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Abstract

In general relativity, the strong equivalence principle is underpinned by a geometrical
account of fields on spacetime, by which all fields and bodies probe the same geometry. This
geometric account implies that the parallel transport of all spacetime tensors and spinors is
dictated by a single affine connection. No similar account of gauge theory is put forward by
standard textbooks, which use principal bundles to coordinate the parallel transport of
different, interacting particles. Nonetheless, here I argue that gauge theory does afford such a
geometric account, obviating the need for principal bundles.

1. Introduction
All quarks and gluons interact via one and the same strong nuclear force. And
although these particles all carry charges for this same force, they are described by
fields that take values in a variety of internal vector spaces coexisting over each
spacetime point. In spite of this variety, these internal spaces don’t just coexist over
each spacetime point: they are intimately connected, which is what allows the
different particles to interact. For instance, were we to take particular values for
quarks and gluons at spacetime point p and carry them to point q along a certain
spacetime curve γ, these values would perform a “synchronized rotation” in their
respective internal spaces: their evolution is coordinated or “marches in step.”

The usual mathematical explanation for the variety is that the fields exist as
sections of distinct vector bundles over spacetime, and they march in step because
those vector bundles are associated vector bundles, by fiat associated to a single
principal G-bundle, P, where G is the symmetry group regimenting a particular
interaction, e.g., SU 3� � in the case of the strong force. In turn, each principal bundle is
endowed with a single Ehresmann affine connection ω, which defines parallel
transport for fields that are charged under the corresponding force.

Thus, in the standard model (SM) of particle physics, all fields charged under the
same gauge group get their parallel transport from the same mathematical object, ω.
Since ω exists on the more abstract principal fiber bundle P, it does not cohabit the
space of the physical matter fields. Nonetheless, from “afar,” it coordinates the
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parallel transport of the different physical fields in their respective internal vector
spaces. In the words of Weatherall (2016, p. 2401):

Principal bundles are auxiliary [in the sense that only] vector bundles represent
possible local states of matter; principal bundles coordinate between these
vector bundles : : : [they are auxiliary] in the sense in which a coach is auxiliary
to the players on the field.

This is a beguiling metaphor, but is it explanatory? It certainly falls short of the
familiar geometric explanation for parallel transport that we get in general relativity.

In the case of general relativity, in order to describe parallel transport of tensor
fields on the spacetime manifold M we need not invoke principal bundles at all. Recall
how general relativity textbooks expound tensor analysis, by having the metric
determine the notion of parallel transport (i.e., the Levi-Civita connection), with
never a mention of a principal fibre bundle. There, sections of different tensor and
spinor bundles march in step under parallel transport because they are all constructed
from the same geometric structures: namely, the tangent bundle TM, with each
tangent space TpM being endowed with a Lorentzian inner product and an orientation
(necessary in the case of spinors). The parallel transport of all tensor fields is
coordinated because they are sections of vector bundles built from the same tangent
bundle. It is the tangent bundle that underpins a unified account of parallel transport
for tensor fields.1

In the gauge case, the textbook tradition—indeed, so far as I know, the extant
literature2—reveals no similarly powerful explanation for why the fields that couple
through non-gravitational forces march in step under parallel transport. This I will
call the coordination problem of gauge theory: it constitutes the main disanalogy
between spacetime and gauge theories that this paper is focused on dispeling.

One might at first think that the obstacle to a resolution of the coordination
problem in gauge theory, that similarly to the gravitational case does not mention
principal fiber bundles, is that we can’t define a covariant derivative directly for
vector bundles. This is not the case: such a definition of covariant derivative is
straightforward, and it is given, for an arbitrary vector bundle, in equation (A.7).3 The
obstacle to resolving the coordination problem with such a definition is that it offers

1 It is true: “you won’t go to jail” for describing parallel transport of tensor fields using principal
bundles also in the spacetime case. That description employs an orthonormal basis of vectors at each
spacetime point and a connection form that describes their parallel transport. The different orthonormal
bases are related by elements of the Lie group O 3; 1� � (or SO 3; 1� �, if spacetime orientation is important),
and so the space of orthonormal bases over spacetime forms a principal fiber bundle with O 3; 1� � as its
structure group (cf. Appendix A). This is the group that leaves the Minkowski metric on a 3 � 1 space
invariant (and its subgroup of orientation-preserving transformations). Thus, the structure group of the
principal bundle is tied to the preservation of the structure of a “typical fiber”, which is a vector space
over each spacetime point—viz., the tangent space, which is isomorphic to R4

—endowed with a
semidefinite inner product. Indeed, this description is often involved in the treatment of spinors. But the
point is that we don’t need to invoke this bundle to describe parallel transport of tensor fields or even
spinors.

2 I thank Lathan Boyle and David Tong for helpful discussions of this curious lacuna in the literature.
3 That definition specializes, when the vector bundle is the tangent bundle, to the usual definition of

covariant spacetime derivatives.
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us no relation between the derivatives of two vector bundles (if one bundle is not
obtained (e.g., tensorially) from the other). In other words, given two different but
interacting particles, seen as sections of two different vector bundles, there may be no
natural way for an intrinsic derivative in the first bundle to induce one on the second.
Thus, using this intrinsic covariant derivative leaves the “marching-in-step” of
sections of any two different vector bundles under parallel transport completely
mysterious.

Principal and associated bundles are uniquely important for gauge theories
because they allow us to partially solve this first coordination problem. We do so by
defining the covariant derivative not intrinsically on the vector bundle, but as I
described above: via the action of the Ehresmann connection ω on sections of
associated vector bundles—see definition 4 and equation (A.5). Nonetheless, this is
only a halfway house towards a satisfactory resolution of the coordination problem
because we still need to stipulate that particles whose parallel transport should march
in step are all associated to the same principal fiber bundle, with the same structure
group and Ehresmann connection. This (partial) resolution places the symmetry
group first, and then goes on to define all the objects and structures that are well-
behaved under (some action of) this group. In the terminology of Jacobs (2021,
chapter 4.1), it is a symmetry-first approach to gauge theory. He describes the situation
as follows (Jacobs, 2023, p. 40):

But it is a problem for this approach that [ : : : ] two fields survey the same
connection as a matter of brute fact. There really are two connections: one
defined over the first associated bundle, and one defined over the second. These
connections are the same only in the sense that we can represent both with the
same connection on a single principal bundle. But [ : : : ] there is no independent
Yang–Mills field that the associated bundle connections supervene on. This
makes it seem somewhat mysterious that these connections are equivalent. On
[this] approach, it is a brute fact that all matter fields have the same symmetries.

In sum, in general relativity there is no coordination problem for parallel
transport: Since tensors are constructed from the tangent bundle their marching-in-
step under parallel transport is guaranteed, and there is no need to introduce
principal and associated bundles. In contrast, gauge theory needs principal and
associated bundles because, in the textbook tradition, it lacks a structure analogous to
the tangent bundle, which can underpin a unified account of parallel transport for a
variety of fields that interact, not gravitationally, but via the other forces of nature.

Here I will show that, contrary to the textbook tradition, gauge theory has a
structure analogous to the tangent bundle, which can be used to the same effect. This
structure suffices, for example, to account for the content of the standard model of
particle physics. Thus, while there can be a practical reason for introducing principal
and associated bundles—as there often is in general relativity (cf. footnote 1)—there
is no mathematical necessity for doing so. For we can see all the constituents of both
the chromodynamics and the electroweak sector of the standard model as sections of
vector bundles that are tensorially constructed from a single, underpinning vector
bundle. This underpinning vector bundle has fibers isomorphic to C3 × C2 × C,
endowed with the canonical inner product of the complex planes and an orientation,
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and so has an automorphism group which at each point is isomorphic
to SU 3� � × SU 2� � × U 1� �.

In this picture, the invariant structure comes first, and the symmetry group that
preserves this structure comes second. That is, the gauge group is no longer
postulated as fundamental: it acquires meaning as the invariance group of the typical
fiber of E. So we can think of parallel transport in a frame-independent way as being a
structure-preserving map, carrying the fiber’s structure from one point of spacetime
to another along a spacetime path. The different particle types are represented by
different types of tensors over the same vector bundles.

Here is this paper’s content, in slogan form: Gauge transformations can be
understood naturally as automorphisms of an internal geometric structure, to which
the theory is ontologically committed; and an affine connection defines parallel
transport in these spaces, with never a principal bundle in sight.

2. How to dispel the disanalogy: The internal spaces
This section will dispel the putative disanalogy between parallel transport of
spacetime and internal quantities expounded in section 1. But before diving in, I want
to clear the ground.

The label “geometrical” might be taken to connote properties related to distance
relations, and to geodesics extremizing such distances. That is not how I mean it.
Although there is one interpretation of gauge theories and gauge transformations
that is geometric in this sense—called Kaluza–Klein theory (see Kaluza (1921) and
O’Raifeartaigh (1997) for the history)—that is not the sense I will focus on here. Here I
want to assess whether gauge transformations can be understood naturally as
automorphisms of an internal geometric structure; and whether parallel transport of
internal quantities can be understood similarly to that of tensor fields over spacetime.

Next, let us set aside all questions about the “external” spacetime geometry. A
matter field can be described as the tensor product of some interior space on which
gauge fields take values—e.g., a complex scalar or Yang–Mills field, φ—and a spinor
field ψ; or tensor fields in the case of gauge bosons. In the standard account, gauge
fields use a connection and gauge frame which are independent of the spacetime
manifold frame, while spinor and tensor fields mirror the connection and changes in
the frame of the spacetime manifold. So gauge fields are acted on by representations
of the gauge group and its Lie algebra, while spinor fields are acted on by
representations of the Spin group and its Lie algebra (so�3; 1�). The gauge component
then responds to gauge transformations, while the spinor component responds to
changes of frame. Here, I will focus only on the gauge, or, as I will argue, the
internal part.

We will see that interacting fields can be seen as sections of bundles built up from
the same internal spaces, or typical fibers. For instance, in the same way that a
symmetric, covariant tensor of rank two is built from two copies of TM, (the internal
part of) quarks will have components in a typical fiber isomorphic to C3, and gluons
will be certain (traceless) tensor bundles, involving C3 and C�3. Thus we will have a
geometric reason for the parallel transport of the different quarks and leptons
marching in step.
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This will of course require a brief description of the particle content of the SM,
which I provide in section 2.1. In section 2.2 I interpret the results in terms of sections
of vector bundles for certain typical fibers. In section 2.3, I present five possible
objections to my intepretation.

2.1. A closer look at the SM
In particle physics jargon, connections are the “force-carriers,” and are represented
by gauge bosons. But I will first set the bosons aside and focus on the fermionic
content of the SM; we will get back to bosons later.

The SM is represented in terms of Weyl fermions, which are two-component
spacetime spinors. But I am only interested in the structure of the internal spaces; the
spaces where the gauge connections act. So here I am basically ignoring the spacetime
spinor structure of the SM (though they are somewhat implicit in the notation of left-
or right-handed particles used below). When representing the full fermionic content
of the SM, this spinor part would be included as factors in a tensor product with the
internal part that I am interested in and aim to describe in this section. I will get back
to this point below.

The part of the (minimal) SM that I am interested in consists of 45 complex
numbers, organized into three generations, which means it has the same structure
repeated three times. We can understand this repetition in terms of direct sums:

C45 � C15 � C15 � C15: (2.1)

Table 1 tells us how these components transform, and it is organized into blocks
whose elements can transform into each other (elements from different generations,
or blocks, cannot). So each C15 breaks down into the five rows of the table (I will here
only focus on the first generation).4 Now let us unpack table 1. First, the columns are
labeled with the groups that are associated to the types of interaction: strong (SU 3� �),
weak (SU 2� �), and hyperweak (U 1� �).

Table 1. The representation of the SM groups on fermions

SU 3� � SU 2� � U 1� �
qL 3 2 1

6

uR 3 1 2
3

dR 3 1 � 1
3

‘L 1 2 � 1
2

eR 1 1 �1

4 The three generations differ mostly with respect to their Yukawa couplings to the Higgs, which I am
ignoring here. These are non-gauge interactions that lead to different masses of the three generations.
Also note that here I am describing theminimal SM, and so I am not including the right-handed neutrinos,
which have not yet been directly observed, but, after the discovery of neutrino oscillations, are generally
assumed to exist.
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The quarks are represented by the first three rows of the table. As to the first
column, quarks clearly feel the strong forces, and they transform under the standard,
or fundamental, representation of SU 3� �, labeled “3,” which just means SU 3� � acts on
elements of C3 via matrices which preserve the volume element and complex inner
product of C3. So the components of quarks corresponding to the first row can be
seen as vectors in internal spaces isomorphic to (a structured) C3. Now, qL is a left-
handed quark doublet, which is a doublet of the form qL � uL; dL� �. In the first
generation this would be called up-left and down-left, respectively; in the second
generation it would be charm-left and strange-left; and in the third generation it
would be top-left and bottom left. The reason qL is called a doublet—unlike the two
rows beneath it, representing the up-right and the down-right quarks uR and dR,
which are singlets—is that the components of qL, namely uL and dL, are charged
under the weak nuclear force, and transform into each other under the action of
SU 2� �. In the entry corresponding to qL × SU 2� � this transformation property is
represented by the number “2,” which means that qL transforms as an element of C2

under the fundamental representation of SU 2� �. The number “1” for the entries
uR × SU 2� � and dR × SU 2� � means that uR and dR are neutral under the weak forces,
so cannot transform into each other (because, being singlets, they don’t transform at
all under SU 2� �). Finally, the left-handed quark has a “weak hypercharge” of �1=6
under U 1� �, which means that it is a complex number (an element of C) which, under
the action of a given U 1� � phase-shift generator ξ, has its phase rotate at the rate of
�ξ=6 (or eiξ=6); mutatis mutandis for the down-right and up-right quarks.5

The leptons are represented by the remaining two rows in the table and have a
kind of parallel structure to the quarks, but of course they are all neutral under SU 3� �
(they are not charged under strong interactions). ‘L is the left-handed lepton doublet,
which is of the form ‘L � eL; νL� �. In the first generation these are the left-handed
electron and neutrino (in the second and third they get “muon” and “tau” prefixes).
Again, we put eL and νL in the same row because they are charged under SU 2� � (they
are charged under the weak forces), and transform into each other, unlike the particle
of the remaining row—the right-handed electron eR, which is neutral under SU 2� �.
The hypercharge of ‘L is �1=2 (which does not coincide with its electric charge; see
footnote 5). The electric charge of the right-handed electron is, as expected, 1.

With the basic ingredients in place, I will now defend my intepretation of table 1,
arguing that it dispels the (putative) disanalogy to gravity described in section 1.

2.2 Interpretation
The first two columns of table 1 contain only one kind of non-trivial representation:
the fundamental. So, in these columns, elements of SU 3� � and SU 2� � are 3 × 3 and
2 × 2 matrices, respectively, acting on elements of C3 and C2, preserving their
canonical inner product and oriented volume.6 The third column, under U 1� �, is, in

5 Note that for U 1� � it is a “0” entry—and not a “1,” as it is for SU 3� � and SU 2� �—that tells us a particle
does not transform, or is neutral with respect to this interaction.

6 A special unitary matrix is a unitary transformation with determinant 1. We can interpret the
restriction to determinant 1 as preserving the oriented volume because the signed n-dimensional volume
of an n-dimensional parallelepiped is expressed by a determinant, and the determinant of a linear
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one sense, the most familiar from classical electromagnetism: it represents an overall
phase, where different charges transform with different rotation speeds under U 1� �.7

So we clearly have C3,C2,C1 over each spacetime point, where particles take their
values. These are the typical fibers of three different fundamental vector bundles, call
them E3;M;C3� �, E2;M;C2� �, E1;M;C1� �, or E3, E2, E1 for short, where, for each, a fiber
at a point is isomorphic to a complex vector space with inner product and orientation:
for πn : En ! M, π�1

n x� � ’ Cn (but recall that there is no canonical isomorphism).
Each of these vector bundles is analogous to TM in the spacetime case, and we also
naturally have the dual bundles (of linear functionals), E3�, E2�, E1�, that are necessary
in order to represent the corresponding anti-particles. The group of automorphisms
of these fibers are, again, (non-canonically) isomorphic to SU 3� �, SU 2� �, and U 1� �.
These are structures that should be preserved by an affine connection on the
corresponding vector bundles.

Now, as usual, we can join these vector bundles in different ways, using different
kinds of products; and, as for tensor fields over spacetime, here too the most
important for our purposes is the tensor product.8 Of course, a group action or
representation on a vector space V induces a representation on arbitrary tensor
products of V and V�, and so it is here: The structure of the typical fiber defines a
group that acts on that typical fiber, and that action naturally extends to all tensor
products of the space and its dual.9

In the first row the left-handed quark doublet has components lying along C3, C2,
and C1: we must locate it within a space of three colors, and of two isospin charges,
and of one hypercharge. The internal part of the left-handed quark doublet is a
section of the bundle

qL 2 Γ E3 	 E2 	 E1� �: (2.2)

Unlike the first row of table 1, the particles in the following two rows have no
component along C2, which is why they are not charged under SU 2� �. In contrast, the
left-handed lepton doublet has no components along C3, but has components along
C2; and the right-handed electron has no components along either C3 or C2 (that is
why it is not charged under either the strong or the weak interactions), it only has
components along C1 (cf. footnote 5).

endomorphism determines how the orientation and the n-dimensional volume are transformed under
the endomorphism. Alternatively, U n� � is the n-fold cover of SU n� � × U 1� �.

7 I should also note that weak hypercharge, denoted YW , is not the same as electric charge, Q. The
relation between the two types of charge emerges only after symmetry breaking, which requires an
interaction between the Higgs and weak isospin: it is given by the equation (in our convention)
Q � 2T3 � YW, where T is the SU 2� � charge, and we have assumed the Higgs potential selects the third
component of isospin. It coincides with electric charge only for the rows that transform trivially under
SU 2� �, namely, for all the right-handed particles in the table. Thus, the electric charge of the down-right
quark is �1=3, for an up-right quark it is 2=3, etc. The way these charges combine after symmetry-
breaking gives a mnemonic device for the numbers of the last column: the entry for the left-handed
particles is the average of the two entries below, for right-handed particles.

8 Given two vector bundles E; E0 over the same spacetime M, the tensor bundle is a bundle over M
whose fiber over x 2 M is Ex 	 E0x.

9 For instance, if ρ g
� �

is a representation of G on V, then G acts on the dual space V� via the inverse of
the transpose, ρ�g�1�T .
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As I said above, the odd man out in table 1 is the third column, corresponding to
the U 1� � weak hypercharges, since there we have multiple non-neutral values. How
should we interpret the different weak hypercharges as properties of sections of
vector bundles? One immediate answer comes from a rather trivial technical point.
Since C1 has complex dimension 1, arbitrary tensor products of C1 will also have
complex dimension 1.10 But if a particle is, formally, a section of a vector bundle
E1 	 E1 :� E12, under a rotation of E1’s typical fiber C by θ, because of the
multilinearity of the tensor product, that section of E12 picks up a phase of 2θ. Thus,
formally, taking the lowest charge as the unit, we can think of a weak hypercharge of
N=6 as being due to the Nth tensor product of E1, which we call E1N , and negative
charges are sections of tensor products of �E1��. But, precisely because these tensor
products are still one-dimensional, not much changes in terms of the representation
of these sections: there are no added degrees of freedom.11

In the first two columns, the representations 3 and 2 describe the number of
degrees of freedom of the particle in these spaces: vectors in C3 have three and in C2

have two. Indeed, for the same reason, we label with an “8” the representation of the
gluon, whose internal component, as described in equation (A.4), would, in our
geometric treatment, be a section of Γ E3	TE�3� �, where T stands for traceless (which
is necessary for parallel transport to be not only linear, but compatible with the inner
product). So “8” is the number of internal degrees of freedom that such a field would
have, and its tensor structure implies it is acted on by the adjoint representation of
the group action on E3.

So, even though the gluon distinguishes itself for determining parallel transport
for itself and for the other particles, here, unlike the standard picture, the gluon is of a
piece with other matter fields in that they are all sections of (different) tensor bundles
over the same underpinning vector bundle. But the gluon does not fit table 1 because it
is not a fermion, and does not decompose into a tensor product with Weyl spinors as
the rest of the table does; it is a boson, and its spacetime part is a 1-form. Indeed, this
is the case for all the affine connections, which, in particle physics terminology, are
called the gluon, the W, and the Z bosons. These are the degrees of freedom dictating
the parallel transport of color, isospin, and (hyper)charge, which, along a given
spacetime curve γ : 0; 1
 � ! M take, respectively, the fibers of E3, E2, and E1 over
γ 0� � 2 M to the fibers of E3, E2, and E1 over γ 1� � 2 M as a linear, structure-preserving
transformation (cf. equation (A.12)).12

10 Here, it is important to distinguish the dimensions of a vector space qua complex space, i.e., in
which addition is linear under complex scalar multiplication, from dimensions of a vector space qua real
vector space. For V andW complex vector spaces of dimension p and q respectively, dimC V	CW� � � pq,
while dimR V	RW� � � 4pq.

11 In the standard presentation, the fact that all representations of U 1� � are one-dimensional is a
consequence of Schur’s lemma. Namely, an irreducible unitary complex U 1� � representation must be one-
dimensional by Schur’s lemma, since all U 1� � elements commute with each other and so are multiples of
the identity, and each one-dimensional subspace is an invariant subspace of multiples of the identity.
I find the proof in terms of tensor spaces that I mention in the main text much more transparent.

12 As with the fermions, we can of course have different sections of vector bosons. According to (A.4),
given any fixed Do (e.g., over a trivialization EjU ’ U × V, we can set Do � d	 Id), any such vector
boson defines an affine connection D that is compatible with the fiber structure.
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Summing up, apart from (2.2), we get

uR 2 Γ E3 	 E14
� �

; dR 2 Γ E3 	 E1�2� �; ‘L 2 Γ E2 	 E1�3
� �

; eR 2 Γ E1�6
� �

; (2.3)

and adding the vector bosons (one for each SU n� �), for which we include its 1-form
component in spacetime,

ωn 2 Γ T�M 	 En 	TEn�� �: (2.4)

We can conceive of each generation as having the following decomposition into five
factors:

C15 � C3 	 C2 	 C1
1

� �� C3 	 C1
4

� �� C3 	 C1�2� � � C2 	 C1�3
� �� C1�6: (2.5)

And we can finally answer the main question of this section: Why do the parallel
transports of different, mutually interacting particles, as sections of different vector
bundles, march in step?

Recall that in the textbook tradition (see, e.g., Nakahara, 2003, chapter 9), the
answer is postulated. The gauge symmetry group is not derived as preserving some
physical structure, it is postulated in the definition of the principal bundle. But here
I’ve argued that, just as tensor bundles are constructed from the underpinning
geometry of TM and tensors have components in the spaces thus constructed, particle
fields have components in internal spaces corresponding to color, isospin, and (hyper)
charge that are constructed from the underpinning geometry isomorphic to that of
C3, C2, and C1, endowed with an inner product and, except in the case of C1, an
orientation. Parallel transport marches in step because it concerns the underpinning
internal geometry. The structure groups SU 3� � × SU 2� � × U 1� � are the symmetries
that preserve the internal geometry. In this picture, the structure groups are not
postulated. They are isomorphism-invariant automorphism groups that moreover
can emerge explicitly upon comparisons of parallel transported tensors, as the
(isomorphism-invariant) holonomy group Hol D� �, described in Appendix A.2 (cf.
equation (A.12)).

In this tensorial representation of the fields of gauge theory, there is no need for
indices, except to denote the type of tensor under consideration: in the analogous
spacetime case, this is called the abstract index notation for spacetime tensors.13 Just as
in the case of spacetime tensors, these gauge tensors are invariant under passive
transformations. It is only upon introducing a trivialization of the vector bundle—i.e.,
a local isomorphism between E and U × F, where U � M is some patch of spacetime—
that we can talk about a tensor’s components transforming under a change of
trivialization. But, again, just as spacetime tensors are not invariant under active
diffeomorphisms, here the gauge tensors are not invariant under a fibre-wise linear
isomorphism of tangent bundles. The transformation between these tensors
corresponds to the active view of gauge transformations (cf. equation (A.17) for
the transformation of the connection).

13 This notation uses indices to indicate the types of tensors or spinors, rather than their components
in a particular basis. The indices are mere placeholders, not related to any basis, and, in particular, are
non-numerical.
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2.3 Possible objections
Here I will address five possible objections about the geometric viewpoint. The first is
more technical, the second is conceptual, the third is metaphysical, the fourth is
about completeness, and the fifth is about applications beyond the SM. All but the first
two lead to concessions about my framework.

First, the technical possible objection. I said above that the spinor structure of the
fields comes in as a factor in a tensor product with the internal tensorial structure.
But that is not exactly right for the table as I presented it: it would require me to
represent the SM solely in terms of one chirality, which is certainly possible. Instead
of having both right- and left-handed spinors, one can include in the table only left-
handed ones; I preferred not to mix particles and anti-particles in the table, which is
why I instead used both chiralities. Using a single chirality would have the advantage
of being rigorous about the tensor product between internal spaces and spinors, but
would have the disadvantage of having to introduce complex conjugates of the
representations, e.g., using 3̄ instead of 3 for the first and fourth rows of the table, and
also having to introduce qcL, the anti-left-handed quark doublet, and ‘cL, the anti-left-
handed lepton doublet. But of course doing this would not offend my main thesis,
since complex conjugation of C3 is an operation that requires no more structure than
I have posited; it is analogous to taking T�M to be defined by TM (as linear functionals
thereof).

Now I’ll address the second, conceptual objection. Given the Lagrangian of the SM
written in a local coordinate system, I could extract all of the invariances and
symmetry transformations directly. Invariance of the Lagrangian would constrain the
internal values of the different particle fields to appropriately march in step. This is a
true statement, but I don’t think it is explanatory. For the same could of course be said
about general covariance in general relativity. There, it is the geometric
interpretation that underpins the universal coupling of all of the fields to a single
spacetime geometry. But this universality could fail; for instance, if “bi-metric”
Lagrangians for gravity were adopted, we could have more than one Levi-Civita
connection, which could dictate parallel transport differently for different fields.
Reversing the explanatory arrow, the fact that such bi-metric theories have little
empirical support can be explained by the more parsimonious, familiar geometric
interpretation of general relativity. Similarly, my argument here shows that the most
parsimonious explanation for the current form of the standard model (without the
analogous “bi-metrics”) is that it concerns an internal structured space, isomorphic
to C3 × C2 × C1.

The third objection is very similar in spirit to the second one, but it plays out one
level lower in the hierarchy of mathematical structures. Whereas the second was
about the basic geometric objects describing parallel transport, the third concerns the
underpinning spaces in which the fields in question live. For the interior complex
spaces I have presented are not analogous to tangent spaces with Lorentzian inner
product in all relevant senses: there is a privilege afforded to the tangent space which
isn’t similarly afforded to complex internal spaces, since each element of the tangent
space is identified with an infinitesimal path through the base manifold; the tangent
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space is “soldered” onto spacetime. Thus, the particular vector bundle E has to be
postulated and, we must assume, shared by interacting fields.14 Nonetheless, I
maintain that the explanation afforded here distinguishes itself by putting structure,
rather than symmetry, first. In contrast, as alluded to in the passage from Jacobs
(2023) quoted in section 1, the standard principal fiber bundle formalism posits both
the symmetry group G and the vector bundles, and demands their compatibility,
which goes unexplained.15

Fourth, my description of the SM here was not complete. The attentive reader will
have noticed a glaring omission: the Higgs particle is nowhere to be found in table 1.
There are, at bottom, two reasons for this omission. The first is that the Higgs would
not fit in table 1: it is a scalar field onM, not a spin-1/2 fermion, and so does not fit the
required (but implicit) tensor product structure. The second, more relevant, reason is
that the Higgs and spontaneous symmetry breaking (SSB) make things rather more
complicated, with added non-gauge interactions between the Higgs and other particles
through Yukawa couplings. It is mostly differences in these couplings that distinguish
the three generations of the SM. The up, charm, and top quarks have the same electric
charge, along with the same weak and strong interactions—they primarily differ in
their mass, which comes from the Higgs field. The same thing holds for the down,
strange, and bottom quarks, along with the electron, muon, and tau leptons. And yet
there is a single generation of bosons, meaning that they are all parallel transported
by the same connections. The striking similarity and apparent redundancy of the
three generations is one of the great mysteries of the SM, even within the standard
approach. In order to address this issue in this formalism, one would need to better
understand gauge-invariant construals of the Higgs mechanism and Yukawa
couplings (see, e.g., Struyve (2011) and Berghofer et al. (2023, chapter 5)) in terms
of invariant geometric structures along the lines that I have proposed here. I leave a
full treatment of Yukawa couplings, the Higgs, and SSB for further work.

Here is the fifth possible objection, about applications beyond the SM: The
interpretation of the SM that I have proposed here was very straightforward because
different non-neutral charges appear only in the C1 sector.16 In that one-dimensional
sector, the different charges arise from tensor products (by multi-linearity) at no
additional ontological price, since these products imply no additional degrees of
freedom for the particles in question. So a worry might emerge that we could not
account for arbitrarily different charges for the other forces, and that the scope of the

14 There is a second distinction due to soldering. We could still act on E with a fibre-wise linear
isomorphism, with a corresponding action on the matter fields and connection forms. This is the global,
or active, view of gauge transformations, on a par with the active view of smooth diffeomorphisms on a
spacetime manifold. Thus, in the same way that tensors over spacetime are not invariant under active
diffeomorphisms, here the gauge fields are not invariant under active linear isomorphisms. The
difference between the spacetime and the gauge case is again solely due to soldering: we cannot act with
a linear isomorphism over the tangent spaces without moving the spacetime points as well.

15 See Jacobs (2021, chapter 4.1), and references therein, for a defense of the advantages of structure-
first explanations of symmetry.

16 In the higher-dimensional C2 and C3, corresponding to SU 2� � and SU 3� �, non-neutral charged
matter fields of the SM appear only in the (anti-)fundamental representation, which allowed my
straightforward interpretation as vectors in the internal (dual) vector space.

Philosophy of Science 11

https://doi.org/10.1017/psa.2024.49 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2024.49


geometric interpretation is narrower than the scope of the standard interpretation in
terms of principal fiber bundles and their associated bundles.

However, at least for SU n� �, the geometric interpretation pursued here can recover
all the different representations (representing different kinds of particles) by using
tensor products and the internal geometric structures of the fibers Cn

—see, e.g.,
Coleman (1965) and Zee (2016, chapter IV.4). Indeed, we saw one such construction for
the gauge boson, that lives in the adjoint representation, in equation (2.4). That
representation corresponds to a traceless tensor product between an internal space
and its adjoint. And although for n > 1 the number of degrees of freedom of such
internal tensor fields is different for different valences, this is as it should be: the
number of degrees of freedom of sections of tensor fields of valence j; k

� �
depends on j

and k even for spacetime, after all. However, I believe that my interpretation might
fail, or would at least become less natural, for some of the exceptional Lie groups,
whose geometric interpretation is much more involved (cf. Adams, 1996). I also leave
this for further study.

3 Conclusions and outlook
In particle physics, fundamental forces are uniquely associated to structure groups. I
have argued here that those structure groups merely reflect the geometric structure
of vector spaces that are internal along spacetime. Gauge invariance is then described
as an ontological commitment to this structure.

The standard model cleanly illustrates this idea. In just the same way that a
Lorentzian inner product on the tangent bundle TM leads directly to the local
symmetry group SO 3; 1� �, the geometric structure of the internal spaces in which the
fundamental particles take their values—C3 × C2 × C1 endowed with an inner
product and orientation—leads directly to the familiar local symmetry group
SU 3� � × SU 2� � × U 1� � representing the fundamental forces. Any particle field that
interacts with a fundamental force has components in the corresponding internal
space; as we move from one point of spacetime to another, the standard of constancy
for that internal space will dictate the parallel transport of those components.

Thus, I conclude that gauge theory as applied to physics is geometrical in a very
strong sense, but its geometry is that of internal vector spaces, not of principal fiber
bundles. In light of this conclusion, one could replace Weatherall’s (2016, p. 2401)
metaphor, that “[p]rincipal bundles are auxiliary [ : : : ] in the sense in which a coach is
auxiliary to the players on the field”17 with another metaphor, drawn not from sports
but from music. Just as all agree that, in their public performances, after arduous
preparation, a top-quality orchestra such as the Vienna or Berlin Philharmonic hardly
needs the conductor, who is by then almost an epiphenomenon, so also in gauge
theories, the vector bundles play all the music and the principal fibre bundle is almost
an epiphenomenon.18

17 Because, as he says, “vector bundles represent possible local states of matter; principal bundles
coordinate between these vector bundles.”

18 There is a close analog here to the debate between the dynamical and the geometric
views on Lorentz invariance; cf. H. Brown (2006) for an extended defense of the dynamical approach,

and H. R. Brown and Read (2022) for a recent survey. Roughly, that debate focuses on an order of
explanation: Are dynamical laws (locally) Lorentz invariant because they at most survey a geometric
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Indeed, the new viewpoint achieved in this paper opens up a novel interpretative
project for gauge theory as a whole.

To close, here I showed that the geometric interpretation is available for gauge
theory as it appears in the (minimal) SM without the Higgs (and thus applying only to
one generation of particles). Can it be extended to other applications of gauge theory?
Not only to encompass the Higgs and right-handed neutrinos, but also supersymme-
try and Chern–Simons theories? What about exceptional Lie groups, whose geometric
interpretation is much more daunting? Those are questions for another day.
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A. A primer on fiber bundles

A.1. Vector, principal, and associated fiber bundles
Definition 1 (Vector bundle) A vector bundle E;M;V� � consists of a smooth manifold E
that admits the action of a surjective projection πE : E ! M so that any point of M has a
neighborhood, U � M, such that, for all proper subsets of U, E is locally of the form

landscape that is Lorentz invariant, or is such a geometry just a convenient way to codify Lorentz-
invariant dynamical laws? Transposing that debate to gauge theory: Since thus far it lacked a
comprehensive geometric framework that was on a par with its relativistic cousin, gauge theory might
have been more favorable to the dynamical view of symmetries. Now gauge theory finds a natural home
within (at least a very close analog of!) the geometric view. And, on the same grain, if either the Higgs
mechanism or future developments of the SM cannot be incorporated into the geometric framework, this
would count in favor of the dynamical approach.
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π�1 U� � ’ U × V, where V is a vector space (e.g., Rk or Ck) which is linearly isomorphic to
π�1 x� �, for any x 2 M.

Note that the isomorphism between π�1 U� � and U × V is not unique, which is why
there is no canonical identification of elements of fibers over different points of
spacetime. Each choice of isomorphism is called a “trivialization” of the bundle.

Definition 2 (A section of E) A section of E is a map κ : M ! E such that πE  κ � IdM.
We denote the space of smooth sections by κ 2 Γ E� �.

Definition 3 (Principal fiber bundle) P;M; G� � consists of a smooth manifold P that
admits a smooth free action of a (path-connected, semi-simple) Lie group, G, That is, there is a
map G × P ! P with g; p

� � 7!g � p for some left action � such that, for each p 2 P, the
isotropy group is the identity (i.e., Gp :� fg 2 Gjg � p � pg � ef g). P has a canonical,
differentiable, surjective map, called a projection, under the equivalence relation p � g � p,
such that π : P ! P=G ’ M, where here ’ stands for a diffeomorphism.

It follows from the definition that π�1 x� � � G � p� �
for π p

� � � x. Thus there is a
diffeomorphism between G and π�1 x� �, fixed by a choice of p 2 π�1 x� �. It also follows
(more subtly) from the definition that local sections of P exist. Similarly to a section of
E, a local section of P over U � M is a map, σ : U ! P, such that π  σ � IdU . Unlike
sections of vector bundles, sections of principal bundles are generally only local.

Definition 4 (Associated vector bundle) A vector bundle over M with typical fiber V is
associated to P with structure group G when

P × ρV � P × V= �; where p; v
� � � gp; ρ g�1

� �
v

� �
; (A.1)

where ρ : G ! GL V� � is a representation of G on V.
Given any vector bundle E;M;V� �, the bundle of frames for E, called L E� �, is itself a

principal fiber bundle L E� �;M; GL V� �� �; here, elements of π�1 x� � are linear frames of
Ex, and G ’ GL F� � acts via ρ on the typical fibers. By construction, E ’ L E� � × ρV. If V
has more than just the structure of a linear vector space (e.g., if it is endowed with an
inner product), then we have a bundle of admissible frames, e.g., orthonormal frames.
This is also a principal fiber bundle, L0 E� �;M; G� �, whose structure group is a proper
subgroup of the general linear group, G � GL V� �, taken to be the group that preserves
the structure of V.

A.2 Connections and parallel transport
Given the tangent bundle to a principal fiber bundle TP, the vertical linear subspace at
a given point Vp � TpP is the canonical subspace tangent to the orbits of the group,
i.e., Vp � Tp π�1 x� �� �. Thus, the group action on P gives a canonical linear
isomorphism between the vertical subspace at a point p and the Lie algebra,
#p : g ! Vp � TpP. A vertical projection V̂ on TP is a linear operator V̂ : TP ! TP
such that, for every p 2 P,

V̂p  V̂p � V̂p ; Im V̂p

� � � Vp: (A.2)

The kernel of this projection defines a horizontal distribution of linear subspaces,
H � TP, such that, for each p,

Hp � Vp � TpP; Hg�p � g�Hp (A.3)
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for g� : TP ! TP the induced (push-forward) map of the diffeomorphism given by
g : P ! P; p 7!g � p. An Ehresmann connection is sometimes taken to be simply the
vertical projector, and sometimes taken to be the Lie algebra–valued map resulting
from composing the vertical projection with the canonical isomorphism between
vertical spaces and the Lie algebra,

ω :� #�1  V̂: (A.4)

A horizontal lift γh through p 2 P of a curve in M through π p
� � � x 2 M is the unique

curve through p whose tangent is everywhere horizontal and such that π γh
� � � γ.

Taking P � L E� �, we interpret the horizontal lift of a curve as the parallel transport of
a frame at x along γ. Thus, one defines the covariant derivative of a section of E as the
rate of change of the section’s components in this basis. That is, for γ 0 2 TxM,

Dγ 0κ x� � :� γh 0� �; d
dt
jt�0vκ γh t� �� �� �

; (A.5)

where vκ p
� �

are the components of κ π p
� �� �

in the basis p, and d
dt

��
t�0vκ acts component

by component.
We can also describe covariant derivatives directly in terms of a vector bundle.

Given a vector bundle E;M;V� �, a covariant derivative D is an operator

D : Γ E� � ! Γ T�M 	 E� � (A.6)

such that the product rule

D f κ� � � df 	 κ� fDκ (A.7)

is satisfied for all smooth, real- (or complex-)valued functions f 2 Γ M� �. Call C E� � the
space of covariant derivatives for E. Now let the space of connections over E be
defined as

Δ E� � :� Γ T�M 	 End E� �� �; (A.8)

where End E� � are the linear, fiber-preserving endomorphisms of E, isomorphic to
Γ E� 	 E� �. Given anyDo;D 2 C E� �, it is possible to show that there exists a ωD 2 Δ E� �
such that Do � D � ωD (here, I will abuse notation and use the same ω used for an
Ehresmann connection on P for a connection on E). Therefore, the map

Δ E� � ! C E� �
ω 7!Do � ω (A.9)

is a bijection, for any choice of Do; that is, the space of covariant derivatives is an
affine space over the vector space of connections. This is why, in any trivialization of
E, we can take Do ! d, and take connections to parametrize the space of covariant
derivatives; it is why the covariant derivatives are described as vector bosons: 1-forms
valued on End E� �.

If E is endowed with further structure, say, an inner product, I will require the
connection to preserve that structure, so that parallel transport is well-defined within
the bundle. This preservation is guaranteed if we characterize covariant derivatives
via the principal fiber bundle of admissible frames as described above.

Given a covariant derivative (A.7) and a curve γ 2 such that γ 0� � � x, where E is
the vector bundle and Ex is the fiber over x 2 M, we define the parallel transport along
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γ as a unique linear isomorphism

τγ t� � : Ex ! Eγ t� � (A.10)

such that, given any Xx 2 Ex,

Dγ 0 τγ t� � Xx� �� � � 0; (A.11)

where τγ t� � Xx� � 2 Γ Ejγ
� �

, or γ; γ 0 : 0; 1
 � ! M, with γ 0� � � γ0 0� � and
γ 1� � � γ 0 1� � � y:

g � τγ � τγ0; !g 2 End Ey
� �

(A.12)

If the covariant derivative preserves the structure on the typical fiber (so would
correspond to an Ehresmann connection on the bundle of admissible frames, as
described below), then in (A.12) we have g 2 Aut Ey

� � � End Ey
� �

, where Aut Ey
� �

is the
group of linear automorphisms that are not only linear (so not only in End Ey

� �
) but

that preserve the added structure on Ey.
Alternatively, by the composition properties of parallel transport, we can see

parallel transport around a closed curve starting at x 2 M as an element g 2 Aut Ex� �.
If we take all the closed curves, this generates a subgroup of Aut Ex� � called Hol x� � D� �.
It can be shown that, on a simply connected region, the holonomy depends on x only
up to conjugation by a group element. Thus, it is customary to refer to the path-
independentHol D� � as the the holonomy groupHol D� �. It can also be shown that, given
a connection D that is compatible with the typical fiber structure on V, one can find a
principal bundle P;M; G� �, with a connection ω, such that the holonomy group is
isomorphic (as a G-torsor) to the structure group G, and E is an associated bundle to P
with D being the induced connection from ω (cf. Michor, 2008, Theorem 17.11).

To relate a covariant derivative given in (A.7) explicitly to the definition in (A.5),
take a local section σ for L E� �, call it eif g, and represent the covariant derivative
directly in terms of this frame. A linear transformation of Ex is an element of E�x 	 Ex,
and we can describe the extent to which the chosen basis is non-parallel along a
certain direction by a 1-form valued on E	 E�, which we write as

ωσ � ωσ j
i 	 ei 	 ej; (A.13)

where ω
j
i 2 Γ T�U� � are 1-forms on the space of vectors of M. Thus, for X 2 TxM� �,

DXej � ωσ i
j X� �ei: (A.14)

Now, for some section of the real (or complex) vector bundle κ 2 Γ E� �, we locally
write κ � κiei, and the covariant derivative of κ becomes:

Dκ � dκj 	 ej � κiωσ j
i 	 ej: (A.15)

Of course, under a change of frame, ωσ given in (A.1.8) will transform in the familiar,
inhomogeneous form (see (A.17) below). This change of frame gives a passive
interpretation of gauge transformations. But we can formulate the corresponding
active interpretation in terms of Δ E� � by considering two fibre-wise linearly
isomorphic vector bundles, E; E0, over M.

Two connections in two linearly isomorphic vector bundles are equivalent if they
are related by conjugation by the linear isomorphism (here a diffeomorphism
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f : E ! E0 such that πE  f � π0, where f takes π�1
E x� � ! π�1

E0 x� � by a linear
isomorphism). This relation guarantees that the following diagram commutes (for all
X 2 Γ TM� �):

Γ E� � !DX
Γ E� �

f # # f

Γ E0� � !̃
Dx

Γ E0� �

Thus, we can represent the connection D under a bundle isomorphism, obtaining a
new connection

D̃X s� � � fDX f �1s� � ) D̃X � fDXf �1 (A.16)

or, equivalently, fDX � D̃Xf . And of course, if D is related to ω and D̃ is related to ω̃

then the relationship between ω and ω̃ is the familiar inhomogeneous one, as I will
now show.

Over π�1
E U� � � π�1

E0 U� �, the domain of a trivialization, we can set D̃o � d, obtaining
fDX � D̃Xf . For any fixed choice of frame of E and E0,

fDXei � fωk
i X� �ek � ωk

i X� �f jkej � ωl
i X� �f kl

� �
ek;

D̃X fei� � � D̃X f ji e
	 


� df ki � f ji ω̃
k
j X� �

	 

ek;

∴ df ki � f ji ω̃
k
j X� � � ωl

i X� �f kl ;
valid for all X 2 Γ TMjU

� �
. We then obtain

ω̃ � df� �f �1 � fωf �1: (A.17)
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