
Natural Language Engineering (2023), 29, pp. 316–336
doi:10.1017/S135132492200002X

ARTICLE

An empirical study of cyclical learning rate on neural
machine translation
Weixuan Wang, Choon Meng Lee, Jianfeng Liu, Talha Colakoglu andWei Peng∗

Artificial Intelligence Application Research Center, Huawei Technologies, Co., Ltd., Shenzhen, People’s Republic of China
∗Corresponding author. E-mail: peng.wei1@huawei.com

(Received 17 September 2020; revised 8 November 2021; accepted 8 November 2021; first published online 9 February 2022)

Abstract
In training deep learning networks, the optimizer and related learning rate are often used without much
thought or with minimal tuning, even though it is crucial in ensuring a fast convergence to a good quality
minimum of the loss function that can also generalize well on the test dataset. Drawing inspiration from
the successful application of cyclical learning rate policy to computer vision tasks, we explore how cyclical
learning rate can be applied to train transformer-based neural networks for neural machine translation.
From our carefully designed experiments, we show that the choice of optimizers and the associated cyclical
learning rate policy can have a significant impact on the performance. In addition, we establish guidelines
when applying cyclical learning rates to neural machine translation tasks.

Keywords: Neural machine translation; Cyclical learning rate; Optimizer; Adam; Batch size

1. Introduction
There have been many interests in deep learning optimizer research recently (Kingma and Ba
2014; Reddi, Kale, and Kumar 2018; Luo et al. 2019; Zhang et al. 2019; Liu et al. 2019). These works
attempt to answer the question: what is the best step size to use in each step of the gradient descent?
With the first-order gradient descent being the de facto standard in deep learning optimization,
the question of the optimal step size or learning rate in each step of the gradient descent arises
naturally. The difficulty in choosing a good learning rate can be better understood by considering
the two extremes: (1) when the learning rate is too small, training takes a long time; (2) while
overly large learning rate may cause training to diverge instead of converging to a satisfactory
solution.

The two main classes of optimizers commonly used in deep learning are the momentum
based Stochastic Gradient Descent (SGD) (Bottou 2010) and adaptive momentum-based meth-
ods (Duchi, Hazan, and Singer 2010; Kingma and Ba 2014; Reddi et al. 2018; Luo et al. 2019; Liu
et al. 2019). The difference between the two lies in how the newly computed gradient is updated.
In SGD with momentum, the new gradient is updated as a convex combination of the current
gradient and the exponentially averaged previous gradients. For the adaptive case, the current
gradient is further weighted by a term involving the sum of squares of the previous gradients. For
a more detailed description and convergence analysis, please refer to Reddi et al. (2018).

SGDmaintains a fixed learning rate for each step gradient. The frequent updates in the training
process produce high variance parameters, causing the objective function to fluctuate with differ-
ent intensity. This fluctuationmay enable SGD to find a new and potentially better local minimum
in non-convex optimization problems. However, SGD suffers in loss surfaces with sharp minima

C© The Author(s), 2022. Published by Cambridge University Press.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S135132492200002X&domain=pdf
https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 317

due to frequent overshooting. The SGD method can diverge or converge incredibly slowly if its
learning rate is set inappropriately (Ruder 2016).

With adaptive learning rate, Adam is well-suited for optimization problems with noisy gradi-
ents. Adam, with a decaying schedule, tends to avoid overshooting problems due to loss function
fluctuation. The experiments conducted on the MNIST and CIFAR10 dataset showed that Adam
has the fastest convergence property, compared to other optimizers, in particular SGD with
Nesterov momentum (Kingma and Ba 2014). Adam has been popular with the deep learning
community due to the speed of convergence. However, Adabound (Luo et al. 2019), a proposed
improvement to Adam by clipping the gradient range, showed in the experiments that given
enough training epochs, SGD can converge to a better quality solution than Adam. To quote
from the future work of Adabound, “why SGD usually performs well across diverse applications
of machine learning remains uncertain.” The choice of optimizers is by no means straight forward
or cut and dry.

Another critical aspect of training a deep learning model is the batch size. Once again, while
the batch size was previously regarded as a hyperparameter, recent studies such as Keskar et al.
(2016) have shed light on the role of batch size when it comes to generalization, that is, how the
trained model performs on the test dataset. Research works (Keskar et al. 2016; Hochreiter and
Schmidhuber 1997a) explored the idea of sharp versus flat minima when it comes to generaliza-
tion. From experimental results on convolutional networks, for example, AlexNet (Krizhevsky,
Sutskever, and Hinton 2017), VggNet (Simonyan and Zisserman 2014), Keskar et al. (2016)
demonstrated that overly large batch size tends to lead to sharp minima while sufficiently small
batch size brings about flat minima. Dinh et al. (2017), however, argues that sharp minima can
also generalize well in deep networks, provided that the notion of sharpness is taken in context.
The computer vision (CV) community tends to advocate training schedules with large batch sizes
(Smith et al. 2018). There is a lack of empirical study investigating interaction effects between
learning rate scheduling and batch size. Increasing the learning rate and scaling the batch size
Smith et al. (2018) achieves good performance with fewer parameter updates, but it has not been
proven effective when applied to neural machine translation (NMT).

While the aforementioned works have helped to contribute to our understanding of the nature
of the various optimizers, they are mainly focused on computer vision (CV)-related deep learning
networks and datasets. In contrast, the rich body of works in NMT and other natural language
processing (NLP)-related tasks have been largely left untouched. Recall that CV deep learning
networks andNMT deep learning networks are very different. For instance, the convolutional net-
work that forms the basis of many successful CV deep learning networks is translation invariant,
for example, in a face recognition network, the convolutional filters produce the same response
even when the same face is shifted or translated. On the other hand, recurrent neural networks
(RNN) (Hochreiter and Schmidhuber 1997b; Chung et al. 2014) and transformer-based deep
learning networks (Vaswani et al. 2017; Devlin et al. 2019) for NMT are specifically looking pat-
terns in sequences. It is often assumed that using the mainstream optimizer (Adam) with the
default settings is good enough. However, our empirical study demonstrated that there is signif-
icant room for improvement. While there is some awareness in the NMT and NLP community
of the cyclical learning rate (CLR), there is still a lack of understanding of the effect of applying
CLR to the NMT task. In addition, how the combined effect of learning rate policies and batch
size affect the NMT loss is also largely unexplored.

1.1 The contributions
The contributions of this study are to:

• Explore the use of cyclical learning rates for NMT in our empirical study and provide
detailed practical insights into the application of CLR.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

318 W. Wang et al.

• Disclose the interaction of learning rate and batch size on the loss in NMT. From our
experiments, we show how the use of CLR enables NMT to work with smaller batch sizes
while achieving comparable validation loss compared to large batch sizes. This empirical
finding will have implications for NMT training in resource-constrained scenarios.

• Establish an explanation via visualizing the loss error surface, optimizer trajectory for the
NMT training process. At the same time, the rationale behind the performance leap when
applying CLR to NMT is unveiled.a

2. Related works
Our work is mainly related to the CLR study (Smith 2017), which addresses the learning rate issue
by having repeated cycles of linearly increasing and decreasing learning rates, constituting the
triangle policy for each cycle. CLR draws its inspiration from curriculum learning (Bengio et al.
2009) and simulated annealing (Aarts and Korst 2003). Bengio et al. (2009) clarify when and why a
curriculum or “starting small” strategy can benefit machine learning algorithms. They contribute
to this question by showing several cases involving vision and language tasks in which very simple
multi-stage curriculum strategies give rise to improved generalization and faster convergence.
Smith (2017) demonstrated the effectiveness of CLR on standard computer vision (CV) datasets
CIFAR-10 and CIFAR-100, using well-established CV architecture such as ResNet (He et al. 2015)
and DenseNet (Huang, Liu, and Weinberger 2016).

One interesting aspect of CLR is the need to balance regularizations such as weight decay,
dropout, and batch size, as pointed out in Smith and Topin (2017). The experiments verified that
various regularizations need to be toned down when using CLR to achieve good results. In par-
ticular, the generalization results using the small batch size from the above-mentioned studies
no longer hold for CLR. This is interesting because the use of CLR allows training to be accel-
erated by using a larger batch size without the sharp minima generalization concern. A related
work (McCandlish et al. 2018) sets a theoretical upper limit on the speed up in training time with
increasing batch size. There is no uplift in training time beyond this theoretical upper limit, even
with increased batch size.

Li et al. (2018) proposes various visualization methods for understanding the loss landscape
defined by the loss functions and how the various deep learning architectures affect the land-
scape. The proposed visualization techniques allow a depiction of the optimization trajectory,
which is particularly helpful in understanding the behavior of the various optimizers and how
they eventually reach their local minima.

NMT is based on an end-to-end framework without the need to handle SMT (statistical
machine translation)-specific problems like word alignments, translation rules, and complicated
decoding methods. Bahdanau, Cho, and Bengio (2015) proposed a sequence-to-sequence NMT
model based on RNN, leading to significant improvements in translation quality. The words of
the input sentences from a source language are first encoded into vectors of intermediate rep-
resentation and passed to the decoder. The context vector is derived by applying an attention
mechanism that measures the degree of alignment between the source sentences and target sen-
tences. And the decoder converts the context vector to the target translated word based on the
previously translated words. However, RNN suffers from seriality resulting in long training time
for the NMT model. Vaswani et al. (2017) proposed a more efficient transformer architecture.
Both encoders and decoders of a transformer contain self-attention and pointwise fully connected
layers without relying on an RNN architecture. Decoder layers have another sublayer that com-
putes attention values over the encoder’s output, enabling learning alignment patterns between
the source and the target sentences.

aThe codes are available at https://github.com/Vicky-Wil/NLE_CLR_NMT.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://github.com/Vicky-Wil/NLE_CLR_NMT
https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 319

In order to get better performance for NMT, most of the existing works mainly focus on mod-
ifying the framework of the NMT model and designing better attention mechanisms. There are
few research works on the optimization methods of model parameters. Wiseman and Rush (2016)
propose a model using a beam search training scheme to get sequence-level scores. This struc-
tured approach avoids classical biases associated with local training and unifies the training loss
with the test-time usage while preserving the proven model architecture of seq2seq (sequence-
to-sequence) and its efficient training approach. Hoang, Haffari, and Cohn (2017) convert the
decoding from a discrete optimization problem to a continuous optimization problem. The sig-
nificant difference between our work and these studies lies in that we focus on improving the
NMT training process from another perspective. As far as we know, CLR has not been applied
to NMT. The methodology, best practices, and experiments are mainly based on results from CV
architecture and datasets. It is by no means apparent or straightforward that the same approach
can be directly carried over to NMT. Therefore, we explore the use of cyclical learning rates policy
for NMT.

3. Neural machine translation
The NMT models are implemented using an encoder-decoder framework with attention mecha-
nisms to learn a mapping between two sequences of symbolic representations. Given a sentence
pair (X, Y), X is the source sentence and Y is the target sentence, where X= (x1, x2, ..., xm) and
Y = (y1, y2, ..., yn) are the words in the sentence pair. An NMT model contains two parts, an
encoder and d decoder, to decode a target sequence given the encoded source sequence proba-
bilistically. An encoder transforms the source sentence X into the context vectors. And a decoder
generates target translation Y from the context vectors by maximizing the probability of p(yj|y<j).
During the training process, an NMT models the translation probability as:

p(y|x)=
n∏
j=1

p
(
yj|y<j, x, θ

)
(1)

where θ is the model parameters and y<j = (y1, y2, ..., yj−1) is the partial translation. The genera-
tion conditional probability of yj is produced by the decoder, representing the final output of the
decoder.

Given the sentence-aligned bilingual training data D= {< X(k), Y(k) >}Kk=1, the cost function
can be defined as the following conditional log-likelihood:

L(θ ,D)= 1
K

K∑
k=1

n∑
j=1

log
(
p

(
y(k)j |y(k)<j , X

(k), θ
))

(2)

in which the corresponding gradient ∇L(θ ,D) can be calculated as the sum of the gradients of the
sentences in minibatch B:

∇L(θ ,D)=
B∑

k=1
∇L

(
θ ,

(
X(k), Y(k)

))
(3)

The gradients of each sentence in a parallel corpus can be calculated as a sum of gradients per step:

∇L
(
θ ,

(
X(k), Y(k)

))
=

n∑
j=1
∇log

(
p

(
y(k)j |y(k)<j , X

(k), θ
))

(4)

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

320 W. Wang et al.

We can then use maximum likelihood estimation with SGD or Adam optimization strategy and
backpropagation to get the optimal parameters. For SGD, the calculation with learning rate η is:

θ← θ − η×�L(θ ,D) (5)

and the final parameter optimization method can be defined as follows:

θ← θ − η×
B∑

k=1

n∑
j=1
�log

(
p

(
y(k)j |y(k)<j , X

(k), θ
)

(6)

For Adam, the calculation with learning rate η is as follows, β1 is set to 0.9 representing the
weighted average, β2 is set to 0.99 that is the RMSprop term:

g = 1
|B|

∑
k∈B
∇L

(
θ ,

(
X(k), Y(k)

))
(7)

m← β1m+ (1− β1) g (8)

v← β2V + (1− β2) g2 (9)

m̂← m
1− β1

(10)

v̂← v
1− β2

(11)

θ← θ − η× m̂√̂
v+ ε

(12)

4. The proposed approach
Our main approach in the NMT-based learning rate policy is based on CLR’s triangular learning
rate policy. Figure 1 depicts the learning rate decay policy, which is the way the learning rate
changes over training epochs. For various optimizers, the learning rate is usually decayed to a small
value to ensure convergence. The commonly used decay schemes include piece-wise constant step
function, inverse (reciprocal) square root. This study adopts two learning rate decay policies:

• Fixed decay (shrinking) policy where the max learning rate is halved after each learning
rate cycle, and

• No decay. This is unusual because for both SGD and adaptive momentum optimizers, a
decay policy is required to ensure convergence.

Our adopted learning rate decay policy is interesting because experiments in Smith (2017)
showed that using a decay rate is detrimental to the resultant accuracy.

The CLR decay policy should be contrasted with the standard inverse square root policy (INV)
that is commonly used in deep learning platforms, for example, in fairseq (Ott et al. 2019). The
INV typically starts with a warm-up phase where the learning rate is linearly increased to a max-
imum value. The learning rate is decayed as the reciprocal of the square root of the number of
epochs from the above-mentioned maximum value.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 321

Figure 1. The learning rate decay used in our experiments.

Given the base learning rate and the max learning rate, the learning rate update is as follows:

c= 1+ i
2× s

(13)

x=
∣∣∣∣ is − 2× c+ 1

∣∣∣∣ (14)

η= ηbase + (ηmax − ηbase)×max (0, 1− x) (15)

where i is the current number of iterations of training, s is the stepsize that denotes half the period
or cycle length, c denotes the current cycle, ηmax and ηbase represent the max learning rate η and
the base learning rate, respectively. This policy varies the learning rate linearly between the min-
imum ηbase and the maximum ηmax. The no decay policy calculation is presented above. For the
fixed decay policy, the max learning rate is no longer a constant. ηmax is halved with the decay rate
d each learning rate cycle:

ηmax = ηmax × d (16)

The learning rate is subsequently applied in the gradient calculation to update the parameters
of NMT. Compared with the traditional NMT backpropagation process, CLR varies the learn-
ing rate within a range of values rather than adopting a stepwise fixed or exponentially decreasing
value. A short run of only a few epochs is sufficient to estimate the CLR policies’ boundary learning
rates in a range test (Section 4.2). Then, a policy where the learning rate cyclically varies between
these bounds is adequate to obtain near-optimal results, often with fewer iterations. Unlike adap-
tive learning rate methods, this policy is easy to implement and incurs essentially no additional
computational expense.

4.1 CLR-based NMT
Algorithm 1 summarizes the training of the NMT model using CLR. First, we train the NMT
model with the base learning rate ηbase on the range test set for some epoch n1, deriving the

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

322 W. Wang et al.

Algorithm 1 CLR-based NMT

maximum learning rate ηmax. The parameters of NMT model are subsequently updated using
the ηmax and ηbase based CLR. If the current iteration i is an integer m that is a multiple of the
cycle length C which is the twice of step size, ηmax will be by multiplying with the decay rate d.

4.2 Learning rate range test
For CLR, some pertinent parameters need to be determined: the base learning rate (ηbase), the
maximum learning rate (ηmax), and cycle lengthC. As suggested in CLR, we perform the range test
to set the base/maximum learning rate while the cycle number is some multiples of the number
of epochs. The range test is designed to select the base/maximum learning rate in CLR. Without
the range test, the base/maximum learning rate in CLR will need to be tuned as hyperparam-
eters which is difficult and time consuming. The purpose of the learning rate range test is to
search for the largest learning rate without divergence as a large learning rate leads to faster model
convergence than a small learning rate.

In a range test, the network is trained for several epochs with the learning rate linearly increased
from an initial rate. For instance, the range test for the IWSLT2014 (DE2EN) dataset was run for
35 epochs, with the initial learning rate set to some small values, for example, 1e−5 for Adam and
increased linearly over the 35 epochs. Given the range test curve, for example, Figure 2, the base
learning rate (ηbase) is set to the point where the loss starts to decrease while the maximum learn-
ing rate (ηmax) is selected as the point where the loss starts to plateau or to increase. We observe
the qualitative different range test curves for CV and NMT datasets, as we can see from Figures 2
and 3. The CV range test curve looks more well-defined in terms of choosing the maximum learn-
ing rate from the point where the curve starts to be ragged. For NMT, the range curve exhibits a
smoother, more plateau characteristic. As shown in Figure 2, the base learning rate is selected as
the initial learning rate for the range test, and the initial value should be a small value to ensure
model convergence otherwise searching for a maximum learning rate to speed up training con-
vergence is meaningless. The maximum learning rate is the point where the loss stagnates. For
the step size, following the guideline given in Smith (2017) to select the step size between 2 and

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 323

Figure 2. Range test curve for the IWSLT2014-de-en dataset, showing the chosen base and maximum learning rate for the
triangular policy.

Figure 3. Range test curve for the CV CIFAR-100 dataset.

10 times the number of iterations in an epoch and set the step size to 4.5 epochs. And we also
perform the range test of SGD, as shown in Figure A1 in Appendix A.

An intuitive understanding of why CLR methods work comes from considering the loss func-
tion topology in NMT model. The difficulty in minimizing the loss arises from saddle points
rather than poor local minima. Saddle points have small gradients that slow the learning pro-
cess. However, increasing the learning rate allows more rapid traversal of saddle point plateaus.
A more practical reason as to why CLR works is that, by following the methods in Section 5, it is
likely the optimal learning rate will be between the bounds and near-optimal learning rates will be
used throughout training.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

324 W. Wang et al.

Table 1. Datasets used for the experiment

Corpus Training Valid. Test Source Vocab. Target Vocab.

IWSLT2014-de-en (DE2EN) 160,239 7283 6750 8844 6628
.. .

IWSLT2014-fr-en (FR2EN) 166,045 4818 4800 8508 7308
.. .

IWSLT2017-de-en (DE2EN) 192,347 4829 4822 13,156 10,108

4.3 Batch size
The other point of interest is how to deal with batch size when using CLR in NMT.While it is well
known in the NMT community that larger batch size improves performance, how CLR impacts
the batch size performance relationship is one of the central themes in our study. Following the
lead in Smith and Topin (2017), we look at how the NMT tasks perform when varying the batch
size on top of the CLR policy. Compared to Smith and Topin (2017), we stretch the batch size
range, going from batch size as small as 256 to as high as 8192. Only through examining the
extreme behaviors can we better understand the effect of batch size superimposed on CLR.

5. Experiments
The purpose of this section is to explore the effects of applying CLR and various batch sizes to
train NMT models in a series of experiments.

5.1 Experiment settings
The experiments are performed on two translation directions (DE → EN and FR → EN) for
IWSLT2014 and IWSLT2017 (Cettolo, Girardi, and Federico 2012).

The data are pre-processed using functions from Moses (Koehn et al. 2007). The punctuation
is normalized into a standard format. After tokenization, byte pair encoding (BPE) (Sennrich,
Haddow, and Birch 2016) is applied to the data to mitigate the adverse effects of out-of-vocabulary
(OOV) rare words. The sentences with a source-target sentence length ratio greater than 1.5 are
removed to reduce potential errors from sentence misalignment. Long sentences with a length
greater than 250 are also removed as a common practice. The split of the datasets produces the
training, validation (valid.), and test sets with the count of sentence pairs and the size of vocabulary
presented in Table 1.

The transformer architecture (Vaswani et al. 2017) from fairseq (Ott et al. 2019)b is used for
all the experiments. The hyperparameters are presented in Table 2. We compared training under
CLR with an inverse square for two popular optimizers used in machine translation tasks, Adam
and SGD. All models are trained using one NVIDIA V100 GPU.

The learning rate boundary of the CLR is selected by the range test (shown in Figure 2). The
base and maximum (max) learning rates adopted in this study are presented in Table 3. Shrink
strategy is applied when examining the effects of CLR in training NMT. The optimizers (Adam
and SGD) are assigned with two options: (1) without shrink (as “nshrink”); (2) with shrink at a
rate of 0.5 (“yshrink”), which means the maximum learning rate for each cycle is reduced at a
decay rate of 0.5.

bhttps://github.com/pytorch/fairseq.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://github.com/pytorch/fairseq
https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 325

Table 2. Hyperparameters for the experiments

Hyperparameters Values

Encoder/Decoder layers 6
.. .

Embedding units 512
.. .

Attention heads 4
.. .

Feed-forward hidden units 1024
.. .

Batch size (default) 4096
.. .

Training epoch (default) 50

Table 3. Learning rate boundary for CLR

Adam SGD

Corpus Max Base Max Base

IWSLT2014-de-en 5e−4 1e−5 6.9 1e−3
.. .

IWSLT2014-fr-en 8e−4 1e−5 – –
.. .

IWSLT2017-de-en 7.6e−4 1e−5 8 1e−3

5.2 Effects of applying CLR to NMT training
A hypothesis we hold is that NMT training under CLR may result in a better local minimum than
that achieved by training with the default learning rate schedule. A comparison experiment is
performed for training NMT models for “IWSLT2014-de-en” corpus using CLR and INV with a
range of initial learning rates on two optimizers (Adam and SGD), respectively. It can be observed
that both Adam and SGD are very sensitive to the initial learning rate under the default INV
schedule before CLR is applied (as shown in Figures 4 and 5). In general, SGD prefers a bigger ini-
tial learning rate when CLR is not applied. The initial learning rate of Adam is more concentrated
towards the central range.

Applying CLR has positive impacts on NMT training for both Adam and SGD. When applied
to SGD, CLR exempts the needs for a big initial learning rate as it enables the optimizer to explore
the local minima better. Shrinking on CLR for SGD is not desirable as a higher learning rate is
required (Figure 5). Furthermore, we observe that applying CLR on SGD with a shrink option
leads to a high convergence error (Figure 6). In this sense, the “nshrink” option is mandatory
for SGD. It is noted that applying CLR to Adam produces consistent improvements regardless
of shrink options (Figure 4). Furthermore, it can be observed that the effects of applying CLR to
Adam are more pronounced than those of SGD, as shown in Figure 6. Similar results are obtained
from our experiments on “IWSLT2017-de-en” and “IWSLT2014-fr-en” corpora (Figures A2 and
A3 in Appendix A). The corresponding BLEU scores are presented in Table 4, in which the above-
mentioned effects of CLR on Adam can also be established. The training takes fewer epochs to
converge to reach a local minimum with better BLEU scores (i.e., bold fonts in Table 4).

5.3 Effects of batch size on CLR
Batch size is regarded as a significant factor influencing deep learning models from the various
CV studies detailed in Section 1. It is well known to CV researchers that a large batch size is often
associated with a poor test accuracy.

The situation is reversed for the case of NMT, as demonstrated in Popel and Bojar (2018), where
the use of a larger batch size generally helps improve training BLEU. Figure 5 in Popel and Bojar

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

326 W. Wang et al.

Figure 4. A comparison study of training NMTmodels on IWSLT2014-de-en using CLR and INV with a range of initial learning
rate on Adam. The learning rate policy “adam_cyc_nshink_5e-4” denotes the optimizer Adam is trained under CLR with the
no shrink option and amaximum learning rate of 5e−4.

Figure 5. A comparison study of training NMTmodels on IWSLT2014-de-en using CLR and INV with a range of initial learning
rates on SGD. The learning rate policy “sgd_cyc_yshink_5e-4” denotes the optimizer SGD that is trained under CLR with the
shrink option and amaximum learning rate of 5e−4.

(2018) illustrates the benefits of large batch sizes, showing steady training BLEU improvement
going from a batch size of 1000–4500, eventually plateauing at a batch size of 6000. In this paper,
Figure 7 shows that the trend of CLR with a larger batch size for NMT training does indeed lead
to better performance. Furthermore, when the batch size reaches a certain value, it is no longer a
critical factor; for example, we observe similar validation losses for the training with batch sizes of
4096 and 8192. The effect of the various learning rate strategies is shown in Figure 8. The various
strategies share similar good performance under large batch sizes, in line with Figure 5 in Popel
and Bojar (2018). Interestingly, as the batch size decreases to batch size as small as 256, the differ-
ence in the various strategies starts to show. Both the triangle and sine with no shrinking strategies

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 327

Table 4. The best BLEU for various learning rate policies when training NMT models on
IWSLT2014-de-en, IWSLT2017-de-en and IWSLT2014-fr-en. The total number of training epochs
for all the experiments is 50. The table is sorted by the best BLEU in descending order

Corpus Learning rate policy Best BLEU Epoch

IWSLT2014-de-en adam_cyc_nshrink_5e-4 32.65 18
. .

adam_cyc_yshrink_5e-4 31.29 18
. .

adam_inv_5e-4 30.88 16
.. .

sgd_inv_30 30.78 42
.. .

adam_inv_3e-4 30.46 34
.. .

sgd_cyc_nshrink_6.9 30.16 45

IWSLT2017-de-en adam_cyc_nshrink_7.6e-4 33.00 18
. .

adam_cyc_yshrink_7.6e-4 31.56 19
. .

sgd_inv_30 30.82 49
.. .

adam_inv_3e-4 30.78 35
.. .

adam_inv_5e-4 30.70 19
.. .

sgd_cyc_nshrink_8 30.40 49
.. .

adam_inv_7.6e-4 28.94 40

IWSLT2014-fr-en adam_cyc_nshrink_8e-4 37.82 17
. .

adam_cyc_yshrink_8e-4 36.91 17
. .

adam_inv_5e-4 36.43 17
.. .

adam_inv_3e-4 36.25 35
.. .

sgd_inv_30 35.51 45
.. .

adam_inv_8e-4 6.20 43

Figure 6. A view of effects of applying CLR to Adam and SGD when training the NMT on IWSLT2014-de-en.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

328 W. Wang et al.

Figure 7. Effects of various batch sizes when training the NMT on IWSLT2014-de-en corpus with CLR.

Figure 8. Effects of various batch sizeswhen training theNMTon IWSLT2014-de-en corpuswith TRI, COS, SINE, and INV under
different learning rates. The validation loss shown in this figure is theminimal validation loss when training eachmodel with
a different batch size and learning rate configuration. The training was run for a fixed number of epochs (50).

show exceptional performance even at a batch size of 256, comparable to using a large batch size
of 4096. Our findings in Figure 8 have a direct bearing on NMT training with constrained GPU
resources, particularly GPU memory. We run the same experiment on one GPU and four GPUs
and show the results in Table A1 (Appendix A). We find out the effect of the large batch size has
a roof effect after extending the experiment to 4096× 4 GPUs. Based on the experimental results,
a batch size of 4096 in a single GPU produces slightly better results than those obtained from the

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 329

batch size of 4096× 4 GPUs. For memory-constrained GPU training, both the Adam triangle and
sine with “nshrink” strategies present themselves as promising learning rate scheduler candidates.

A further experiment is performed to unveil whether the effect of batch size on CLR is sensitive
to the learning rate scheduler. We test four learning rate schedulers, namely the triangular (TRI),
a full-phase cosine (COS),c a sine (SINE), and a standard INV, for batch sizes of 256, 1024, and
4096, respectively, on learning rates of 3e−4 and 5e−4. A clear trend emerges from the results of
this experiment (Figure 8). All four learning rate schedulers can achieve reasonable low validation
loss using a large batch size (4096) given enough training epochs. All three learning rate sched-
ulers from the CLR family outperform INV in this batch size. A TRI learning rate scheduler is
a consistent winner performing well across batch bands. The larger batch size effect afforded by
CLR appears to be immune to learning rates. The larger learning rate (5e−4) is associated with a
higher validation loss at a smaller batch size (256) though. An immediate question that may arise
from Figure 8 is the significant performance difference between the sine and cosine forms. One
possible explanation is that the sine form allows warm-up, whereas the cosine form starts with a
large learning rate before decay. As many previous studies have shown, having a warm-up stage
helps achieve better training results.

6. Further analysis and discussions
An unsuitable maximum learning rate for the triangular policy of CLR-based NMT often leads to
non-convergence. The learning rate range test illustrated in Section 4.2 is further discussed in this
section to unveil the practical details. It is suggested to validate the effect of CLR on a larger scale
dataset. We perform a comparison test on training NMT models using Adam with a TRI and an
INV scheduler on WMT2014-de-en to this end. We also discuss the rationale why CLR works in
this section.

6.1 How to apply CLR to NMT training matters
As mentioned in Section 4.2, the value of the base learning rate is required to be a small value to
guarantee convergence during the training. We believe that setting the minimum learning rate to
be 1e−5 is reasonable. It is a value empirically ensuring convergence when training transformer-
based NMT (note that the observations and analysis are based on IWLST dataset). Training with
a base learning rate of a value of 1e−8 generates an almost identical result to that from 1e−5
(Figure 9). The experiment shows that the training may not be sensitive to selecting the base
learning rate as long as it is a value ensuring convergence.

A range test is performed to identify the maximum learning rates for the triangular policy of
CLR (Figure 2). The experiments show the training is sensitive to the selection of ηmax. As the
range curve for training NMT models is distinctive to that obtained from a typical case of com-
puter vision, it is not clear how to choose the ηmax when applying CLR. A comparison experiment
is performed to try ηmax with different values. It can be observed that the first ηmax (MLR1) is a
preferable option for both SGD and Adam (Figures 10 and 11). Choosing a larger learning rate on
the extreme right end as the triangular policy’s maximum learning rate often leads to the loss not
converging due to gradient divergence. It is better to be more conservative and choose the point
where the loss stagnates as the maximum learning rate for the triangular policy.

The “nshrink” option ismandatory for SGD, but this constraint can be relaxed for Adam. Adam
is sensitive to excessive learning rate, that is, the second ηmax (MLR2). The pairing of CLR with
Adam produces consistent improvements regardless of shrink rate, but such enhancement is not

cThis scheduler uses a full-phase cosine wave. This is different than the one described in Loshchilov and Hutter (2016)
which uses the half cosine wave and warm restarts.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

330 W. Wang et al.

Figure 9. The first ηmax (MLR1) with “nshrink” is a preferable option for SGD when applying CLR to train NMT models on
IWSLT2014-de-en.

Figure 10. Thefirstηmax (MLR1) is a preferable option for AdamwhenapplyingCLR to trainNMTmodels on IWSLT2014-de-en.

Figure 11. Comparison of the base learning rate with values of 1e−5 and 1e−8 for the IWSLT2014-de-en dataset.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 331

Table 5. WMT 2014 DE2EN dataset used for the experiment

Corpus Training Valid. Test Source Vocab. Target Vocab.

WMT2014-de-en (DE2EN) 3,961,179 40,058 3003 43,460 43,460

Table 6. The best BLEU scores for training NMT models on
WMT14-de-en dataset using TRI and INV learning rate schedulers

Learning rate policy Best BLEU Epoch

adam_cyc_yshrink_1e-3 31.43 17
.. .

adam_inv_1e-3 30.95 45

Figure 12. Comparison of the validation loss with a maximum learning rate of 1e−3 for the WMT2014-de-en dataset.

the same for different datasets. This indicates the pre-defined shrink rate (i.e., 0.5) can further be
optimized.

6.2 Validating the effect of CLR on NMT training in a large scale dataset
As shown in Table 5, the WMT2014-de-en data is involved to train NMT models using Adam
with a TRI and an INV learning rate scheduler. We perform a range test and produce a maxi-
mum learning rate (ηmax) of 1e−3 from the initial rate 1e−5. A step size of 4.5 epochs is chosen
to set the TRI learning rate scheduler with a shrink option. The experimental results demonstrate
that the NMT model trained with a TRI learning rate scheduler can reach a lower validation loss
compared to the model with an INV scheduler (Figure 12). The corresponding best BLEU scores
for this comparison study are presented in the Table 6. It can be observed that the NMT model
trained with a TRI learning rate scheduler can produce a higher BLEU score than that using INV
scheduler in a much fewer number of epochs.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

332 W. Wang et al.

(a)

(b)

(c)

0

Figure 13. Loss surface, optimizer trajectory, and learning rates visualization for training NMTmodels on IWSLT2014-de-en.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 333

6.3 Rationale behind applying CLR to NMT training
As pointed out in Dauphin, de Vries, and Bengio (2015), the difficulty in optimizing deep learning
networks is due to saddle points, not local minima. One theoretical perspective of why CLR works
is that the increasing learning rate helps the optimizer to escape from saddle point plateaus (Smith
2017). The other more intuitive reason is that the learning rates covered in CLR are likely to
include the near-optimal learning rate which will be would ideally be used throughout the training
(Smith 2017). This near-optimal learning rate during the cycle may allow training to escape from
a saddle the training is stuck in.

The other benefit that CLR brings is fast convergence. The mental model we have is that of
the training being in the mouth of a near global minimum valley and the near-optimal learning
rate encountered during the cycle allows training to make rapid progress towards the valley bot-
tom. Figures 4 and 5 lend credence to this hypothesis, where we see CLR converging much faster
compared to INV. Leveraging the visualization techniques proposed by Li et al. (2018), we take
a peek at the error surface, optimizer trajectory, and learning rate. The first thing to note is the
smoothness of the error surface. This is perhaps not so surprising given the abundance of skip
connections in transformer-based networks. Referring to Figure 13(c), we see the cyclical learning
rate greatly amplifying Adam’s learning rate in flatter region while nearer the local minimum, the
cyclical learning rate policy does not harm convergence to the local minimum. This is in contrast
to Figure 13(a) and (b), where although the adaptive nature of the learning rate in Adam helps to
move quickly across flatter region, the effect is much less pronounced without the cyclical learn-
ing rate. Figure 13 not only gives credence to the hypothesis that the cyclical learning rate helps to
escape saddle point plateaus but it also demonstrates that the near-optimal learning rate is likely
included in the cyclical learning rate policy.

Some explanation about Figure 13 is in order here. Following Li et al. (2018), we first assemble
the network weight matrix by concatenating columns of network weights at each epoch. We then
perform a principal component analysis and use the first two components for plotting the loss
landscape. Even though all three plots in Figure 13 seem to converge to the local minimum, bear
in mind that this is only for the first two components, with the first two components contribut-
ing to 84.84%, 88.89%, and 89.5% of the variance, respectively. With the first two components
accounting for a large portion of the variance, it is thus reasonable to use Figure 13 as a qualitative
guide.

7. Conclusion
In this paper, we perform an empirical study exploring how cyclical learning rate can be applied to
train transformer-based neural networks for NMT. From the various experiment results, we have
explored the use of CLR and demonstrated the benefits of CLR for transformer-based networks
unequivocally. Not only does CLR help to improve the generalization capability in terms of test
set results but it also allows using smaller batch size for training without adversely affecting the
generalization capability. Instead of just using default optimizers and learning rate policies, we
hope to bring insights to the NMT community on the importance and the way of choosing a
useful optimizer and an associated learning rate policy.

Acknowledgements. We would like to appreciate Peng Yang for his support relating to loss surface visualization.

References
Aarts E.H.L. and Korst J.H.M. (2003). Simulated annealing and boltzmann machines. In Michael A. Arbib (ed), Handbook

of Brain Theory and Neural Networks (2nd ed). Cambridge, Massachusetts: MIT Press, pp. 1039–1044.
Bahdanau D., Cho K. and Bengio Y. (2015). Neural machine translation by jointly learning to align and translate. In Bengio

Y. and LeCun Y. (eds), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7–9, 2015, Conference Track Proceedings.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X

334 W. Wang et al.

Bengio Y., Louradour J., Collobert R. and Weston J. (2009). Curriculum learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14–18, 2009, ACM
International Conference Proceeding Series, vol. 382, pp. 41–48.

Bottou L. (2010). Large-scale machine learning with stochastic gradient descent. In 19th International Conference on
Computational Statistics, COMPSTAT 2010, Paris, France, August 22–27, 2010 - Keynote, Invited and Contributed Papers,
pp. 177–186.

Cettolo M., Girardi C. and Federico M. (2012). Wit 3: Web inventory of transcribed and translated talks. In Proceedings of
the 16th Conference of the European Association for Machine Translation (EAMT), Trento, Italy, pp. 261–268.

Chung J., Gülçehre Ç., Cho K. and Bengio Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence
modeling. ArXiv, abs/1412.3555.

Dauphin Y., de Vries H. and Bengio Y. (2015). Equilibrated adaptive learning rates for non-convex optimization. In
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7–12, 2015, Montreal, Quebec, Canada, pp. 1504–1512.

Devlin J., ChangM.-W., Lee K. and Toutanova K. (2019). Bert: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long
and Short Papers), pp. 4171–4186.

Dinh L., Pascanu R., Bengio S. and Bengio Y. (2017). Sharp minima can generalize for deep nets. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017, Volume 70, pp. 1019–1028.

Duchi J.C., Hazan E. and Singer Y. (2010). Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research 12, 2121–2159.

He K., Zhang X., Ren S. and Sun J. (2015). Deep residual learning for image recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778.

Hoang C.D.V., Haffari G. and Cohn T. (2017). Decoding as continuous optimization in neural machine translation. arXiv
preprint arXiv:1701.02854.

Hochreiter S. and Schmidhuber J. (1997a). Flat minima. Neural Computation 9, 1–42.
Hochreiter S. and Schmidhuber J. (1997b). Long short-term memory. Neural Computation 9, 1735–1780.
Huang G., Liu Z. and Weinberger K.Q. (2016). Densely connected convolutional networks. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269.
Keskar N.S., Mudigere D., Nocedal J., Smelyanskiy M. and Tang P.T.P. (2016). On large-batch training for deep learning:

Generalization gap and sharp minima. ArXiv, abs/1609.04836.
Kingma D.P. and Ba J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.
Koehn P., Hoang H., Birch A., Callison-Burch C., Federico M., Bertoldi N., Cowan B., Shen W., Moran C., Zens R.,

Dyer C., Bojar O., Constantin A. andHerbst E. (2007). Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of
the Demo and Poster Sessions, Prague, Czech Republic. Association for Computational Linguistics, pp. 177–180.

Krizhevsky A., Sutskever I. and Hinton G.E. (2017). Imagenet classification with deep convolutional neural networks.
Communications of the ACM 60, 84–90.

Li H., Xu Z., Taylor G. and Goldstein T. (2018). Visualizing the loss landscape of neural nets. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8
December 2018, MontrÉal, Canada, pp. 6391–6401.

Liu L., Jiang H.,He P., ChenW., Liu X.,Gao J. andHan J. (2019). On the variance of the adaptive learning rate and beyond.
ArXiv, abs/1908.03265.

Loshchilov I. andHutter F. (2016). Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983.
Luo L., Xiong Y., Liu Y. and Sun X. (2019). Adaptive gradient methods with dynamic bound of learning rate. ArXiv,

abs/1902.09843.
McCandlish S., Kaplan J., Amodei D. and Team O.D. (2018). An empirical model of large-batch training. ArXiv,

abs/1812.06162.
Ott M., Edunov S., Baevski A., Fan A., Gross S., Ng N., Grangier D. and Auli M. (2019). fairseq: A fast, extensible

toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019,
Demonstrations, pp. 48–53.

Popel M. and Bojar O. (2018). Training tips for the transformer model. Prague Bulletin of Mathematical Linguistics 110,
43–70.

Reddi S.J., Kale S. and Kumar S. (2018). On the convergence of adam and beyond. ArXiv, abs/1904.09237.
Ruder S. (2016). An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747.
Sennrich R., Haddow B. and Birch A. (2016). Neural machine translation of rare words with subword units. In Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany.
Association for Computational Linguistics, pp. 1715–1725.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://arxiv.org/abs/http://arxiv.org/abs/1701.02854
https://arxiv.org/abs/http://arxiv.org/abs/1608.03983
https://doi.org/10.1017/S135132492200002X

Natural Language Engineering 335

Simonyan K. and Zisserman A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR,
abs/1409.1556.

Smith L.N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 464–472.

Smith L.N. andTopin N. (2017). Super-convergence: Very fast training of residual networks using large learning rates. ArXiv,
abs/1708.07120.

Smith S.L., Kindermans P., Ying C. and Le Q.V. (2018). Don’t decay the learning rate, increase the batch size. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Vaswani A., Shazeer N., Parmar N.,Uszkoreit J., Jones L.,Gomez A.N., Kaiser L.U. and Polosukhin I. (2017). Attention is
all you need. In Advances in Neural Information Processing Systems 30. Curran Associates, Inc., pp. 5998–6008.

Wiseman S. and Rush A.M. (2016). Sequence-to-sequence learning as beam-search optimization. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1–4, 2016,
pp. 1296–1306.

Zhang M.R., Lucas J., Hinton G.E. and Ba J. (2019). Lookahead optimizer: k steps forward, 1 step back. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 9593–9604.

A. Appendix
Figures A1–A3, Table A1 are included in this Appendix.

Figure A1. Range test curve of SGD for the IWSLT2014-de-en dataset.

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

http://www.OpenReview.net
https://doi.org/10.1017/S135132492200002X

336 W. Wang et al.

Table A1. The comparison results of oneGPUand four GPUswith a batch size of 4096

one GPU four GPUs

Learning rate policy Best BLEU Epoch Best BLEU Epoch

adam_cyc_nshrink_5e-4 32.65 18 31.72 18
.. .

adam_cyc_yshrink_5e-4 31.29 18 31.72 18
.. .

adam_inv_5e-4 30.88 16 30.66 16
.. .

sgd_cyc_nshrink_6.9 30.16 45 27.10 49
.. .

adam_inv_3e-4 30.46 34 30.16 37
.. .

sgd_inv_30 30.78 42 29.71 49

Figure A2. Effects of applying CLR to training NMT on IWSLT2017-de-en.

Figure A3. Effects of applying CLR to training NMT on IWSLT2014-fr-en.

Cite this article: Wang W, Lee CM, Liu J, Colakoglu T and Peng W (2023). An empirical study of cyclical learning rate on
neural machine translation. Natural Language Engineering 29, 316–336. https://doi.org/10.1017/S135132492200002X

https://doi.org/10.1017/S135132492200002X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200002X
https://doi.org/10.1017/S135132492200002X

	
	Introduction
	The contributions
	Related works
	Neural machine translation
	The proposed approach
	CLR-based NMT
	Learning rate range test
	Batch size
	Experiments
	Experiment settings
	Effects of applying CLR to NMT training
	Effects of batch size on CLR
	Further analysis and discussions
	How to apply CLR to NMT training matters
	Validating the effect of CLR on NMT training in a large scale dataset
	Rationale behind applying CLR to NMT training
	Conclusion

