 2009), rod array (Dunn et al.
1996) and plate array (Nezu & Sanjou 2008), and the DNS data for the cube arrays
(Breugem & Boersma 2005; Kuwata & Suga 2016b), cylinder arrays (Chu et al. 2021)
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Reference Topology Abbr. Method ϕ ReK

Suga et al. (2010) Ceramic foam #06 Exp. 0.80 6.2–11.1
#13 0.81 3.2–6.1
#20 0.82 2.4–4.5

Manes et al. (2011) Metal foam m60ppi Exp. 0.98 1.9–2.2
m30ppi 0.97 3.2–7.9
m10ppi 0.96 8.4–17.2

Esteban et al. (2022) Metal foam e90ppi Exp. 0.96 1.6–4.7
e45ppi 0.97 7.3–19.5
e10ppi 0.98 24.9–63.2

Manes et al. (2009) Sphere bed SB Exp. 0.48 44.6
Dunn et al. (1996) Rod array RA Exp. 0.99 1497
Nezu & Sanjou (2008) Plate array PA Exp. 0.99 134
Breugem et al. (2006) Modelled cube array E95 DNS 0.95 9.4

E80 0.80 1.1
Rosti et al. (2015) Modelled porous wall MP DNS 0.6 0.045–0.75

0.9 0.75
Breugem & Boersma (2005) Cube array E875 DNS 0.875 12.3
Kuwata & Suga (2016b) Cube array CA DNS 0.71 3.8
Chu et al. (2021) Cylinder array CY8 DNS 0.8 32.3

CY5 0.5 9.3
Kuwata & Suga (2017) Perforated matrix PM DNS 0.84 6.1

0.84 13.1

Table 3. Characteristics of the tested porous media.

and perforated matrix (Kuwata & Suga 2017). We also include the DNS data based on
the volume-averaged Navier–Stokes equations (Breugem et al. 2006; Rosti et al. 2015).
The porosity ϕ and permeability Reynolds number ReK of the tested porous media are
summarized in table 3. As shown in table 3, except for the packed beds of spheres (SB)
and cylinder arrays (CYA5), the tested porous media have a relatively high porosity value
(ϕ ≥ 0.6), and the permeability Reynolds number ReK ranges from 1.1 to 1500. For the
cylinder arrays (CYA5 and CYA8) from Chu et al. (2021), we prescribed the permeability
using the empirical correlation proposed by Macdonald et al. (1979). For the rod array
(Dunn et al. 1996) and plate array (Nezu & Sanjou 2008), we used the permeability values
given by Kuwata & Suga (2015). The skin friction coefficient over the metal foam in
Esteban et al. (2022) was defined based on the free-stream velocity. Accordingly, for these
cases, we alternatively define Cp

f based on the mean velocity at the edge of the boundary
layer y = δp as

Cp
f = 2κ2

[
ln
(

δp + dp

hr

)]−2

. (3.14)

The figure shows that the predicted Cp
f correlates well with the actual Cp

f value, although
the proposed model considerably overestimates Cp

f for cases CYA5 and SB, where the
porosity values are relatively low. This demonstrates the validity of the proposed model
for various porous media with high porosity, despite the fact that the proposed model was
optimized using only the present DNS data. It can be interpreted that the wall permeability
is a key parameter that characterizes the logarithmic mean velocity profiles over various
porous media as long as the porous media have a high porosity (ϕ ≥ 0.6).
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A plausible explanation for the overestimation of the low-porosity cases is that the
proposed model fails to account for inertial drag effects. The drag force acting on the
porous medium Fx can be modelled as a combination of linear and quadratic terms with
respect to the velocity, and is given by the Darcy–Forchheimer equation (Whitaker 1996)

Fx = νK−1Ud + cFK−1/2Ud

√
U2

d, (3.15)

where cF denotes the Forchheimer coefficient. It is evident from the Darcy–Forchheimer
equation (3.15) that the coefficient of the inertia term depends on K and cF. Hence
both K and cF are essential to account correctly for the effects of porous wall-induced
drag. However, the present model does not include cF, which drastically increases with
decreasing porosity (Ergun 1952; Macdonald et al. 1979). Therefore, further correction
using cF may be required to extend the model to low-porosity porous media, such as gravel
beds and packed spheres. Regarding the effects of porosity ϕ, it is worth noting that the
DNS study for the modelled low-permeable wall by Rosti et al. (2015) demonstrated that
the effects of ϕ and K are quite different; ϕ has little effect on the turbulence statistics,
whereas the turbulence is affected strongly by K. This may be supported by the previous
DNS study by Breugem et al. (2006), which showed that the ϕ gradient terms in the
spatial and Reynolds-averaged momentum equations do not contribute significantly to
the momentum transfer. However, because the coefficients of the Darcy–Forchheimer
equation, i.e. K and cF, are related to ϕ (Ergun 1952; Macdonald et al. 1979), indirectly a
decrease in ϕ attenuates the turbulence enhancement effect (Breugem & Boersma 2005;
Chu et al. 2021) via a decrease in K and an increase in cF.

4. Conclusions

The effects of Reynolds number on permeable porous wall turbulence were studied by
performing DNS of turbulent flows over a highly permeable porous medium at different
friction Reynolds numbers. The porous wall comprised Kelvin cell arrays with porosity
0.95, and the permeability Reynolds number ranged from ReK � 7 to ReK � 50. For
the porous walls, thin and thick porous substrates were studied to identify the effects
of spanwise rollers associated with the Kelvin–Helmholtz (K–H) instability. We found
that the effect of the K–H instability emerges for the thick porous wall; the effect of
the K–H instability is more pronounced with increasing Reynolds number, and spanwise
roller vortices dominate turbulence in the clear flow region when ReK � 30. Spanwise
rollers reinforce the negative correlation between the wall-normal and streamwise velocity
fluctuations close to the porous/fluid interface, and intensify the turbulent velocity
fluctuations away from the porous walls, resulting in increased frictional resistance
through Reynolds shear stress enhancement over the porous walls. Hence the augmentation
of frictional resistance becomes more significant with increasing Reynolds number,
corresponding to the dominance of the velocity fluctuations associated with the K–H
instability. Once turbulence is dominated by channel height scale spanwise rollers, which
is referred to as the ‘ultimate porous wall turbulence regime’ in this study, the turbulence
structure and skin friction coefficient are almost unaffected by the Reynolds number.

An investigation of the Reynolds number dependence of the modified log law reveals
that the zero-plane displacement and equivalent roughness height are proportional to the
length scale of the porous media, regardless of the wall thickness, whereas spanwise rollers
increase the von Kármán constant. For thick porous walls, the zero-plane displacement
and equivalent roughness height are modelled as linear functions of the square root
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of the permeability. Spanwise rollers over thick porous walls increase the von Kármán
constant as the Reynolds number increases, and become saturated to κ � 0.6 in the
‘ultimate porous wall turbulence regime’ at ReK > 30. The proposed model based on
permeability is validated by comparing the skin friction coefficient obtained from the
modified log law with the available DNS and experimental data. The proposed model
reasonably predicts the skin friction coefficient for several types of porous media with
high porosity. Hence, permeability is regarded as a key parameter that characterizes
the logarithmic mean velocity profiles over various porous media with high porosity
(ϕ ≥ 0.6), although further correction using the porosity or Forchheimer coefficient may
be required to extend this model to low-porosity porous media.
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