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Abstract
Let Σ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic
geodesics in Σ having at most length L and which can be written as the product of g commutators. The basic idea is
to reduce these results to being able to count critical realizations of trivalent graphs in Σ. In the appendix, we use
the same strategy to give a proof of Huber’s geometric prime number theorem.
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1. Introduction

In this paper, we will be interested in studying the growth of the number of certain classes of geodesics in
a closed, connected and oriented hyperbolic surface Σ = Γ\H2, which we assume to be fixed throughout
the paper.

In [10], Huber proved that the cardinality of the set C(𝐿) of nontrivial oriented periodic geodesics
𝛾 ⊂ Σ of length ℓΣ (𝛾) � 𝐿 behaves like

|C(𝐿) | ∼ 𝑒𝐿

𝐿
as 𝐿 → ∞. (1.1)

Here, ∼ means that the ratio between both quantities tends to 1 as 𝐿 → ∞. Huber’s result has been
generalized in all possible directions, allowing, for example, for surfaces of finite area [9] and for higher-
dimensional negatively curved manifolds or replacing periodic geodesic by orbits of Anosov flows [12].

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.114 Published online by Cambridge University Press

doi:10.1017/fms.2023.114
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.114&domain=pdf
https://doi.org/10.1017/fms.2023.114


2 V. Erlandsson and J. Souto

Variations of Huber’s result have also been obtained when one imposes additional restrictions on the
geodesics one is counting. Here, one should mention Mirzakhani’s work on counting simple geodesics
[13] or more generally geodesics of given type [14 , 8], but what is closer to what we will care about in
this paper are earlier results of Katsuda–Sunanda [11] and Phillips–Sarnak [16] giving the asymptotic
behavior of the number of geodesics with length at most L and satisfying some homological condition.
For example, Katsuda–Sunada [11] proved that

|{𝛾 ∈ C(𝐿) homologically trivial}| ∼ (𝑔Σ − 1)𝑔Σ · 𝑒𝐿

𝐿𝑔Σ+1 , (1.2)

where 𝑔Σ is the genus of Σ. Phillips–Sarnak [16] get this same result with an estimate on the error term.
Here, we will be counting certain kinds of homologically trivial curves. Every homologically trivial

curve 𝛾 can be represented, up to free homotopy, as the product of commutators in 𝜋1 (Σ). The smallest
number of commutators needed is the commutator length of 𝛾. This quantity agrees with the genus of
the smallest connected oriented surface S with connected boundary 𝜕𝑆 for which there is a (continuous)
map 𝑆 → Σ sending 𝜕𝑆 to 𝛾. This explains why we think of the commutator length 𝑐𝑙 (𝛾) of 𝛾 as the
genus of 𝛾.

In this paper, we study, for fixed but otherwise arbitrary 𝑔 � 1, the asymptotic behavior of the
cardinality of the set

B𝑔 (𝐿) =
{
𝛾 ⊂ Σ

���� closed geodesic with ℓΣ (𝛾) � 𝐿 and
commutator length 𝑐𝑙 (𝛾) = 𝑔

}
(1.3)

This is our main result:

Theorem 1.1. Let Σ be a closed, connected and oriented hyperbolic surface and for 𝑔 � 1, and 𝐿 > 0
let B𝑔 (𝐿) be as in Equation (1.3). We have

|B𝑔 (𝐿) | ∼
2

12𝑔 · 𝑔! · (3𝑔 − 2)! · vol(𝑇1Σ)2𝑔−1 · 𝐿6𝑔−4 · 𝑒
𝐿
2

as 𝐿 → ∞.

Here, as we will throughout the paper, we have endowed the unit tangent bundle 𝑇1Σ with the
Liouville measure, normalized in such a way that vol(𝑇1Σ) = 2𝜋 · vol(Σ) = −4𝜋2𝜒(Σ). In particular,
we have that, as in Equation (1.2), the quantities in Theorem 1.1 depend on the topology of the underlying
surface Σ but there is no dependence on its geometry.

Note that by definition the curves in B𝑔 (𝐿) bound a surface of genus g but that this surface is just the
image of a continuous, or if you want smooth, map. We prove that only a small but definite proportion
of the elements in B𝑔 (𝐿) arise as the boundary of an immersed surface of genus g (and connected
boundary):

Theorem 1.2. Let Σ be a closed, connected and oriented hyperbolic surface and for 𝑔 � 1, and 𝐿 > 0
let B𝑔 (𝐿) be as in Equation (1.3). We have

|{𝛾 ∈ B𝑔 (𝐿) bounds immersed surface of genus 𝑔}| ∼ 1
24𝑔−2 |B𝑔 (𝐿) |

as 𝐿 → ∞.

Theorem 1.2 should perhaps be compared with the immersion theorem in [4, Theorem 4.79]. The
immersion theorem asserts that every homologically trivial geodesic 𝛾 inΣ virtually bounds an immersed
surface, meaning that there is an immersion into Σ of a compact surface S in such a way that the boundary
of S is mapped onto 𝛾 with positive degree. In some sense, Theorem 1.2 seems to suggest that, most of
the time, the genus of S does not agree with the genus of 𝛾.
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In the course of the proof of Theorem 1.1, we will need a different counting result that we believe
has its own interest. Suppose namely that X is a compact trivalent graph. Under a critical realization of
X in Σ, we understand a (continuous) map

𝜙 : 𝑋 → Σ

sending each edge to a nondegenerate geodesic segment in such a way that any two (germs of) edges
incident to the same vertex are sent to geodesic segments meeting at angle 2𝜋

3 (see Lemma 2.2 for an
explanation of the etymology of this terminology). Although it may not be completely evident to the
reader at this point, the set

G𝑋 (𝐿) =
{
𝜙 : 𝑋 → Σ critical realization

with length ℓΣ (𝜙) � 𝐿

}
(1.4)

is finite, where the length of a critical realization is defined to be the sum

ℓΣ (𝜙) =
∑

𝑒∈edge(𝑋 )
ℓΣ (𝜙(𝑒))

of the lengths of the geodesic segments 𝜙(𝑒) when e ranges over the set of edges of X. The following is
the key to Theorem 1.1:

Theorem 1.3. Let Σ be a closed, connected and oriented hyperbolic surface. For every connected
trivalent graph X, we have

|G𝑋 (𝐿) | ∼
(

2
3

)3𝜒 (𝑋 )
· vol(𝑇1Σ)𝜒 (𝑋 )
(−3𝜒(𝑋) − 1)! · 𝐿

−3𝜒 (𝑋 )−1 · 𝑒𝐿

as 𝐿 → ∞. Here, 𝜒(𝑋) is the Euler-characteristic of the graph X.

Let us sketch the proof of Theorem 1.3. Recall first that there are basically two approaches (that
we know of) to establish Huber’s theorem (1.1): Either one approaches it à la Huber [10], that is,
from the point of spectral analysis or, as Margulis did later [12], exploiting the ergodic properties of
the geodesic flow. Indeed, already the predecessor to Huber’s theorem, namely Delsarte’s lattice point
counting theorem [7] can be approached from these two different points of view. In Section 3 below, we
will sketch the argument to derive Delsarte’s theorem from the fact that the geodesic flow is mixing,
discussing also the count of those geodesic arcs in Σ going from x to y and whose initial and terminal
speed are in predetermined sectors of the respective unit tangent spaces – see Theorem 3.1 for the
precise statement. This is indeed all the dynamics we will need in the proof of the theorems above. To
be clear, we do not make use of any of the slightly rarified refinements of the mixing property of the
geodesic flow. Specifically, we do not need exponential mixing or such.

The basic idea of the proof of Theorem 1.3 is to note that, for a fixed graph X, the set of all
its realizations in Σ, that is, maps 𝑋 → Σ mapping each edge geodesically, is naturally a manifold.
Generically, each connected component contains a unique critical realization. To count how many such
critical realizations, there are with total length less than L we consider for small 𝜀 the set G𝜀−crit (𝐿)
of geodesic realizations of length at most L and where the angles, instead of being 2𝜋

3 on the nose,
are in the interval of size 𝜀 around that number. Delsarte’s theorem allows us to compute the volume
vol(G𝜀−crit (𝐿)) of that set of geodesic realizations. A little bit of hyperbolic geometry then shows that
most of the connected components of G𝜀−crit(𝐿) have basically the same volume. We thus know, with
a small error, how many connected components we have, and thus how many critical realizations. This
concludes the sketch of the proof of Theorem 1.3.
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Remark. The strategy used to prove Theorem 1.3 can be used to give a pretty easy proof of Huber’s
theorem (1.1). We work this out in the appendix, and although there is no logical need of doing so, we
encourage the reader to have a look at it before working out the details of the proof of Theorem 1.3.

Let us also sketch the proof of Theorem 1.1. A fat graph is basically a graph which comes equipped
with a regular neighborhood neigh(𝑋) homeomorphic to an oriented surface. Such a fat graph has
genus g if this regular neighborhood is homeomorphic to a compact surface of genus g with connected
boundary. The point of considering fat graphs is that whenever we have a realization 𝜙 : 𝑋 → Σ of the
graph underlying a genus g fat graph then we get a curve, namely 𝜙(𝜕 neigh(𝑋)) which has at most
genus g. The basic idea of the proof of Theorem 1.1 is to consider the set

X𝑔 =
⎧⎪⎪⎨⎪⎪⎩(𝑋, 𝜙)

������ 𝑋 is a fat graph of genus 𝑔 and
𝜙 : 𝑋 → Σ is a critical realization

of the underlying graph

⎫⎪⎪⎬⎪⎪⎭
/

equiv

of (equivalence classes) of realizations (see Section 7 for details) and prove that the map

Λ : X𝑔 → C, (𝑋, 𝜙) ↦→ geodesic homotopic to 𝜙(𝜕𝑋)

is basically bijective onto B𝑔 and that generically, the geodesic Λ(𝑋, 𝜙) has length almost exactly equal
to 2 · ℓ(𝜙) − 𝐶 for some explicit constant C. Once we are here, we get the statement of Theorem 1.1
from Theorem 1.3 together with a result by Bacher and Vdovina [1]. Other than proving Theorem 1.3,
the bulk of the work is to establish the properties of the map Λ. The key step is to bound the number of
curves with at most length L and which arise in two essentially different ways as the boundary of genus
g surfaces:

Theorem 1.4. For any g, there are at most const ·𝐿6𝑔−5 · 𝑒 𝐿
2 genus g closed geodesics 𝛾 in Σ with length

ℓ(𝛾) � 𝐿 and with the property that there are two nonhomotopic fillings 𝛽1 : 𝑆1 → Σ and 𝛽2 : 𝑆2 → Σ
of genus � 𝑔.

Here, a genus g filling of 𝛾 is a continuous map 𝛽 : 𝑆 → Σ from a genus g surface S with connected
boundary such that 𝛽(𝜕𝑆) = 𝛾.

Theorem 1.4 may look kind of weak because we are only bounding by const
𝐿 the proportion of

those elements in B𝑔 (𝐿) that we are double counting when we count surfaces of genus g instead of
counting curves. It should however be noted that this is the order of the error term in Equation (1.2)
(see [16]), and this is indeed the order of error term that we expect in the results we prove here. For
what it is worth, it is not hard to show that the set of those 𝛾 in Theorem 1.4 is at least of the order of
const ·𝐿6𝑔−10 · 𝑒 𝐿

2 . Indeed, if 𝜔 ∈ 𝜋1 (Σ) arises in two ways as a commutator, for example if we choose
𝜔 = [𝑎𝑎𝑏𝑎𝑏, 𝑏𝑎−1𝑎−1] = [𝑎𝑎𝑏𝑎, 𝑏𝑏𝑎−1] and if 𝜂 is a randomly chosen product of 𝑔 − 1 generators,
then 𝜔𝜂 arises in two different ways as a product of g commutators and hence admits two nonhomotopic
fillings, and there are const ·𝐿6𝑔−10 · 𝑒 𝐿

2 many choices for 𝜂.

Section-by-section summary

In Section 2, we discuss realizations of graphs and the topology and geometry of spaces of realizations,
and in Section 3 we discuss Delsarte’s classical lattice point counting result and a couple of minimal
generalizations thereof. At this point, we will have all tools needed to prove Theorem 1.3; this is done in
Section 4. In Section 5 and Section 6, we work out the geometric aspects of the proof of Theorem 1.1,
the main result being Theorem 1.4. Although we do not use any results about pleated surfaces, some
of the arguments in these two sections will come pretty naturally to those readers used to working with
such objects. In Section 7, we prove Theorem 1.1, combining the results of the previous two sections
with Theorem 1.3. Theorem 1.2 is proved in Section 8. Finally, Section 9 is dedicated to discussing
what parts of what we do hold if we soften the assumption that Σ is a closed hyperbolic surface. To
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conclude, we present in Appendix A a proof of Huber’s theorem using the same idea as in the proof of
Theorem 1.3.

Remark. After conclusion of this paper, we learned that the problem of calculating how many elements
arise as commutators in some group has also been treated in other cases. More concretely, Park [15]
uses Wicks forms to get asymptotics, as 𝐿 → ∞, for the number of elements in the free group F𝑟 of
rank r which arise as a commutator and have word length L. In the same paper, he also treats the case
that the group is a free product of two nontrivial finite groups. It would be interesting to figure out if it
is possible to apply the methods here to recover Park’s beautiful theorems.

Notation
Under a graph X, we understand a one-dimensional CW-complex with finitely many cells. We denote

by vert = vert(𝑋) the set of vertices, by edge = edge(𝑋) the set of edges of X, and by half = half (𝑋)
the set of half-edges of a graph X – a half-edge is nothing other than the germ of an edge. Given a vertex
𝑣 ∈ vert(𝑋), we let half𝑣 = half𝑣 (𝑋) be the set of half-edges emanating out of v. Note that two elements
of half𝑣 might well correspond to the same edge – that is, X might have edges which are incident to
the same vertex on both ends. The cardinality of half𝑣 is the degree of X at v and we say that X is
trivalent if its degree is 3 at every vertex. The reader can safely assume that the graphs they encounter are
trivalent.

When it comes to surfaces, we will be working all the time with the same underlying surface, our fixed
closed connected and oriented hyperbolic surfaceΣ = Γ\H2. We identify𝑇1ΣwithΓ\𝑇1

H
2 = Γ\PSL2 R

and endow 𝑇1Σ with the distance induced by a PSL2 R left-invariant Riemannian metric on PSL2 R, say
one that gives length 2𝜋 to each unit tangent space 𝑇1

𝑥0Σ and such that the projection 𝑇1
H

2 → H2 is a
Riemannian submersion. This means that the unit tangent bundle has volume vol(𝑇1Σ) = 2𝜋 · vol(Σ) =
4𝜋2 · |𝜒(𝑆) |. Angles between tangent vectors based at the same point of Σ will always be unoriented,
meaning that they take values in [0, 𝜋] – note that this is consistent with the unit tangent spaces having
length 2𝜋.

Often we will denote the discrete sets we are counting by boldface capitals, such as C or B. They will
often come with a wealth of decorations such as for example G𝑋 (𝐿) or B𝑔 (𝐿). Often these sets arise as
discrete subsets of larger spaces which will be denoted by calligraphic letters. Often the boldfaced and
the calligraphic letters go together: G will be a subset of the space G.

A comment about constants. In this paper, there are two kinds of constants: the ones whose value
we are trying to actually compute and those about which we just need to know that they exist. Ev-
idently, the first kind we have to track carefully. It would, however, be too painful, and for no clear
gain, to do the same with all possible constants. And in general constants tend to breed more and
more constants. This is why we we just write const for a constant whose actual value is irrelevant,
allowing the precise value of const to change from line to line. We hope that this does not cause any
confusion.

And now a comment about Euclidean vectors. All vector arising here, indicated with an arrow as in
�𝑣 = (𝑣1, . . . , 𝑣𝑘 ), are positive in the sense that the entries 𝑣𝑖 are positive. In other words, they live in R𝑘+
or maybe in N𝑘 . We will write

‖�𝑣‖ = |𝑣1 | + · · · + |𝑣𝑘 | = 𝑣1 + · · · + 𝑣𝑘

for the 𝐿1-norm on vectors. This is the only norm we will encounter here.

2. Realizations of graphs in surfaces

In this section, we discuss certain spaces of maps of graphs into a surface. These spaces play a key rôle
in this paper. Although long, the material here should be nice and pleasant to read – only the proof of
Proposition 2.3 takes some amount of work.
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Realizations

We will be interested in connected graphs living inside our hyperbolic surface Σ, or more precisely in
continuous maps

𝜙 : 𝑋 → Σ (2.1)

of graphs X into Σ which when restricted to each edge are geodesic. We will say that such a map (2.1)
is a realization of X in Σ. We stress that realizations do not need to be injective and that in fact the map
𝜙 could be constant on certain edges or even on larger pieces of the graph. A regular realization is one
whose restriction to every edge is nonconstant. If 𝜙 : 𝑋 → Σ is a regular realization and if �𝑒 ∈ half (𝑋)
is a half-edge incident to a vertex 𝑣 ∈ vert(𝑋), then we denote by 𝜙( �𝑒) ∈ 𝑇1

𝜙 (𝑣)Σ the unit tangent vector
at 𝜙(𝑣) pointing in the direction of the image of �𝑒.

We endow the set G𝑋 of all realizations of the (always connected) graph X with the compact-open
topology and note that unless X itself is contractible, the space G𝑋 is not connected: The connected
components of G𝑋 correspond to the different possible free homotopy classes of maps of X into Σ.
Indeed, pulling segments tight relative to their endpoints we get that any homotopy

[0, 1] × 𝑋 → Σ, (𝑡, 𝑥) ↦→ 𝜑𝑡 (𝑥)

between two realizations is homotopic, relative to {0, 1} × 𝑋 , to a homotopy, which we are still denoting
by the same symbol, such that

1. 𝑡 ↦→ 𝜑𝑡 (𝑣) is geodesic for every vertex 𝑣 ∈ vert(𝑋), and
2. 𝜑𝑡 : 𝑋 → Σ is a realization for all t.

A homotopy [0, 1] × 𝑋 → Σ satisfying (1) and (2) is said to be a geodesic homotopy.
Geodesic homotopies admit a different intrinsic description. Indeed, uniqueness of geodesic repre-

sentatives in each homotopy class of arcs implies that each realization 𝜙 ∈ G𝑋 has a neighborhood
which is parametrized by the image of the vertices. This implies that the map

Π : G𝑋 → Σvert(𝑋 ) , 𝜙 ↦→ (𝜙(𝑣))𝑣 ∈vert(𝑋 ) (2.2)

is a cover. Pulling back the product of hyperbolic metrics, we think of it as a manifold locally modeled
on the product (H2)vert(𝑋 ) = H2 × · · ·×H2 of vert(𝑋) worth of copies of the hyperbolic plane. Geodesic
homotopies are, from this point of view, nothing other than geodesics in G𝑋 .

Since all of this will be quite important, we record it here as a proposition:

Proposition 2.1. Let X be a graph. The map (2.2) is a cover and geodesic homotopies are geodesics
with respect to the pull-back metric.

Length function

On the space G𝑋 of realizations of the graph X in Σ, we have the length function

ℓΣ : G𝑋 → R�0, ℓΣ (𝜙) =
∑

𝑒∈edge(𝑋 )
ℓΣ (𝜙(𝑒)).

First, note that Arzela–Ascoli implies that ℓΣ is a proper function. It follows thus that the restriction
of ℓΣ to any and every connected component of G𝑋 has a minimum. Now, convexity of the distance
function 𝑑H2 (·, ·) implies that ℓΣ is convex. More precisely, if (𝜑𝑡 ) is a geodesic homotopy between two
realizations in Σ, then the function 𝑡 ↦→ ℓΣ (𝜑𝑡 ) is convex. Indeed, it is strictly convex unless the image
of [0, 1] × 𝑋 is contained in a geodesic in Σ, or rather if the image of some (and hence any) lift to the
universal cover is contained in a geodesic in H2.
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Note now also that the length function is smooth when restricted to the set of regular realizations –
its derivative is given by the first variation formula

𝑑

𝑑𝑡
ℓΣ (𝜙𝑡 ) =

∑
𝑣 ∈vert(𝑋 )

∑
�𝑒∈half𝑣 (𝑋 )

〈
−𝜙( �𝑒), 𝑑

𝑑𝑡
𝜙𝑡 (𝑣)

〉
,

where 𝜙( �𝑒) ∈ 𝑇1
𝑣Σ is the unit tangent vector based at v and pointing as the image of the half-edge �𝑒. It

follows that a regular realization 𝜙 is a critical point for the length function ℓΣ : G𝑋 → R�0 if and only
if for every 𝑣 ∈ vert(𝑋) we have

∑
�𝑒∈half𝑣 𝜙( �𝑒) = 0. Note that this implies, in the for us relevant case

that X is trivalent, that the (unsigned) angle ∠(𝜙′( �𝑒1), 𝜙′( �𝑒2)) between the images of any two half-edges
incident to the same vertex is equal to 2𝜋

3 .

Definition. A regular realization 𝜙 : 𝑋 → Σ of a trivalent graph X into Σ is critical if we have

∠(𝜙( �𝑒1), 𝜙( �𝑒2)) =
2𝜋
3

for every vertex 𝑣 ∈ vert(𝑋) and for any two distinct �𝑒1, �𝑒2 ∈ half𝑣 (𝑋).

We collect in the next lemma a few of the properties of critical realizations:

Lemma 2.2. Let X be a trivalent graph. A regular realization 𝜙 ∈ G𝑋 is a critical point for the length
function if and only if 𝜙 is a critical realization. Moreover, if 𝜙 ∈ G𝑋 is a critical realization and G𝜙 is
the connected component of G𝑋 containing 𝜙, then the following holds:

1. 𝜙 is the unique critical realization in G𝜙 .
2. 𝜙 is the global minimum of the length function on G𝜙 .
3. Besides 𝜙, there are no other local minima in G𝜙 of the length function.
4. The connected component G𝜙 is isometric to the product H2 × · · · × H2 of vert(𝑋) many copies of

the hyperbolic plane.

Note that lack of global smoothness of the length function means that we cannot directly derive (2)
and (3) from (1). This is why they appear as independent statements.

Proof. Statement (1) was actually discussed in the paragraph preceding the definition of critical real-
ization. Let us focus in the subsequent ones. Recall that if

[0, 1] → G𝜙 , 𝑡 ↦→ 𝜙𝑡

is a (nonconstant) geodesic homotopy with 𝜙0 = 𝜙, then the length function

𝑡 ↦→ ℓΣ (𝜙𝑡 (𝑋)) (2.3)

is convex. In our situation it is strictly convex: Since 𝜙 is critical, we get that its image, or rather the
image of its lifts to the universal cover, are not contained in a geodesic because if they were, then the
angles between any two half-edges starting at the same vertex could only take the values 0 or 𝜋. Now,
strict convexity and the fact that 𝜙 = 𝜙0 is a critical point of the length function implies that 𝑡 = 0 is the
minimum and only critical point of the function (2.3). From here, we get directly (2) and (3). To prove
(4), note that if G𝜙 were not simply connected, then there would be a nontrivial geodesic homotopy
starting and ending at 𝜙, contradicting the strict convexity of the length function. Note now that the
restricting the cover (2.2) to G𝜙 we get a locally isometric cover G𝜙 → Σvert(𝑋 ) . Since the domain of
this cover is connected and simply connected, we get that it is nothing other than the universal cover of
Σvert(𝑋 ) . This proves (4) and concludes the proof of the lemma. �

Remark. Although we will not need it here, let us comment briefly on the topology of the connected
components of G𝑋 . The fundamental group of the connected component G𝜙 containing a realization
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𝜙 ∈ G𝑋 is isomorphic to the centralizer Z𝜋1 (Σ) (𝜙∗(𝜋1 (𝑋))) in 𝜋1 (Σ) of the image of 𝜋1 (𝑋) under
𝜙∗ : 𝜋1 (𝑋) → 𝜋1 (Σ). It follows that G𝜙 is isometric to the quotient under the diagonal action of
Z𝜋1 (Σ) (𝜙∗(𝜋1 (𝑋))) of H2 × · · · ×H2 of vert(𝑋)-copies of the hyperbolic plane. In particular, we have:

◦ If 𝜙 is homotopically trivial, then G𝜙 � 𝜋1 (Σ)\(H2 × · · · × H2).
◦ If 𝜙∗(𝜋1 (𝑋)) ≠ Id𝜋1 (Σ) is abelian, then G𝜙 � Z\(H2 × · · · × H2).
◦ 𝜙∗(𝜋1 (𝑋)) is non-abelian, then G𝜙 � H2 × · · · × H2.

In the appendix, we will give a concrete description of the components of G𝑋 for the case that X is a
loop, that is, the graph with a single vertex and a single edge.

Lemma 2.2, with all its beauty, does not say anything about the existence of critical realizations. Our
next goal is to prove that any realization that from far away kind of looks like a critical realization is
actually homotopic to a critical realization.

Quasicritical realizations

Recall that a regular realization 𝜙 : 𝑋 → Σ of a trivalent graph X is critical if the angles between the
images of any two half-edges incident to the same vertex are equal to 2𝜋

3 . We will say that a regular
realization is quasicritical if those angles are bounded from below by 1

2𝜋 and that the realization is
ℓ0-long if ℓ(𝜙(𝑒)) > ℓ0 for all edges e of X. Recall that we measure all angles in [0, 𝜋].

Our next goal here is to prove that every sufficiently long quasicritical realization is homotopic to a
critical realization. This will follow easily from the following technical result:

Proposition 2.3. For any trivalent graph X and constant𝐶 ≥ 0, there exist constants ℓ0, 𝐷 > 0 such that
given an ℓ0-long quasicritical realization 𝜙 : 𝑋 → Σ, a trivalent graph Y and realization 𝜓 : 𝑌 → Σ
satisfying

1. ℓ(𝜓) ≤ ℓ(𝜙) + 𝐶, and
2. there is a homotopy equivalence 𝜎 : 𝑋 → 𝑌 with 𝜙 and 𝜎 ◦ 𝜓 homotopic,

then there exists a homeomorphism 𝐹 : 𝑌 → 𝑋 mapping each edge with constant speed such that 𝜎 ◦ 𝐹
is homotopic to the identity and such that the geodesic homotopy 𝑋× [0, 1] → 𝜎, (𝑥, 𝑡) ↦→ 𝜙𝑡 (𝑥) joining
𝜙0(·) = 𝜙 ◦ 𝐹 (·) to 𝜙1(·) = 𝜓(·) has tracks bounded by D.

Since the proof of Proposition 2.3 is technical and pretty long, it may be a good idea to skip it in a
first reading. Nevertheless, before proving it, we demonstrate that it might be useful:

Corollary 2.4. Let X be a trivalent graph. There are positive constants ℓ0 and D such that every
component of G𝑋 which contains an ℓ0-long quasicritical realization 𝜙 : 𝑋 → Σ also contains a critical
realization 𝜓, which moreover is unique and homotopic to 𝜙 by a homotopy whose tracks have length
bounded by D.

Proof. Let ℓ0 and D be given by Proposition 2.3 for 𝐶 = 0 and if needed increase ℓ0 so that it is larger
than 2𝐷. Let 𝜙 : 𝑋 → Σ be an ℓ0-long quasicritical realization. Let 𝜓 : 𝑋 → Σ be the minimizer for
the length function in the component G𝜙 – it exists because the length function is proper. We claim that
𝜓 is critical. In the light of Lemma 2.2, it suffices to prove that 𝜓 is regular.

Being a minimizer we have that ℓΣ (𝜓) � ℓΣ (𝜙). We thus get from Proposition 2.3 that there exists a
homeomorphism 𝐹 : 𝑋 → 𝑋 homotopic to the identity, mapping edges with constant speed and such
that the geodesic homotopy from 𝜙 ◦ 𝐹 to 𝜓 has tracks bounded by D. Now, since X is trivalent we get
that the homeomorphism F, being homotopic to the identity and mapping edges with constant speed,
is actually equal to the identity. What we thus have is a homotopy from 𝜙 and 𝜓 with tracks bounded
by D. Now, since each edge of 𝜙(𝑋) has at least length ℓ0 > 2𝐷 and since the tracks of the homotopy
are bounded by D, we get that 𝜓 is regular and hence critical by Lemma 2.2, as we needed to prove.
Lemma 2.2 also yields that 𝜓 is unique. �
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Let us next prove the proposition:

Proof of Proposition 2.3. Let 𝜙 : 𝑋 → Σ be a quasicritical realization, and assume it is ℓ0-long for an ℓ0
large enough to satisfy some conditions we will give in the course of the proof. Let 𝐻 : 𝑋 × [0, 1] → Σ
be the homotopy between 𝜙 and 𝜓 ◦ 𝜎.

To be able to consistently choose lifts of 𝜙, 𝜓 and 𝜎 to the universal covers 𝑋,𝑌 and H2 of 𝑋,𝑌 and
Σ, let us start by picking base points. Fixing 𝑥0 ∈ 𝑋 , consider the base points 𝜎(𝑥0) ∈ 𝑌 and 𝜙(𝑥0) ∈ Σ,
and pick lifts 𝑥̃0 ∈ 𝑋 , �𝜎(𝑥0) ∈ 𝑌 and �𝜙(𝑥0) ∈ H2 of each one of those endpoints. Having chosen those
base points we have uniquely determined lifts 𝜙 : 𝑋 → H

2 and 𝜎̃ : 𝑋 → 𝑌 of 𝜙 and 𝜎 satisfying
𝜙(𝑥̃0) = �𝜙(𝑥0) and 𝜎̃(𝑥̃0) = �𝜎(𝑥0). We can also lift to H2, starting at 𝜙(𝑥0), the path in Σ given by
𝑡 ↦→ 𝐻 (𝑥0, 𝑡). The endpoint of this path is a lift of 𝜓 ◦ 𝜎(𝑥0), and we take the lift 𝜓 : 𝑌 → H2 which
maps 𝜎̃(𝑥̃0) to this point. All those lifts are related by the following equivariance property:

𝜙(𝑔(𝑥)) = 𝜙∗(𝑔) (𝜙(𝑥)) and (𝜓 ◦ 𝜎̃) (𝑔(𝑥)) = 𝜙∗(𝑔)
(
(𝜓 ◦ 𝜎̃) (𝑥)

)
(2.4)

for all 𝑥 ∈ 𝑋 and for all 𝑔 ∈ 𝜋1 (𝑋, 𝑥0), where 𝜙∗ : 𝜋1 (𝑋, 𝑥0) → 𝜋1 (Σ, 𝜙(𝑥0)) is the homomorphism
induced by 𝜙 and the chosen base points.

Note that, since 𝜙 is almost critical and ℓ0-long we get, as long as ℓ0 is large enough, that the lift
𝜙 : 𝑋 → H2 is an injective quasi-isometric embedding. For ease of notation, denote by𝑇𝑋 = 𝜙(𝑋) ⊂ H2

the image of 𝜙 and let us rephrase what we just said: If ℓ0 is sufficiently large, then 𝑇𝑋 is a quasiconvex
tree, with quasiconvexity constants only depending on a lower bound for ℓ0. We denote by 𝜋̂ : H2 → 𝑇𝑋
a nearest point retraction which is equivariant under 𝜙∗(𝜋1 (𝑋, 𝑥0)). We would like to define

𝜋 : 𝑌 → 𝑇𝑋

as 𝜋̂ ◦𝜓, but since 𝜋̂ is definitively not continuous, we have to be slightly careful. We define 𝜋 as follows:
First, set 𝜋(𝑣) = 𝜋̂(𝜓̃(𝑣)) for all vertices 𝑣 ∈ vert(𝑌 ) of 𝑌 , and then extend (at constant speed) over the
edges of Y. Note that Equation (2.4), together with the equivariance of 𝜋, implies that 𝜋 ◦ 𝜎̃ : 𝑋̃ → 𝑇𝑋
satisfies

(𝜋 ◦ 𝜎̃) (𝑔(𝑥)) = 𝜙∗(𝑔) (𝜋 ◦ 𝜎̃(𝑥))

for all 𝑥 ∈ 𝑋 and 𝑔 ∈ 𝜋1 (𝑋, 𝑥0).

Claim 1. As long as ℓ0 is large enough, we have that 𝜋 maps each vertex of 𝑌 within const of one and
only one vertex of 𝑇𝑋 .

Starting with the proof of the claim, note that there is a constant 𝐴 � 0 depending only on the
quasiconvexity constants for 𝑇𝑋 with

𝑑H2 (𝑥, 𝑦) � −𝐴 + 𝑑H2 (𝜋̂(𝑥), 𝜋̂(𝑦)) (2.5)

for all 𝑥, 𝑦 ∈ H2. In fact, there exists constants 𝐾, 𝐴′ > 0 which once again depend only on the
quasiconvexity constant of 𝑇𝑋 such that whenever 𝑑H2 (𝜋̂(𝑥), 𝜋̂(𝑦)) > 𝐾 we have the better bound

𝑑H2 (𝑥, 𝑦) � −𝐴′ + 𝑑H2 (𝑥, 𝜋̂(𝑥)) + 𝑑H2 (𝜋̂(𝑥), 𝜋̂(𝑦)) + 𝑑H2 (𝜋̂(𝑦), 𝑦). (2.6)

For 𝑎, 𝑏 ∈ 𝑇𝑋 , let 𝑑𝑇𝑋 (𝑎, 𝑏) denote the interior distance in 𝑇𝑋 between them. We will care about
a modified version of this distance: Let B be the collection of balls in H2 of radius 1 centered at each
vertex of 𝑇𝑋 , and define 𝑑𝑇𝑋 rel𝐵 (𝑎, 𝑏) to be the length of the part of the path in 𝑇𝑋 between them that
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lies outside of B. For all ℓ0 large enough (depending only on hyperbolicity of H2), we have from the
choice of the radius1 that

𝑑𝑇 rel𝐵 (𝑎, 𝑏) ≤ 𝑑H2 (𝑎, 𝑏) (2.7)

for all 𝑎, 𝑏 ∈ 𝑇𝑋 .
Given two edges 𝑒, 𝑒′ of 𝑌 adjacent to the same vertex, we define

Fold(𝑒, 𝑒′) = ℓ𝑇 rel𝐵 (𝜋(𝑒) ∩ 𝜋(𝑒′))

and let then

Fold(𝜋) = max Fold(𝑒, 𝑒′)

where the maximum is taken over all such pairs of edges. The reason to introduce this quantity is that
we have ∑

[𝑣,𝑣′ ] ∈edge(𝑌 )
𝑑𝑇𝑋 rel𝐵 (𝜋(𝑣), 𝜋(𝑣′)) ≥ ℓ(𝜙) + Fold(𝜋) − 𝐴′′ (2.8)

for some positive constant 𝐴′′ depending only on that number of vertices (and the fact that we chose the
balls B to have radius 1) – here, we have identified each edge of Y with one of its representatives in 𝑌 .

Now, using Equations (2.5), (2.7) and (2.8), we get that

ℓ(𝜓) =
∑

[𝑣,𝑣′ ] ∈edge(𝑌 )
𝑑H2 (𝜓̃(𝑣), 𝜓̃(𝑣′))

≥ − const+
∑

[𝑣,𝑣′ ] ∈edge(𝑌 )
𝑑H2 (𝜋(𝑣), 𝜋(𝑣′))

≥ − const+
∑

[𝑣,𝑣′ ] ∈edge(𝑌 )
𝑑𝑇𝑋 rel𝐵 (𝜋(𝑣), 𝜋(𝑣′))

≥ − const+ℓ(𝜙) + Fold(𝜋),

where each const is a positive constant (but not necessarily the same) depending on the quasiconvexity
constant and combinatorics of Y.

Since ℓ(𝜓) ≤ ℓ(𝜙) +𝐶, it follows that Fold(𝜋) ≤ const, where the constant depends on C and on the
lower bound for ℓ0 and on combinatorics of Y. In particular, for each 𝑣 ∈ vert there is a vertex 𝑣′ ∈ 𝑇𝑋
such that 𝑑𝑇𝑋 rel𝐵 (𝜋(𝑣), 𝑣′) ≤ const and we can choose ℓ0 large such that 𝑣′ is unique. We have proved
Claim 1.

Armed with Claim 1, we can define a map 𝐹 : 𝑌 → 𝑇𝑋 by first mapping 𝑣 ∈ vert(𝑌 ), to the unique
vertex in 𝑇𝑋 closest to 𝜋(𝑣), extending it so that it maps each 𝑒 ∈ edge(𝑌 ) with constant speed. Note
that equivariance of 𝜋 implies that 𝐹 satisfies 𝐹 (𝜎∗(𝑔) (𝑦)) = 𝑔(𝐹 (𝑦)) for all 𝑦 ∈ 𝑌 and 𝑔 ∈ 𝜋1 (𝑋, 𝑥0),
where 𝜎∗ : 𝜋1 (𝑋, 𝑥0) → 𝜋1 (𝑌, 𝜎(𝑥0)) is the isomorphism induced by 𝜎 and the chosen base points. It
follows that 𝐹 descends to a map 𝐹 : 𝑌 → 𝑋 .

Claim 2. 𝐹 : 𝑌 → 𝑋 is a homeomorphism with 𝐹 ◦ 𝜎 homotopic to the identity.

The fact that 𝐹 ◦ 𝜎 is homotopic to the identity follows directly from the fact 𝐹 ◦ 𝜎̃ : 𝑋 → 𝑋
satisfies that (𝐹 ◦𝜎) (𝑔𝑥) = 𝑔((𝐹 ◦ 𝜎̃) (𝑥)) for 𝑔 ∈ 𝜋1 (𝑋, 𝑥0). What we really have to prove is that F is a
homeomorphism. To see that this is the case, note that since the maps 𝐹, 𝜋 : 𝑌 → 𝑋 send points within
const of each other, and since in our way to proving Claim 1 we proved that Fold(𝜋) < const, we get
that Fold(𝐹) < const. On the other hand, since 𝐹 maps vertices to vertices and has constant speed on

1In fact, any radius greater than log
√

2 ≈ 0.3466 would work for large ℓ0.
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the edges we get that if Fold(𝐹) ≠ 0, then Fold(𝐹) has to be at least as large as the shortest edge of X.
This implies, using the fact that Fold(𝐹) is uniformly bounded, that as long as ℓ0 is large enough, then
Fold(𝐹) = 0. This implies in turn that 𝐹 is locally injective. Local injectivity of 𝐹, together with the fact
that F, being a homotopy inverse to 𝜎, is a homotopy equivalence, implies that F is a homeomorphism.
We have proved Claim 2.

What is left is to bound the tracks of the geodesic homotopy from 𝜙◦𝐹 to 𝜓 – the argument is similar
to the proof of the existence of F. First, note that we know that for every vertex 𝑣 ∈ 𝑌 , the nearest point
projection 𝜋̂ maps 𝜓(𝑣) close to the vertex 𝜙(𝐹 (𝑣)) of 𝑇𝑋 . It follows that if we choose ℓ0 large enough
we can also assume that 𝑑H2 (𝜋̂(𝜓̃(𝑣)), 𝜋̂(𝜓̃((𝑣′)))) > 𝐾 for any two distinct vertices 𝑣, 𝑣′ ∈ vert(𝑌 ).
This means that Equation (2.6) applies, and hence that we have

ℓ(𝜓(𝑌 )) =
∑

[𝑣,𝑣′ ] ∈edge
𝑑H2 (𝜓̃(𝑣), 𝜓̃(𝑣′))

≥ − const+
∑

[𝑣,𝑣′ ] ∈edge
𝑑H2 (𝜋̂(𝜓̃(𝑣)), 𝜋̂(𝜓̃(𝑣′)))+

+ 3
∑
𝑣 ∈vert

𝑑H2 (𝜓̃(𝑣), 𝜋̂(𝜓̃(𝑣)))

≥ − const+ℓ(𝜙(𝑋)) + 3
∑
𝑣 ∈vert

𝑑H2 (𝜓̃(𝑣), 𝜋̂(𝜓̃(𝑣))),

where as before each const is a positive constant, the first inequality follows by Equation (2.6), the
second by Equations (2.7) and (2.8). Hence, again by assumption (1) in the lemma, we must have that
𝑑H2 (𝜓̃(𝑣), 𝜋̂(𝜓̃(𝑣))) < const for all 𝑣 ∈ vert(𝑌 ). Since 𝐹 (𝑣) and 𝜋̂(𝜓̃(𝑣)) are near each other, we have
that 𝑑H2 (𝜓̃(𝑣), 𝐹 (𝑣)) < const for all 𝑣 ∈ vert(𝑌 ). Convexity of the length function implies that the
geodesic homotopy between 𝜓̃ and 𝜙 ◦ 𝐹 has then tracks bounded by the same constant const, as we
had claimed. �

𝜀-critical realizations

Corollary 2.4 asserts that whenever we have a realization with very long edges and which looks vaguely
critical, then it is not far from a critical realization. Our next goal is to give a more precise description of
the situation in the case that our realization looks even more as if it were critical. To be precise, suppose
that X is a trivalent graph and 𝜀 positive and small. A regular realization 𝜙 : 𝑋 → Σ is 𝜀-critical if

∠(𝜙( �𝑒1), 𝜙( �𝑒2)) ∈
[
2𝜋
3

− 𝜀, 2𝜋
3

+ 𝜀
]

for every two half-edges �𝑒1, �𝑒2 ∈ half𝑣 incident to any vertex 𝑣 ∈ vert(𝑋).
The goal of this section is to determine how the set G𝑋𝜀−crit of 𝜀-critical realizations of X looks. To

do that, we need a bit of of notation and preparatory work. First, we understand a tripod to be a tuple
𝜏 = (𝑝, {𝑣, 𝑣′, 𝑣′′}), where 𝑝 ∈ H2 is a point and where {𝑣, 𝑣′, 𝑣′′} ⊂ 𝑇1

𝑝H
2 is an unordered collection

consisting of three distinct unit vectors based at p. A tripod 𝜏 = (𝑝, {𝑣, 𝑣′, 𝑣′′}) is critical if the three
vectors 𝑣, 𝑣′, 𝑣,′′ have pairwise angle equal to 2𝜋

3 . Any tripod 𝜏 determines three geodesic rays, that is,
three points in 𝜕∞H2, that is an ideal triangle 𝑇𝜏 ⊂ H2 (see the left-hand side of Figure 1). Conversely,
every ideal triangle 𝑇 ⊂ H2 determines a tripod 𝜏𝑇𝑝 = (𝑝, {𝑣, 𝑣′, 𝑣′′}) for every 𝑝 ∈ H2: The vectors
𝑣, 𝑣′, 𝑣,′′ are the unit vectors based at p and pointing to the (ideal) vertices of the ideal triangle T. Note
that T consists of exactly those points p such that the vectors in the tripod 𝜏𝑇𝑝 have pairwise (always
unoriented) angles adding up to 2𝜋. For a given 𝜀, we let

𝑇 (𝜀) =
{
𝑝 ∈ 𝑇

���� the angles between the vectors
in 𝜏𝑇𝑝 lie in [ 2𝜋

3 − 𝜀, 2𝜋
3 + 𝜀]

}
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Figure 1. Left: A critical tripod and (part of) the ideal triangle it determines. Right: The hexagon 𝑇 (𝜀).
Each of the lines making up the boundary of the hexagon corresponds to points p having an angle
between vectors in 𝜏𝑇𝑃 of measure 2𝜋

3 − 𝜀 (dotted lines) and 2𝜋
3 + 𝜀 (solid lines).

be the set of points such that the angles of the tripod 𝜏𝑇𝑝 are within 𝜀 of 2𝜋
3 . The set 𝑇 (𝜀) is, at least for

𝜀 ∈ (0, 𝜋6 ), a hexagon centered at the center of the triangle – the sides of the hexagon are not geodesic
but rather subsegments of curves of constant curvature; see Figure 1. However, if we scale everything
by 𝜀−1, then 𝜀−1 · 𝑇 (𝜀) converges to the regular euclidean hexagon of side length 2

3 . This means in
particular that

diam(𝑇 (𝜀)) ∼ 4
3
𝜀 and vol(𝑇 (𝜀)) ∼ 2

√
3
𝜀2 as 𝜀 → 0. (2.9)

Remark. To get the shape of 𝑇 (𝜀), one can use elementary synthetic hyperbolic geometry. But one can
also resort to hyperbolic trigonometry. For example, evoking formula 2.2.2 (iv) in the back of Buser’s
book [3] one gets

𝑇 (𝜀) =
{
𝑝 ∈ 𝑇

��� cot
( 𝜋

3
− 𝜀

2

)
≤ sinh(𝑑 (𝑝, 𝜕𝑇)) ≤ cot

( 𝜋
3
+ 𝜀

2

)}
.

Suppose now that 𝜙 : 𝑋 → Σ is a critical realization of a trivalent graph X in our closed hyperbolic
surface, and recall that by Lemma 2.2 we have that the connected component G𝜙 of geodesic realizations
homotopic to 𝜙 is isometric to a product of hyperbolic planes H2 × · · · × H2, one factor for each vertex
of X. To each vertex x of X, we can associate first the tripod 𝜏𝜙𝑥 = (𝜙(𝑥), {𝜙( �𝑒)}�𝑒∈half𝑥 (𝑋 ) ) consisting
of the image under 𝜙 of the vertex x and of the unit vectors 𝜙( �𝑒) tangent to the images of the half-edges
incident to x, and then 𝑇

𝜏
𝜙
𝑥

the ideal triangle associated to the critical tripod 𝜏𝜙𝑥 . The assumption that 𝜙
is critical implies that the point 𝜙(𝑥) is the center of 𝑇

𝜏
𝜙
𝑥

for every vertex 𝑥 ∈ vert. We let

T 𝜙 =
∏

𝑥∈vert(𝑋 )
𝑇
𝜏
𝜙
𝑥
⊂

∏
𝑥∈vert(𝑋 )

H
2 = G𝜙

be the subset of G𝜙 consisting of geodesic realizations homotopic to 𝜙 via a homotopy that maps each
vertex x within 𝑇

𝜏
𝜙
𝑥

. Accordingly, we set

T 𝜙 (𝜀) =
∏

𝑥∈vert(𝑋 )
𝑇
𝜏
𝜙
𝑥
(𝜀) ⊂ T 𝜙

and we note that

vol(T 𝜙 (𝜀)) ∼
(

2
√

3
𝜀2

) | vert(𝑋 ) |
.

The reason we care about all these sets is that, asymptotically, T 𝜙 (𝜀) agrees with the set G𝜙𝜀−crit of
𝜀-critical realizations 𝜓 homotopic to 𝜙. Indeed, we get from Corollary 2.4 that the geodesic homotopy
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from 𝜓 to 𝜙 has lengths bounded by a uniform constant. This means that for all 𝑒 ∈ edge(𝑋) the geodesic
segments 𝜙(𝑒) and 𝜓(𝑒) are very long but have endpoints relatively close to each other. This means
that, when looked from (each) one of its vertices x, the segment 𝜓(𝑒) is very close to being asymptotic
to 𝜙(𝑒). In particular, the angle between 𝜓(𝑒) and the geodesic ray starting at 𝜓(𝑥) and asymptotic to
the ray starting in 𝜙(𝑥) in direction 𝜙(𝑒) is smaller than 𝛿 = 𝛿(min𝑒∈edge(𝑋 ) ℓ(𝜓(𝑒))) for some positive
function with 𝛿(𝑡) → 0 as 𝑡 → ∞. With the rather clumsy notation, we find ourselves working with we
have that 𝛿 bounds from above the angles between corresponding edges of the tripods 𝜏𝜓𝑥 and 𝜏

𝑇
𝜙
𝑥

𝜓 (𝑥) .

Since by assumption the angles of 𝜏𝜓𝑥 belong to [ 2𝜋
3 − 𝜀, 2𝜋

3 + 𝜀], we get that the angles of 𝜏𝑇
𝜙
𝑥

𝜓 (𝑥) belong
to [ 2𝜋

3 − 𝜀 − 2𝛿, 2𝜋
3 + 𝜀 + 2𝛿], meaning that 𝜓(𝑥) ∈ 𝑇

𝜏
𝜙
𝑥
(𝜀 + 2𝛿).

To summarize, what we have proved is that for all 𝜀1 > 𝜀 there is ℓ1 such that if 𝜙 : 𝑋 → Σ is critical
with ℓ(𝜙(𝑒)) � ℓ1 for all 𝑒 ∈ edge, then

G𝜙𝜀−crit ⊂ T 𝜙 (𝜀1).

The same argument proves that for all 𝜀2 < 𝜀 there is ℓ2 such that if 𝜙 : 𝑋 → Σ is critical with
ℓ(𝜙(𝑒)) � ℓ2 for all 𝑒 ∈ edge, then

T 𝜙 (𝜀2) ⊂ G𝜙𝜀−crit

We record these facts:

Lemma 2.5. There are functions ℎ : (0, 𝜋6 ) → R>0 and 𝛿 : (0, 𝜀0) → R>0 with lim𝑡→0 ℎ(𝑡) = 0 and
lim𝑡→∞ 𝛿(𝑡) = 0 such that for every critical realizations 𝜙 : 𝑋 → Σ we have

T 𝜙 (𝜀 − 𝑟 (𝜀, 𝜙)) ⊂ G𝜙𝜀−crit ⊂ T 𝜙 (𝜀 + 𝑟 (𝜀, 𝜙)),

where 𝑟 (𝜀, 𝜙) = ℎ(𝜀) + 𝛿(min𝑒∈edge(𝑋 ) ℓ(𝜙(𝑒))).

To conclude this section, we collect what we will actually need about the set of 𝜀-critical realizations
in a single statement.

Proposition 2.6. Let X be a trivalent graph. There are ℓ > 0 and functions 𝜌0, 𝜌1 : R>0 → R>0 with
lim𝑡→0 𝜌0(𝑡) = 0 and lim𝑡→∞ 𝜌1 (𝑡) = 0 and such that the following holds for all 𝜀 ∈ [0, 𝜋6 ]:

If 𝜙 ∈ G𝜀−crit (𝑋) is an ℓ-long 𝜀-critical realization, then�����vol(G𝜙𝜀−crit) −
(

2
√

3
𝜀2

)𝑉 ����� � 𝜌0 (𝜀) · 𝜌1

(
min
𝑒∈edge

ℓ(𝜙(𝑒))
)
· 𝜀2𝑉 . (2.10)

Moreover, G𝜙𝜀−crit contains a unique critical realization 𝜓 and we have

max
𝑒∈edge

|ℓΣ (𝜙(𝑒)) − ℓΣ (𝜓(𝑒)) | � 𝜌0(𝜀) + 𝜌1

(
min
𝑒∈edge

ℓ(𝜙(𝑒))
)
· 𝜀. (2.11)

Here, as before, V is the number of vertices of X and edge = edge(𝑋) is its set of edges.

Proof. Suppose to begin with that ℓ is at least as large as the ℓ0 in Corollary 2.4. We thus get that G𝜙
contains a unique critical realization 𝜓. Now, we get from Lemma 2.5 that

T 𝜙 (𝜀 − 𝑟 (𝜀, 𝜙)) ⊂ G𝜙𝜀−crit ⊂ T 𝜙 (𝜀 + 𝑟 (𝜀, 𝜙)), (2.12)

where 𝑟 (𝜀, 𝜙) = ℎ(𝜀) + 𝛿(min𝑒∈edge ℓ(𝜙(𝑒))) for some functions ℎ : (0, 𝜋6 ) → R>0 with and 𝛿 :
(0, 𝜀0) → R>0 with lim𝑡→∞ ℎ(𝑡) = 0 and lim𝑡→∞ 𝛿(𝑡) = 0. The bounds (2.10) and (2.11) follow now
from Equations (2.12) and (2.9). �
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3. Variations of Delsarte’s theorem

In this section, we establish the asymptotics of the number of realizations 𝜙 : 𝑋 → Σ satisfying some
length condition, mapping each vertex to some predetermined point in Σ, and so that the tuple of
directions of images of half-edges belongs to some given open set of such tuples – see Theorem 3.2 for
details. Other than some bookkeeping, what is needed is a slight extension of Delsarte’s lattice counting
theorem [7], namely Theorem 3.1 below. This result is known to experts, and much more sophisticated
versions than what we need here can be found in the literature – see, for example, [17, Théorème 4.1.1].
However, for the sake of completeness, we will explain how to derive Theorem 3.1 from the fact that
the geodesic flow is mixing. We refer to the very nice books [2, 17] for the needed background.

We start by recalling a few well-known facts about dynamics of geodesic flows on hyperbolic
surfaces. First, recall that we can identify 𝑇1

H
2 with PSL2 R, and 𝑇1Σ = 𝑇1 (Γ\H2) with Γ\PSL2 R.

More specifically, when using the identification

PSL2 R→ 𝑇1
H

2 𝑔 ↦→ 𝑑

𝑑𝑡
𝑔(𝑒𝑡 𝑖) |𝑡=0

where the computation happens in the upper half-plane model and 𝑖 ∈ H2 is the imaginary unit, then
the geodesic and horocyclic flows amount to right multiplication by the matrices

𝜌𝑡 =

(
𝑒

𝑡
2 0

0 𝑒−
𝑡
2

)
and ℎ𝑠 =

(
1 𝑠
0 1

)
,

respectively.
Note that 𝐾 = SO2 ⊂ PSL2 R, the stabilizer of i under the action PSL2 R � H

2, is a maximal
compact subgroup – K corresponds under the identification PSL2 R � 𝑇1

H
2 to the unit tangent space

𝑇1
𝑖 H

2 of the base point 𝑖 ∈ H2. The KAN decomposition (basically the output of the Gramm–Schmidt
process from linear algebra) asserts that every element in 𝑔 ∈ PSL2 R can be written in a unique way as

𝑔 = 𝑘𝜌𝑡ℎ𝑠 (3.1)

for 𝑘 ∈ 𝐾 and 𝑡, 𝑠 ∈ R. In those coordinates, the Haar measure of PSL2 R is given by∫
𝑓 (𝑔) vol𝑇 1H2 (𝑔) =

∭
𝑓 (𝑘𝜌𝑡ℎ𝑠) · 𝑒−𝑡 𝑑𝑘𝑑𝑡𝑑𝑠

where 𝑑𝑘 stands for integrating over the arc length in 𝐾 � 𝑇1
𝑖 H

2, normalized to have total measure 2𝜋.
The basic fact we will need is that the geodesic flow 𝜌𝑡 on 𝑇1Σ is mixing [2, III.2.3], or rather one of

its direct consequences, namely the fact that for each 𝑥0 ∈ H2 the projection to Σ of the sphere 𝑆(𝑥0, 𝐿)
centered at 𝑥0 and with radius L gets equidistributed in Σ when 𝐿 → ∞ [2, III.3.3]. To be more precise,
note that we might assume without loss of generality that 𝑥0 = 𝑖, meaning that we are identifying
𝑇1
𝑥0H

2 = 𝐾 . The fact that the geodesic flow is mixing implies then that for every nondegenerate interval
𝐼 ⊂ 𝐾 the spherical arcs 𝐼𝜌𝑡 equidistribute in Γ\PSL2 R in the sense that for any continuous function
𝑓 ∈ 𝐶0 (𝑇1Σ) = 𝐶0 (Γ\PSL2 R) we have

lim
𝐿→∞

1
ℓ(𝐼)

∫
𝐼
𝑓 (Γ𝑘𝜌𝐿) 𝑑𝑘 =

1
vol𝑇 1Σ (𝑇1Σ)

∫
𝑇 1Σ

𝑓 (Γ𝑔) · 𝑑𝑔, (3.2)

where ℓ(𝐼) is the arc length of I and where the second integral is with respect to vol𝑇 1Σ. Anyways,
we care about equidistribution of the spheres for the following reason. If 𝑓 ∈ 𝐶0(Σ) is a continuous
function and if we let 𝑓 be the composition of f with the cover H2 → Σ, then Equation (3.2) implies,
with 𝐼 = 𝐾 , that
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lim
𝐿→∞

1
volH2 (𝐵(𝑥0, 𝐿))

·
∫
𝐵 (𝑥0 ,𝐿)

𝑓 (𝑥) 𝑑𝑥 = 1
vol(Σ)

∫
Σ
𝑓 (𝑥)𝑑𝑥.

Applying this to a nonnegative function 𝑓𝑦0 , 𝜀 ∈ 𝐶0 (Σ) with total integral 1 and supported by 𝐵(𝑦0, 𝜀),
we get that ∫

𝐵 (𝑥0 ,𝐿)
𝑓𝑦0 , 𝜀 (𝑥) 𝑑𝑥 ∼

volH2 (𝐵(𝑥0, 𝐿))
vol(Σ) .

Now, from the properties of 𝑓𝑦0 , 𝜀 we get that∫
𝐵 (𝑥,𝐿−𝜀)

𝑓𝑦0 , 𝜀 (·)𝑑 volH2 � |Γ · 𝑦0 ∩ 𝐵(𝑥0, 𝐿) | �
∫
𝐵 (𝑥,𝐿+𝜀)

𝑓𝑦0 , 𝜀 (·)𝑑 volH2 . (3.3)

When taken together, the last two displayed equations imply that for all 𝜀 one has

𝜋 · 𝑒𝐿−𝜀
vol(Σ) � |Γ · 𝑦0 ∩ 𝐵(𝑥0, 𝐿) | �

𝜋 · 𝑒𝐿+𝜀
vol(Σ)

and hence that

|Γ · 𝑦0 ∩ 𝐵(𝑥0, 𝐿) | ∼
𝜋 · 𝑒𝐿
vol(Σ) as 𝐿 → ∞. (3.4)

This is Delsarte’s lattice point counting theorem [7] – we refer to [2, III.3.5] for more details.
An observation: Note that counting elements of Γ · 𝑦0 contained in the ball 𝐵(𝑥0, 𝐿) is exactly the

same thing as counting geodesic arcs in Σ of length at most L going from 𝑥0 to 𝑦0, or to be precise, from
the projection of 𝑥0 to the projection of 𝑦0. In this way, if we are given a segment 𝐼 ⊂ 𝐾 = 𝑇1

𝑥0Σ and
we use the equidistribution of the spherical segments 𝐼𝜌𝑡 , then when we run the argument above we get
the cardinality of the set A𝐼 ,𝑦0 (𝐿) of geodesic arcs of length at most L, starting in 𝑥0 with initial speed
in I, and ending in 𝑦0. As expected, the result is that

|A𝐼 ,𝑦0 (𝐿) | ∼
ℓ(𝐼)
2𝜋

· 𝜋 · 𝑒𝐿
vol(Σ) when 𝐿 → ∞.

Suppose now that we dial it up a bit giving ourselves a second sector 𝐽 ⊂ 𝑇1
𝑦0Σ and care, for some

fixed h, about the cardinality of the set A𝐼 ,𝐽 (𝐿, ℎ) of geodesic arcs with length in [𝐿, 𝐿 + ℎ], joining
𝑥0 to 𝑦0, and with initial and terminal velocities in I and J, respectively. We can obtain the asymptotics
of |A𝐼 ,𝐽 (𝐿, ℎ) | following the same basic idea as in the proof of Delsarte’s theorem above. We need,
however, to replace the bump function 𝑓𝑦0 , 𝜀 by something else.

Using the coordinates (3.1), consider for h and 𝛿 positive and small the set

J (𝐽, ℎ, 𝛿) = {𝐽𝜌𝑡ℎ𝑠 with 𝑠 ∈ [−𝛿, 𝛿] and 𝑡 ∈ [0, ℎ]} ⊂ 𝑇1Σ

and note that it has volume ℓ(𝐽) ·2𝛿 · (1−𝑒−ℎ). Note also that the intersection of J (𝐽, ℎ, 𝛿) with the outer
normal vector field of any horosphere consists of segments of the form𝐻𝑣𝜌𝑡 = {𝑣𝜌𝑡ℎ𝑠 with 𝑠 ∈ [−𝛿, 𝛿]},
where 𝑣 ∈ 𝐽 and 𝑡 ∈ [0, ℎ] and that each such segment has length 2𝛿. Finally, observe that each one of
the sets 𝐻𝑣𝜌𝑡 contains exactly one vector, namely 𝑣𝜌𝑡 , which lands in J when we geodesic flow it for
some time in [−ℎ, 0]. It follows that for all intervals I ⊂ R and 𝑤 ∈ 𝑇1Σ we have��������{𝑟 ∈ I ���� ∃𝑠 ∈ [−𝛿, 𝛿], 𝑡 ∈ [−ℎ, 0]

with 𝑤ℎ𝑠𝜌𝑡 ∈ 𝐽

}���� − ℓ({𝑠 ∈ I with 𝑤ℎ𝑠 ∈ J })
2𝛿

���� � 2,
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where J = J (𝐽, ℎ, 𝛿) and where the number 2 is there to take into account possible over counting near
the ends of the horospherical segment.

Using then the fact that when 𝐿 → ∞ the sphere 𝑆(𝑥0, 𝐿 + ℎ) ⊂ H2 looks more and more like a
horosphere, one gets the following analogue of Equation (3.3): For any 𝛿′ < 𝛿 < 𝛿′′ and ℎ′ < ℎ < ℎ′′

and 𝐽 ′ � 𝐽 � 𝐽 ′′, we have for all sufficiently large L∫
𝐼 𝜌𝐿+ℎ

𝜒J (𝐽 ′,ℎ′, 𝛿′) � 2𝛿 · |A𝐼 ,𝐽 (𝐿, ℎ) | �
∫
𝐼 𝜌𝐿+ℎ

𝜒J (𝐽 ′′,ℎ′′, 𝛿′′) ,

where 𝜒J is the characteristic function of J . From here, we get that

|A𝐼 ,𝐽 (𝐿, ℎ) | ∼
1

2𝛿

∫
𝐼 𝜌𝐿+ℎ

𝜒J (𝐽 ,ℎ, 𝛿) ∼
1

2𝛿
· 𝑒
𝐿+ℎ

2
·
∫
𝐼
𝜒J (𝐽 ,ℎ, 𝛿) (𝑘𝜌𝐿+ℎ) 𝑑𝑘

(3.2)∼ 1
2𝛿

· 𝑒
𝐿+ℎ

2
· ℓ(𝐼) · vol𝑇 1Σ (J (𝐽, ℎ, 𝛿))

vol𝑇 1Σ (𝑇1Σ)

∼ ℓ(𝐼) · ℓ(𝐽)
4𝜋

· 𝑒
𝐿+ℎ − 𝑒𝐿
vol(Σ) .

We record this slightly generalized version of Delsarte’s theorem for later reference:

Theorem 3.1 (Delarte’s theorem for in-out sectors). Let Σ be a closed hyperbolic surface, let h be
positive and let 𝐼 ⊂ 𝑇𝑥0Σ and 𝐽 ⊂ 𝑇𝑦0Σ be nondegenerate segments. Let then A𝐼 ,𝐽 (𝐿, ℎ) be the set of
geodesic arcs 𝛼 : [0, 𝑟] → Σ with length 𝑟 ∈ [𝐿, 𝐿 + ℎ], with endpoints 𝛼(0) = 𝑥0 and 𝛼(𝑟) = 𝑦0, and
with initial and terminal speeds satisfying 𝛼′(0) ∈ 𝐼 and 𝛼′(𝑟) ∈ 𝐽. Then we have

|A𝐼 ,𝐽 (𝐿, ℎ) | ∼
ℓ(𝐼) · ℓ(𝐽)

4𝜋
· 𝑒
𝐿+ℎ − 𝑒𝐿
vol(Σ)

when 𝐿 → ∞.

As we mentioned earlier, Theorem 3.1 is a very special case of the much more general [17, Théorème
4.1.1]. We would not be surprised if there were also other references we are not aware of.

Remark. Note also that the asymptotic behavior in Theorem 3.1 is uniform as long as I and J belong
to a compact set of choices. For example, since the surface Σ is compact, we get that for all 𝛿 > 0
the asymptotic behavior in Theorem 3.1 is uniform as long as I and J are intervals of length at least 𝛿
contained, respectively, in 𝑇1

𝑥𝐼Σ and 𝑇1
𝑥𝐽Σ for some 𝑥𝐼 and 𝑥𝐽 in Σ.

Now, let X be a trivalent graph with vertex set vert(𝑋) and let �𝑥 = (𝑥𝑣 )𝑣 ∈vert(𝑋 ) ∈ Σvert(𝑋 ) be a
vert(𝑋)-tuple of points in the surface. Let also

𝑈 ⊂
∏

𝑣 ∈vert(𝑋 )

� !
⊕

𝑒̄∈half𝑣 (𝑋 )
𝑇1
𝑥𝑣Σ

#$% def
= T �𝑥

be an open set where, as always, half𝑣 (𝑋) is the set of all half-edges of X starting at the vertex v.
Given for each edge 𝑒 ∈ edge(𝑋) a positive number 𝐿𝑒 and writing �𝐿 = (𝐿𝑒)𝑒∈edge(𝑋 ) , we are going

to be interested in the set G𝑋𝑈 ( �𝐿𝑒, ℎ) of realizations 𝜙 : 𝑋 → Σ

(a) mapping each vertex 𝑣 ∈ vert(𝑋) to the point 𝑥𝑣 ,
(b) with (𝜙( �𝑒))𝑒̄∈half (𝑋 ) ∈ 𝑈 and
(c) with ℓ(𝑒) ∈ [𝐿𝑒, 𝐿𝑒 + ℎ] for all 𝑒 ∈ edge(𝑋).

In this setting, we have the following version of Delsarte’s theorem relating the cardinality of G𝑋𝑈 ( �𝐿𝑒, ℎ)
with the volume vol �𝑥 (𝑈) of U, where the volume is measured in the flat torus T �𝑥 .
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Theorem 3.2 (Delarte’s theorem for graph realizations). Let Σ be a closed hyperbolic surface, let X be a
finite graph, fix �𝑥 ∈ Σvert(𝑋 ) and an open set𝑈 �𝑥 ⊂ T �𝑥 . If vol �𝑥 (𝑈̄ �𝑥 \𝑈 �𝑥) = 0, then for every ℎ > 0 we have

|G𝑋𝑈�𝑥
( �𝐿, ℎ) | ∼ vol �𝑥 (𝑈 �𝑥)

(4𝜋)𝐸
· (𝑒

ℎ − 1)𝐸 · 𝑒 ‖ �𝐿 ‖

vol(Σ)𝐸

when min𝑒∈edge(𝑋 ) 𝐿𝑒 → ∞. Here, 𝑈̄ �𝑥 is the closure of 𝑈 �𝑥 in T �𝑥 and vol �𝑥 (·) stands for the volume
therein. Also, 𝐸 = | edge(𝑋) | is the number of edges in X, and ‖ �𝐿‖ =

∑
𝑒∈edge(𝑋 ) 𝐿𝑒.

We stress that vol �𝑥 is normalized in such a way that vol �𝑥 (T �𝑥) = (2𝜋)2𝐸 . We also stress that this is
consistent with the fact that we use the interval [0, 𝜋] to measure unoriented angles.

Proof. Let us say that a closed set of the form

∏
𝑣 ∈vert(𝑋 )

� !
∏

𝑒̄∈half𝑣 (𝑋 )
𝐼𝑒̄
#$% ⊂ T �𝑥 =

∏
𝑣 ∈vert(𝑋 )

� !
⊕

𝑒̄∈half𝑣 (𝑋 )
𝑇1
𝑥𝑣Σ

#$%,
where each 𝐼𝑒̄ is a segment in𝑇1

𝑥𝑣Σ is a cube. We say that a closed subset of
∏
𝑣 ∈vert(𝑋 )

(
⊕𝑒̄∈half𝑣 (𝑋 )𝑇

1
𝑥𝑣Σ

)
it cubical if it can be given as the union of finitely many cubes with disjoint interiors. The assumption that
the open set𝑈 = 𝑈 �𝑥 in the statement is such that 𝑈̄ \𝑈 is a null-set implies that U can be approximated
from inside and outside by cubical sets 𝑈 ′ ⊂ 𝑈 ⊂ 𝑈 ′′ with vol(𝑈 ′′) − vol(𝑈 ′) as small as we want. It
follows that it suffices to prove the theorem if U is (the interior of) a cubical set.

Note now that if 𝑈 = 𝑈1 ∪ 𝑈2 is the disjoint union of two sets 𝑈1 and 𝑈2 and if the statement of
the theorem holds true for 𝑈1 and 𝑈2, then it also holds true for U. Since every cubical set is made out
of finitely many cubes with disjoint interior, we deduce that it really suffices to prove the theorem for
individual cubes

𝑈 =
∏

𝑣 ∈vert(𝑋 )

� !
∏

𝑒̄∈half𝑣 (𝑋 )
𝐼𝑒̄
#$%.

Note that, up to shuffling the factors we can see U as

𝑈 =
∏

𝑒∈edge(𝑋 )
(𝐼𝑒+ × 𝐼𝑒−).

Here, we are denoting by 𝑒+ and 𝑒− the two half-edges of the edge 𝑒 ∈ edge(𝑋). Now, unpacking the
notation one sees that a realization 𝜙 belongs to G𝑈 ( �𝐿𝑒, ℎ) if and only if for all 𝑒 ∈ edge(𝑋) the arc
𝜙(𝑒) belongs to A𝐼𝑒+ ,𝐼𝑒− (𝐿𝑒, ℎ). It follows thus from Delsarte’s theorem for in-out sectors that

|G𝑋𝑈 ( �𝐿, ℎ) | =
∏

𝑒∈edge(𝑋 )

��A𝐼𝑒+ ,𝐼𝑒− (𝐿𝑒, ℎ)��
∼

∏
𝑒∈edge(𝑋 )

(
ℓ(𝐼𝑒+ ) · ℓ(𝐼𝑒−)

4𝜋
· (𝑒

ℎ − 1) · 𝑒𝐿𝑒
vol(Σ)

)
=

∏
𝑒∈edge(𝑋 ) (ℓ(𝐼𝑒+ ) · ℓ(𝐼𝑒−))

(4𝜋)𝐸
· (𝑒

ℎ − 1)𝐸 · 𝑒
∑

𝑒∈edge(𝑋 ) 𝐿𝑒

vol(Σ)𝐸

=
vol(𝑈)
(4𝜋)𝐸

· (𝑒
ℎ − 1)𝐸 · 𝑒 ‖ �𝐿 ‖

vol(Σ)𝐸
,

where, as in the statement we have set 𝐸 = | edge(𝑋) |. We are done. �
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Let us consider now the concrete case we will care mostly about. Suppose namely that X is a trivalent
graph and that we want all the angles to be between 2

3𝜋−𝜀 and 2
3𝜋+𝜀. In other words, we are interested in

the set of 𝜀-critical realizations 𝜙 : 𝑋 → Σ which map the vertices to our prescribed tuple �𝑥 ∈ Σvert(𝑋 ) .
Then we have to consider the set

𝑈𝑋�𝑥,𝜀−crit ⊂
∏

𝑣 ∈vert(𝑋 )

� !
⊕

𝑒̄∈half𝑣 (𝑋 )
𝑇1
𝑥𝑣Σ

#$%
of those tuples (𝑣 �𝑒)�𝑒∈half (𝑋 ) with ∠(𝑣 �𝑒1 , 𝑣 �𝑒2) ∈ [ 2𝜋

3 −𝜀, 2𝜋
3 +𝜀] for all distinct �𝑒1, �𝑒2 ∈ half (𝑋) incident

to the same vertex.
Let us compute the volume of𝑈𝑋�𝑥,𝜀−crit. Noting that the conditions on𝑈𝑋�𝑥,𝜀−crit associated to different

vertices are independent, we get that it suffices to think vertex-by-vertex and then multiply all the
numbers obtained for all vertices. For each vertex v, label arbitrarily the half-edges incident to v by
�𝑒1, �𝑒2 and �𝑒3. We have no restriction for the position of 𝑣 �𝑒1 ∈ 𝑇𝑥𝑣Σ. Once we have fixed 𝑣 �𝑒1 ∈ 𝑇1

𝑥𝑣 (Σ),
we get that 𝑣 �𝑒2 can belong to two segments, each one of length 2𝜀, in 𝑇1

𝑥𝑣 (Σ) – recall that all our angles
are unoriented. Then, once we have fixed 𝑣 �𝑒1 and 𝑣 �𝑒2 , we have to choose 𝑣 �𝑒3 in an interval of length
2𝜀 − |∠(𝑣 �𝑒1 , 𝑣 �𝑒2) −

2𝜋
3 |. This means that when we have chosen 𝑣 �𝑒1 and which segment 𝑣 �𝑒2 is in, then we

have 3𝜀2 worth of choices of (𝑣 �𝑒2 , 𝑣 �𝑒3). This means that the set of possible choices in𝑇1
𝑥𝑣Σ×𝑇

1
𝑥𝑣Σ×𝑇

1
𝑥𝑣Σ

has volume equal to 12𝜋𝜀2. Since, as we already mentioned earlier, the conditions at all vertices of X
are independent, we get that

vol �𝑥 (𝑈𝑋�𝑥,𝜀−crit) = (12𝜋𝜀2) | vert(𝑋 ) | .

From Theorem 3.2, we get thus that for all ℎ > 0 and all �𝑥 ∈ Σvert(𝑋 ) we have

|G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) | ∼
(12𝜋𝜀2)𝑉

(4𝜋)𝐸
· (𝑒

ℎ − 1)𝐸 · 𝑒 ‖ �𝐿 ‖

vol(Σ)𝐸
as min

𝑒∈edge(𝑋 )
𝐿𝑒 → ∞,

where we are writing V and E for the number of vertices and edges of X, and G𝑋�𝑥,𝜀−crit instead of
G𝑋𝑈�𝑥,𝜀−crit

. Taking into account that X is trivalent and hence satisfies 𝑉 = −2𝜒(𝑋) and 𝐸 = −3𝜒(𝑋), we
can clean this up to

|G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) | ∼ 𝜀4 |𝜒 (𝑋 ) | ·
(

2
3

)2𝜒 (𝑋 )
· 𝜋𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−3𝜒 (𝑋 )

as min𝑒∈edge(𝑋 ) 𝐿𝑒 → ∞. Moreover, since the geometry of the set 𝑈𝑋�𝑥 (𝜀 − crit) is independent of the
point �𝑥, we get that the speed of convergence to this asymptotic is independent of �𝑥. Altogether, we have
the following result:

Corollary 3.3. Let Σ be a closed hyperbolic surface and X be a trivalent graph, fix 𝜀 > 0 and ℎ > 0 and
for �𝑥 ∈ Σvert(𝑋 ) , let G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) be the set of 𝜀-critical realizations 𝜙 : 𝑋 → Σ mapping the vertex v
to the point 𝑥𝑣 = 𝜙(𝑣). Then we have

|G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) | ∼ 𝜀4 |𝜒 (𝑋 ) | ·
(

2
3

)2𝜒 (𝑋 )
· 𝜋𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−3𝜒 (𝑋 ) (3.5)

as min𝑒∈edge(𝑋 ) 𝐿𝑒 → ∞.

Note that the set 𝑈𝑋�𝑥,𝜀−crit needed to establish Corollary 3.3 is basically the same for all choices of
�𝑥. For example, if we take another �𝑦 ∈ Σvert(𝑋 ) and we identity T �𝑥 with T�𝑦 isometrically by parallel
transport (along any collection of curves whatsoever), then𝑈𝑋�𝑥,𝜀−crit is sent to𝑈𝑋�𝑦,𝜀−crit. It follows that we
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can approximate 𝑈𝑋�𝑥,𝜀−crit and 𝑈𝑋�𝑦,𝜀−crit at the same time by cubical sets consisting of the same number
of cubes with the same side lengths. It thus follows from the comment following Theorem 3.1 that the
asymptotics in Corollary 3.3 is uniform in �𝑥. We record this fact:

Addendum to Corollary 3.3. The asymptotics in Equation (3.5) is uniform in �𝑥 ∈ Σvert(𝑋 ) .

4. Counting critical realizations

In this section, we prove Theorem 1.3 from the introduction. Before restating the theorem, recall that if
X is a trivalent graph then we denote by

G𝑋 (𝐿) =
{
𝜙 : 𝑋 → Σ critical realization

with length ℓΣ (𝜙) � 𝐿

}
(4.1)

the set of all critical realizations of length ℓΣ (𝜙) at most L.

Theorem 1.3. Let Σ be a closed, connected and oriented hyperbolic surface. For every connected
trivalent graph X, we have

|G𝑋 (𝐿) | ∼
(

2
3

)3𝜒 (𝑋 )
· vol(𝑇1Σ)𝜒 (𝑋 )
(−3𝜒(𝑋) − 1)! · 𝐿

−3𝜒 (𝑋 )−1 · 𝑒𝐿

as 𝐿 → ∞.

Fixing for the remaining of this section the trivalent graph X, we will write vert = vert(𝑋) and
edge = edge(𝑋) for the sets of vertices and edges and𝑉 = | vert | and 𝐸 = | edge | for their cardinalities.
Similarly, we will denote by G = G𝑋 the manifold of realizations of X in Σ, and by G(𝐿) = G𝑋 (𝐿) the
set of critical realizations with length at most L.

The main step in the proof of Theorem 1.3 is to count critical realizations of X such that the
corresponding vectors of lengths (ℓ(𝜙(𝑒)))𝑒∈edge belong to a box of size ℎ > 0. More concretely, we
want to count how many elements there are in the set

G( �𝐿, ℎ) =
{

𝜙 : 𝑋 → Σ critical realization with
ℓ(𝜙(𝑒)) ∈ (𝐿𝑒, 𝐿𝑒 + ℎ] for all 𝑒 ∈ edge

}
, (4.2)

where �𝐿 = (𝐿𝑒)𝑒∈edge is a positive vector. We start by establishing some form of an upper bound for the
number of homotopy classes of realizations when we bound the length of each individual edge – recall
that by Lemma 2.2 any two homotopic critical realizations are identical.

Lemma 4.1. For all �𝐿 ∈ Redge(𝑋 )
+ , there are at most const ·𝑒 ‖ �𝐿 ‖ homotopy classes of realizations

𝜙 : 𝑋 → Σ with ℓ(𝜙(𝑒)) � 𝐿𝑒 for all 𝑒 ∈ edge(𝑋).

It is worth pointing out that Lemma 4.1 fails if Σ is allowed to have cusps – see Section 9.

Proof. Let us fix a point 𝑥0 ∈ Σ, and note that every point in Σ – think of the images under a realization
of the vertices of X – can be moved to 𝑥0 along a path of length at most diam(Σ). It follows that every
realization 𝜙 : 𝑋 → Σ is homotopic to a new realization 𝜓 : 𝑋 → Σ mapping all vertices of X to 𝑥0 and
with

ℓ(𝜓(𝑒)) � ℓ(𝜙(𝑒)) + 2 · diam(Σ) � 𝐿𝑒 + 2 · diam(Σ) (4.3)

for every edge 𝑒 ∈ edge(𝑋). Note that the homotopy class of 𝜓 is determined by the homotopy classes
of the loops 𝜓(𝑒) when e ranges over the edges of X. Now, Equation (4.3) implies that, up to homotopy,
we have at most const ·𝑒𝐿𝑒 choices for the geodesic segment 𝜓(𝑒). This implies that there are at most
const ·𝑒 ‖ �𝐿 ‖ choices for the homotopy class of𝜓, and hence for the homotopy class of 𝜙. We are done. �
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Although it is evidently pretty coarse, Lemma 4.1 will play a key role in the proof of Theorem 1.3.
However, the main tool in the proof of the theorem is the following:

Proposition 4.2. For all ℎ > 0, we have

|G( �𝐿, ℎ) | ∼ 24𝜒 (𝑋 )

33𝜒 (𝑋 ) · 𝜋
𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−𝜒 (𝑋 )

as min𝑒∈edge 𝐿𝑒 → ∞. Here, G( �𝐿, ℎ) is as in Equation (4.2).

Proof. Denote by G ( �𝐿, ℎ) ⊂ G the set of all realizations 𝜙 : 𝑋 → Σ with ℓΣ (𝜙) ∈ [𝐿𝑒, 𝐿𝑒 + ℎ] for all
𝑒 ∈ edge and then let

𝐺 𝜀 ( �𝐿, ℎ) =
{
G𝜙 ∈ 𝜋0 (G) with G𝜙𝜀−crit ⊂ G ( �𝐿, ℎ)

}
𝐺̂ 𝜀 ( �𝐿, ℎ) =

{
G𝜙 ∈ 𝜋0 (G) with G𝜙𝜀−crit ∩ G ( �𝐿, ℎ) ≠ ∅

}
be the sets of connected components of G whose set of 𝜀-critical realizations is fully contained in (resp.
which meet) G ( �𝐿, ℎ). It follows from Corollary 2.4 that there is some ℓ0 such that as long as �𝐿 satisfies
that min 𝐿𝑒 � ℓ0, then each component listed in 𝐺̂ 𝜀 ( �𝐿, ℎ) contains exactly one critical realization of
the graph X. Assuming from now on that we are in this situation, we get that

|𝐺 𝜀 ( �𝐿, ℎ) | � |G( �𝐿, ℎ) | � |𝐺̂ 𝜀 ( �𝐿, ℎ) |.

Now, from Equation (2.10) in Proposition 2.6 we get that for all 𝛿 > 0 there is ℓ1 > ℓ0 with

(1 − 𝛿) · vol� !
⋃

G𝜙 ∈𝐺𝜀 ( �𝐿,ℎ)

G𝜙𝜀−crit
#$% <

(
2
√

3
𝜀2

)𝑉
· |𝐺 𝜀 ( �𝐿, ℎ) |

(1 + 𝛿) · vol� !
⋃

G𝜙 ∈𝐺̂𝜀 ( �𝐿,ℎ)

G𝜙𝜀−crit
#$% >

(
2
√

3
𝜀2

)𝑉
· |𝐺̂ 𝜀 ( �𝐿, ℎ) |

whenever 𝜀 is small enough and min 𝐿𝑒 � ℓ1. Altogether, we get that for all 𝜀 positive and small we
have

(1 − 𝛿) ·
(

2
√

3
𝜀2

)−𝑉
· vol� !

⋃
G𝜙 ∈𝐺𝜀 ( �𝐿,ℎ)

G𝜙𝜀−crit
#$% < |G( �𝐿, ℎ) |

(1 + 𝛿) ·
(

2
√

3
𝜀2

)−𝑉
· vol� !

⋃
G𝜙 ∈𝐺̂𝜀 ( �𝐿,ℎ)

G𝜙𝜀−crit
#$% > |G( �𝐿, ℎ) |

for all �𝐿 with min 𝐿𝑒 � ℓ1.
We get now from Equation (2.11) in Proposition 2.6 that there is ℓ2 > ℓ1 such that, as long as 𝜀

is under some threshold, we have that whenever 𝜙, 𝜓 ∈ G are homotopic 𝜀-critical realizations with
ℓ(𝜙(𝑒)), ℓ(𝜓(𝑒)) � ℓ2 for all 𝑒 ∈ edge, then we have that the lengths ℓ(𝜙(𝑒)) and ℓ(𝜓(𝑒)) differ by at
most 2𝜀 for each edge 𝑒 ∈ edge. This implies that for any such �𝐿 and 𝜀 we have
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G𝜀−crit ( �𝐿 + [2𝜀], ℎ − 4𝜀) ⊂
⋃

G𝜙 ∈𝐺𝜀 ( �𝐿,ℎ)

G𝜙𝜀−crit

G𝜀−crit ( �𝐿 − [2𝜀], ℎ + 4𝜀) ⊃
⋃

G𝜙 ∈𝐺̂𝜀 ( �𝐿,ℎ)

G𝜙𝜀−crit,

where �𝐿 + [𝑡] ∈ Redge is the vector with entries ( �𝐿 + [𝑡])𝑒 = �𝐿𝑒 + 𝑡.
Let us summarize what we have obtained so far:

(1 − 𝛿) ·
(

2
√

3
𝜀2

)−𝑉
· vol

(
G𝜀−crit( �𝐿 + [2𝜀], ℎ − 4𝜀)

)
< |G( �𝐿, ℎ) |

(1 + 𝛿) ·
(

2
√

3
𝜀2

)−𝑉
· vol

(
G𝜀−crit( �𝐿 − [2𝜀], ℎ + 4𝜀)

)
> |G( �𝐿, ℎ) |.

Our next goal is to compute the volumes on the left. Using the cover (2.2), we can compute volumes
vol(G𝜀−crit ( �𝐿, ℎ)) by integrating over Σvert the cardinality of the intersection

G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) = Π−1 (�𝑥) ∩ G𝜀−crit ( �𝐿, ℎ)

of the fiber Π−1 (�𝑥) with the set we care about. In light of Corollary 3.3, we get in this way that

vol(G𝜀−crit ( �𝐿, ℎ)) =
∫
Σvert

���G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ)
��� 𝑑�𝑥

Cor. 3.3∼
∫
Σvert

𝜀4 |𝜒 (𝑋 ) | ·
(

2
3

)2𝜒 (𝑋 )
· 𝜋𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−3𝜒 (𝑋 ) 𝑑�𝑥

= 𝜀4 |𝜒 (𝑋 ) | ·
(

2
3

)2𝜒 (𝑋 )
· 𝜋𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−3𝜒 (𝑋 ) vol(Σ)𝑉

= 𝜀4 |𝜒 (𝑋 ) | ·
(

2
3

)2𝜒 (𝑋 )
· 𝜋𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−𝜒 (𝑋 )
,

where we have used that 𝑉 = −2𝜒(𝑋) and where the asymptotics hold true when min𝑒 𝐿𝑒 → ∞. This
means that whenever min𝑒 𝐿𝑒 is large enough we have

(1 − 𝛿) · 24𝜒 (𝑋 )

33𝜒 (𝑋 ) · 𝜋
𝜒 (𝑋 ) · (𝑒

ℎ−4𝜀 − 1)−3𝜒 (𝑋 ) · 𝑒
∑

𝑒∈edge (𝐿𝑒+2𝜀)

vol(Σ)−𝜒 (𝑋 )
< |G( �𝐿, ℎ) |,

(1 + 𝛿) · 24𝜒 (𝑋 )

33𝜒 (𝑋 ) · 𝜋
𝜒 (𝑋 ) · (𝑒

ℎ+4𝜀 − 1)−3𝜒 (𝑋 ) · 𝑒
∑

𝑒∈edge (𝐿𝑒−2𝜀)

vol(Σ)−𝜒 (𝑋 )
> |G( �𝐿, ℎ) |.

Since this is true for all 𝜀 > 0, we get that

(1 − 𝛿) · 24𝜒 (𝑋 )

33𝜒 (𝑋 ) · 𝜋
𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−𝜒 (𝑋 )
� |G( �𝐿, ℎ) |

(1 + 𝛿) · 24𝜒 (𝑋 )

33𝜒 (𝑋 ) · 𝜋
𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−𝜒 (𝑋 )
� |G( �𝐿, ℎ) |
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and hence, since for all 𝛿 > 0 we can choose L large enough so that the above bounds hold, we have

24𝜒 (𝑋 )

33𝜒 (𝑋 ) · 𝜋
𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−𝜒 (𝑋 )
∼ |G( �𝐿, ℎ) |

as we wanted to prove. �

Armed with Lemma 4.1 and Proposition 4.2, we can now prove the theorem:

Proof of Theorem 1.3. Let ℎ > 0 be small, and for �𝑛 ∈ Nedge consider, with the same notation as in
Equation (4.2), the set G(ℎ · �𝑛, ℎ). Setting

Δ (𝑁) = {�𝑛 ∈ Nedge with ‖�𝑛‖ � 𝑁},

where ‖�𝑛‖ =
∑
𝑒 𝑛𝑒, note that∑

�𝑛∈Δ (𝑁−𝐸)
|G(ℎ · �𝑛, ℎ) | � |G(ℎ · 𝑁) | �

∑
�𝑛∈Δ (𝑁 )

|G(ℎ · �𝑛, ℎ) |, (4.4)

where G(ℎ · 𝑁) = G𝑋 (ℎ · 𝑁) is as in Equation (4.1) and where, once again, 𝐸 = | edge | is the number
of edges of the graph X. Finally, write

𝜅 =
24𝜒 (𝑋 )

33𝜒 (𝑋 ) · (𝜋 · vol(Σ))𝜒 (𝑋 )

Proposition 4.2 now reads as

|G(ℎ · �𝑛, ℎ) | ∼ 𝜅 · (𝑒ℎ − 1)−3𝜒 (𝑋 ) · 𝑒ℎ · ‖ �𝑛 ‖ ,

where the asymptotic holds for fixed h when min �𝑛𝑒 → ∞. This means that for all h and 𝛿 there is
𝑛(ℎ, 𝛿) with

|G(ℎ · �𝑛, ℎ) | > (𝜅 − 𝛿) · (𝑒ℎ − 1)−3𝜒 (𝑋 ) · 𝑒ℎ · ‖ �𝑛 ‖

and

|G(ℎ · �𝑛, ℎ) | < (𝜅 + 𝛿) · (𝑒ℎ − 1)−3𝜒 (𝑋 ) · 𝑒ℎ · ‖ �𝑛 ‖

for all �𝑛 with min �𝑛𝑒 � 𝑛(ℎ, 𝛿). It follows thus from the left side of Equation (4.4) that

|G(ℎ · 𝑁) | �
∑

�𝑛 ∈ Δ (𝑁 − 𝐸 ) ,
min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

|G(ℎ · �𝑛, ℎ) |

> (𝜅 − 𝛿) (𝑒ℎ − 1)−3𝜒 (𝑋 )
∑

�𝑛 ∈ Δ (𝑁 − 𝐸 ) ,
min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

𝑒ℎ · ‖ �𝑛 ‖

= (𝜅 − 𝛿) (𝑒ℎ − 1)−3𝜒 (𝑋 )
𝑁−𝐸∑
𝐾=0

𝑃(𝐾) · 𝑒ℎ ·𝐾 ,

where 𝑃(𝐾) is the number of those �𝑛 ∈ Nedge with ‖𝑛‖ = 𝐾 and min �𝑛𝑒 � 𝑛(ℎ, 𝛿). As K tends to ∞, we
have 𝑃(𝐾) ∼ 1

(𝐸−1)!𝐾
𝐸−1. Taking into account that 𝐸 = −3𝜒(𝑋), we get that for all N large enough we

have
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|G(ℎ · 𝑁) | � 𝜅 − 𝛿
(−3𝜒(𝑋) − 1)! (𝑒

ℎ − 1)−3𝜒 (𝑋 )
𝑁−𝐸∑
𝐾=0

𝐾−3𝜒 (𝑋 )−1 · 𝑒ℎ ·𝐾

=
𝜅 − 𝛿

(−3𝜒(𝑋) − 1)!

(
𝑒ℎ − 1
ℎ

)−3𝜒 (𝑋 ) 𝑁−𝐸∑
𝐾=0

(ℎ𝐾)−3𝜒 (𝑋 )−1 · 𝑒ℎ ·𝐾 · ℎ

� 𝜅 − 𝛿
(−3𝜒(𝑋) − 1)!

(
𝑒ℎ − 1
ℎ

)−3𝜒 (𝑋 ) ∫ (𝑁−𝐸)ℎ

0
𝑥−3𝜒 (𝑋 )−1𝑒𝑥𝑑𝑥,

where the symbol � means that asymptotically the ratio between the left side and the right side is at
least 1. When 𝑁 → ∞ then the value of the integral is asymptotic to ((𝑁 − 𝐸) · ℎ)−3𝜒 (𝑋 )−1 · 𝑒 (𝑁−𝐸)ℎ,
and this means that for all N large enough we have

|G(ℎ · 𝑁) | � 𝜅 − 𝛿
(−3𝜒(𝑋) − 1)!

(
𝑒ℎ − 1
ℎ

)−3𝜒 (𝑋 )
(𝑁ℎ − 𝐸ℎ)−3𝜒 (𝑋 )−1 · 𝑒𝑁ℎ−𝐸ℎ .

This being true for all 𝛿 and all h and replacing 𝑁ℎ by L, we have

|G(𝐿) | � 𝜅

(−3𝜒(𝑋) − 1)!𝐿
−3𝜒 (𝑋 )−1 · 𝑒𝐿

as 𝐿 → ∞. In other words, we have established the desired asymptotic lower bound.
Starting with the upper bound we get, again for h positive and small, from the right side in Equation

(4.4) that

|G(ℎ · 𝑁) | �
∑

�𝑛 ∈ Δ (𝑁 ) ,
min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

|G(ℎ · �𝑛, ℎ) | +
∑

�𝑛 ∈ Δ (𝑁 ) ,
min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

|G(ℎ · �𝑛, ℎ) |.

The same calculation as above yields that∑
�𝑛 ∈ Δ (𝑁 ) ,

min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

|G(ℎ · �𝑛, ℎ) | �

� 𝜅 + 𝛿
(−3𝜒(𝑋) − 1)!

(
𝑒ℎ − 1
ℎ

)−3𝜒 (𝑋 )
(ℎ(𝑁 + 𝐸))−3𝜒 (𝑋 )−1 · 𝑒ℎ (𝑁+𝐸)

(4.5)

as 𝑁 → ∞. On the other hand, we get from Lemma 4.1 that there is 𝐶 > 0 with |G(ℎ · �𝑛, ℎ) | � 𝐶 · 𝑒ℎ · | �𝑛 |
for all �𝑛. This means thus that ∑

�𝑛 ∈ Δ (𝑁 ) ,
min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

|G(ℎ · �𝑛, ℎ) | � 𝐶 ·
𝑁∑
𝐾=1

𝑄(𝐾) · 𝑒ℎ ·𝐾 ,

where 𝑄(𝐾) is the number of those �𝑛 ∈ Nedge with min �𝑛𝑒 < 𝑛(ℎ, 𝛿) and | �𝑛| = 𝐾 . When 𝐾 → ∞ the
function 𝑄(𝐾) is asymptotic to 𝐶 ′ · 𝐾𝐸−2 for some positive constant 𝐶 ′, meaning that we have∑

�𝑛 ∈ Δ (𝑁 ) ,
min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

|G(ℎ · �𝑛, ℎ) | � (1 + 𝛿) · 𝐶 · 𝐶 ′

ℎ𝐸−1 ·
𝑁∑
𝐾=1

ℎ · (ℎ𝐾)𝐸−2 · 𝑒ℎ ·𝐾

for all L large enough. A similar estimation as the one above yields thus that there is another positive
constant 𝐶 ′′ with
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�𝑛 ∈ Δ (𝑁 ) ,

min �𝑛𝑒 � 𝑛(ℎ, 𝛿)

|G(ℎ · �𝑛, ℎ) | � 𝐶 ′′ · (𝑁 · ℎ)−3𝜒 (𝑋 )−2 · 𝑒𝑁 ·𝐻 . (4.6)

The quantity in the right-hand side of Equation (4.6) is negligible when compared to the right-hand side
of Equation (4.5), and this means that we have

|G(ℎ · 𝑁) | � 𝜅 + 2𝛿
(−3𝜒(𝑋) − 1)!

(
𝑒ℎ − 1
ℎ

)−3𝜒 (𝑋 )
(ℎ(𝑁 + 𝐸))−3𝜒 (𝑋 )−1 · 𝑒ℎ (𝑁+𝐸)

for all large N. Since this holds true for all 𝛿 and all h, replacing ℎ𝑁 by L we deduce that

|G(𝐿) | � 𝜅

(−3𝜒(𝑋) − 1)!𝐿
−3𝜒 (𝑋 )−1 · 𝑒𝐿 .

Having now also established the upper asymptotic bound, we are done with the proof of the theorem. �

Before moving on to other matters, we include an observation that we will use later on. The basic
strategy of the proof of Theorem 1.3 was to decompose the problem of counting all critical realizations
of at most some given length into the problem of counting those whose edge lengths are in a given
box and then adding over all boxes. For most boxes, Proposition 4.2 gives a pretty precise estimation
for the number of critical realizations in the box, and from Lemma 4.1 we get an upper bound for
all boxes. We used these two to get the desired upper bound in the theorem, deducing that we could
ignore the boxes where Proposition 4.2 does not apply. A very similar argument implies that the set of
critical realizations where some edge is shorter than ℓ0 is also negligible. We state this observation as a
lemma:

Lemma 4.3. For all ℓ, all but a negligible set of critical realizations are ℓ-long.

It is probably clear from the context what negligible means here, but to be precise, we mean that the
set is negligible inside the set of all critical realizations in the sense of Equation (7.2) below.

5. Fillings

Let 𝑆𝑔 be a compact, connected and oriented surface of genus g and with one boundary component.
Below, we will be interested in continuous maps

𝛽 : 𝑆𝑔 → Σ (5.1)

which send 𝜕𝑆𝑔 to a closed geodesic 𝛾 = 𝛽(𝑆𝑔). We will refer to such a map as a filling of genus g
of 𝛾, a genus g filling of 𝛾, or just simply as a filling of 𝛾 when the genus g is either undetermined
or understood from the context. The genus of a curve 𝛾 ⊂ Σ is the infimum of all g’s for which there
is a genus g filling Equation (5.1) with 𝛾 = 𝛽(𝜕𝑆𝑔). Note that the genus of a curve is infinite unless
𝛾 is homologically trivial, that is, unless 𝛾 is represented by elements in the commutator subgroup of
𝜋1 (Σ). Indeed, as an element of 𝜋1 (𝑆𝑔) the boundary 𝜕𝑆𝑔 is a product of g commutators. It follows
that if a curve 𝛾 in Σ has genus g, then it is, when considered as an element in 𝜋1 (Σ), a product of g
commutators. Conversely, if 𝛾 is a product of g commutators, then there is a map as in Equation (5.1)
with 𝑆𝑔 of genus g. In a nutshell, what we have is that the genus and the commutator length of 𝛾 agree.
We record this fact for ease of reference:

Lemma 5.1. The genus of a curve agrees with its commutator length.

Continuing with the same notation and terminology, suppose that a curve 𝛾 in Σ has genus g. We
then refer to any 𝛽 : 𝑆 → Σ as in Equation (5.1) with S of genus g as a minimal genus filling. Minimal
genus fillings have very nice topological properties. Indeed, suppose that 𝛽 : 𝑆𝑔 → Σ is a filling as in
Equation (5.1) and suppose that there is an essential simple curve 𝑚 ⊂ 𝑆𝑔 with 𝛽(𝑚) homotopically
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trivial. Then, performing surgery on the surface 𝑆𝑔 and the map 𝛽 we get a smaller genus filling
𝛽′ : 𝑆𝑔′ → Σ with 𝛽′(𝜕𝑆𝑔′ ) = 𝛽(𝜕𝑆𝑔) and 𝑔′ < 𝑔. It follows that if 𝛽 : 𝑆𝑔 → Σ is a minimal genus
filling for 𝛾 = 𝛽(𝜕𝑆𝑔), then 𝛽 is geometrically incompressible in the sense that there are no elements in
ker(𝛽∗ : 𝜋1 (𝑆𝑔) → 𝜋1 (Σ)) which are represented by simple curves. We record this fact:

Lemma 5.2. Minimal genus fillings are geometrically incompressible.

From now on, we will be working exclusively with minimal genus fillings and the reader can safely
add the words ‘minimal genus’ every time they see the word ‘filling’.

We will not be that much interested in individual fillings, but rather in homotopy classes of fillings. In
particular, we will allow ourselves to select particularly nice fillings. More precisely, we will be working
with hyperbolic fillings, by which we will understand a particular kind of pleated surface. We remind
the reader that according to Thurston [18] (see also [5]) a pleated surface is a map from a hyperbolic
surface to a hyperbolic manifold with the property that every point in the domain is contained in a
geodesic segment which gets mapped isometrically.

Definition. A filling 𝛽 : 𝑆 → Σ is hyperbolic if S is endowed with a hyperbolic metric with geodesic
boundary and if the map 𝛽 is such that every 𝑥 ∈ 𝑆 is contained in the interior of a geodesic arc I such
that 𝛽 maps I isometrically to a geodesic arc in Σ.

An important observation is that if 𝛽 : 𝑆 → Σ is a hyperbolic filling, if 𝑥 ∈ 𝜕𝑆 and if 𝐼 ⊂ 𝑆 is a
geodesic segment with x in its interior, then 𝐼 ⊂ 𝜕𝑆. It follows that hyperbolic fillings map the boundary
isometrically.

Lemma 5.3. The restriction of any hyperbolic filling 𝛽 : 𝑆 → Σ to 𝜕𝑆 is geodesic.

We should not delay making sure that hyperbolic fillings exist:

Proposition 5.4. Every minimal genus filling is homotopic to a hyperbolic filling.

To prove this proposition, we will first show that if 𝛽 : 𝑆 → Σ is any filling and if the surface S
admits a triangulation with certain properties, then 𝛽 is homotopic to a hyperbolic filling. For lack of a
better name, we will say that a triangulation T of S is useful if it satisfies the following three conditions:

(i) T has exactly 𝑔 + 1 vertices 𝑣0, . . . , 𝑣𝑔, with 𝑣0 ∈ 𝜕𝑆 and the others in the interior of S.
(ii) There is a collection of edges 𝐼0, . . . , 𝐼𝑔 of T such that both endpoints of 𝐼𝑖 are attached to 𝑣𝑖 for

all 𝑖 = 0, . . . , 𝑔. Moreover, 𝐼0 = 𝜕𝑆.

These two conditions are evidently pretty soft. It is the condition we will state next what makes useful
triangulations actually useful. We first need a bit of notation: If I is any edge of T other than 𝐼0, . . . , 𝐼𝑔,
then let 𝐺 𝐼 be the connected component of 𝐼 ∪ 𝐼0 ∪ · · · ∪ 𝐼𝑔 containing I.

(iii) For any edge I other than 𝐼0, . . . , 𝐼𝑔, we have that the image under 𝛽∗ : 𝜋1 (𝐺 𝐼 ) → 𝜋1 (Σ) is not
abelian.

Note that 𝜋1 (𝐺 𝐼 ) is a a free group of rank 2. This means that its image 𝛽∗(𝜋1 (𝐺 𝐼 ))) has at most rank
2. Since we are assuming that it is not abelian, we actually get that it is a rank 2 free group. Free groups
being Hopfian we deduce that 𝛽∗ : 𝜋1 (𝐺 𝐼 ) → 𝜋1 (Σ) is an isomorphism onto its image. In other words,
𝛽∗ is injective on 𝜋1 (𝐺 𝐼 ).

The following result makes clear why we care about such triangulations:

Lemma 5.5. If the domain S of a filling 𝛽 : 𝑆 → Σ admits a useful triangulation T , then 𝛽 is homotopic
to a hyperbolic filling.

Proof. As we just discussed, our conditions imply that 𝛽∗ is injective on 𝜋1 (𝐺 𝐼 ) for all I. This implies
in particular that each one of the exceptional edges 𝐼0, . . . , 𝐼𝑔 of T closes up to a simple closed curve
𝛾0, . . . , 𝛾𝑔 in S which is mapped to a homotopically essential curve. This in turn means that the images
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Figure 2. Construction of the useful triangulation in Proposition 5.4: The 2𝑔+1 holed sphere obtained
from S by cutting along 𝛾1, . . . , 𝛾𝑔. The vertices 𝑣1, . . . , 𝑣𝑔 and their copies 𝑣′1, . . . , 𝑣

′
𝑔 are joined by the

sequence of edges [𝑣1, 𝑣2], [𝑣2, 𝑣3], . . . , [𝑣𝑔, 𝑣′1], [𝑣
′
1, 𝑣

′
2], . . . , [𝑣

′
𝑔−1, 𝑣

′
𝑔]. To complete the triangulation,

add as many edges as needed joining 𝑣0 to the other vertices.

of 𝛾0, . . . , 𝛾𝑔 are homotopic to nontrivial closed geodesics. Since all these 𝑔 + 1 curves are mutually
disjoint, we can then homotope 𝛽 so that 𝛽(𝛾𝑖) is a closed geodesic 𝛾̂𝑖 for all i.

Let now I be one of the remaining edges of T , let 𝑣𝑖 and 𝑣 𝑗 be its (possibly equal) endpoints and
note that 𝐺 𝐼 = 𝛾𝑖 ∪ 𝐼 ∪ 𝛾 𝑗 . Since 𝛽∗ is injective on 𝜋1 (𝐺 𝐼 , 𝑣𝑖), we know that the elements 𝛽∗(𝛾𝑖) and
𝛽∗(𝐼 ∗ 𝛾 𝑗 ∗ 𝐼−1) do not commute and hence have distinct fixed points in 𝜕∞H

2. This seemingly weak
property is all we need to run the standard construction of pleated surfaces by spinning the edges of the
triangulation over the geodesics 𝛾̂𝑖 – compare with the proof of Theorem I.5.3.6 in [5]. �

We can now prove Proposition 5.4.

Proof. Let 𝛽 : 𝑆 → Σ be a minimal genus filling of a geodesic 𝛾 = 𝛽(𝜕𝑆), say of genus g. In light of
Lemma 5.5, to prove that 𝛽 is homotopic to a hyperbolic filling it suffices to show that S admits a useful
triangulation. Let us start by taking g disjoint compact one-holed tori 𝑇1, . . . , 𝑇𝑔 ⊂ 𝑆. We claim that the
restriction of 𝛽 to each 𝑇𝑖 is 𝜋1-injective. Indeed, since we know that 𝛽 is geometrically incompressible
we deduce that 𝜕𝑇𝑖 is not in the kernel of the induced homomorphism at the fundamental group level.
It follows that the image of 𝛽∗(𝜋1 (𝑇𝑖)) cannot be abelian. Now, this implies that 𝛽∗(𝜋1 (𝑇𝑖)) is free and
evidently of rank 2. Hence, again since free groups are Hopfian, we get that the restriction of 𝛽∗ to
𝜋1 (𝑇𝑖) is injective for all i.

Now, why do we care about that? Knowing that the restriction of 𝛽∗ to 𝜋1 (𝑇𝑖) is injective for any i
implies that when the images under 𝛽 of the nonboundary parallel simple closed curves in 𝑇𝑖 determine
infinitely many conjugacy classes of maximal abelian subgroups of 𝜋1 (Σ). We can thus choose for each
𝑖 = 1, . . . , 𝑔 a nonboundary parallel simple closed curve 𝛾𝑖 ⊂ 𝑇𝑖 such that if we also set 𝛾0 = 𝜕𝑆, then
we have that

(*) no two of the the maximal abelian subgroups of 𝜋1 (Σ) containing 𝛽∗(𝛾0), . . . , 𝛽∗(𝛾𝑔) are conjugate
to each other.

Choosing now a vertex 𝑣𝑖 in each one of the curves 𝛾𝑖 , we get from (∗) that if I is any simple path
joining 𝑣𝑖 to 𝑣 𝑗 for 𝑖 ≠ 𝑗 , then the image of 𝛽∗(𝜋1 (𝛾𝑖 ∪ 𝐼 ∪ 𝛾 𝑗 )) is not abelian.

The upshot of all of this is that any triangulation T with

1. vertex set 𝑣0, . . . , 𝑣𝑔,
2. such that there are edges 𝐼0, . . . , 𝐼𝑔 incident on both ends to 𝑣𝑖 and with image 𝛾𝑖 , and
3. such that all other edges connect distinct endpoints,

is useful. To see that such a triangulation exists, cut S along 𝛾1, . . . , 𝛾𝑔. When doing this, we get a 2𝑔+1
holed sphere Δ and each vertex 𝑣1, . . . , 𝑣𝑔 arises twice – denote the two copies of 𝑣𝑖 by 𝑣𝑖 and 𝑣′𝑖 as in
Figure 2. Now, any triangulation of Δ with vertex set 𝑣0, 𝑣1, 𝑣

′
1, 𝑣2, 𝑣

′
2, . . . , 𝑣𝑔, 𝑣

′
𝑔 and which
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◦ contains a sequence of 2𝑔 − 1 edges yielding a path

[𝑣1, 𝑣2], [𝑣2, 𝑣3], . . . , [𝑣𝑔, 𝑣′1], [𝑣
′
1, 𝑣

′
2], . . . , [𝑣

′
𝑔−1, 𝑣

′
𝑔]

and
◦ such that all other edges are incident to 𝑣0

yields a triangulation of S satisfying (1)–(3) above. Having proved that there is a useful triangulation,
we get from Lemma 5.5 that 𝛽 is homotopic to a hyperbolic filling, as we needed to prove. �

Being able to work with hyperbolic fillings is going to be key in the next section, where we bound the
number of closed geodesics 𝛾 in Σ with length ℓΣ (𝛾) � 𝐿 and which admit at least two homotopically
distinct fillings.

Definition. Two fillings 𝛽1 : 𝑆1 → Σ and 𝛽2 : 𝑆2 → Σ are homotopic if there is a homeomorphism
𝐹 : 𝑆1 → 𝑆2 such that 𝛽1 is homotopic to 𝛽2 ◦ 𝐹.

Evidently, to bound the number of pairs of nonhomotopic fillings with the same boundary we will
need some criterion to decide when two fillings are homotopic. To be able to state it note that if
𝛽1 : 𝑆1 → Σ and 𝛽2 : 𝑆2 → Σ are homotopic hyperbolic fillings, then there is

a closed hyperbolic surface 𝑆 = 𝑆1 ∪𝜕𝑆1=𝜕𝑆2 𝑆2 obtained by isometrically gluing 𝑆1 and 𝑆2 along the
boundary, in such a way that there is a pleated surface Θ : 𝑆 → Σ with Θ|𝑆𝑖 = 𝛽𝑖 .

For lack of a better name, we refer to Θ : 𝑆 → Σ as the pseudo-double associated to 𝛽1 and 𝛽2, and to
the curve 𝜕𝑆1 = 𝜕𝑆2 ⊂ 𝑆 as the crease of the pseudo-double.

Our criterion to decide if the two hyperbolic fillings 𝛽1 and 𝛽2 of a geodesic 𝛾 are homotopic will be
in terms of the structure of the 𝜀0 thin part of the domain of the associated pseudo-double, where we
choose once and forever the constant

𝜀0 =
1

10
· min

{
Margulis constant of H2, systole of Σ

}
. (5.2)

The following is our criterion.

Lemma 5.6. Suppose that 𝛽1 : 𝑆1 → Σ and 𝛽2 : 𝑆2 → Σ are hyperbolic minimal genus fillings of genus
g of a geodesic 𝛾, let Θ : 𝑆 → Σ be the associated pseudo-double and denote its crease 𝜕𝑆1 = 𝜕𝑆2 ⊂ 𝑆
also by 𝛾. If

1. the 𝜀0-thin part of S has 6𝑔 − 3 connected components 𝑈1, . . . ,𝑈6𝑔−3, and
2. 𝛾 traverses each𝑈𝑖 exactly twice,

then 𝛽1 and 𝛽2 are homotopic.

Proof. Note that the surface S has genus 2𝑔. In particular, the assumption on the 𝜀0-thin part implies
that there is a pants decomposition P in S consisting of closed geodesics of length at most 2𝜀0. Now,
since Θ is evidently 1-Lipschitz and since 2𝜀0 is less than the systole of Σ we get that each one of the
components of P is mapped to a homotopically trivial curve. The assumption that the crease 𝛾, a simple
curve, intersects each component of the pants decomposition exactly twice implies that 𝛾 cuts each pair
of pants into two hexagons. Paint blue those in 𝑆1 and yellow those in 𝑆2.

We can now construct a homotopy relative to the crease as follows. Each component of P consists
of a blue arc and a yellow arc whose juxtaposition is homotopically trivial. This implies that we
can homotope all yellow arcs, relative to their endpoints to the corresponding blue arcs. Extend this
homotopy to a homotopy fixing 𝜕𝑆2 and defined on the whole of 𝑆2. Now, the boundary of each yellow
hexagon is mapped to the boundary of each blue hexagon. Since Σ has trivial 𝜋2, we deduce that those
two hexagons are homotopic. Proceeding like this with each hexagon, we get a homotopy relative to the
crease of the yellow parts of S to the blue part. This is what we wanted to get. �
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6. Bounding the number of multifillings

The goal of this section is to prove Theorem 1.4:

Theorem 1.4. For any g, there are at most const ·𝐿6𝑔−5 · 𝑒 𝐿
2 genus g closed geodesics 𝛾 in Σ with length

ℓ(𝛾) � 𝐿 and with two nonhomotopic fillings 𝛽1 : 𝑆1 → Σ and 𝛽2 : 𝑆2 → Σ of genus � 𝑔.

The proof of Theorem 1.4 turns out to be kind of involved. We hope that the reader will not despair
with all the weird objects and rather opaque statements they will find below.

Wired surfaces

Under a wired surface, we will understand a compact connected simplicial complex Δ obtained as
follows: Start with a compact, possibly disconnected, triangulated surface Surf (Δ) and an, evidently
finite, subset 𝑃Δ of the set of vertices of the triangulation of Surf (Δ) such that every connected
component of Surf(Δ) \ 𝑃Δ has negative Euler characteristic. We think of the elements in 𝑃Δ as plugs.
Now, attach 1-simplices, to which we will refer as wires, by attaching both endpoints to plugs and do so
in such a way that each plug arises exactly once as the end-point of a wire – we denote the set of wires
by wire(Δ). A wired surface Δ without wires, that is, one with Δ = Surf (Δ), is said to be degenerate.
Otherwise, it is nondegenerate.

How will wired surfaces arise? We will say that a pair (F,T) is a decoration of a surface S if

◦ F is a partial foliation of S supported by the union of a finite collection of disjoint, essential and
nonparallel, cylinders, and

◦ T is a triangulation of the complement of the interior of those cylinders.

Now, if (F,T) is a decoration of S, then we get an associated wired surface Δ = 𝑆/∼F by collapsing each
leaf of F to a point and dividing each one of the arising bigons into two triangles by adding a vertex
in the interior of the bigon. We will say that the quotient map 𝜋 : 𝑆 → Δ is a resolution of Δ with
associated foliation F. Every wired surface admits an essentially unique resolution, unique in the sense
that any two differ by a PL-homeomorphism mapping one of the foliations to the other one.

Suppose now that Δ is a wired surface. A simple curve on Δ is a map 𝜂 : S1 → Δ such that there are
a resolution 𝜋 : 𝑆 → Δ with associated foliation F and an essential simple curve 𝜂′ : S1 → 𝑆 which is
transversal to F and with 𝜂 = 𝜋 ◦ 𝜂′.

Note that transversality to the associated foliation implies that if 𝜂 is a simple curve of a wired
surface Δ then 𝜂 ∩ 𝜋−1(Δ \ Surf (Δ)) consists of a collection of segments, each one of them mapped
homeomorphically to a wire. If I is such a wire, then we denote by 𝑛𝐼 (𝜂) the weight of 𝜂 in I, that is,
the number of connected components of 𝜂 ∩ 𝜋−1 (Δ \ Surf (Δ)) which are mapped homeomorphically
to I, or in other words, the number of times that 𝜂 crosses I. We refer to the vector

�𝑛Δ (𝜂) = (𝑛𝐼 (𝜂))𝐼 ∈wire(Δ) (6.1)

as the weight vector for 𝜂 in Δ . The intersection of the image of 𝜂 with the surface part Surf (Δ) is
a simple arc system with endpoints in the set 𝑃Δ . Note that up to homotopying 𝜂 to another simple
curve in Δ we might assume that all the components of the arc system 𝜂 ∩ Surf (Δ) are essential. This
is equivalent to asking that for each wire I we have 𝑛𝐼 (𝜂) � 𝑛𝐼 (𝜂′) for any other simple curve 𝜂′ in
Δ homotopic to 𝜂. We will suppose from now on, without further mention, that all simple curves in Δ
satisfy these minimality requirements.

So far, wired surfaces are just topological objects. Let us change this. Under a hyperbolic wired
surface we understand a wired surface Δ whose surface part Surf (Δ) is endowed with a piece-wise
hyperbolic metric, that is, one with respect to which the simplexes in the triangulation of Surf(Δ) are
isometric to hyperbolic triangles.
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Let Δ be a hyperbolic wired surface, and as always let Σ be our fixed hyperbolic surface. We will say
that a map Ξ : Δ → Σ is tight if the following holds:

◦ Ξ maps every wire to a geodesic segment, and
◦ Ξ is an isometry when restricted to each one of the simplexes in the triangulation of Surf (Δ).

We will be interested in counting pairs (Ξ : Δ → Σ, 𝛾) consisting of tight maps and simple curves.
Evidently, without further restrictions, there could be infinitely many such pairs. What we are going to
count is pairs were the curve has bounded length. We are, however, going to use a pretty strange notion
of length. Consider namely for some given small but positive 𝜀, the following quantity

ℓ𝜀Ξ (𝛾) = 𝜀 · ℓSurf (Δ) (𝛾 ∩ Surf (Δ)) +
∑
𝐼 ∈wire

𝑛𝐼 (𝛾) · max
{
ℓΣ (Ξ(𝐼)) −

1
𝜀
, 0

}
. (6.2)

It is evident that this notion of length is exactly tailored to what we will need later on, but let us try to
parse what Equation (6.2) actually means. What is the role of 𝜀? If we think of the length as a measure
of the cost of a journey, then the first 𝜀 just makes traveling along the surface part pretty cheap, meaning
that for the same price we can cruise longer over there. Along the same lines, when traveling through
the wires, we only pay when the wires are very long.

Lemma 6.1. Let Δ be a nondegenerate hyperbolic wired surface with set of wires wire = wire(Δ). Fix
a tight map 𝑓 : Δ → Σ and a positive integer vector �𝑛 = (𝑛𝐼 )𝐼 ∈wire ∈ Nwire

+ , and denote by

min = min
𝐼 ∈wire

𝑛𝐼 � 1 and 𝑑 = |{𝐼 ∈ wire with 𝑛𝐼 = min}|

the smallest entry of �𝑛 and the number of times that this value is taken.
For any 𝜀 > 0, there are at most const ·𝐿𝑑−1 · 𝑒 𝐿

min homotopy classes of pairs (Ξ : Δ → Σ, 𝛾), where
Ξ is a tight map with Ξ|Surf (Δ) = 𝑓 |Surf (Δ) and where 𝛾 is a simple multicurve in Δ with 𝑛𝐼 (𝛾) � 𝑛𝐼 for
every wire I and with ℓ𝜀Ξ (𝛾) � 𝐿.

Note that the fact that the obtained bound, or rather its rate of growth, does not depend on 𝜀 implies
that actually the only way to get many homotopy classes is to play with the wires. In fact, since the given
bound only depends on d and min, the only wires that matter are those which the curve crosses as little
as possible.

Another comment before launching the proof. Namely, what happens if the wired surface Δ in
Lemma 6.1 is degenerate? If there are no wires, then Δ is nothing other than a surface with a (piece-wise
hyperbolic) metric. In such a surface, there are at most const ·𝐿3· |𝜒 (Δ) | simple multicurves of length
at most L – see, for example, [8]. This means that for a degenerate wired surface one actually gets a
polynomial bound instead of an exponential one.

We are now ready to launch the proof of Lemma 6.1:

Proof. Note that, since the map Ξ is fixed on Surf (Δ), we get that the homotopy type of the map, or
even the map itself, is determined by what happens to the wires. In particular, as in the proof of Lemma
4.1 we get that if we give ourselves a positive vector �𝜆 = (𝜆𝐼 )𝐼 ∈wire ∈ Rwire

+ , then there are at most
const ·𝑒 ‖ �𝜆‖ homotopy classes of tight maps Ξ : Δ → Σ with Ξ|Surf (Δ) = 𝑓 and such that

𝜆𝐼 � ℓΣ (Ξ(𝐼)) � 𝜆𝐼 + 1 for all 𝐼 ∈ wire . (6.3)

As always, we have set ‖ �𝜆‖ = 𝜆1 + · · · + 𝜆𝑟 .
Now, we are not counting homotopy classes of maps but, rather, of pairs (Ξ : Δ → Σ, 𝛾), where the

multicurve 𝛾 satisfies ℓ𝜀Ξ (𝛾) � 𝐿. Note that, if Ξ satisfies Equation (6.3), then our given length bound
ℓ𝜀Ξ (𝛾) � 𝐿 implies that
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ℓSurf (Δ) (𝛾 ∩ Surf(Δ)) = 1
𝜀

(
ℓ𝜀Ξ (𝛾) −

∑
𝐼 ∈wire

𝑛𝐼 (𝛾) · max
{
ℓΣ (Ξ(𝐼)) −

1
𝜀
, 0

})
�

1
𝜀

(
𝐿 −

∑
𝐼 ∈wire

𝑛𝐼 · max
{
𝜆𝐼 −

1
𝜀
, 0

})
�

1
𝜀

(
𝐿 − 〈�𝑛, �𝜆〉 + 1

𝜀
· ‖ �𝑛‖

)
.

Now, since for any given length there are only polynomially many simple arc systems of bounded length
we deduce that for each Ξ satisfying Equation (6.3) there are at most const ·(𝐿 − 〈�𝑛, �𝜆〉)const homotopy
classes of simple multicurves 𝛾 in Δ with ℓ𝜀Ξ (𝛾) � 𝐿 and satisfying 𝑛𝐼 (𝛾) � 𝑛𝐼 for each wire I. Putting
all of this together, we get the following:
Fact. There are at most const ·(𝐿 − 〈�𝑛, �𝜆〉)const · 𝑒 ‖𝜆‖ homotopy classes of pairs (Ξ : Δ → Σ, 𝛾), where
Ξ is a tight map with Ξ|Surf (Δ) = 𝑓 , satisfying Equation (6.3) and where 𝛾 is a simple curve in Δ with
𝑛𝐼 (𝛾) � 𝑛𝐼 for every wire I and with ℓ𝜀Ξ (𝛾) � 𝐿.

Now, we get that the quantity we want to bound, that is, the number of homotopy classes of pairs
(Ξ : Δ → Σ, 𝛾), where Ξ is a tight map with Ξ|Surf (Δ) = 𝑓 and where 𝛾 is a simple curve in Δ with
𝑛𝐼 (𝛾) � 𝑛𝐼 for every wire I and with ℓ𝜀Ξ (𝛾) � 𝐿 is bounded from above by∑

𝜆∈Nwire , ‖𝜆‖�𝐿
const ·(𝐿 − 〈�𝑛, �𝜆〉)const · 𝑒 ‖𝜆‖ .

This quantity is then bounded from above by the value of the integral

const
∫
{ �𝑥∈Rwire

+ , 〈�𝑛, �𝑥 〉 }�𝐿
(𝐿 − 〈�𝑛, �𝑥〉)const · 𝑒 ‖ �𝑥 ‖𝑑𝑥,

and now it is a calculus problem that we leave to the reader to check that this integral is bounded
by const ·𝐿𝑑−1 · 𝑒

𝐿
𝑛min , where 𝑛min = min𝐼 𝑛𝐼 � 1 and where 𝑑 = |{𝐼 wire with 𝑛𝐼 = 𝑛min}|. We are

done. �

At this point, we know how to bound the number of homotopy classes of tight maps of wired surfaces.
It is time to explain why we care about being able to do so.

Pseudo-doubles

Earlier, just before the statement of Lemma 5.6, we introduced the pseudo-double associated to two
fillings. Let us extend that terminology a bit: Under a pseudo-double, we understand a pair (Θ : 𝑆 →
Σ, 𝛾) where
◦ Θ : 𝑆 → Σ is a pleated surface with S closed,
◦ 𝛾 ⊂ 𝑆, the crease, is a simple curve cutting S into two connected components and
◦ Θ maps 𝛾 to a geodesic in Σ and its restriction Θ|𝑆\𝛾 to the complement of 𝛾 is geometrically

incompressible.
Two pseudo-doubles (Θ : 𝑆 → Σ, 𝛾) and (Θ′ : 𝑆′ → Σ, 𝛾′) are homotopic if there is a homeomorphism
𝑓 : 𝑆 → 𝑆′ with 𝛾′ homotopic to 𝑓 (𝛾) and with Θ homotopic to Θ′ ◦ 𝑓 .

Note that this terminology is consistent with the use of the word pseudo-double in the previous
section.

Recall now that we fixed earlier some 𝜀0 satisfying Equation (5.2) and note that if (Θ : 𝑆 → Σ, 𝛾) is
a pseudo-double then the crease 𝛾, being separating, crosses every component U of the thin part 𝑆�𝜀0

an even number of times 𝜄(𝛾,𝑈) ∈ 2N. In fact, since by the choice of 𝜀0 we get that Θ maps the core of
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every component of the thin part to a homotopically trivial curve and since the restriction of Θ to 𝑆 \ 𝛾
is geometrically incompressible we get that actually

𝜄(𝛾,𝑈) � 2 for all components 𝑈 of the thin part of 𝑆, (6.4)

by which we mean that 𝛾 traverses each such U at least twice.
Our next goal is to bound, for growing L, the number of homotopy classes of pseudo-doubles

(Θ : 𝑆 → Σ, 𝛾) where S has given topological type, where there are precisely d components U of the
thin part with 𝜄(𝛾,𝑈) = 2 and where ℓ𝑆 (𝛾) � 𝐿:

Proposition 6.2. Let 𝜀0 be as in Equation (5.2), and suppose that 𝑆0 is a closed orientable surface.

1. For every 𝑑 � 1, there are at most const ·𝐿𝑑−1 · 𝑒 𝐿
2 homotopy classes of pseudo-doubles (Θ : 𝑆 →

Σ, 𝛾), where S is homeomorphic to 𝑆0 where the thin part 𝑆�𝜀0 of S has exactly d components U with
𝜄(𝛾,𝑈) = 2 and where 𝛾 has length ℓ𝑆 (𝛾) � 𝐿.

2. There are at most const ·𝑒 𝐿
3 homotopy classes of pseudo-doubles (Θ : 𝑆 → Σ, 𝛾) where S is

homeomorphic to 𝑆0, where there is no component U of the thin part 𝑆�𝜀0 with 𝜄(𝛾,𝑈) = 2, and
where 𝛾 has length ℓ𝑆 (𝛾) � 𝐿.

Recall that we declared a decoration (F,T) of a surface S to be a pair consisting of partial foliation
F supported by the union of disjoint essential and nonparallel cylinders and of a triangulation T of the
complement of the interior of those cylinders. To see where these decorations come from, assume that
S is a hyperbolic surface.

◦ The 𝜀0-thick part of S is metrically bounded in the sense that it has a triangulation T whose vertices
are 1

10𝜀0-separated and whose edges have length at most 1
3𝜀0 and are geodesic unless contained in

the boundary 𝜕 (𝑆�𝜀0) of the 𝜀0-thick part – in that case, they have just constant curvature.
◦ The components of the 𝜀0-thin part 𝑆�𝜀0 are not metrically bounded but still have a very simple

structure: They are cylinders foliated by constant curvature circles, namely the curves at constant
distance from the geodesic at the core of the cylinder.

Putting these things together, that is, the triangulation T of the thick part and the foliation F of the thin
part, we get what we will refer as a thin-thick decoration (F,T) of S – note that the triangulation T is not
unique, and this is why we use an undetermined article. More importantly, note also that the number
of components of the thin part is bounded just in terms of the topology of S and that the number of
vertices in the triangulation T is bounded by some number depending on the chosen 𝜀0 and again the
topological type of S. Since we have fixed 𝜀0, it follows that every compact surface 𝑆0 admits finitely
many decorations (F1,T1), . . . , (F𝑟 ,T𝑟 ) such that if S is any hyperbolic surface homeomorphic to 𝑆0,
then there is a homeomorphism 𝜎 : 𝑆0 → 𝑆 and some i such that (𝜎(F𝑖), 𝜎(T𝑖)) is a 𝜀0-thin-thick
decoration of S. We state this fact for later reference:

Lemma 6.3. For every closed surface 𝑆0, there are finitely many decorations (F1,T1), . . . , (F𝑟 ,T𝑟 ) such
that for any hyperbolic surface S homeomorphic to 𝑆0 there are 𝑖 ∈ {1, . . . , 𝑟} and a homeomorphism
𝜎 : 𝑆0 → 𝑆 such that 𝜎(F𝑖 ,T𝑖) is a 𝜀0-thin-thick decoration of S.

After these comments, we can finally launch the proof of Proposition 6.2:

Proof of Proposition 6.2. Starting with the proof of (1), note that from Lemma 6.3 we get that it suffices
to prove for each fixed decoration (F,T) of 𝑆0 that

(*) there are at most const ·𝐿𝑑−1 · 𝑒 𝐿
2 homotopy classes of pseudo-doubles (Θ : 𝑆 → Σ, 𝛾) where

there is a homeomorphism 𝜎 : 𝑆0 → 𝑆 such that (𝜎(F), 𝜎(T)) is a decoration of the 𝜀0-thin-thick
decomposition of S, where the thin part 𝑆�𝜀0 of S has exactly d components U with 𝜄(𝛾,𝑈) = 2 and
where 𝛾 has length ℓ𝑆 (𝛾) � 𝐿.
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Assuming from now on that we have an 𝜀0-thin-thick decoration (F,T), let Δ = 𝑆0/∼F be the wired
surface obtained from S by collapsing each leaf of F to a point and let 𝜋 : 𝑆0 → Δ be the corresponding
quotient map.

The reason we consider Δ is that, as we already mentioned earlier, we have that by the choice of 𝜀0
all the leaves of the foliation 𝜎(F) are mapped by Θ to homotopically trivial curves. This implies that
there is a map

Ξ : Δ → Σ

mapping the wires of Δ to geodesic segments and with Θ ◦ 𝜎 homotopic to Ξ ◦ 𝜋 by a homotopy
whose tracks are bounded by const. In particular, the edges in T are mapped to paths homotopic to
geodesic paths of at most length const. Pulling tight relative to the vertices, we can assume that Ξ maps
two-dimensional simplices in the triangulation of Δ to hyperbolic triangles. Note that the bound on the
lengths of the images of the edges of T imply that the restriction of Ξ to Surf (Δ) is const-Lipschitz.

This uniform Lipschitz bound implies that Ξ|Surf (Δ0) belongs to finitely many homotopy classes and
that the tracks of the homotopy to any chosen representative of the correct homotopy class are bounded
by const. Choosing the representatives to be tight maps with respect to some hyperbolic structure on
Δ0, we get:

Fact. There are finitely many hyperbolic structures Δ1, . . . ,Δ𝑟 on Δ and finitely many tight maps
𝑓1, . . . , 𝑓𝑟 : Δ 𝑖 → Σ such that for any Θ : 𝑆 → Σ and 𝜎 : 𝑆0 → 𝑆 as in (∗) there are 𝑖 ∈ {1, . . . , 𝑟}
and a tight map Ξ : Δ 𝑖 → Σ with Ξ|Surf (Δ𝑖 ) = 𝑓𝑖 |Surf (Δ𝑖 ) and such that Θ ◦ 𝜎 : 𝑆0 → Σ is homotopic to
Ξ ◦ 𝜋 : 𝑆0 → Σ by a homotopy whose tracks have at most length const.

Continuing with the same notation, note that the bound on the tracks of the homotopy between
Θ ◦ 𝜎 and Ξ ◦ 𝜋 means that when we compare the length of the geodesic 𝛾 in S with that of the curve
𝜂 = (𝜋 ◦ 𝜎−1) (𝛾) in the hyperbolic wired surface Δ 𝑖 then there is at most an increase by an additive
amount every time 𝛾 crosses a simplex of the wired surface. It means that lengths

◦ increase at most by an additive amount every time we cross a component of the thin part, and
◦ increase by a multiplicative amount while we are in the thick part.

Said in other words: There is some R with

ℓΣ (Ξ(𝜂 ∩ Surf (Δ))) � 𝑅 · ℓ𝑆 (𝛾 ∩ 𝑆�𝜀0)

ℓΣ (Ξ(𝜂 \ Surf (Δ))) �
∑

𝜅 ∈𝜋0 (𝛾∩𝑆�𝜀0 )

(ℓ𝑆 (𝜅) + 𝑅).

Recalling that the wires I of Δ0 correspond to the thin parts of 𝑆�𝜀0 and that the weight 𝑛𝐼 (𝜂) is nothing
other than the number of times that 𝜂 crosses the wire I, we get from the last two inequalities that

1
𝑅
· ℓΞ(𝜂 ∩ Surf(Δ)) +

∑
𝐼 ∈wire(Δ0)

𝑛𝐼 (𝜂) · max{ℓΞ(𝐼) − 𝑅, 0} � ℓ𝑆 (𝛾), (6.5)

where the ‘max’ arises because a length is always nonnegative. Anyways, note that with the notation
introduced in Equation (6.2) we can rewrite Equation (6.5) as

ℓ
1
𝑅

Ξ (𝛾) � ℓ𝑆 (𝛾).

Note also that from Equation (6.4) we get that 𝑛𝐼 (𝜂) � 2 for all 𝐼 ∈ wire(Δ0). This means that using
the notation of Lemma 6.1 we can restate the assumptions in Proposition 6.2 (1) as follows: min = 2
and this value is achieved 𝑑 � 1 times. Lemma 6.1 implies thus that there are at most const ·𝐿𝑑−1 · 𝑒 𝐿

2

homotopy classes of pairs (Ξ, 𝜂) arising from pseudo-doubles (Θ : 𝑆 → Σ, 𝛾), where Θ is as in the fact
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and where ℓ𝑆 (𝛾) � 𝐿. This implies a fortiori that we have at most that many choices for the homotopy
class of Ξ. Since the homotopy class of Ξ determines that of Θ, we are done with the proof of (1).
The proof of (2) is pretty much identical; the only difference is that now min � 4. Plugging this in the
argument above, we get the bound const ·𝐿𝑘−1 · 𝑒 𝐿

4 for some k. This is evidently a stronger bound that
const ·𝑒 𝐿

3 , and we are done. �

The fruits of our labor

After all this work, we are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that 𝛾 is a closed geodesic with length ℓΣ (𝛾) � 𝐿 and such that there
are two nonhomotopic minimal genus fillings 𝛽1 : 𝑆1 → Σ and 𝛽2 : 𝑆2 → Σ with 𝛽𝑖 (𝜕𝑆𝑖) = 𝛾. From
Proposition 5.4, we get that, without loss of generality, we might assume that both 𝛽1 : 𝑆1 → Σ and
𝛽2 : 𝑆2 → Σ are hyperbolic fillings.

Let then 𝑆 = 𝑆𝑖 ∪𝜕𝑆1=𝜕𝑆2 𝑆2 be the hyperbolic surface obtained by gluing both surfaces 𝑆1 and 𝑆2
along the boundary in such a way that there is a pleated surface Θ : 𝑆 → Σ with Θ|𝑆𝑖 = 𝛽𝑖 . Note once
again that the map Θ maps the crease 𝛾̂ = 𝜕𝑆1 = 𝜕𝑆2 geodesically to 𝛾. Moreover, Lemma 5.2 implies
that the restriction of Θ to 𝑆 \ 𝛾̂ is geometrically incompressible. Taken together, all of this means that
the pair (Θ : 𝑆 → Σ, 𝛾̂) is a pseudo-double.

Now, Lemma 5.6 implies, together with the assumption that 𝛽1 and 𝛽2 are not homotopic, that the
𝜀0-thin part of S has at most 6𝑔 − 4 connected components which are traversed twice by the crease 𝛾̂.
We thus get from Proposition 6.2 that there are at most const ·𝐿6𝑔−5 · 𝑒 𝐿

2 choices for the homotopy class
of (Θ : 𝑆 → Σ, 𝛾̂). Since the geodesic 𝛾 is determined by the homotopy class of Θ(𝛾̂), we have proved
that there are const ·𝐿6𝑔−5 · 𝑒 𝐿

2 choices for 𝛾, as we had claimed. �

7. Proof of the main theorem

In this section, we prove Theorem 1.1 from the introduction.

Theorem 1.1. Let Σ be a closed, connected and oriented hyperbolic surface and for 𝑔 � 1 and 𝐿 > 0
let B𝑔 (𝐿) be as in Equation (1.3). We have

|B𝑔 (𝐿) | ∼
2

12𝑔 · 𝑔! · (3𝑔 − 2)! · vol(𝑇1Σ)2𝑔−1 · 𝐿6𝑔−4 · 𝑒
𝐿
2

as 𝐿 → ∞.

Before we can even explain the idea of the proof of Theorem 1.1, we need to recall what fat graphs
are and a few of their properties:

Fat graphs

A fat graph X is a graph endowed with a cyclic ordering of the set half𝑣 for each v – fat graphs are
also sometimes called ribbon graphs. Every fat graph is endowed with a canonically built thickening
neigh(𝑋), the thickening of X. For the sake of concreteness, let us discuss this in the particular case that
X is trivalent. We start by taking an oriented filled-in hexagon 𝐺𝑣 for every vertex v; see Figure 3. If we
label by 𝑎, 𝑏, 𝑐 the three elements in half𝑣 , given in the correct cyclic order, then we label the boundary
components of 𝐺𝑣 by 𝑎, 𝑎𝑏, 𝑏, 𝑏𝑐, 𝑐, 𝑐𝑎, also given in the correct cyclic order. Now, for every edge
𝑒 ∈ edge(𝑋) let 𝑣1, 𝑣2 ∈ vert(𝑋) be the two (possibly identical) vertices at which the two half-edges
�𝑒1 ∈ half𝑣1 and �𝑒2 ∈ half𝑣2 corresponding to e are based, and identify in an orientation reversing way
the �𝑒1-edge of 𝜕𝐺𝑣1 with the �𝑒2-edge of 𝜕𝐺𝑣2 . Proceeding like this for all edges, we end up with the
thickening neigh(𝑋) of X.
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Figure 3. Constructing the thickening of X. Pictured are two oriented hexagons corresponding to two
vertices connected by an edge. The lighter lines indicate the gluing of those two hexagons.

Definition. A trivalent fat graph X has genus g if neigh(𝑋) is homeomorphic to a surface of genus g
with one boundary component.

One of the quantities that appear in the right side of Theorem 1.1 is the number of genus g fat graphs
or, rather, that number weighted by the number of automorphims of each such fat graph, where a map
𝐹 : 𝑋 → 𝑋 ′ between two fat graphs is a fat graph homeomorphism if first it is a homeomorphism
between two the underlying graphs and then if it sends one fat structure to the other one. In any case,
what is really lucky for us is that Bacher and Vdovina [1] have computed that∑ 1

| Aut(𝑋) | =
2

12𝑔
· (6𝑔 − 5)!
𝑔! · (3𝑔 − 3)! ,

where the sum takes place over all homeomorphism classes of genus g fat graphs.

Remark. Bacher and Vdovina’s result is phrased in terms of one-vertex triangulations of the closed
surface of genus g up to orientation preserving homeomorphism. Let us explain briefly how one goes
from such triangulations to genus g fat graphs and back. The dual graph of a triangulation of a surface
is a trivalent fat graph – its thickening is the surface minus the vertices of the triangulation. It follows
that if the triangulation has a single vertex and the surface is closed of genus g, then the fat graph has
genus g. Conversely, the thickening of a fat graph is equipped with a natural arc system (one arc dual to
each edge). When collapsing each boundary component of the thickening to a point one gets a closed
surface together with a triangulation with as many vertices as connected components of the boundary.
It follows that if X is a genus g fat graph, then one gets a one-vertex triangulation of a genus g surface.

Let X now be a fat graph, and, for the sake of concreteness, assume that it has genus g. By construction,
we have a canonical embedding of X into neigh(𝑋) whose image is a spine. In particular, there is a
retraction

spine : neigh(𝑋) → 𝑋

such that the preimage of every vertex is a tripod and the preimage of every point in the interior of and
edge in X is a segment. The image of 𝜕 neigh(𝑋) under spine runs twice over every edge of X. We will
refer to this parametrized curve in X as 𝜕𝑋 .

Remark. Note that reversing the orientation of X, that is, reversing the cyclic order at each vertex, has
the effect of reversing the orientation of 𝜕𝑋 .

The map

We will reduce the proof of Theorem 1.1 to the fact that we know how to count critical realizations of
graphs, that is, to Theorem 1.3. Let us explain the basic idea. For given g, consider the set
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X𝑔 =
⎧⎪⎪⎨⎪⎪⎩(𝑋, 𝜙)

������ 𝑋 is a fat graph of genus 𝑔 and
𝜙 : 𝑋 → Σ is a critical realization

of the underlying graph

⎫⎪⎪⎬⎪⎪⎭
/

equiv

of equivalence classes of realizations, where two realizations 𝜙 : 𝑋 → Σ and 𝜙′ : 𝑋 ′ → Σ are equivalent
if there is a fat graph homeomorphism 𝜎 : 𝑋 → 𝑋 ′ such that 𝜙 = 𝜙′ ◦ 𝜎.

We stress something very important: The critical realization 𝜙 for (𝑋, 𝜙) ∈ X𝑔 is explicitly not
assumed to respect the fat structure. On the other hand, the homeomorphism 𝜎 in the definition of
equivalence definitively has to preserve the fat structure.

Note that if (𝑋, 𝜙) is a equivalent to (𝑋 ′, 𝜙′), then the curves 𝜙(𝜕𝑋) and 𝜙′(𝜕𝑋 ′) are freely homotopic
to each other. In particular, we have a well-defined map

Λ : X𝑔 → C, (𝑋, 𝜙) ↦→ geodesic homotopic to 𝜙(𝜕𝑋), (7.1)

where C is, as it was earlier, the collection of all oriented geodesics in Σ.
The basic idea of the proof of Theorem 1.1 is that the map (7.1) has the following informally stated

properties:

1. Λ is basically injective with image basically contained in B𝑔,
2. Λ is basically surjective onto B𝑔, and
3. generically, the geodesic Λ(𝑋, 𝜙) has length almost exactly equal to 2 · ℓ(𝜙) − 𝐶 for some explicit

constant C.

Let us start by clarifying the final point. Suppose that (𝑋, 𝜙) ∈ X𝑔 is such that 𝜙 is ℓ0-long for some
large ℓ0. Since the curve 𝜕𝑋 runs exactly twice over each edge X, we get that it its image 𝜙(𝜕𝑋) consists
of 2 edge(𝑋) geodesic segments of length at least ℓ0 and with 3 · vert(𝑋) = −6 · 𝜒(𝑋) corners where
it makes an angle equal to 2𝜋

3 . We get now from a standard hyperbolic geometry computation (or, if
you so wish, from a limiting argument) that when ℓ0 is large, then, up to an small error depending on
ℓ0, when we pull tight 𝜙(𝜕𝑋) to get Λ(𝑋, 𝜙) we save log 4

3 at each one of those corners. Taking into
account that 𝜒(𝑋) = 1 − 2𝑔 when X has genus g, this is what we have proved:

Lemma 7.1. For every 𝛿 > 0, there is ℓ𝛿 with����ℓΣ (Λ(𝑋, 𝜙)) −
(
2ℓΣ (𝜙) − 6 · (2𝑔 − 1) · log

4
3

)���� � 𝛿
for every (𝑋, 𝜙) ∈ X𝑔 such that 𝜙 is ℓ𝛿-long.

Remark. Where does log 4
3 come from? If Δ ⊂ H2 is an ideal triangle with vertices 𝜃1, 𝜃2 and 𝜃3 and

center p and if 𝑝′ is the projection of p to the side say (𝜃1, 𝜃2), then log 2√
3

is the difference between
the values at p and 𝑝′ of the Buseman function centered at 𝜃1, and every time we pass by a vertex we
basically save twice that amount (see Figure 4).

Our next goal is to prove that the map Λ is basically bijective onto B𝑔, but we should first formalize
what we mean by ‘basically’. Suppose that we have a set Z consisting of either realizations, or curves,
or of anything else consisting of elements 𝛼 ∈ 𝑍 whose length ℓΣ (𝛼) can be measured, and set
𝑍 (𝐿) = {𝛼 ∈ 𝑍 with ℓΣ (𝛼) � 𝐿}. We will say that a subset

𝑊 ⊂ 𝑍 is negligible in 𝑍 if lim sup
𝐿→∞

|𝑊 (𝐿) |
|𝑍 (𝐿) | = 0 (7.2)

https://doi.org/10.1017/fms.2023.114 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.114


36 V. Erlandsson and J. Souto

Figure 4. The ideal triangle Δ with vertices 𝜃1, 𝜃2, 𝜃3 = ∞ and center p. Each one of the legs of the
bold printed tripod has length log 2√

3
.

If the ambient set Z is understood from the context, then we might just say that W is negligible. The
complement of a negligible set is said to be generic and the elements of a generic set are themselves
generic. For example, we get from Lemma 4.3 and Lemma 7.1 that for all 𝛿 we have that����ℓΣ (Λ(𝑋, 𝜙)) −

(
2ℓΣ (𝜙) − 2 · (6𝑔 − 3) · log

4
3

)���� � 𝛿
for (𝑋, 𝜙) ∈ X𝑔 generic.

Basic bijectivity of Λ

Above we used the word ‘basically’ as meaning that something was true up to negligible sets. Let us
start by proving that the map Λ is basically injective and that its image is contained in the set B𝑔 of
closed geodesics of genus g.

Lemma 7.2. There is a generic subset 𝑊 ⊂ X𝑔 such that the restriction of Λ to W is injective and that
its image is contained in B𝑔.

Proof. Let ℓ0 and C be such that for every (𝑋, 𝜙) ∈ X𝑔 so that 𝜙 is ℓ0-long we have

2 · ℓΣ (𝜙) − 𝐶 � ℓΣ (Λ(𝑋, 𝜙)) � 2ℓΣ (𝜙),

and let X𝑔,ℓ0 be the set of those pairs. We get from Lemma 4.3 that X𝑔,ℓ0 is generic in X𝑔. It follows
hence from Theorem 1.3 that

|{(𝑋, 𝜙) ∈ X𝑔,ℓ0 with ℓΣ (Λ(𝑋, 𝜙)) � 𝐿}| � const ·𝐿6𝑔−4 · 𝑒
𝐿
2 . (7.3)

Note now that each element (𝑋, 𝜙) of X𝑔, and thus of X𝑔,ℓ0 , determines not only the curve Λ(𝑋, 𝜙) but
also a homotopy class of fillings for this curve, namely 𝜙 ◦ spine : neigh(𝑋) → Σ. Let now 𝑍 ⊂ X𝑔,ℓ0
be the set of pairs (𝑋, 𝜙) so that the filling 𝜙 ◦ spine : neigh(𝑋) → Σ is not unique in the sense that the
curve Λ(𝑋, 𝜙) admits another nonhomotopic genus g filling, and let

𝑊 = X𝑔,ℓ0 \ 𝑍

be its complement. From Theorem 1.4, we get that Z consists of at most const ·𝐿6𝑔−5 ·𝑒 𝐿
2 many elements

and hence that W is generic.

Claim. If ℓ0 is over some threshold, we have that Λ(𝑊) ⊂ B𝑔.
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Proof. First, we have by construction that the curve Λ(𝑋, 𝜙) admits the genus g filling 𝜙 ◦ spine𝑋 :
neigh(𝑋) → Σ. Suppose that it admits a smaller genus filling. Then, adding handles and mapping them
to points we get that Λ(𝑋, 𝜙) admits a non-𝜋1-injective genus g filling. Since on the other hand the
filling 𝜙 ◦ spine𝑋 : neigh(𝑋) → Σ is 𝜋1-injective as long as ℓ0 is over some threshold, we get that
Λ(𝑋, 𝜙) admits two nonhomotopic genus g fillings, contradicting the assumption that (𝑋, 𝜙) ∈ 𝑊 . �

It remains to prove that the restriction of Λ to the generic set W is injective.
Suppose that we have (𝑋, 𝜙), (𝑋 ′, 𝜙′) ∈ 𝑊 with Λ(𝑋, 𝜙) = Λ(𝑋 ′, 𝜙′). Since (𝑋, 𝜙) and (𝑋 ′, 𝜙′)

belong to W, we know that the two fillings

𝜙 ◦ spine𝑋 : neigh(𝑋) → Σ and 𝜙′ ◦ spine𝑋 ′ : neigh(𝑋 ′) → Σ

are homotopic. Recall that this means that there is a homeomorphism

𝜎 : neigh(𝑋) → neigh(𝑋 ′)

with 𝜙′ ◦ spine𝑋 ′ ◦𝜎 homotopic to 𝜙 ◦ spine𝑋 . Since X and 𝑋 ′ are spines of neigh(𝑋) and neigh(𝑋 ′),
we deduce that there is a homotopy equivalence 𝜎̄ : 𝑋 → 𝑋 ′ such that 𝜙′ ◦ 𝜎̄ is homotopic to 𝜙.
Now, since the lengths of both 𝜙(𝑋) and 𝜙′(𝑋 ′) are, up to a constant, basically half the length of
Λ(𝑋, 𝜙) = Λ(𝑋 ′, 𝜙′) we see that 𝜙 and 𝜙′ satisfy the conditions in Proposition 2.3. It thus follows that
there is a homeomorphism 𝐹 : 𝑋 ′ → 𝑋 mapping edges at constant velocity, with 𝐹 ◦ 𝜎̄ homotopic to
the identity, and with 𝜙 ◦ 𝐹 homotopic to 𝜙′. Now, both

𝜙 ◦ 𝐹, 𝜙′ : 𝑋 → Σ

are critical realizations and both are homotpic to each other. We get then from (1) in Lemma 2.2 that
𝜙′ = 𝜙 ◦ 𝐹. To conclude, note that since F is a homotopy inverse of 𝜎̄ and since 𝜎̄ is induced by the
homeomorphism 𝜎 : neigh(𝑋 ′) → neigh(𝑋) we get that F is a fat graph homeomorphism. This proves
that (𝑋, 𝜙) and (𝑋 ′, 𝜙′) are equivalent and hence that the restriction of Λ to W is injective. We are done
with Lemma 7.2. �

Remark. Note that Equation (7.3) and Lemma 7.2 imply that

|B𝑔 (𝐿) | > const ·𝐿6𝑔−4 · 𝑒
𝐿
2 (7.4)

for all L large enough.

Our next goal is to show that the image of Λ contains a large subset of B𝑔.

Lemma 7.3. There is a generic subset of B𝑔 which is contained in the image of Λ.

Proof. Let 𝑍 ⊂ B𝑔 be the set of those geodesics which admits a hyperbolic genus g filling 𝛽 : 𝑆 → Σ
such that the 𝜀0-thin part of the double 𝐷𝑆 of S has at most 6𝑔 − 4 connected components U through
with 𝜄(𝑈, 𝜕𝑆) = 2. It follows from Proposition 6.2 that Z has at most const ·𝐿6𝑔−5 · 𝑒 𝐿

2 elements with
length � 𝐿. It follows from Equation (7.4) that Z is negligible and hence that its complement𝑊 = B𝑔 \𝑍
is generic. We claim that W is contained in the image of Λ, at least if 𝜀0 is chosen small enough.

Each 𝛾 ∈ 𝑊 admits a hyperbolic filling 𝛽 : 𝑆 → Σ such that the 𝜀0-thin part of the double 𝐷𝑆 has at
least 6𝑔 − 3 connected components U with 𝜄(𝜕𝑆,𝑈) = 2. Since 𝐷𝑆 has genus 2𝑔, we have that 6𝑔 − 3
is actually the maximal number of connected components that its thin part can have. It follows that the
double 𝐷𝑆 of S admits a pants decomposition consisting of very short curves and that moreover 𝜕𝑆 cuts
each one of them exactly twice. It follows that S has 6𝑔 − 3 orthogeodesics cutting S into a union of
4𝑔 − 2 right-angle hexagons. These hexagons have three alternating sides which are extremely short. It
follows that each one of the hexagons contains a pretty large compact set which is almost isometric to
a large neighborhood of the center of an ideal triangle in H2. Declare the center of the hexagon to be
the image of the center of the ideal triangle by this almost isometric map. Now, we can represent the
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Figure 5. Getting an almost critical realization out of a filling whose domain can be cut into hexagons
by very short orthogeodesics.

dual graph of the decomposition of S by our short orthogeodesic segments as a geodesic subgraph X of
S with vertices in the centers of the hexagons; see Figure 5.

The graph X is a spine of S, and hence it inherits from S a fat graph structure with S as its neighborhood.
Let now 𝜓 : 𝑋 → Σ be the realization obtained from the restriction of 𝛽 to X by pulling the edges tight.

Claim. For all 𝛿, there is 𝜀 such that if 𝜀0 < 𝜀, then the realization 𝜓 : 𝑋 → Σ is 𝛿-critical.

Proof. Suppose that the claim fails to be true. This means that for some 𝛿 there are a sequence of counter
examples with 𝜀0 → 0. Since 𝜀0 → 0, we get that the images of the hexagons converge to a 1-Lipschitz
map of a geodesic triangle into Σ which, however, maps the boundary geodesics to geodesics. Such a
map is an isometric embedding of the triangle in question. Now, in a geodesic triangle, the geodesic
rays starting in the center and pointing into the cusps make angle 2𝜋

3 . This means that the angles in the
approximates converge to 2𝜋

3 contradicting our assumption that some of them were at least 𝛿 off 2𝜋
3 . We

have proved the claim. �

It follows thus from the claim and Corollary 2.4 that, as long as 𝜀0 is under some threshold, the
realization 𝜓 : 𝑋 → Σ is homotopic to a critical realization 𝜙 : 𝑋 → Σ. This implies (𝑋, 𝜙) belongs to
the domain of Λ and that 𝛾 = Λ(𝑋, 𝜙). We have proved that the generic set 𝑊 ⊂ B𝑔 is contained in the
image of Λ. �

We are now ready to wrap all of this up.

Proof of Theorem 1.1

Combining Lemma 7.1, Lemma 7.2 and Lemma 7.3, we get that for all 𝛿 > 0 there is a generic subset
𝑊 ⊂ X𝑔 which is mapped injectively under Λ to a generic subset of B𝑔 in such a way that

|ℓΣ (Λ(𝑋, 𝜙)) − 2ℓΣ (𝜙) + 2𝜅 | � 𝛿,

where

𝜅 = −3𝜒(𝑋) · log
4
3
= log

((
4
3

)6𝑔−3
)
. (7.5)
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It follows that for all 𝛿 > 0, our set B𝑔 (𝐿) has, for 𝐿 → ∞, at least as many elements as X𝑔 ( 𝐿2 + 𝜅 − 𝛿)
and at most as many as X𝑔 ( 𝐿2 + 𝜅 + 𝛿). In symbols, this just means that����X𝑔 ( 𝐿2 + 𝜅 − 𝛿

)���� � |B𝑔 (𝐿) | �
����X𝑔 ( 𝐿2 + 𝜅 + 𝛿

)���� (7.6)

for large L. It thus remains to estimate the cardinality of X𝑔 (𝐿).

Lemma 7.4. We have

|X𝑔 (𝐿) | ∼
1

12𝑔
·
(

3
2

)6𝑔−3
· 1
𝑔! · (3𝑔 − 2)! · vol(𝑇1Σ)2𝑔−1 · 𝐿6𝑔−4 · 𝑒𝐿

as 𝐿 → ∞.

Proof. From Theorem 1.3, we get that every trivalent graph X has

|G𝑋 (𝐿) | ∼
(

2
3

)3𝜒 (𝑋 )
· vol(𝑇1Σ)𝜒 (𝑋 )
(−3𝜒(𝑋) − 1)! · 𝐿

−3𝜒 (𝑋 )−1 · 𝑒𝐿

critical realizations of length at most L in Σ. This implies that whenever X is fat graph of genus g then
asymptotically there are

1
| Aut(𝑋) |

(
2
3

)3𝜒 (𝑋 )
· vol(𝑇1Σ)𝜒 (𝑋 )
(−3𝜒(𝑋) − 1)! · 𝐿

−3𝜒 (𝑋 )−1 · 𝑒𝐿

many elements in X𝑔 (𝐿) represented by (𝑋, 𝜙) for some critical 𝜙 : 𝑋 → Σ of length ℓ(𝜙) � 𝐿. Adding
over all possible types of genus g fat graphs, we get that

|X𝑔 (𝐿) | ∼
∑
𝑋

1
| Aut(𝑋) |

(
2
3

)3𝜒 (𝑋 )
· vol(𝑇1Σ)𝜒 (𝑋 )
(−3𝜒(𝑋) − 1)! · 𝐿

−3𝜒 (𝑋 )−1 · 𝑒𝐿 .

From the Bacher–Vdovina [1] result mentioned earlier and taking into consideration that 𝜒(𝑋) = 1−2𝑔,
we get

|X𝑔 (𝐿) | ∼
2

12𝑔
· (6𝑔 − 5)!
𝑔! · (3𝑔 − 3)! ·

(
3
2

)6𝑔−3
· vol(𝑇1Σ)1−2𝑔

(6𝑔 − 4)! · 𝐿6𝑔−4 · 𝑒𝐿 .

The claim follows now from elementary algebra. �

Now, from Lemma 7.4 we get that����X𝑔 ( 𝐿2 )���� ∼ 1
12𝑔

·
(

3
2

)6𝑔−3
· 1
𝑔! · (3𝑔 − 2)! · vol(𝑇1Σ)2𝑔−1 · 𝐿

6𝑔−4

26𝑔−4 · 𝑒
𝐿
2 .

Taking into account that ����X𝑔 ( 𝐿2 + 𝜅
)���� ∼ ����X𝑔 ( 𝐿2 )���� · 𝑒𝜅 = ����X𝑔 ( 𝐿2 )���� · (4

3

)6𝑔−3
,
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we get that ����X𝑔 ( 𝐿2 + 𝜅
)���� ∼ 2

12𝑔 · 𝑔! · (3𝑔 − 2)! · vol(𝑇1Σ)2𝑔−1 · 𝐿6𝑔−4 · 𝑒
𝐿
2 .

It follows thus from Equation (7.6) that

|B𝑔 (𝐿) | ∼
2

12𝑔 · 𝑔! · (3𝑔 − 2)! · vol(𝑇1Σ)2𝑔−1 · 𝐿6𝑔−4 · 𝑒
𝐿
2

as we wanted to show. This concludes the proof of Theorem 1.1.

8. Curves bounding immersed surfaces

We now turn our attention to Theorem 1.2:

Theorem 1.2. Let Σ be a closed, connected and oriented hyperbolic surface and for 𝑔 � 1 and 𝐿 > 0
let B𝑔 (𝐿) be as in Equation (1.3). We have

|{𝛾 ∈ B𝑔 (𝐿) bounds immersed surface of genus 𝑔}| ∼ 1
24𝑔−2 |B𝑔 (𝐿) |

as 𝐿 → ∞.

Denote by

Bimm
𝑔 (𝐿) = {𝛾 ∈ B𝑔 (𝐿) bounds immersed surface of genus 𝑔}

the set we want to count. From the proof of Theorem 1.1, we get that

|Bimm
𝑔 (𝐿) | ∼

����Ximm
𝑔

(
𝐿

2
+ 𝜅

)����,
where 𝜅 is as in Equation (7.5) and where

Ximm
𝑔 (𝐿) def

=

⎧⎪⎪⎨⎪⎪⎩(𝑋, 𝜙) ∈ X𝑔 (𝐿)

������ the realization 𝜙 : 𝑋 → Σ extends
to an immersion of the thickening

neigh(𝑋) of 𝑋

⎫⎪⎪⎬⎪⎪⎭.
Equivalently, (𝑋, 𝜙) ∈ X𝑔 belongs to Ximm

𝑔 if the cyclic ordering at each vertex of X agrees with the
one pulled back from Σ via 𝜙, that is, the one coming from the orientation of Σ. We can refer to such
realizations of a fat graph as fat realizations. With this language, we have that

Ximm
𝑔 (𝐿) =

{
(𝑋, 𝜙) ∈ X𝑔 (𝐿)

�� 𝜙 is a fat realization of the fat graph 𝑋
}
.

For a given trivalent fat graph X, let

G𝑋imm(𝐿) = {𝜙 ∈ G𝑋 (𝐿) | 𝜙 is a fat realization of 𝑋}

be the set of fat critical realizations of X of total length at most L. Note that

|Ximm
𝑔 (𝐿) | =

∑
𝑋

1
| Aut(𝑋) | |G

𝑋
imm (𝐿) |.
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What is still missing to be able to run the proof as in that of Theorem 1.1 is a version of Theorem 1.3
for G𝑋imm. Here it is:
Theorem 8.1. Let Σ be a closed, connected and oriented hyperbolic surface. For every connected
trivalent fat graph X, we have

|G𝑋imm(𝐿) | ∼ 22𝜒 (𝑋 ) ·
(

2
3

)3𝜒 (𝑋 )
· vol(𝑇1Σ)𝜒 (𝑋 )
(−3𝜒(𝑋) − 1)! · 𝐿

−3𝜒 (𝑋 )−1 · 𝑒𝐿

as 𝐿 → ∞.
Assuming Theorem 8.1 for the moment, we get from 𝜒(𝑋) = 1 − 2𝑔 and from the Bacher–Vdovina

theorem that

|Ximm
𝑔 (𝐿) | ∼ 1

24𝑔−2 · 2
12𝑔

· (6𝑔 − 5)!
𝑔! · (3𝑔 − 3)! ·

(
3
2

)6𝑔−3
· vol(𝑇1Σ)1−2𝑔

(6𝑔 − 4)! · 𝐿6𝑔−4 · 𝑒𝐿

from where we get, as in the proof of Theorem 1.1, that

|Bimm
𝑔 (𝐿) | ∼ 1

24𝑔−2
2

12𝑔 · 𝑔! · (3𝑔 − 2)! · vol(𝑇1Σ)2𝑔−1 · 𝐿6𝑔−4 · 𝑒
𝐿
2 .

The claim of Theorem 1.2 follows now from this statement combined with Theorem 1.1.
All that is left to do is to prove Theorem 8.1. Since it is basically identical to the proof of Theorem

1.3, we just point out the differences. The key is to obtain a fat graph version of Proposition 4.2. In a
nutshell, the idea of the proof of this proposition was that
1. we could compute the volume vol(G𝑋𝜀−crit ( �𝐿, ℎ)) of the set of 𝜀-critical realizations of X whose edge

lengths were in a box, and
2. we knew that every connected component contributes the same amount, and how much.
Let thus G𝑋𝜀−crit− imm( �𝐿, ℎ) ⊂ G𝑋𝜀−crit ( �𝐿, ℎ) be those 𝜀-critical realizations in our box which preserve
the fat structure. Recalling now that by Proposition 2.6 the connected components of G𝑋𝜀−crit ( �𝐿, ℎ)
have small diameter, we deduce that the induced fat structure is constant over each such connected
component. It follows that G𝑋𝜀−crit− imm( �𝐿, ℎ) is a union of connected components of G𝑋𝜀−crit ( �𝐿, ℎ). In
particular, to be able to obtain a fat graph version of Proposition 4.2 we just need to be able to compute
vol(G𝑋𝜀−crit− imm( �𝐿, ℎ)).

Now, in the proof of Proposition 4.2, the key ingredient of the computation of the volume of
G𝜀−crit ( �𝐿, ℎ) was Corollary 3.3 – we remind the reader that the statement of the said corollary was that
for any �𝑥 ∈ Σvert𝑋 we have

|G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) | ∼ 𝜀4 |𝜒 (𝑋 ) | ·
(

2
3

)2𝜒 (𝑋 )
· 𝜋𝜒 (𝑋 ) · (𝑒

ℎ − 1)−3𝜒 (𝑋 ) · 𝑒 ‖ �𝐿 ‖

vol(Σ)−3𝜒 (𝑋 )

as min𝑒∈edge(𝑋 ) 𝐿𝑒 → ∞, where G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) is the set of 𝜀-critical realizations 𝜙 : 𝑋 → Σ mapping
the vertex v to the point 𝑥𝑣 = 𝜙(𝑣). As we see, if we want to just copy line-by-line the computation of
the volume of G𝜀−crit ( �𝐿, ℎ) to get the volume of G𝜀−crit− imm( �𝐿, ℎ) what we need to know is the number
of elements in the set G𝑋�𝑥,𝜀−crit− imm( �𝐿, ℎ) of 𝜀-critical realizations 𝜙 : 𝑋 → Σ mapping the vertex v to
the point 𝑥𝑣 = 𝜙(𝑣) and preserving the fat structure.

Now, to obtain the number of elements in G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) we invoked Theorem 3.2 and computed the
volume of the set

𝑈𝑋�𝑥,𝜀−crit ⊂
∏

𝑣 ∈vert(𝑋 )

� !
⊕

𝑒̄∈half𝑣 (𝑋 )
𝑇1
𝑥𝑣Σ

#$%
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of those tuples (𝑣 �𝑒)�𝑒∈half (𝑋 ) with ∠(𝑣 �𝑒1 , 𝑣 �𝑒2) ∈ [ 2𝜋
3 −𝜀, 2𝜋

3 +𝜀] for all distinct �𝑒1, �𝑒2 ∈ half (𝑋) incident
to the same vertex. Accordingly, to compute the number of elements in G𝑋�𝑥,𝜀−crit imm( �𝐿, ℎ) we need to
compute the volume of the set

𝑈𝑋�𝑥,𝜀−crit− imm ⊂ 𝑈𝑋�𝑥,𝜀−crit

consisting of tuples such that for any vertex 𝑣 ∈ vert(𝑋) the cyclic order of the half-edges incident
to v agrees with the one of the corresponding unit tangent vectors. Following the computation of
vol(𝑈 �𝑥,𝜀=crit), we get that

vol(𝑈𝑋�𝑥,𝜀−crit− imm) =
1

2 | vert(𝑋 ) | vol(𝑈𝑋�𝑥,𝜀−crit) = 22𝜒 (𝑋 ) · vol(𝑈𝑋�𝑥,𝜀−crit).

As we just discussed, this implies that

|G𝑋�𝑥,𝜀−crit− imm( �𝐿, ℎ) | ∼ 22𝜒 (𝑋 ) · |G𝑋�𝑥,𝜀−crit ( �𝐿, ℎ) |

and hence that

vol(G𝑋𝜀−crit− imm( �𝐿, ℎ)) ∼ 22𝜒 (𝑋 ) · vol(G𝑋𝜀−crit ( �𝐿, ℎ))

and thus that

|G𝑋imm (𝐿) | ∼ 22𝜒 (𝑋 ) · |G𝑋 (𝐿) |.

Theorem 8.1 follows now from Theorem 1.3.

9. Comments

In this section, we discuss where and how much we use the assumption that Σ is a closed orientable
surface.

First, do the results here apply if we replace Σ by a compact two-dimensional orbifold O = Γ\H2?

The answer is yes for Theorem 1.3, with exactly the same proof. One should just do everything
equivariantly. For example, a realization in O of a graph X should be a map 𝜙 : 𝑋̃ → H

2 from the
universal cover of X to H2 which is equivariant under a homomorphism 𝜙∗ : 𝜋1 (𝑋) → Γ and where
two such pairs (𝜙, 𝜙∗) and (𝜓̃, 𝜓̃∗) are identified if they differ by an element of Γ. Once we rephrase
the situation in those terms, everything extends in the obvious way. For example, the space G𝑋 of
realizations of a graph in O is now an orbifold: Tthe map G𝑋 → Overt𝑋 sending each realization to the
images of the vertices is a covering in the category of orbifolds.

On the other hand, to prove Theorem 1.1 one needs to be a little bit careful because in Section 5 and
Section 6 we used repeatedly that every sufficiently short curve in Σ is homotopically trivial, and this is
no longer true if we are working in O.

What about allowing Σ to have cusps?

Here, we again have problems with the discussion in Section 5 and Section 6, but this time it is much
worse. In some sense, the results of Section 5 and Section 6 are just generalizations of Lemma 4.1,
and this lemma fails in the presence of cusps: Indeed, suppose that Σ is a once punctured torus and X
is a graph with two vertices x and 𝑥 ′ (if you wish, you can make X trivalent while essentially keeping
the same reasoning as we will present, but doing so might obscure things slightly) and with six edges
𝑓1, 𝑓2, 𝑒1, 𝑒2, 𝑒3 and h such that
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◦ the edges 𝑓1, 𝑓2 are incident on both ends to x,
◦ the edges 𝑒1, 𝑒2, 𝑒3 are incidents on both ends to 𝑥 ′ and
◦ the edge h runs from x to 𝑥 ′.
Fix now a horospherical neighborhood of the cusps in Σ, fix a point x0 and let x𝑡 be the point at
distance t of x0 along the ray pointing directly into the cusp. Now, if we are given a vector �𝐿 =
(𝐹1, 𝐹2, 𝐸1, 𝐸3, 𝐸3, 𝐻) with positive real coefficients consider realizations 𝜙 : 𝑋 → Σ with 𝜙(𝑥) = x0,
with 𝜙(𝑥 ′) = x𝐻 , and with 𝜙(ℎ) equal to the segment of length H joining x0 and x𝐻 . Now, we have
const 𝑒𝐹1+𝐹2 choices for the images of 𝑓1 and 𝑓2 subject to the restriction that 𝜙( 𝑓𝑖) is for 𝑖 = 1, 2 a
geodesic segment of length at most 𝐹𝑖 . Note also that the horospherical simple loop based at x𝐻 has
length const ·𝑒−𝐻 and that geodesic loops in the cusp, based at x𝐻 and with length ℓ are homotopic to
horospherical segments of length at most const ·𝑒 ℓ

2 . This implies that, if we want to map 𝑒𝑖 to a loop in
the cusp and of length at most 𝐸𝑖 , then we have at least const ·𝑒 1

2𝐸𝑖 · 𝑒𝐻 choices. Altogether we have at
least

const ·𝑒𝐹1+𝐹2+ 1
2𝐸1+ 1

2𝐸2+ 1
2𝐸3+3𝐻

choices of (homotopy classes of) realizations of X intoΣwith ℓ(𝜙( 𝑓1)) � 𝐹1, ℓ(𝜙( 𝑓2)) � 𝐹2, ℓ(𝜙(𝑒1)) �
𝐸1, ℓ(𝜙(𝑒2)) � 𝐸2 ℓ(𝜙(𝑒3)) � 𝐸3, ℓ(𝜙(𝐻)) � 𝐻. In particular, if we set

�𝐿 = (𝐹1, 𝐹2, 𝐸1, 𝐸2, 𝐸3, 𝐻) =
(
𝑛, 𝑛,

1
2
𝑛,

1
2
𝑛,

1
2
𝑛,

5
2
𝑛

)
we have at least const ·𝑒 61

4 𝑛 such realizations, and this is a much larger number than const 𝑒6𝑛 =
const 𝑒 ‖𝐿 ‖ . This proves that the analogue of Lemma 4.1 fails if Σ is not compact.

In summary, ifΣ has finite volume but is not compact, then we do not even know whether Theorem 1.3
holds. Although, we suspect that the answer is yes.

Can Σ be nonorientable?

If Σ is a compact hyperbolic surface which, however, is nonorientable, then we know that both Theo-
rem 1.3 and Theorem 1.1 hold true: We never used orientability during their proofs. We did, however, in
the proof of Theorem 1.2: Unless Σ is oriented, it makes little sense to speak about the induced fat graph
structure. We do not know what happens with Theorem 1.2 when the ambient surface is not oriented.

And what about higher dimensions?

If we replace Σ by a closed hyperbolic manifold of other dimension than 2, then Theorem 1.3 and
Theorem 1.1 should still hold and with proofs which, if not identical, keep the same spirit. It is, however,
less clear whether there should be an interesting analogue of Theorem 1.2: at least if dim � 5, where
every map of a surface can be deformed to an embedding.

A. The geometric prime number theorem

The argument we used to prove Theorem 1.3 can be used to recover Huber’s geometric primer number
theorem, and this is what we do here. Besides giving a simple proof of this theorem, it might help the
reader understand the logic of the proof of Theorem 1.3.
The geometric prime number theorem (Huber). Let Σ be a closed, connected, orientable, hyperbolic
surface, and let C(𝐿) be the set of closed nontrivial oriented geodesics in Σ of length at most L. We have

|C(𝐿) | ∼ 𝑒𝐿

𝐿

as 𝐿 → ∞.
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Remark. In Section 9, we discussed some of the difficulties one would face when extending the main
results to the case that Σ is a finite volume surface or an orbifold. None of these problems really arise
when proving the geometric prime number theorem, and indeed the proof we present here works with
only minimal changes if Σ is replaced by an arbitrary finite area orbifold Γ\H2. We decided to just deal
with the compact case to avoid hiding the structure of the argument.

The proof of Huber’s theorem would be cleaner and nicer if all closed geodesics were primitive.
Luckily, this is almost true. Indeed, it follows, for example, from the work of Coornaert and Knieper [6]
that there is some 𝐶 > 0 with

1
𝐶

· 𝑒
𝐿

𝐿
� |C(𝐿) | � 𝐶 · 𝑒𝐿 (A.1)

for all 𝐿 > 0. We stress that the Coornaert–Knieper argument is pretty coarse: What they actually prove
is a statement about groups acting isometrically, discretely and cocompactly on Gromov-hyperbolic
spaces.

The point for us is that Equation (A.1) implies that most geodesics of length at most L are primitive.
Indeed, every nonprimitive geodesic of length at most L is a multiple of a primitive geodesic of length at
most 1

2𝐿. On the other hand, if 𝑠0 is the systole of Σ, then at most 𝐿𝑠0 geodesics of length at most L arise
as multiples of any given geodesic. These two observations, together with the right side of Equation
(A.1), imply that there are at most 𝐿𝑠0 C( 1

2𝐿) �
𝐶
𝑠0

· 𝐿 · 𝑒𝐿/2 nonprimitive geodesics of length at most
L. Taking the left side of Equation (A.1) into consideration we deduce that, as we had claimed above,
most geodesics are primitive.

Lemma A.1. Fix h, and let C(𝐿, ℎ) and P(𝐿, ℎ) be, respectively, the sets of all geodesics and of all
primitive geodesics of length in [𝐿, 𝐿 + ℎ]. Then we have

|C(𝐿, ℎ) | ∼ |P(𝐿, ℎ) |

as 𝐿 → ∞.

After this preparatory comment, let us start the real business. Let L be the space of all geodesic loops
in Σ, and consider the map Π : L → Σ mapping each loop to its base point. As was the case for more
general graphs, the map Π is a covering, meaning that when we pull back the hyperbolic metric using
Π we can think of L as being a hyperbolic surface. Note also that the set of connected components of
L agrees with the set of free homotopy classes of loops. It follows that for every closed geodesic 𝛾 we
have a connected component L𝛾 .

Now, given 𝜀 > 0 small let L𝜀 be the set of all geodesic loops with angle defect at most 𝜀, that is, the
set of geodesic loops whose initial and terminal velocity vectors meet with unoriented angle in [0, 𝜀].
For 𝐿 > 0, let L𝜀 (𝐿, 𝐿 + ℎ) be the elements in L𝜀 with length between L and 𝐿 + ℎ. Accordingly, set
L𝛾𝜀 (𝐿, 𝐿 + ℎ) = L𝛾 ∩ L𝜀 (𝐿, 𝐿 + ℎ).

Let us establish some basic properties of L𝜀 (𝐿, 𝐿 + ℎ) and L𝛾𝜀 (𝐿, 𝐿 + ℎ):

Lemma A.2. Fix ℎ > 0 and 𝜀 > 0. We have that

vol(L𝜀 (𝐿, 𝐿 + ℎ)) ∼ 𝜀 · (𝑒𝐿+ℎ − 𝑒𝐿) as 𝐿 → ∞.

Moreover, there is a function 𝐶 (𝜀) with lim𝜀→0 𝐶 (𝜀) = 1 such that for every sufficiently long closed
geodesic 𝛾 we have that

1. L𝛾𝜀 (𝐿, 𝐿 + ℎ) = ∅ unless ℓ(𝛾) ∈ [𝐿 − 𝜀, 𝐿 + ℎ],
2. vol(L𝛾𝜀 (𝐿, 𝐿 + ℎ)) � 𝐶 (𝜀) · 𝜀 · 𝐿 and
3. 𝐶 (𝜀)−1 � 1

𝜀 ·𝐿 vol(L𝜀𝛾 (𝐿, 𝐿 + ℎ)) � 𝐶 (𝜀) if 𝛾 is primitive and ℓ(𝛾) ∈ [𝐿, 𝐿 + ℎ − 𝜀].
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Figure 6. The cylinder 〈𝛾〉\H2. The marked angles each measures one half of the angle defect of 𝛾𝑥 .

Proof. As in the proof of Proposition 4.2, we exploit the cover Π : L → Σ to compute the volume of
L𝜀 (𝐿, 𝐿 + ℎ):

vol(L𝜀 (𝐿, 𝐿 + ℎ)) =
∫
Σ
|Π−1 (𝑥) ∩ L𝜀 (𝐿, 𝐿 + ℎ) |𝑑𝑥.

Now, Π−1(𝑥) ∩ L𝜀 (𝐿, 𝐿 + ℎ) is nothing other than the number of geodesic arcs going from x to x with
length within [𝐿, 𝐿 + ℎ] and such that the initial and terminal velocities make at most angle 𝜀. Once
we fix x, the set of admissive pairs of initial and terminal velocities is a subset 𝑇1

𝑥Σ × 𝑇1
𝑥Σ with volume

4𝜋𝜀. We thus get from Theorem 3.2 that

|Π−1 (𝑥) ∩ L𝜀 (𝐿, 𝐿 + ℎ) | ∼ 𝜀 · 𝑒
𝐿+ℎ − 𝑒𝐿
vol(Σ) .

Since we are assuming that Σ is closed, this is uniform in x, meaning that we get

vol(L𝜀 (𝐿, 𝐿 + ℎ)) ∼
∫
Σ
𝜀 · 𝑒

𝐿+ℎ − 𝑒𝐿
vol(Σ) = 𝜀 · (𝑒𝐿+ℎ − 𝑒𝐿).

We have proved the first claim.
To prove the rest, let us give a concrete description of L𝛾 . Writing 𝛾 = 𝜂𝑘 for some 𝜂 primitive and

𝑘 � 1, consider the cover

𝜋𝜂 : 〈𝜂〉\H2 → Σ

of Σ corresponding to 𝜂. Now, for each 𝑥 ∈ 〈𝜂〉\H2 there is a unique hyperbolic loop 𝛾𝑥 based at x and
freely homotopic to running k times over 𝜂. The basic observation is that the map

〈𝜂〉\H2 → L𝛾 , 𝑥 ↦→ 𝜋𝜂 ◦ 𝛾𝑥

is an isometry between 〈𝜂〉\H2 and the connected component L𝛾 .
Now, if one denotes by d the distance in 〈𝜂〉\H2 between x and the central geodesic (see Figure 6)

one gets from formula 2.3.1(vi) in the final page in [3] that

1
2
· (angle defect of 𝛾𝑥) ∼ tan

(
1
2
· (angle defect of 𝛾𝑥)

)
= sinh(𝑑) · tanh

(
ℓ(𝛾)

2

)
∼ 𝑑,
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where the asymptotics hold when ℓ(𝛾) is large and the angle defect is small. Now, claims (1), (2) and
(3) follow from elementary considerations. �

Armed with these two lemmas, we are ready to conclude the proof of the geometric prime number
theorem. Note that it suffices to prove that for h positive and fixed we have

|C(𝐿, ℎ) | ∼ 𝑒𝐿+ℎ − 𝑒𝐿
𝐿

(A.2)

as 𝐿 → ∞. Here, C(𝐿, ℎ) is as in Lemma A.1.
Nevertheless, with notation as in both lemmas we have for 𝜀 positive and small and for L large that

|P(𝐿, ℎ) |
A.2(3)
� 𝐶 (𝜀)

𝜀 · 𝐿 vol
(
∪𝛾∈P(𝐿,ℎ)L𝛾𝜀 (𝐿, 𝐿 + ℎ + 𝜀)

)
�
𝐶 (𝜀)
𝜀 · 𝐿 vol(L𝜀 (𝐿, 𝐿 + ℎ + 𝜀))

A.2∼ 𝐶 (𝜀) · 𝑒
𝐿+ℎ+𝜀 − 𝑒𝐿

𝐿
.

On the other hand, we also have that

|C(𝐿, ℎ) |
A.2(2)
�

1
𝐶 (𝜀) · 𝜀 · 𝐿 vol

(
∪𝛾∈C(𝐿,ℎ)L𝜀 (𝐿, ℎ)

)
=

1
𝐶 (𝜀) · 𝜀 · 𝐿 vol(L𝜀 (𝐿, ℎ))

A.2∼ 1
𝐶 (𝜀)

𝑒𝐿+ℎ − 𝑒𝐿
𝐿

.

Since this holds for all 𝜀, and since 𝐶 (𝜀) tends to 1 when 𝜀 → 0 we have that

|P(𝐿, ℎ) | � 𝑒𝐿+ℎ − 𝑒𝐿
𝐿

� |C(𝐿, ℎ) |.

Now, Lemma A.1 implies Equation (A.2), and Bob’s your uncle.
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