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We carry out a weakly nonlinear analysis of the centrifugal instability for a columnar
vortex in a rotating fluid, and compare the results to those of the semi-linear model
derived empirically by Yim et al. (J. Fluid Mech., vol. 897, 2020, A34). The asymptotic
analysis assumes that the Reynolds number is close to the instability threshold so that
the perturbation is only marginally unstable. This leads to two coupled equations that
govern the evolutions of the amplitude of the perturbation and of the mean flow under
the effect of the Reynolds stresses due to the perturbation. These equations differ from
the Stuart—Landau amplitude equation or coupled amplitude equations involving a mean
field that have been derived previously. In particular, the amplitude does not saturate to a
constant as in the supercritical Stuart-Landau equation, but decays afterwards reflecting
the instability disappearance when the mean flow tends toward a neutrally stable profile in
the direct numerical simulations (DNS). These equations resemble those of the semi-linear
model except that the perturbation in the weakly nonlinear model keeps at leading order
the structure of the eigenmode of the unperturbed base flow. The predictions of the weakly
nonlinear equations are compared to those of the semi-linear model and to DNS for the
Rossby number Ro = —4 and various Reynolds numbers and wavenumbers. They are
in good agreement with the DNS when the growth rate is sufficiently small. However,
the agreement deteriorates and becomes only qualitative for parameters away from the
marginal values, whereas the semi-linear model continues to be in better agreement with
the DNS.
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1. Introduction

Simplified models in hydrodynamics are generally useful to understand the underlying
physics or to obtain first results without the large computational cost of direct numerical
simulations (DNS). To derive such models, two methods are generally available: either
deriving a rigorous model by asymptotic analyses when one parameter is small, or
obtaining an empirical model based on heuristic assumptions (Manti-Lugo, Arratia &
Gallaire 2014; Meliga 2017).

By adopting the second approach, recently Yim, Billant & Gallaire (2020) have
proposed a semi-linear model of the nonlinear evolution of a spatially periodic instability.
The idea consists in taking into account only the dynamics of the most unstable
perturbation and the spatially averaged mean flow, whereas higher harmonics are
neglected. Hence the semi-linear model is made of two coupled equations governing
the evolution of the most unstable perturbation on the spatially averaged mean flow and
the mean flow under the effect of the spatially averaged Reynolds stresses due to the
perturbation. The only difference compared to pure linear equations is the evolution of
the mean flow.

Such a semi-linear model turns out to be similar to the early method proposed by
Stuart (1958) to describe the saturation of supercritical spatially periodic instabilities.
A difference, however, is that Stuart (1958) has neglected the time derivative in the
mean-flow equation by arguing that it should be negligible at large times. He has then
obtained an approximate Stuart-Landau amplitude equation from the integral equation of
energy balance for the disturbance by assuming that the latter remains identical in shape
to the fundamental eigenmode given by the unperturbed base flow. Later, rigorous weakly
nonlinear derivations for the supercritical instabilities observed in the plane Poiseuille
or Taylor—Couette flows (Stuart 1960; Watson 1960; Davey 1962) have shown that the
generation of harmonics and distortion of the fundamental mode should be taken into
account in these cases.

Although general, the semi-linear model has been developed by Yim ez al. (2020) in the
specific case of the centrifugal instability of a columnar vortex in a rotating fluid. A very
good agreement between the semi-linear model and DNS has been found for the Rossby
number Ro = —4 and up to the highest Reynolds number investigated, namely Re = 2000.
The results show that the nonlinear evolution of the centrifugal instability redistributes the
mean absolute angular momentum towards a profile that is stable according to the Rayleigh
criterion (Kloosterziel, Carnevale & Orlandi 2007; Carnevale et al. 2011; Yim et al. 2020).
Subsequently, the perturbations decay, i.e. the centrifugal instability ceases.

Here, we derive rigorously weakly nonlinear equations for the same instability,
and we compare their predictions to those of the empirical semi-linear model as
well as to DNS. The asymptotic analysis assumes that the Reynolds number is close
to the critical value for instability so that the perturbations are only marginally
unstable.

The paper is organized as follows. The problem is formulated in § 2. The governing
equations are given in §2.1 and then rewritten in a convenient form in §2.2. The
linear stability of the flow is recalled in §2.3. The weakly nonlinear analysis is
conducted in §3. The semi-linear model is summarized briefly in §4, and the
numerical methods are described in §5. The results of the weakly nonlinear model,
semi-linear model and DNS are mutually compared in § 6, before conclusions are drawn
in§7.
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2. Problem formulation
2.1. Governing equations

As in Yim et al. (2020), we consider an axisymmetric vortex with initial non-dimensional
velocity ug = (ugp, vo, wo) = (0, rexp(—rz), 0) in cylindrical coordinates (r, 6, z). The
time and length have been chosen so that the vortex radius and the maximum angular
velocity are unity. The fluid is incompressible and rotating about the z axis:

ou

PR Vu+2Ro e, xu=—p ' Vp+Re ! V2u, 2.1)

V.eu=0, 2.2)

where e; is the unit vector in the z direction, p is the pressure, p is the constant density,
Ro = 2£2./f is the Rossby number, and Re = .QCR% /v is the Reynolds number, with f the
Coriolis parameter, §2. and Ry the dimensional maximum angular velocity and radius of
the vortex, and v the viscosity.

Yim et al. (2020) studied the particular value Ro = —4 for several Reynolds numbers
and showed that the dynamics remains always purely axisymmetric. For this reason,
axisymmetry will be assumed here from the outset. The boundary conditions are therefore
u=v=0atr=0,and u — 0 as r - oo (Batchelor & Gill 1962). The Rossby number
will be also set to Ro = —4 throughout the paper, as in Yim et al. (2020).

2.2. Mean and fluctuation equations

Following Stuart (1958), Davey (1962) and Yim et al. (2020), it is first convenient to
decompose the velocity and pressure as

[u, p)(r, z, 1) = [U, PI(r, t) + [&, p1(r, 2, 1), (2.3)

Zmax -1 Zmax

where U =z, [¢" udz and P=z,} [ pdz are the axially averaged mean
quantities over the domain height z,,,,. Averaging (2.1)-(2.2) in z shows that the mean
flow is purely azimuthal, U = V/(r, t) ey, and governed by

————V=—p""— =N, u- 2.4
" Ro P u,u- e, (2.4)
vV 1 T e
) LA T i, i) - ey, 2.5
5 = Re N (@, @) - e (2.5)
where
a (19
D =—(=-—@)), 2.6
ar (r ar r )> 2.6)
ob, ob,  apby
a— +a; — —
Babr 8abZ rb
N@ab)=a-Vb=|a 20 44, 20 4 207 2.7)
ar a9z r
ob; n ob;
a a; —
" oz
It is convenient to further decompose the mean flow as
V(r, 1) = vo(r) 4 0(r, 1), (2.8)
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where vy is the initial flow, so that (2.5) becomes
ov 1 S
8—'; = = D@+ v0) — NGt ) - ey, 2.9)

Subtracting (2.4) and (2.9) from (2.1) yields the equation for the perturbation u:

ou

o L) = =N (i) = N (@, i) — N (G, ) + N (@, i), (2.10)
V.-i=0, (2.11)

where u = vey and
L(@) = —2R00e, + Loiieg +2Ro™ ‘e, x i1+ p~' Vp — Re™! Vi, (2.12)

with 20 = vo/r and ¢g = 2829 + r.Q(’). We emphasize that (2.9)—(2.11) are only a
convenient rewriting of (2.1)—(2.2), and no approximation has been done so far. In the

absence of perturbation & = 0, the total mean flow V is governed by the diffusion equation
(2.5) and there is a cyclostrophic balance along the radial direction (2.4).

2.3. Linear stability

When (2.10)—(2.11) are linearized and the viscous diffusion of the base flow is neglected
so that v = 0, they reduce to the stability problem
u

i —L(w), (2.13)

V-u=0. (2.14)

Here, we will consider the weakly nonlinear evolution of the most unstable perturbation
of (2.13) for a given axial wavenumber £:

[ie, p] = [, p1(r) exp(ot 4 ikz) 4 c.c., (2.15)

where o is the growth rate and c.c. denotes the complex conjugate.

When the Rossby number is in the range Ro < —1 or Ro > exp(2), a vortex with
Gaussian angular velocity is unstable in the inviscid limit to the centrifugal instability
according to the Rayleigh criterion, i.e. there exists some radius where ¢ < 0, with ¢ =
2(£20 + 1/Ro)(¢o + 2/Ro) the Rayleigh discriminant. The inviscid growth rate is given by
o; = /—¢(rg), where rg is the radius where ¢ is minimum (Smyth & McWilliams 1998;
Billant & Gallaire 2005) (r9p = 0.93 and o; = 0.3635 for Ro = —4) and is reached in the
limit of infinite axial wavenumber. When the Reynolds number is finite, the maximum
growth rate and the most amplified wavenumber k,, decrease as the Reynolds number
is reduced, as illustrated in figure 1(a) for Ro = —4. The instability is totally stabilized

when Re ~ 100. Since viscous effects scale like k?/Re at leading order for large axial
wavenumber, they become active for wavenumbers typically such that k> = O(Re).

Figure 1(b) displays the eigenmodes for Re = 2000 for two wavenumbers: k = 8.6 and
k=23. As in Yim et al. (2020), the eigenmode is normalized so that the maximum
absolute vertical velocity is unity: max(|w|) = 1. It can be seen that the eigenmode tends to
be more localized as k increases and the amplitudes of the horizontal velocity components
increase with k.
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Figure 1. (a) Linear growth rate o as a function of the axial wavenumber k for Ro = —4 and different
Reynolds numbers: Re = 150, 500, 1000, 2000 and 3000. The red circles indicate the maximum growth rate
and corresponding most amplified axial wavenumber k. (b) Velocity components (i, v, w) of the eigenmodes
as functions of r for k = 8.6 (blue lines) and k = 23 (black lines), for Re = 2000 and Ro = —4. (¢) Same as

(b), but the velocity components are rescaled as (i/ Vk, / Vk, W) and plotted as functions of ¥ = (r — ro)vVk.

3. Weakly nonlinear analysis
3.1. Formulation

The first task in order to carry out a weakly nonlinear analysis is to identify some
conditions under which the instability is only marginally unstable. There are several
possible configurations: first, the Rossby number can be considered close to the critical
Rossby numbers Ro, = —1 or Ro|. = exp(2); second, Ro can be considered arbitrary but
Re close to the critical Reynolds number Re. (figure 1); or, third, Ro and Re can be
considered arbitrary but the axial wavenumber k can be assumed to be close to the viscous
cut-off k. where the growth rate vanishes (figure 1). Since the Rossby number Ro = —4
investigated in Yim et al. (2020) is relatively far from Ro, = —1, we will consider herein
the second configuration, i.e. the Reynolds number Re is assumed to be close to Re, so
that the eigenmode at the most unstable wavenumber k for this Reynolds number Re is
marginally unstable. However, we will see later that the following analysis will also apply
to the third configuration, i.e. near the viscous wavenumber cut-off. Accordingly, the order
of magnitude of the growth rate can be used as a small parameter, i.e.

0 = €0, (3.1)

where 6 = O(1) and € < 1. Even if the Reynolds number is close to Re., we will consider
that it is large such that

I €2

Re  Re’
with Re = O(1). This distinguished limit will enable us to take into account the viscous
diffusion at leading order. Nevertheless, the following analysis should remain valid if
1/Re < O(€?), i.e if the Reynolds number is larger than imposed by (3.2), but not in
the opposite case, 1/Re > O(e?). Hence the scaling assumptions (3.1) and (3.2) can be
combined into the condition 1/+/Re < o < 1, meaning that the growth of the perturbation
has to be slow but not too slow compared to the viscous diffusion. A paradoxical
implication is that as the Reynolds number decreases (figure la), our approach will no
longer be valid below a certain Reynolds number even if the growth rate is small, because

the condition 1/+/Re < o will no longer be fulfilled. For the same reason, if the Rossby
number is increased from below towards the critical value Ro. = —1 for a fixed large
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Reynolds number, the present analysis will cease to be valid when o is typically smaller

than 1/+/Re. In summary, we expect the scaling hypotheses (3.1) and (3.2) to be met only
in an intermediate range of growth rate for given Reynolds and Rossby numbers. This
will be confirmed in § 6 when the predictions of the weakly nonlinear analysis will be
compared to DNS.

The scaling (3.2) together with the assumption of being close to the viscous threshold,
i.e. 0 ~ 0, — k*/Re < 1, implies that k>/Re = O(1) since the maximum growth rate in
the inviscid limit o; is of order unity for Ro = —4. In this way, viscous effects act on the
perturbation despite the large Reynolds number limit considered in (3.2).This implies that
the wavenumber is large:

) (3.3)

where k = O(1). An unstable eigenmode is always accompanied by a stable counterpart
with opposite growth rate in the inviscid limit due to time reversibility. Hence if the
unstable eigenmode is marginally unstable, then the stable counterpart is also marginally
stable and it needs to be taken into account in a weakly nonlinear analysis. However,
(3.2) and (3.3) imply that such a stable mode is here strongly damped and does not need
to be considered since its growth rate is o ~ —o; — k?/Re, which is typically O(1) and
negative. For that reason, the resulting amplitude equations will be first order in time and
dissipative, while similar inviscid instabilities in nature, such as the baroclinic instability
or the Kelvin—Helmholtz instability, have been described by amplitude equations that
are second order in time and thus reversible (Drazin 1970; Pedlosky 1970; Gibbon &
McGuinness 1981).

In turn, the fact that the wavenumber is large implies that the eigenmode [, p](r) is
strongly localized in a region of width O(k~'/?) = O(e'/?) around a particular radius ro,
as shown by Bayly (1988). Hence the radial derivative is large,

% = 0(k'7?), (3.4)

meaning that each term of (2.10) needs first to be appropriately scaled before performing
a weakly nonlinear analysis. We emphasize that the scaling (3.4) applies only to the
perturbation & and not to the initial mean flow vg. Since the eigenmode is normalized

such that max(|w|) = 1, the different velocity components and pressure of the disturbance
then scale as (Bayly 1988)

an=0k"%, =0k, w=0@Q), p=o0k". (3.5a~d)

Again, we stress that this scaling does not apply to the mean flow v. In order to illustrate

this scaling, the eigenmodes for k = 8.6 and k = 23 are rescaled according to (3.5a—d)

and plotted as functions of (r — ro)vk in figure 1(c). The velocity components for the two
wavenumbers collapse, although this is only approximate since k is not so large.

We will use the scaling (3.5a—d) only to obtain the leading-order magnitude of each

operator in (2.10) since the linear problem will be solved numerically and not analytically
as done by Bayly (1988). Using (3.4) and (3.5a—d), we have

L=0(1), N=0k), D*=0k)), V=O0(k). (3.6a—d)
Hence we define the following rescaled variable and operators:

r—ro

—5e N=eN, D’=eD’, V=eV, (3.7a-d)
€

F=
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where the operators with a tilde are of order unity at leading order. These operators could
be split into different orders, e.g. N = ./\70 + €l/2N 1 + ---. However, this will not be
done, to avoid long algebra. In addition, this is not necessary because the problem will
be solved numerically as mentioned already.

Then the governing equations for the perturbation become

?Tl; — L@ —e "'N@,i)—e "N, a)—e "N@, o) +e "N@, i), (3.8)

V.-u=0, (3.9

The important feature in (3.8) is that the nonlinear terms scale at leading order as 1/¢
because the axial wavenumber is large. Similarly, the equation for the mean flow (2.9)
becomes
B € Bt Dy — e Nl (3.10)
— == Dv+ =Dvy — € uu)-ep. .
0t  Re Re 0 ¢
We can remark that the viscous diffusion of the mean flows v and vg are not of the same
order because the former varies over 7 according to (3.4), in contrast to the latter, which
varies over r.
Nevertheless, (3.8)—(3.10) can be rewritten in a form close to the original (2.9)—(2.11)
by simply rescaling the variables as v = €v’ and [&, p] = €[&/, p']. This leads to

ou

= =L@ -N@,i)-NG@, - N, ”)+N(u i), (3.11)
V. =0, (3.12)

8_/ - R
a”t —Ree L /—i——D vo — NG, i) - ep. (3.13)

The governing equations are now in a suitable form to carry out the weakly nonlinear
analysis. To do so, we expand the time, the mean flow and the perturbation as follows:

R 9 9
—=—te—+el— 3.14
TR 8t1+€ T (3.14)
T =€t + e, (3.15)
(&, p'] = elivy, p1] + €, pal + -+ . (3.16)

In the following, the first-order mean flow will be further decomposed into two parts:
v1 = vii (7, 11) + vio(r, fo), (3.17)

where v19 will vary over r due to the viscous diffusion of the base flow, whereas vy
will vary over 7 due to its own viscous diffusion and the Reynolds stresses due to the
perturbation.

Finally, we stress that we will consider a single axial wavenumber, i.e. no spatial
modulation will be taken into account in the present analysis. The DNS performed by
Yim et al. (2020) for Ro = —4 and Re = 2000 initialized by the eigenmode of the most
amplified wavenumber has indeed demonstrated the absence of spatial modulation. This
will be shown again for Re = 500 in § 6.
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3.2. Order €
At order €, (3.11)—(3.13) reduce to

ou .
— =L , 3.18
o (u1) (3.18)
V. =0, (3.19)

dv1o I 5
— = = D"vp. 3.20
dto Re 0 ( )

The solution of (3.18)—(3.19) is taken as the most unstable eigenmode:
i) = uy(7) exp(ikz + otg) + c.c.. 3.21)
However, since the growth rate is assumed to be small, o0 = €5, we can rewrite (3.21) as
u; = A(ty) uy (7) exp(ikz) + c.c., (3.22)

where A is an amplitude varying over the slow time #;. By defining the shift-operator
(Meliga, Chomaz & Sipp 2009)

L=L-¢eo, (3.23)

we can approximate £ in (3.18) by L, while the complementary O(e) term will appear
only at next order. In other words, (3.18) becomes

W _ ) + 0Ge) = 0. (3.24)
dto

Hence the eigenvalues of the operator L correspond to those of £ shifted by €5, whereas
the eigenmodes remain identical.

Instead of using the shift-operator £, one could alternatively expand the operator
L around the critical Reynolds number Re.(k) for a given wavenumber k, i.e.
L(Re) = L(Re;) + (Re — Re.) 0L/0Re + - - -, and assume Re — Re. = O(¢). Then, the
truly marginally stable operator L£(Re.) would arise at leading order. The predictions of
the amplitude equations derived by these two different methods have been compared by
Gallaire et al. (2016) in the case of the supercritical Hopf bifurcation in the cylinder wake.
They agree in the weakly nonlinear regime, but differ when the control parameter is far
from threshold. Here, we have preferred the shift-operator method because it does not
require us to compute additional operators such as d.L/dRe. In addition, the choice of a
particular marginally unstable point is implicit and virtual when using a shift-operator
since, in practice, it does not appear explicitly in the calculations. Therefore, the same
weakly nonlinear analysis applies by considering another neutral point as long as the
characteristics of the eigenvalue spectrum and the magnitudes of the parameters are
similar. In particular, we will see that the resulting amplitude equations are also valid
when the wavenumber % is close to the viscous cut-off k. but Re is far from Re,..

Finally, the solution of (3.20) is simply vig = 4(r2 — 2)rexp(—r2) to/I?e. The other
component of the mean flow, vy, remains free at this order and will be determined only at
next order.
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3.3. Order €?
At order €2, (3.11)—(3.13) become
%—L:j + L) = N (0n1ep, ity) — N (@, vneg) — Ny, iny) + N (@, iny)
T - 38—‘: (3.25)
V.ip =0, (3.26)
%:ébzﬁ“ — Ny, i) - ep. (3.27)

It should be pointed out that only the mean-flow component vijeg appears in (3.25)
because vy varies over r, i.e. more slowly than vy, since it originates from the viscous
diffusion of vy.

Using (3.22), (3.27) can be rewritten as

O _ aPRfy + - DR, (3.28)
0t Re
where
fii=— (M—D(al, i) + NO @, al)) . ep, (3.29)

with AV corresponding to N with 9/0z replaced by ink. The star denotes the complex
conjugate.

The nonlinear terms in the right-hand side of (3.25) comprise first and second
harmonics. Hence the solution # is sought in the form

u, = uy (7, 1) exp(ikz) + uy(r, 1) exp(Zikz) +c.c., (3.30)
giving for each component
~ 0A ~ -
LD (y)) = A — FYe u —A (N(l)(f)nee, i) + NOay, 51189)), (3.31)
1
LP (i) = —A* NV @@y, wy), (3.32)

where £ corresponds to L with 3 /dz replaced by ink. The compatibility condition to find
a solution of (3.31) gives (Manneville 1990; Sipp & Lebedev 2007; Meliga et al. 2009)

0A

— =G6A - BA, (3.33)
0t
where
N <l]-i-s ./\7(1)(1_11189, up) +/\~[(O)(fl1, 51169))
B(n) = : (3.34)
(@)
where il;r is the solution of the adjoint operator LDT defined by
W', 2O ) = (u, LOT@hH)*, (3.35)
957 A18-9
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where the scalar product is given by
S 1.
', u) = / ' w* +vTv* + wiwhrdr. (3.36)
0

The adjoint operator reads £7 = £ — 6, where
L@ = o +2Ro HdTe, — 220 + Ro DitTey + p~ ' VT —Re ' V2T, (3.37)

with V - &7 = 0 and the same boundary conditions as for the direct problem.

The amplitude equation (3.33) shows that the leading nonlinear effect comes from the
first-order mean-flow correction vy through B, whereas a nonlinear term due to harmonics
would be obtained only at the next order in ¢ from the interaction between &y, and ;.
In contrast to the Stuart-Landau equation, the nonlinear effects due to the mean flow and
harmonics operate here at different orders because the mean-flow correction vy is of order
0O(e¢), like the leading-order perturbation &; (see (3.15)—(3.17)). Such scaling comes from
the fact that the mean-flow correction v1; is neutral at leading order due to the assumption
of a large Reynolds number. The existence of such a neutral mode is related to the fact that
the growth rate nearly vanishes for k£ = O (figure 1a). In fact, a close-up would show that
the growth rate is slightly negative for k = 0. In the usual derivation of the Stuart-Landau
equation, viscous effects are not considered small so that the Reynolds stresses in the
mean flow equation are equilibrated at leading order by viscous effects. This implies that
the mean-flow correction is then not neutral and is of order O(e?), i.e. one order smaller
than the perturbation. This will be discussed further in the next subsection.

In summary, the evolution of the amplitude A can be determined from (3.33) together
with (3.28) and (3.34). The mean flow also evolves because of the viscous diffusion of the
initial flow according to (3.20). However, this evolution does not affect the evolution of A
at leading order.

3.4. Final amplitude equations

In practice, (3.20), (3.28), (3.33) and (3.34) can now be rescaled and expressed in terms of
the time ¢ and the original operators A" and D?. For simplicity, (3.20) and (3.28) can also
be merged into a single equation, giving the system

o = |Al”f1 + FeD (v1 + vo), (3.38)
9A
— =0A — BA, (3.39)
ot
where
fi=— (N(’”(ﬂl, i) + N, fn)) . eg, (3.40)

(& NOGren, i) + N O Gy, Tren)
B= : (3.41)

)

We emphasize that almost the same equations as (3.38)-(3.39) would have been
obtained if the fact that the perturbation varies rapidly over the radial coordinate had not
been taken into account. The only difference is that the viscous diffusion of v; would not
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be present in (3.38). When this term is neglected, the problem can be reduced further to
only two coupled amplitude equations by deriving B with respect to ¢:

0B M
— =mlA —, 3.42
oy = MolAIT+ o (3.42)
0A
T oA — BA, (3.43)

where

<‘~‘I’N(1)(flee, u) +N(O)(il1,f1€0)>

o = : , (3.44)
(i} )
(], N Doy, @r) + N O @y, Dvoey)
= . (3.45)
o

By combining (3.42) and (3.38) without the viscous diffusion of v, one can eliminate A
and then integrate (3.38) to obtain explicitly the mean-flow correction

B
1o

v =—fi+ L (D200 — ifl) . (3.46)
Re 1o

The amplitude equations (3.42)—(3.43) involve an amplitude B in addition to A, like
the AB equations for non-dissipative instabilities (Pedlosky 1970; Gibbon & McGuinness
1981) or like the Ginzburg-Landau equation coupled to a mean field in dissipative systems
(Siggia & Zippelius 1981; Coullet & Fauve 1985; Renardy & Renardy 1993; Barthelet
& Charru 1998; Charru 2011). In the first case, the amplitude B is also a measure of
the mean-flow correction resulting from nonlinear effects as in (3.42)—(3.43), but the
equations are second order in time and reversible. In the second case, the equations are first
order in time as in (3.42)—(3.43), but the amplitude B originates from Galilean invariance
and is measuring a slowly modulated mean drift in the direction along which the pattern
is periodic. Both cases are therefore different from (3.42)—(3.43), and to our knowledge,
these equations, although simple, do not seem to have been derived before.

The particular form of (3.38)—(3.39), or the simplified (3.42)—(3.43), is closely related
to the fact that the viscous dissipation of the mean flow, which is by essence due to
only horizontal shear, is weak since Re is large. In contrast, the viscous dissipation of
the three-dimensional perturbation, which is mostly due to vertical shear, is of order
unity thanks to the assumption K2 /Re = O(1) (see § 3.1). For this reason, we have at the
same time a three-dimensional perturbation with a small growth rate and a mean-flow
correction that is also nearly neutral. This differs, for example, from the primary instability
of the Taylor—Couette flow (Davey 1962), where the viscous dissipation of the mean-flow
correction is not weak when the perturbation is marginally unstable because the axial
wavenumber k and the Reynolds number are considered of order unity. As mentioned
already in § 3.3, this is equivalent to the case where the term dv;/dt would be negligible
compared to the viscous term in (3.38). Then an approximation of v; could be obtained
directly by equating the right-hand side of (3.38) to zero. In other words, the mean-flow
correction would be slaved to the three-dimensional perturbation (Manneville 1990). The
amplitude B would then be linearly related to |A|%, and (3.39) would become a classical
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Re k o ) 0

500 4.68 0.1436 17.23 2.10
2000 2 0.1216 2.45 1.34
2000 8.6 0.2240 74.74 2.51
2000 23 0.0386 634.34 2.87

Table 1. Values of the coefficients of the amplitude equations (3.42)—(3.43) for different wavenumbers and
Reynolds numbers, for Ro = —4.

Stuart-Landau equation (Stuart 1960). Actually, this is exactly one of the approximations
used by Stuart (1958) in his first approach to describe weakly nonlinear saturation of
instabilities.

The values of the coefficients o and p are given in table 1 for several values of the
wavenumber and Reynolds number, for Ro = —4. They are always both positive, meaning
that B is positive, so that the nonlinear term of (3.43) is stabilizing. The evolution predicted
by (3.38)—(3.39) or (3.42)—(3.43) for these parameters will be seen in detail later, in
§ 6. In Appendix B, an analytical solution of (3.42)—(3.43) is derived when the viscous
term of (3.42) is neglected. In table 1, it can also be remarked that 1o increases with
k approximately like k> when k > 4, in agreement with the scaling (3.6a—d) since the
operator A\ is applied twice in its definition (see (3.44) and (3.40)).

4. Semi-linear model

The semi-linear model with a single harmonic (denoted SL-1k) proposed by Yim
et al. (2020) consists simply in assuming & = u;(r, t) exp(ikz) + c.c. in (2.9)—(2.11),

and neglecting the nonlinear term N (&, &) + N (&, &) in (2.10) since it involves second
harmonics. In other words, the semi-linear equations are

v 1

— = —D*04v) — NV, ul)-eo — NVt uy) - e, (4.1)
dt  Re
9
% + LD ) = N (Geg, ur) — NO(uy, vey). 4.2)
v .y =0, (4.3)

where V(! is the operator V with 3/dz replaced by ik.

The difference between the weakly nonlinear equations (3.38)—(3.39) and (4.1)—(4.3)
is that the radial profile of the perturbation u; is free to evolve and is not constrained
to always keep the shape of the most unstable eigenmode. The shortcoming is that the
computational cost to integrate (4.2)—(4.3) is higher than for (3.39).

5. Numerical methods
The numerical methods are identical to those in Yim et al. (2020) for both DNS and
the SL-1k model. Since three-dimensional DNS (Yim et al. 2020) have shown that the

vortex remains axisymmetric throughout its evolution, only axisymmetric DNS have been
conducted herein. These DNS have been performed with the FreeFEM++ software (Hecht
2012) in axisymmetric cylindrical coordinates (r > 0, z). The velocity and pressure are
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discretized with Taylor—Hood P2 and P1 elements, respectively. The mesh is refined
around the vortex, and the mesh size varies from 0.001 to 0.045 with ~32 000 degrees
of freedom. To avoid the singularity at r = 0, (2.1)—(2.2) are multiplied with r%. The
first-order backward Euler time scheme is used. The axial domain is chosen to fit
several or a single axial wavelength with periodic boundary conditions at each end. Solid
boundaries would generate Ekman layers that would affect the evolution of the centrifugal
instability, as shown by Orlandi & Carnevale (1999). The radial domain is chosen to be
r = [0, rmax], with 7,4 = 6. The boundary conditions at » = 0 are u = v = 0 since the
flow is axisymmetric (Batchelor & Gill 1962). At r = 1,4y, all perturbations are enforced
to vanish.

The perturbations u; in the SL-1k model and & in the DNS are initialized by the most
unstable perturbation for the wavenumber £:

ui(r,t=0)=Agi(r), a(r,z,t=0)=Apu(r)e® +c.c., (5.1a,b)

where Ag is the initial amplitude, and #; is the dominant eigenmode computed from
a linear stability analysis based on the Chebyshev pseudo-spectral collocation method
(Antkowiak & Brancher 2004). The initial mean-flow correction is set to zero: v(r, t =
0) = 0. Similarly, the weakly nonlinear equations (3.38)—(3.39) and (3.42)—(3.43) are
integrated using an explicit Runge—Kutta formula with initial conditions A(t = 0) = Ay,
with v (r,t=0) =0o0r B(t =0) = 0.

6. Comparison between the DNS and the weakly nonlinear and semi-linear models
6.1. Validation of the weakly nonlinear analysis for Re = 500

Figure 2 shows the time evolution of the azimuthal velocity field in DNS for Re = 500,
Ro = —4 and initialized by the eigenmode of the most amplified wavenumber k = 4.68,
with amplitude Ag = 0.001. The growth rate for these parameters is relatively small (o =
0.1436) and approaches the condition (3.1) assumed to derive the weakly nonlinear model.
In addition, the Reynolds number is not too small so that the condition (3.2) is satisfied
reasonably as well. For the smaller Reynolds number Re = 150 (figure 1a), the growth

rate and the Reynolds number are smaller so that the condition 1/+/Re < o is not fully
satisfied. Conversely, for the higher Reynolds number Re = 1000, the growth rate is larger
so that the condition o < 1 is less well satisfied. Hence the Reynolds number Re = 500
is a good compromise to test the weakly nonlinear model. As an aside, we note that the
conditions 1/+/Re < o < 1 will be satisfied only for higher and higher Reynolds numbers
when the Rossby number tends to Ro. = —1 since the maximum growth rate decreases to
ZEero.

Coming back to figure 2, we see that the perturbations grow and redistribute the
azimuthal velocity before decaying. This simulation has been performed over ten
wavelengths in order to allow the possible emergence of spatial modulation or the growth
of harmonics different from the wavenumber of the initial perturbation. As already
reported by Yim et al. (2020) for other parameters, figure 2 shows clearly that there is
no significant growth of wavenumbers other than the one imposed initially. Indeed, the
dynamics of the centrifugal instability on a free isolated vortex differs from that on the
well-known Taylor—Couette flow (Di Prima & Swinney 1981; Manneville 1990; Charru
2011). In the latter flow, the mean azimuthal flow is continuously forced and maintained
by the rotation of the cylinders so that if the flow is unstable for a given wavenumber, then

957 A18-13


https://doi.org/10.1017/jfm.2023.60

https://doi.org/10.1017/jfm.2023.60 Published online by Cambridge University Press

E. Yim, P. Billant and F. Gallaire

@ =10 (b) 1=20 () 1=30 (d) 1=50 @ 1=70
0.40
12 12 12 12 12 035
10 10 10 10 10 030
. g g 0.25
z 0.20
6 6 6
0.15
4 4 4
0.10
2 2 2 0.05
0
2 0 1 2 o0 1 2 o0 1 2
r r r

Figure 2. Evolution of the azimuthal velocity field v(r, z, ) in DNS for Ro = —4, k = 4.68, Ag = 0.001 and
Re = 500. The axial length corresponds to ten most amplified wavelengths.

spatial modulation and interactions between harmonics have plenty of time to develop.
In the case of a free vortex, the centrifugal instability is transient and quite quickly
ceases, leaving little time for the development of spatial modulation or for interaction
with harmonics. This is the main reason why the weakly nonlinear analysis in § 3 and the
semi-linear model SL-1k consider a single axial wavenumber without spatial modulation,
in contrast to similar analyses performed for the Taylor—Couette flow.

In order to compare quantitatively this evolution to those predicted by the weakly
nonlinear (WNL) and semi-linear (SL-1k) models, three different amplitudes are defined
from different velocity components:

A = max(|lw|), A, =max(lu|]), B;= \//r(\_/ — vp)2rdr, (6.1a—c)
0

where V — vy is the mean-flow correction, i.e. v for the SL-1k model, and 9; for the WNL
model. The amplitude A corresponds to that defined in the WNL model. The amplitude A,
is proportional to A in the linear regime and, at any time, in the WNL model. However,
A and A, are no longer linearly related in the nonlinear regime in the DNS and the
SL-1k model. The use of the additional amplitude A, should therefore enable a more
comprehensive comparison between the models and the DNS than by considering just A.
The third amplitude, By, is a measure of the kinetic energy associated with the mean-flow
correction. As seen in figure 3 and observed already by Yim et al. (2020), the amplitudes A
and A, first grow exponentially, then saturate and decay. In contrast, By grows continuously
because of the Reynolds stresses and the viscous diffusion of the mean-flow. From the
amplitude equation (3.39), it can be deduced that A is maximum in the WNL model at
the time when B = o. The evolutions of the amplitudes in the WNL model (solid green
lines) are in very good agreement with those in the DNS (dashed red lines) and the SL-1k
model (black dash-dotted lines). This validates the asymptotic analysis carried out in § 4.
In addition, the dashed green lines show the predictions of the simplified WNL model
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Figure 3. Comparison of the evolution of the amplitudes (a) A, (b) A, and (c¢) By, between the different
models and the DNS for k = 4.68, Ag = 0.001, Re = 500 and Ro = —4. The different lines correspond to the
pure linear growth Ag exp(o't) (light green dotted lines), the WNL model (3.38)—(3.39) (solid green lines), the
simplified WNL model (3.42)—(3.43) (dashed green lines), the semi-linear model SL-1k (black dash-dotted
lines) and DNS (red dashed lines).
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Figure 4. Radial profiles of mean azimuthal velocity V at different times for k = 4.68, Ag = 0.001, Re = 500
and Ro = —4. (a) Comparison between the DNS (solid lines) and WNL model (3.38)—(3.39) (dashed lines).
(b) Comparison between the DNS (solid lines) and SL-1k model (dash-dotted lines).

(3.42)—(3.43), i.e. when the viscous diffusion of the mean-flow correction is not taken into
account. We recall that this term would have been neglected in the asymptotic analysis if
the fact that the wavenumber £ is large for Re > 1 had not been taken into account. We see
that this simplified WNL model departs from the DNS in contrast to the full WNL model
(solid green lines).

Figure 4 further compares the models to the DNS by showing the evolution of the mean
azimuthal velocity profiles. The WNL mean flow V is in very good agreement with the
DNS (figure 4a) as well as that in the SL-1k model (figure 4b). After r = 40, a slight
difference between the WNL model and the DNS is, however, visible.

6.2. Comparison for Re = 2000

Having validated the WNL and SL-1k models for the most amplified wavenumber for Re =
500, we now investigate the evolutions of various wavenumbers for a stronger unstable
case, Re = 2000, still for the same Rossby number Ro = —4. Figures 5 and 6 show the
time evolution of the azimuthal velocity field in DNS for two different axial wavenumbers:
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Figure 5. Evolution of the azimuthal velocity field v(r, z, f) in DNS for Ro = —4, k = 8.6, A9 = 0.001 and
Re = 2000. Two wavelengths are displayed, although the DNS has actually been performed over only one
wavelength.

k = 8.6 and k = 2. The first value corresponds to the most amplified wavenumber for
Re = 2000 (figure 1). For these simulations, an axial domain corresponding to a single
wavelength has been chosen since Yim et al. (2020) and figure 2 showed the absence
of significant spatial modulation during the evolution of the centrifugal instability. For
both wavenumbers, mushroom-shaped perturbations grow and redistribute the azimuthal
velocity before decaying. As expected, this occurs more slowly for k = 2 (figure 6) than for
k = 8.6 (figure 5). In addition, for k = 2, the mushrooms deform into chevrons at t = 60,
indicating the significant growth of higher axial harmonics.

Figure 7 shows the evolution of the amplitudes A, A, and By for the two axial
wavenumbers k = 8.6, k = 2, and also for k = 23. The latter wavenumber is close to
the viscous cut-off for Re = 2000 and has a small growth rate o = 0.0386 (figure 1a).
The time evolution of the azimuthal velocity field in these DNS exhibits only weak
vertical modulations (at most, as for r = 20 in figure 6) and is therefore not shown.
The purpose of this simulation is to test again the WNL analysis. Actually, it is much
easier to fulfil the assumptions (3.1) and (3.2) near the viscous wavenumber cut-off for
large Reynolds number. Indeed, with the Reynolds number fixed to a large value, the
particular wavenumber studied can be chosen simply so that its growth rate satisfies
1/ VRe <okl

As can be seen in figures 7(a—c), the evolutions of the amplitudes in the WNL model
(solid green lines) are in excellent agreement with those in the DNS (dashed red lines) and
the SL-1k model (black dash-dotted lines). Hence the asymptotic analysis carried outin § 4
is also valid close to the viscous cut-off wavenumber for Re far from Re.. In addition, the
dashed green lines show that the predictions of the simplified WNL model (3.42)—(3.43)
depart slightly from the DNS in contrast to the full WNL model (solid green lines). Note
that DNS with axial size corresponding to several wavelengths for this wavenumber would
certainly exhibit the growth of lower wavenumbers since they are more unstable.

For the most amplified wavenumber, k = 8.6 (figures 7d—f), there exist more significant
differences between the WNL and SL-1k models and the DNS. The WNL model
(3.38)—(3.39) predicts that the mean flow amplitude grows and then saturates, in good
qualitative agreement with the DNS, but it underestimates the maximum value of Bj
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Figure 6. Similar to figure 5, but for k = 2.

(figure 7f) and the peaks of the amplitudes A and A, (figures 7d,e). Such a departure is
not surprising since the assumption of a small growth rate used in the asymptotic analysis
is no longer satisfied for k = 8.6. In contrast, the SL-1k model is in better quantitative
agreement with the DNS in terms of the three amplitudes, although some differences are
also visible after t = 20. The greater ability of the SL-1k model comes from the fact that
the spatial structure of the perturbation is not frozen, unlike in the WNL model.

Surprisingly, we can notice that A and A, are maximum around ¢ = 20 for both k = 8.6
and k = 23, even though the growth rate varies by almost a factor 6 (figure 7). Since A
is maximum when o = B in the WNL model, it can be deduced that the corresponding
time ¢ = t,,, depends not only on the growth rate but also on the speed at which B grows.
The analytical solution derived in Appendix B when the viscous decay of the mean flow
is neglected shows that the time #,, depends on only o and qu(z). When Ag = 0.001 as
in figure 7, we have approximately o> [/L()Az, so that #,, ~ In(40?2 / (qug)) /(20). The
variations of the growth rate o and the parameter 402/ (,qu%) tend to compensate when k
is varied from k = 8.6 to kK = 23 (table 1) so that #,, varies very little.

For k = 2 (figures 7g—i), the amplitude A of the WNL model predicts surprisingly well
the first peak of the DNS. The mean-flow amplitude Bj is also reasonably well predicted
by the WNL model (3.38)—(3.39), but the peak of A, is underestimated. For this value of
k, we see that the predictions of the SL-1k model are close to those of the WNL model,
and not particularly better. In addition, we can notice the presence of several peaks in the
DNS for both A and A,. In Appendix A, they are shown to originate from the growth of
higher harmonics, whereas by essence, the SL-1k and WNL models take into account a
single harmonic.
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Figure 7. Comparison of the evolution of the amplitudes (a,d.g) A, (b.e,h) A,, and (c,f,i) By, between the
different models and the DNS for different axial wavenumbers: (a—c) k = 23, (d—f), k = 8.6, (g—i) k = 2, for
Ap = 0.001, Re = 2000 and Ro = —4. The different lines correspond to the pure linear growth Ag exp(o?) (light
green dotted lines), the WNL model (3.38)—(3.39) (solid green lines), the simplified WNL model (3.42)—(3.43)
(dashed green lines), the semi-linear model SL-1k (black dash-dotted lines) and DNS (red dashed lines).

Finally, it can be remarked that the amplitudes A and A, in the simplified WNL model
(3.42)—(3.43) are very close to the complete WNL model (3.38)—(3.39) for all three
wavenumbers for Re = 2000 (figure 7). In contrast, there exist differences between the
two models regarding B; for k = 8.6 and k = 2, with, paradoxically, a better agreement of
the simplified model with the DNS for k£ = 8.6. However, we do not have any particular
explanation for this, and in any case, we will see below that even if Bj is close in the DNS
and the WNL model, the profiles of the mean flow V differ strongly.

Figure 8 further compares the models to the DNS by showing the evolution of the mean
azimuthal velocity profiles for Re = 2000 for the three wavenumbers. For k = 23, the
WNL mean flow is in very good agreement with the DNS (figure 8a) as well as the SL-1k
model (figure 8b). In contrast, we can see in figures 8(c,e) that the mean-flow profiles
predicted by the WNL model differ largely from the DNS for both k = 8.6 and k = 2. The
predictions of the SL-1k model are in much better agreement with the DNS (figures 84, f).
This is due to the fact that the spatial structure of the growing unstable perturbation is free
to evolve in the SL-1k model and can adapt to the change of the mean flow, whereas in
the WNL model, the perturbation at leading order always keeps the spatial structure of the
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Figure 8. Radial profiles of mean azimuthal velocity V at different times for different wavenumbers:
(a,b) k =23, (¢,d) k= 8.6, and (e,f) k = 2, for Re = 2000 and Ro = —4. (a,c,e) Comparison between the
DNS (solid lines) and WNL model (3.38)—(3.39) (dashed lines). (b.d,f) Comparison between the DNS (solid
lines) and SL-1k model (dash-dotted lines).

eigenmode of the initial mean flow. As an illustration, figure 9 shows that the radial profiles
of the vertical velocity in the WNL and SL-1k models, i.e. Aw; and wq, respectively,
remain always very close for k = 23 but differ for k = 8.6 for r > 20.

The evolutions of the three amplitudes A, A,, By of the WNL model for Re = 2000 are
summarized in figure 10(a—c) for various wavenumbers. The time at which the amplitudes
A and A, reach their maxima is minimum around the most amplified wavenumber
kmax = 8.6. Interestingly, the overall value of the maximum amplitude is reached not
when k = k;;,4, but for a lower wavenumber that depends on the amplitude considered.
For A, the maximum value is reached for k = 2, while for A,, it is around kK = 5. Such a
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Figure 9. Comparison between the vertical velocity profile in the WNL model, Aw; (dashed line), and in the
SL-1k model, wy (solid line) for (a) k = 23, and (b) k = 8.6, for Re = 2000 and Ro = —4.
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Figure 10. Evolutions of the amplitudes (a) A, (b) A, and (¢) B in the WNL model (3.38)—(3.39) as functions
of time for different wavenumbers k, for Ag = 0.001, Re = 2000 and Ro = —4. Maxima of the amplitudes
(d) A, (e) Ay and (f) By(tenq) as functions of k, with 7., = 100. The symbols are green crosses for the WNL
model (3.38)—(3.39), red circles for the DNS, and plus symbols for the SL-1k model).

difference is possible because the ratio max(wy)/ max(it;) = Amax/Armax 1s different for
each eigenmode and thus for each value of k.

The maximum values of the amplitudes for each k are compared to the DNS and the
SL-1k model in figures 10(d—f). We can see that there is a good agreement with the DNS
and the SL-1k model regarding A4, (figure 10d). In the DNS, the amplitude A, does
not decrease with k when k < 2, in contrast to the WNL and SL-1k models. For k of order
unity, the evolution of A exhibits several peaks in the DNS, as seen in figure 7(a); and for
k < 2, the overall maximum is reached by the second peak. Since this second peak is due
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Figure 11. Evolutions of the amplitudes (a) A, (b) A, and (c) By in the WNL model (3.38)—(3.39) as functions
of time for different initial amplitudes Ag = [0.0005 : 0.001 : 0.0045] for k = 23, Re = 2000 and Ro = —4.
Maxima of the amplitudes (d) A, (e) A, and (f) By (tenq) as functions of Ag, with 7.,4 = 100. The symbols are
green crosses for the WNL model (3.38)—(3.39), red circles for the DNS, and plus symbols for theSL-1k model.

to the growth of higher harmonics (see Appendix A), it cannot be captured by the WNL
and SL-1k models, which take into account a single harmonic.

The agreement between the WNL model and the DNS is not very good regarding A,
when k < 15 (figure 10e). Nevertheless, the maximum amplitude A, 4y is reached around
k ~ 3-5 for both the DNS and the WNL and SL-1k models. The amplitude A, of the SL-1k
model agrees much better with the DNS. Finally, figure 10(f) shows that the amplitude of
the mean flow at t = t,,4 = 100 is almost independent of k for 1 < k < 10, meaning that
the global effect of the instability on the mean vortex profile is the same even if A, and
Ay max vary with k. Again, we can see that the SL-1k model is in better agreement with
the DNS than the WNL model for k < 10. Note that the amplitude By is considered at the
particular time 7.,4 = 100 because in addition to the rapid evolution towards saturation due
to the centrifugal instability, it slowly evolves due to the viscous diffusion of the mean flow.
At the time f.,4 = 100, the instability has grown and just ceased for most wavenumbers.
Hence it measures mostly the effect of the centrifugal instability and not the diffusion of
the mean flow.

Figure 11 displays similar comparisons when the wavenumber is fixed at kK = 23, but
the initial amplitude A( varies. As can be seen, the maximum amplitudes A,;,x and A, jqx
increase with Ag. However, B;(fnq) is almost independent of Ag. We can see that the
agreement is very good for this case, as expected, since the perturbations are marginally
unstable for k = 23 as assumed in the WNL analysis.

7. Conclusions

We have developed a weakly nonlinear (WNL) analysis of the centrifugal instability for a
vortex with Gaussian angular velocity in a rotating fluid for large Reynolds number. The

Rossby number has been considered far from the threshold Ro, = —1, but the Reynolds
number has been assumed to be close to the critical value for a given wavenumber so that
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the perturbations are marginally unstable. This leads to an equation for the amplitude A
of the disturbances whose leading nonlinear term comes from the stabilizing correction
of the mean flow. In turn, the mean flow evolves under the Reynolds stresses of the
perturbations, which are quadratic in amplitude (i.e. |A|%), and also under its own viscous
dissipation. Since the Reynolds number is assumed to be large, the latter viscous effects
for the mean-flow correction are weak, implying that it is not slaved to the perturbations as
usual for other systems, like, for example, the Taylor vortices in the Taylor—Couette flow.
This feature is the main reason why the present equations differ from the Stuart-Landau
equation (Stuart 1960; Manneville 1990) or from other types of amplitude equations
involving a mean field (Gibbon & McGuinness 1981; Coullet & Fauve 1985; Barthelet
& Charru 1998). This difference is reflected in the qualitative behaviour of the amplitude
A, which does not tend to a constant as in the Stuart-Landau equation for supercritical
instabilities, but decays after a certain time. This comes from the fact that the mean
flow saturates towards a neutrally stable profile in the DNS. A similar behaviour (growth
and subsequent decay of the amplitude A) is observed for dispersive systems, like for
the Kelvin—Helmholtz or baroclinic instabilities (Drazin 1970; Pedlosky 1970; Gibbon &
McGuinness 1981). However, in the latter cases, the growth and decay of the amplitude A
repeats periodically with time since the amplitude equations are second order in time and
reversible. Here, the growth of A is observed only once as in the DNS because the system
is dissipative and the equations are first order in time.

Quantitative comparisons between the WNL model, DNS and the empirical semi-linear
model SL-1k (Yim et al. 2020) have been presented. In order to quantify precisely
the evolution of the perturbations, two amplitudes have been defined in addition to the
amplitude A that is defined as the maximum axial velocity in the WNL analysis. The
amplitude A, measures the maximum radial velocity, while B; quantifies the mean-flow
correction. The amplitudes A and A, are linearly related in the WNL model but not in
the nonlinear regime of the SL-1k model and in the DNS. The two models and the DNS
agree very well in terms of the three amplitudes and the mean flow profiles for the most
amplified wavenumber when the Reynolds number is moderate, i.e. when it is both not
too large and not too far from the critical value. Indeed, the condition of validity of
the WNL analysis is not only that the growth rate should be small, but it should also

be of the same order or larger than 1/+/Re. Otherwise, the viscous diffusion of the
mean flow is too fast compared to the slow growth of the perturbation. The agreement
between the WNL model and the DNS is also very good when the axial wavenumber is
close to the viscous wavenumber cut-off for arbitrary Reynolds number. However, as for
time-periodic instabilities (Manti¢-Lugo et al. 2014; Meliga 2017), the accuracy of the
predictions of the WNL equations for the present spatially periodic instability deteriorates
as one significantly departs from the marginal value. In contrast, the predictions of the
semi-linear model, although empirical, are more quantitatively robust and accurate. The
main difference between the two models is that the spatial structure of the growing
unstable mode at leading order is fixed by the unperturbed base flow in the WNL model,
while it is free to evolve under the change of the mean flow in the SL-1k model.
Nevertheless, it is worth pointing out that the agreement between the WNL and
semi-linear models close to the critical Reynolds number or viscous wavenumber cut-off
provides a rigorous justification of the empirical semi-linear model and, in particular, the
fact that harmonics can then be neglected legitimately. Indeed, while this approximation is
not valid for the primary instabilities of the plane Poiseuille or Taylor—Couette flows near
the marginal value of the control parameter (Stuart 1958, 1960; Davey 1962), the present
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WNL analysis of the centrifugal instability shows that the effect of higher harmonics
is one order of magnitude smaller than the interaction between the mean flow and the
fundamental mode.

In the future, it could be interesting to perform a WNL analysis of the centrifugal
instability in the inviscid limit for Rossby numbers close to the critical Rossby number
Ro. = —1. In this case, the distance 1/Ro — 1/Ro. can be used as a small parameter. The
resulting amplitude equations will differ from those derived herein because the instability
then arises in the form of a pair of marginally stable/unstable eigenmodes. They should be
closer to those derived previously for other inviscid instabilities (Drazin 1970; Pedlosky
1970; Gibbon & McGuinness 1981).
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Appendix A. Contributions of higher harmonics for low wavenumber in the DNS

In order to understand why several peaks are observed in the evolution of the amplitude
A in the DNS when the wavenumber is around unity (figure 7g), we investigate here in
more detail DNS performed for k = 1.5, Re = 2000, Ag = 0.001 and Ro = —4. As can be
seen from the black line in figure 12, the amplitude A exhibits two peaks, the second being
dominant. The decomposition of the contributions of each harmonic to A shows that the
second harmonic becomes larger than the first for 60 < 7 < 70, while higher harmonics
also grow significantly. Hence the growth of higher harmonics explains the occurrence of
several peaks. The deformation of the azimuthal velocity perturbations into chevrons seen
in figure 6 is also a signature of the emergence of higher harmonics.

Appendix B. Exact solution of (3.42)-(3.43) when u =0

Here, we show that the amplitude equations (3.42)—(3.43) can be integrated analytically
when the viscous term of (3.42) is neglected (i.e. u = 0). We first add together (3.43)
multiplied by A*, and its complex conjugate multiplied by A. By combining the resulting
equation with (3.42) and integrating, we obtain

B(1)?

2
A1) = /TZB(” - + 1402, (B1)

where it has been imposed that B(0) = 0, and assumed that o and ¢ are real. Hence
(3.42) can be written solely in terms of B:

E:ZJB—B + 1o lAol”. (B2)
The solution can be found in the form
1 — exp(—2at)
(0 +a)exp(—2at) —o +a’

B = 110 |Ao|? (B3)
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Figure 12. Contributions of the first six harmonics (coloured lines with circle symbols) to the amplitude A
(black line) for k = 1.5, Re = 2000, Ag = 0.001 and Ro = —4.

where o = /o2 + 10 |Ag|?. Then the solution for A can be found from (3.42):

200 exp(—at)

= Ag . (B4)
(0 +o)exp(—2at) —0 +«

When 1o > 0, the solutions (B3)—(B4) show clearly that A vanishes for t — oo, while

B tends to the constant pg |Ao|? /(o — o). The maximum value of A is «/,/ug, which
is reached for t = 1,, = —In((0 — 0)/(a + 0))/(2c). When p is non-zero and positive,
an analytical solution of (3.42)—(3.43) does not seem to exist, but the behaviour of the
amplitude A is qualitatively similar, as seen in § 6. A slow linear increase of the amplitude
B is mixed with the solution (B3).
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