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AN APPLICATION OF JACOBI TYPE
POLYNOMIALS TO IRRATIONALITY MEASURES

A M HEIMONEN, TAPANI MATALA-AHO AND KEIJO VAANANEN

The paper provides irrationality measures for certain values of binomial functions
and definite integrals of some rational functions. The results are obtained using
Jacobi type polynomials and divisibility considerations of their coefficients.

1. INTRODUCTION

In the previous work [13] we considered the irrationality measures of the values of
the Gauss hypergeometric series

• * = £;
=s M .n = 0

where b,c ^ 0 , - 1 , - 2 , . . . are rational parameters, and (6)0 = 1, (6)n = b{b + l)
. . . (6 + n — 1), n = 1,2,.... The general result of the work [13] was sharpened in the
case of the logarithmic function by using the divisibility properties of the coefficients of
the approximation polynomials. This idea was first realised for the binomial function
by Chudnovsky [5], and then for the logarithmic function by Rukhadze [15], see also
Dubitskas [7] and Hata [10]. In this paper we apply the results of [13], especially the
general divisibility criterion, to the case b = 1/fc, c = 1 + 1/fc (fc ^ 2) and to the
binomial case 6 = 1/fc, c — 1 (fc ^ 3) in order to get sharper irrationality measures
both in the archimedean and p-adic case. For example in the first case we achieve
generalisations of the theorems of Chudnovsky [4], Danilov [6], Dubitskas [7], Hata
[10, 11] and Huttner [14]. In the binomial case we obtain the archimedean results of
Chudnovsky [5] (see also Easton [8]), which considerably improve the work of Baker
[2], and p-adic analogues improving the work of Bundschuh [3].
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226 A. Heimonen, T. Matala-aho and K. Vaananen [2]

2. NOTATION AND RESULTS

We shall denote by Qv the v-adic completion of Q, where v G {oo, primes p}, in
particular Qoo = R. ' For an irrational number 6 G Qr , by an irrationality measure
mv{6) of 6 we mean the infimum of all m satisfying the following condition: for any
e > 0 there exists an HQ = Ho(e) such that

P
n

for all rationals P/Q satisfying H — max{|P| , \Q\} > Ho . In the following we denote
77100(0) = m(0). All our measures are effective in the sense that Ho can be effectively
determined.

In our first case we have b = 1/fc, c— 1 + 1/fc, where fc > 2 is a natural number.

For a given rational r/a, (r,a) = 1, we denote the denominators of (a— r)/k and

(s — r) I ( k Yl P) by fc* and k** , respectively. Further, with a given rational ^ 1 we

define

where

plh

and cr(/3,k) is given in the formula (19). Then the following theorem holds.

THEOREM 1 . Let r/a G (—1,1) be a rational number satisfying (r, a) — 1. Tien

wAere inf^ means that {or a given r /s the infimum is taken over all rationals /3
satisfying R(P, k) < 1.

We note that the choice /? = 1 implies

21n (v^ + y/T=7) + A(fc) + Inmin{k*pk, fc**}
m
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[3] Irrationality measures 227

for all rationals T/S G (—1,1) satisfying

This is a sharpening of Huttner's Theorem [14]. In Hata [11] some improvements of

Huttner's results were obtained under the assumption r = 1 = s I mod k \\ P), which
V P\k J

implies k** = 1. Further, we note that the numbers in Theorem 1 are definite integrals

of the form
dt

x Jo 1/o

and the transcendence of this kind of numbers was considered by van der Poorten [16]
using Baker's results on linear forms of logarithms.

Some numerical examples are given in the table of the following page.
Some of the numbers given explicitly in the table have been considered in Hata

[10, 11], where the bounds are the same as we have (compere also with Huttner [14]).
Recently Hata has achieved an improvement TO(TT/\/3) < 4.601579... in the work [12],
where he also reached a remarkable result TTI{TZ) ^ 8.0161. Further, we note that the
table contains some examples where the value j3 = 1 does not give any measure.

Our p-adic result is

THEOREM l p . Let p J(k be a prime and let us assume \r/a\p < 1.

(1) If r/s > 1 is a rational number satisfying

min{k*tik,k**}exwr\r\l<l,

then

21n|rL
" 2ha|7-|p+m7- + A(Jfc) + himin{ib*/iife,A!"}'

(2) If r/s < 1 is a rational number satisfying

min{k*fik,k**}

then

himin{fc*/ijt,k**}'
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3

3

3

3

3
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4

4

4

4

4

5

5

5

5

5

6

6

number

\/l arctan -T»

.y/jjlog 3-v̂ H-i

\/21og 2 ^+ 1

•y/51Og i^±i

I o g 3 + ^

log T|* + 2 arctan ^

log 2 + arctan f

N/3(log(2+v/3)+f)

3
2

6
5

4
3

9
8

7
6

3
2
7
6

4
3
4
3

7
6
4
3

4
3
4
3
10
9

8
7
28
27

12
11

4
3
5
4

5
4
6
5

10
9
5
4
7
6

13
12

upper bound

5.0874 . . .

97.719 . . .

4.0298 . . .

3.1346 . . .

41.032 . . .

4.4937 . . .

84.960 . . .

11.531 . . .

4.5586 . . .

6.7886 . . .

9.2848 . . .

30.435 . . .

6.6372 . . .

94.453 . . .

12.086 . . .

13.164 . . .

3.6073 . . .

6.1382 . . .

33.251 . . .

8.5809 . . .

4.2604 . . .

4.9971 . . .

7.8909 . . .

6.5200 . . .

16.211 . . .

0 = 1

8.3099 . . .

-

4.8569 . . .

3.2571 . . .

493.12 . . .

6.5082 . . .

-

21.327 . . .

5.5280 . . .

7.8411 . . .

14.242 . . .

-

9.2718 . . .

-

16.347 . . .

13.764 . . .

3.7160 . . .

8.2100 . . .

-

11.538...

4.6295 . . .

5.3453 . . .

10.230 . . .

7.3106 . . .

18.508 . . .
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[5] Irrationality measures 229

Our second case considers the binomial function. Let b — 1/fc, c = 1, where k ^ 3

is again a natural number, and for a given r 6 Z let us denote the denominators of r/k

and T / (kY\p) by fc» and fc»», respectively. Further, let
P\k

2<<Jfe*/2<9<Jfe
(?•*)=!

where * is the digamma function, see [9].

THEOREM 2 . If r/s e (-1,1) satisfies

min{fc»/ifc,fc«,}e~r^*^ (y/s — y/s — r) < 1,

then

^T)-r(fc)
m. J

For example we have m (\/2) ^ 2.4297... and m (\/6) < 2.3205..-t which are

among the examples given by Chudnovsky [5, p.377]. In addition we obtain m (^5) ^

2.7473.... r/s = 1/81, m{y/Vl) ^ 5.0311..., r/s = 11/37, and m(v^27) ^

2.70468 . • .T r/s = 1/27, where the underhned bounds are better than Thue's bound.

In the p-adic case we have an improvement of the work of Bundschuh [3].

THEOREM 2p . Let p J(k be a prime and let us assume \r/s\ < 1.

(1) If r/s > 1 and

|2 „ ,
\r\p

then

( ( - ; ) • ' " ) 21n|T-|p + lnr-T(fc) + l

Especially we have

,-i/k\ ^ 2Zlnp

for all pl > kfike~rW.
(2) ttr/s<\ and

nun{kmfMit, A;»»}e * ' [y/s -f- v * — *") I**)- < 1>

t i e n

2In \r\p + 2hi |v/? + V7^7| - r(k)
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For example

m, (#5) g 2.4597.... ; = j | j , m2 (#5) < 2.7088..., *- = p ,

m2 (fr5l) < 2.4597..,,1 = ^ , m, ( t f l ) < 2.7845..., J =

^=23) ^3 .1125. . . , - = ^ j ^ - , m5 (tfj) < 3.2746..., - =
a 5* \ / aa 4*

3.1717..., *- = ^ < 1, m5 ( ^ g ) $: 2.8704.... I =

m2 (v ' l l ) ^ 2.6349.... j = | , , m2 ( v ^ ) < 3.2736.... T- = ^ - < 1.

3. PADE TYPE APPROXIMATIONS

Throughout this paper we shall assume that c > b > 0, b = a/f, c = g/h,
where a,f,g,h are natural numbers such that (a,/) = (g,h) = 1. Let us denote
B = 6-1 = E/F, C = c-b-1 = G/H with E,GeZ,F,H 6 N, (£ ,F) = (6?,#) = 1.
Further, let l,m and n denote positive integer parameters satisfying / ^ min{m,n}.

By using the Jacobi type polynomial

and the integral representation

we obtained in [13] the approximation formula

(4) fll,m,n(*) - Ql,m,n

where

,,».. w = .•+"-%,»,. ( i ) = (-i)'(* -1 ) - ' g (n+B) (7+

i/z-

)n+m )
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[7] Irrationality measures 231

In the following we suppose that I = n, m = [/3n], where /3 ^ 1 is a rational
number, and we use the notation

Further, let 6 = S(y) be 1, if v — oo, and 0, if v is finite. By ci, C2,... we shall denote
positive constants independent of n . We now have the following lemma.

LEMMA 1 .

(i) If \z\v < 1 and in the finite case v J(fh, then we have

tor all n ^ C2 • In the arcbimedean case the bound on the right-hand side
of this inequality is an asymptotic for \Rn(z)\ (n —» oo), and t ie bound
holds at z = — 1, too.

(ii) IfzE [-1,1) and S(0, z) ^ A(/3,1/z)/ \z\, then

max{|Qn(z)|, |PB(*)|} < c3 (\zf A (/?, -^j .

(iii) If q-max{B,C} ^ -1/2, 0 = 1 and z > 1, then

(iv) If 0 = 1 and z < - 1 , then

Further, all these bounds (i)-(iv) with the value 0 = 1 are true, if Pn{z), Qn(z)
and Rn(z) are replaced by

•Pn(z) = Pn,n,n+l(z), Qn{z) = Qn,n,n+l(z)>

respectively.

PROOF: Our lemma follows immediately from Lemmas 1 and 3 of [13]. We only
need to note that the the polynomial Aninin+i(z) with parameters B and C equals
the polynomial zAninin(z) with parameters 1 + B and C. D

LEMMA 2 . If (j = \, then

Qn+1(z) Pn+1{z)

and

§»(«) KM

.(-irM.('-*>.f-».-/V

+i(^-fc)n/-n-c-l\
2n+l

Q»+i(*) iWi(«)

The first equah'ty is proved in [13, Lemma 6], and the other can be proved similarly.
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4. O N THE ARITHMETIC PROPERTIES OF THE COEFFICIENTS OF Pn AND Qn

From the definition of Pn and Qn it follows that (see [13])

i=0

j=m—n t=0

where

j-m+n
• fm-j+i

(5) aj =

Let us consider our first case, when B = 1/k — l, C = 0. As in the proof of Lemma
4 in [13] we have

(6) a > ^

where we have used the notation

Pi*

(As usual, if r £ Q, r ^ 0, then up(r) is defined by r - pvr^R/S, where (R,S)
(i?,p) = {S,p) = 1.) Thus the terms in the sum presenting Pn(r/a) are of the form

r-sV -a)1 \km nfik(i)

where we used (8) to obtain the last expression. Since

vp((m - n)!) + vp((j - m + n)!) - vp(i\) - vp((j - i)\)

m - n ] [ j-ro + n] [ t | [j -«] \ [hrol] [
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it follows that the above expression belongs to

Jb"->»(m-n)

where C(n) — 2 . Further, by (6), the terms in the sum giving Qn{r/a) satisfy
L m P J

j \ 3

These considerations imply

LEMMA 3 . Suppose that B = 1/Jfe - 1, C = 0. If

then

Next we consider our second case, where B = (1 — k)/k, C = —1/k. By the Gauss
summation formula (see [9, p. 104])

it follows that

Thus

^ ( l ) e ."ifc>t(n)Z-

This result can be improved in many cases. Namely, Qnir/a) is the sum of the terms

(2n - j \ (l + ( n - j + l)fe)...(l+nfe) / - r \ '
\n-jj j \ \ks)

belonging to
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Since F(z) - (1 - z)~1/k it follows that Pn(z) = XQ*n{z) where A is a constant

and Qn is obtained from Qn by replacing 1/fc by —1/k. Further

(« /(*) = £ /,-*', then \f(z)}n = £) fi**) and Qn(0) - Q*n{0), and therefore A = 1.
.7=0 j=0

These results give us the following

LEMMA 4 . If

tA en

In many cases the coefficients CLJ of the polynomial Qn(z) have common factors.
We follow Chudnovsky's [5] ideas to cancel them out. Recently his ideas were used
successfully by Rukhadze [15] and Hata [10, 11, 12], and in [13] we gave a further
approach to apply these ideas. Our main tool is the following lemma from [13] giving
a criterion for primes p > c^y/n dividing the numbers (5).

We use for a rational number r the notation p \ r or r = 0 (mod p), if vp(r) ^
1. Further, if vp(r) ^ 0, then there exists a unique r £ {0 ,1 , . . . ,p— 1} satisfying ¥ = r

(mod p).

LEMMA 5 . (Divisibility criterion for the coefficients of Qn) Let P(l,rn,n)

denote the set of all primes satisfying p JFH,

max (n-j)F\,\G + (m-j)H\}\,
)

(9) n +

Then

Now we apply this criterion to our cases 1 and 2.

Case 1: Let ifc G N, fc > 2, B - 1/k - 1, C - 0. The inequality (9) has now the
form (I = n)

(10) ^ I Z 1 + SI + 1 , S .
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[11] Irrationality measures 235

If n + (1 - fc)/fc = n + (1 - fc)/fc (< p) , then (10) cannot hold. Thus we must have

1-fc _ 1-fc
+

• fc • fc

Therefore (10) is true, if the inequalities

1 - f c _ _ 1 - f c
p £— ^n<p, 0^m<p —

are valid.

We consider the primes p satisfying p ^ CTy/n, p = q' (mod fc) with some q' £
{ 1 , . . . , fc — 1}, (q1, fc) = 1. There then exists a unique q £ { 1 , . . . , fc — 1}, (q, fc) = 1,
satisfying qq' = —1 (mod k). When q' runs over the reduced residue classes (mod k),
so does also q. Thus

1 -Jfe _ 1-k + qp
k ~ fc '

It follows that p satisfies (10), if

or

n fcn+1 — fc km +1 — fc m

where we have used the notation n = n — JVp, m = 7n — Mp. These inequalities give
the following conditions and the corresponding intervals, where all the primes p = q'

(mod fc) satisfy (10):

(i) fc < (/? + \)q

(il) PN + 0>MZ0N + /3-l + q/k, (n/(N + l),

{{km + 1 - fc)/(fcM + fc - q),m/M);

(i3) /3JV + /3 (1 - g/fc) ^ M > /37V + (/3 - 1) (1 - q/k),

{{km + 1 - fc)/(fcM + fc - q), (fcn + 1 - fc)/(fc7\T + fc - q));

(ii) fc > (/3 + l)g

(iil) 0N + /3>M>0N+0{l-q/k),

{n/{N + 1), (fcn + 1 - fc)/(fcJV + fc - ?));

/3iV +/3 - 1 + q/k > M > 0N + (/3 - 1)(1 - q/k),

{{km + 1 - fc)/(fcM + fc - q), (fcn + 1 - k)/{kN + k-q)).
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After getting these intervals we use the prime number theorem in arithmetic pro-
gressions to find out an asymptotic for the part of the common factor obtained from
the primes p = q' (mod k) (for effectivity we refer to Adleman-Pomerance-Rumely [1]).
Multiplying these we then get an asymptotic for the total common factor.

If we choose P = x/y, x,y 6 N, {x,y) = 1, and N = yK + i, i 6 {0,.. . ,y - 1},
then (il) is of the form

xK + 0i + P > M ̂  xK + Pi + f3 - 1 + I-

Thus the condition

f /3i + 0 - 1 + q/k or
(12) k^(P + l)q, pi + (3t\fli + (3]\

[ [0i+P + q/k]

gives us an integer M = xK + \fii + /?] satisfying (il). The corresponding interval is

For fixed i and q satisfying (12) we can calculate the asymptotic contribution enE'-«-1

for the common factor, where

y<f>(k) V\ y

The same interval (13) and ^i,q,i is obtained, if the pair (i,q) satisfies the condition

(14) k

given by (iil). If the pair (i,q) satisfies neither the condition (12) nor (14), we set

S,-ig,i = 0. The inequality (i2) is of the form

xK + Pi + p - 1 + | > M > xK +Pi +P (l - | ) ,

which may give more than one integer solution M, if (P + l)<?/fc > 2. More precisely,
let us define

https://doi.org/10.1017/S0004972700013691 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013691


[13] Irrationality measures 237

ro, if/?.

Thus the condition

(15) k ^ (j3 + l)q, I — h ^ 1

gives I—h integer solutions M = xK+[/3i + /3 — 1 + q/k]—j, j — h,...,I—I, satisfying
(i2). These all give disjoint intervals and we thus have the asymptotic e™s''9-J , where

The condition (ii2) is transformed to

(16)

leading to the asymptotic e™2'-''1, where

or

o r

Again, if (i, q) satisfies neither the condition (15) nor (16), let S»,g,2 = 0. The remaining
cases (i3) and (ii3) give us the conditions

(17)

(18)

respectively, and the asymptotic in both cases is e"E'^>3 , where

As before, we set Ei.g.s = 0, if (i,q) satisfies neither the condition (17) nor (18). All the
intervals obtained from the conditions (12), (14), (15), (16), (17) and (18) are disjoint.
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a(0,4)

0.8

0.6

0.4

0.2

1 . 5 2 . 5 3 . 5

Picture 1

Thus the multiplication of the contributions of all these cases gives us the asymptotic
eno-(p,k) of ^ g c o m m o n factor Z?nii, where

(19) <r{P,k) =

the summation running over the triples (i,q,t), q — l,...,k — 1, (q,k) = 1, i =
0 , . . . ,y— 1, i = 1,2,3. Picture 1 shows the graph of <r(fi, 4) (the interval of subsequent
values of /3 is of length 1/120).

Case 2 (the binomial series): Let k G N, k ^ 3, B = 1/fc - 1, C = -1/k. Let
further n — n' + 1, I = m = n' so that the criterion (9) has the form

(20) n + 1/k + n-l/k + l ^n,

where we have dropped the apostrophes.

Again we consider large primes p satisfying p = q' (mod k) for some q' 6
{ l , . . . , f c - l } , (q',k) = 1, and choose q 6 { 1 , . . . , Jb-1}, (q,k) = 1, such that qq' = - 1
(mod Jfc). Then

T _ qp + 1 ~ T _ ( f c - g ) p - l
k ~ k ' k ~ k

First suppose that
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[15] Irrationality measures 239

In this case (20) is of the form n + p + 1 ^ 0, which is impossible. By similar reasons
the cases n + 1/k ^ p, n + (—1/fc) < p and n + 1/fc < p, n + (—1/fc) ^ p give no
contribution. Thus, we are left with the case

n+\>p, n

These inequalities and (20) are satisfied if (n = n — Np)

(fc - q)p - 1 qp + 1
^ ^

' jfe
1

or
n . ( kn + 1 fcn — 1

This gives us an interval
/ n Jfcn+1 \
\N + l'kN + k-q)'

if g < A;/2, and an interval

n kn-l

if q>k/2.

Therefore the above intervals imply for the common factor Dnj the asymptotic
enr(*>, where

k/2<q<kN=0 \ ' "" ' / vv ' k/2<q<k

5. PROOFS OF THE THEOREMS

We shall use the following well-known results (see, for example, Chudnovsky [5,
Corollary 3.3] and [13, Lemma 7]). Let x > 0 and y < 0 be given. Suppose that
for each e > 0 there exists a constant c% and rational integers pn,qn satisfying for all
n ^ c& the inequalities

(21) - l n m a x { | g n | ) | p n | } < a ; - | - e )

(22) y - e < - l n | r n | r < y + e,
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where rn = qna — pn. Then the number a £ Qv has an irrationality measure m,,(a)
not greater than

x
1 , if v = oo,

y
x

1 , if v is finite and x + y < 0.
y + x

The lower bound in (22) is not needed, if pngn+i — qnPn+i ^ 0 for all n ^ eg.

In Case 1 we have an approximation formula

where
nn,iQn(r/s) nB l i P B ( r /«)

9n = JZ , Pn = JZ

are integers. Using Lemma 1 and the asymptotic bounds for f2n)i (see [13, Lemma 5])
and Dn,i we get the following lemma.

LEMMA 6 . Let e > 0 be given. If \r/a\ < 1 and R(/3,k) < 1, then

R(0,kf+e)n $ |rB|

for all n ^ cio-

Therefore we immediately achieve the estimate

for any rational /? ^ 1 satisfying R(0,k) < 1, which proves Theorem 1.

In the corresponding p-adic case we choose j3 — 1, p j[k and |»"/s|p < 1. Thus

Lemma 1 and Lemma 5 give

LEMMA 7 . Let e > 0 be given and suppose r/s > 1. Tien

max{|p n | , |gn |} s

for all n ^ Cn.

Now the use this lemma and the condition
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implies

21n|r|.
r\ + lnr + A(fc) + ]nmin{k*(j,k,k**}'

Part 2 is proved similarly using corresponding parts of Lemma 1. This completes
the proof of Theorem 1 p.

In the second case we have

where

9n = Pn =
n,2Pn (r/a)

p:

are integers. Further, we denote

= min

R(k) = w

Analogously to Lemma 6 we thus have

LEMMA 8. Let e > 0 be given and let \r/a\ < 1, R(k) < 1. Then

i?(Jfe)(1+e)n ^ |rn

for all n ^ c\2 .

Clearly we get the result

m ((-;)•"")«'-£
Q(k)

lnil(fc)'

Thus Theorem 2 is proved.
By similar considerations we achieve the cases 1 and 2 in Theorem 2p using the

corresponding polynomial bounds in Lemma 1. In our examples the p-adic values

(l - zfk = ' ~ * e Q, \z\p < l )
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are the unique solutions of the equation

Xk = 1 -

satisfying the property
x = 1 (mod p).

In these cases we denote

For example

REMARK. All the numerical computations were made using MATHEMATICA pro-
grams.
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