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On the pluriclosed flow on
Oeljeklaus–Toma manifolds
Elia Fusi and Luigi Vezzoni
Abstract. We investigate the pluriclosed flow on Oeljeklaus–Toma manifolds. We parameterize left-
invariant pluriclosed metrics on Oeljeklaus–Toma manifolds, and we classify the ones which lift
to an algebraic soliton of the pluriclosed flow on the universal covering. We further show that the
pluriclosed flow starting from a left-invariant pluriclosed metric has a long-time solution ωt which
once normalized collapses to a torus in the Gromov–Hausdorff sense. Moreover, the lift of 1

1+t ωt to
the universal covering of the manifold converges in the Cheeger–Gromov sense to (Hs ×Cs , ω̃∞),
where ω̃∞ is an algebraic soliton.

1 Introduction

Oeljeklaus–Toma manifolds [300pt]are a very interesting class of complex manifolds
introduced and first studied in [17]. These manifolds are defined as compact quotients
of the type

M = Hr ×Cs

U ⋉OK

,

whereH ⊆ C is the upper half-plane,OK is the ring of algebraic integers of an algebraic
extensionK ofQ satisfying [K ∶ Q] = r + 2s, and U is a free subgroup of rank r ofO∗,+

K

satisfying some compatible conditions. The action of U ⋉OK onHr ×Cs is defined via
some embeddings ofK inR andC. Oeljeklaus–Toma manifolds have a rich geometric
structure. For instance, they have a natural structure of Tr+2s-torus bundle over a
Tr and a structure of solvmanifold [13], i.e., they are always compact quotients of a
solvable Lie group by a lattice. The Poincaré metric1 ωHr =

√
−1∑r

a=1
dza∧dz̄a

4(Imza)2 induces
a degenerate metric ω∞ on M which has a central role in the study of geometric flows
on these manifolds. The pair (r, s) is called the type of the manifold. The case of type
(r, s) = (1, 1) corresponds to the Inoue–Bombieri surfaces [11].

In [2, 7, 28, 32], the Chern–Ricci flow [10, 29] on Oeljeklaus–Toma manifolds M of
type (r, 1) is studied. According to the results in [2, 7, 28, 32], under some assumptions
on the initial Hermitian metric, the flow has a long-time solution ωt such that (M , ω t

1+t )
converges in the Gromov–Hausdorff sense to an r-dimensional torusTr as t →∞. The
result can be adapted to Oeljeklaus–Toma manifolds of arbitrary type by assuming
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40 E. Fusi and L. Vezzoni

the initial metric to be left-invariant with respect to the structure of solvmanifold.
Moreover, a result of Lauret in [15, 16] allows us to give a characterization of left-
invariant Hermitian metrics on an Oeljeklaus–Toma manifold which lift to an alge-
braic soliton of the Chern–Ricci flow on the universal covering of the manifold (see
Proposition 4.1).

Following the same approach, we focus on the pluriclosed flow on Oeljeklaus–
Toma manifolds when the initial pluriclosed Hermitian metric is left-invariant. The
pluriclosed flow is a geometric flow of pluriclosed metrics, i.e. of Hermitian metrics
having the fundamental form ∂∂̄-closed, introduced by Streets and Tian in [25]. The
flow belongs to the family of the Hermitian curvature flows [26] and evolves an initial
pluriclosed metric along the (1, 1)-component of the Bismut–Ricci form. Namely, on
a Hermitian manifold (M , ω), there always exists a unique metric connection ∇B ,
called the Bismut connection [4], preserving the complex structure and such that

ω(T B(⋅, ⋅), J⋅) is a 3-form,

where T B is the torsion of ∇B . The Bismut–Ricci form of ω is then defined as

ρB(X , Y) ∶=
√
−1

n
∑
i=1

RB(X , Y , X i , X̄ i),

where RB is the curvature tensor of ∇B and {X i} is a unitary frame with respect to
ω. ρB is always a closed real form. Given a pluriclosed Hermitian metric ω on M, the
pluriclosed flow is then defined as the geometric flow of pluriclosed metrics governed
by the equation

∂t ωt = −ρ1,1
B (ωt), ω∣t=0 = ω.

The pluriclosed flow was deeply studied in literature (see, for instance, [3, 5, 6, 9,
12, 19–24, 27] and the references therein).

Our main result is the following theorem.

Theorem 1.1 Let ω be a left-invariant pluriclosed Hermitian metric on an Oeljeklaus–
Toma manifold M. Then the pluriclosed flow starting from ω has a long-time solution
ωt such that (M , ω t

1+t ) converges in the Gromov–Hausdorff sense to (Ts , d). Moreover,
ω lifts to an expanding algebraic soliton on the universal covering of M if and only if it is
diagonal and the first s diagonal components coincide. Finally, (Hs ×Cs , ω t

1+t ) converges
in the Cheeger–Gromov sense to (Hs ×Cs , ω̃∞), where ω̃∞ is an algebraic soliton.

Here, we recall that a left-invariant Hermitian metric ω on a Lie group G with a left-
invariant complex structure is an algebraic soliton for a geometric flow of left-invariant
Hermitian metrics if ωt = ct φ∗t (ω) solves the flow, where {ct} is a positive scaling and
{φt} is a family of automorphims of G preserving the complex structure. Moreover,
the distance d in the statement is the distance induced by 3ω∞ on the torus base of
M. Now, we describe the condition diagonal appearing in the statement of Theorem
1.1. The existence of a pluriclosed metric on an Oeljeklaus–Toma manifold imposes
some restrictions (see [1, Corollary 3]). In particular, the manifold has type (s, s) and
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On the pluriclosed flow on Oeljeklaus–Toma manifolds 41

admits a left-invariant (1, 0)-coframe {ω1 , . . . , ωs , γ1 , . . . , γs} satisfying
⎧⎪⎪⎨⎪⎪⎩

dωk =
√
−1
2 ωk ∧ ω̄k , k = 1, . . . , s,

dγ i = ∑s
k=1 λki ωk ∧ γ i −∑s

k=1 λki ω̄k ∧ γ i , i = 1, . . . , s,

with

Im λki = − 1
4

δ ik .

By ω diagonal, we mean that it takes a diagonal form with respect to such a coframe.
The first part of Theorem 1.1 in the case of the Inoue–Bombieri surfaces is proved in
[5, Corollary 3.18].

Theorem 1.1 provides a description of the long-time behavior of the solution ωt to
the pluriclosed flow as t →∞. For the definition of the convergence in the Gromov–
Hausdorff sense, we refer to Section 3, whereas here we briefly recall the definition of
convergence in the Cheeger–Gromov sense: a sequence of pointed Riemannian man-
ifolds (Mk , gk , pk) converges in the Cheeger–Gromov sense to a pointed Riemannian
manifold (M , g , p) if there exists a sequence of open subsets Ak of M so that every
compact subset of M eventually lies in some Ak , and a sequence of smooth maps
ϕk ∶Ak → Mk which are diffeomorphisms onto some open set of Mk which satisfy
ϕk(pk) = p, such that

ϕ∗k(gk) → g smoothly on every compact subset, as k →∞.

See [14, Section 6] for a deep analysis of Cheeger–Gromov convergence both in
the general case and in the homogeneous one and [15, Section 5.1] for the case of
Hermitian Lie groups.

2 Definition of Oeljeklaus–Toma manifolds

We briefly recall the construction of Oeljeklaus–Toma manifolds [17].
Let Q ⊆ K be an algebraic number field with [K ∶ Q] = r + 2s and r, s ≥ 1. Let

σ1 , . . . , σr ∶K→ R be the real embeddings of K and σr+1 , . . . , σr+2s ∶K→ C be the
complex embeddings of K satisfying σr+s+i = σ̄r+i , for every i = 1, . . . , s. We denote
by OK the ring of algebraic integers of K and by O∗

K
the group of units of OK. Let

O∗,+
K

= {u ∈ O∗K ∣ σi(u) > 0 , for every i = 1, . . . , r}

be the group of totally positive units of OK. The groups OK and O∗,+
K

act on Hr ×Cs

as

a ⋅ (z1 , . . . , zr , w1 , . . . , ws)
= (z1 + σ1(a), . . . , zr + σr(a), w1 + σr+1(a), . . . , ws + σr+s(a)), for all a ∈ OK

and

u ⋅ (z1 , . . . , zr , w1 , . . . , ws)
= (σ1(u)z1 , . . . , σr(u)zr , σr+1(u)w1 , . . . , σr+s(u)ws) , for every u ∈ O∗,+

K
.
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42 E. Fusi and L. Vezzoni

There always exists a free subgroup U of rank r ofO∗,+
K

such that pr
Rr ○ l(U) is a lattice

of rank r in Rr , where l ∶O∗,+
K

→ Rr+s is the logarithmic representation of units

l(u) = (log σ1(u), . . . , log σr(u), 2 log∣σr+1(u)∣, . . . , 2 log∣σr+s(u)∣)

and pr
Rr ∶Rr+s → Rr is the projection on the first r coordinates. The action of U ⋉

OK on Hr ×Cs is free, properly discontinuous, and co-compact. An Oeljeklaus–Toma
manifold is then defined as the quotient

M ∶= Hr ×Cs

U ⋉OK

,

and it is a compact complex manifold having complex dimension r + s.
The structure of torus bundle of an Oeljeklaus–Toma manifold can be seen as

follows: we have
Hr ×Cs

OK

= Rr
+ ×Tr+2s ,

and that the action of U on Hr ×Cs induces an action on Rr
+ ×Tr+2s such that, for

every x ∈ Rr
+ and u ∈ U , the induced map

u∶ (x ,Tr+2s) ↦ (σ1(u)x1 , . . . , σr(u)xr ,Tr+2s)

is a diffeomorphism. Hence,

M = Rr
+ ×Tr+2s

U

inherits the structure of a Tr+2s-bundle over Tr . We denote by π and F the projections

π∶Hr ×Cs → M , F∶M → Tr .

From the viewpoint of Lie groups, the universal covering of an Oeljeklaus–Toma
manifold M has a natural structure of solvable Lie group G and the complex structure
on M lifts to a left-invariant complex structure [13]. Therefore, Oeljeklaus–Toma man-
ifolds can be seen as compact solvmanifolds with a left-invariant complex structure.
The solvable structure on the universal covering of M can be described in terms of the
existence of a left-invariant (1, 0)-coframe {ω1 , . . . , ωr , γ1 , . . . , γs} such that

⎧⎪⎪⎨⎪⎪⎩

dωk =
√
−1
2 ωk ∧ ω̄k , k = 1, . . . , r,

dγ i = ∑r
k=1 λki ωk ∧ γ i −∑r

k=1 λki ω̄k ∧ γ i , i = 1, . . . , s,
(1)

where

λki =
√
−1
4

bki −
1
2

cki

and bki , cki ∈ R depend on the embeddings σ j as

σr+i(u) = (
r
∏
k=1

(σk(u))
bki

2 ) e
√
−1∑r

k=1 cki log σk(u),(2)
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for any u ∈ U , k = 1, . . . , r and i = 1, . . . , s. Since U ⊆ O∗
K

, it is easy to see that

l(U) ⊆ {x ∈ Rr+s ∣
r+s
∑
i=1

x i = 0} .

This fact together with (2) implies that, for every u ∈ U ,
r
∑
i=1

log σi(u)(1 +
s
∑
k=1

b ik) = 0 ,

which, since pr
Rr ○ l(U) is a lattice of rank r in Rr , is equivalent to

s
∑
k=1

b ik = −1, for all i = 1, . . . , r.(3)

The dual frame {Z1 , . . . , Zr , W1 , . . . , Ws} to {ω1 , . . . , ωr , γ1 , . . . , γs} satisfies the
following structure equations:

[Zk , Z̄k] = −
√
−1
2

(Zk + Z̄k), [Zk , Wi] = −λki Wi , [Zk , W̄i] = λ̄ki W̄i ,

for k = 1, . . . , r and i = 1, . . . , s. Consequently, the Lie algebra g of the universal
covering of M splits as vector space as

g = h⊕ I,

where I is an abelian ideal and h is a subalgebra isomorphic to f⊕ ⋅ ⋅ ⋅ ⊕ f
��������������������������������� 

r-times

, where f is

the filiform Lie algebra f = ⟨e1 , e2⟩, [e1 , e2] = − 1
2 e1. The complex structure J induced

on g preserves both h and I, and its restriction Jh on h satisfies

Jh = Jf ⊕ ⋅ ⋅ ⋅ ⊕ Jf
����������������������������������������������� 

r-times

,

where Jf is the complex structure on f defined by Jf(e1) = e2. Moreover,

[h1,0 , I0,1] ⊆ I
0,1 .

3 Convergence in the Gromov–Hausdorff sense

We briefly recall Gromov–Hausdorff convergence of metric spaces. The Gromov–
Hausdorff distance between two metric spaces (X , dX), (Y , dY) is the infimum of all
positive ε for which there exist two functions F∶ X → Y , G∶Y → X, not necessarily
continuous, satisfying the following four properties:

∣dX(x1 , x2) − dY(F(x1), F(x2))∣ ≤ ε, dX(x , G(F(x))) ≤ ε,
∣dY(y1 , y2) − dX(G(y1), G(y2))∣ ≤ ε, dY(y, F(G(y))) ≤ ε,

for all x , x1 , x2 ∈ X and y, y1 , y2 ∈ Y . If {dt}t∈[0,∞) is a one-parameter family of
distances on X, (X , dt) converges to (Y , dY) in the Gromov–Hausdorff sense if the
Gromov–Hausdorff distance between (X , dt) and (Y , d) tends to 0 as t →∞.
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Let {ωt}t∈[0,∞) be a smooth curve of Hermitian metrics on an Oeljeklaus–Toma
manifold, and let dt be the induced distance on M. For a smooth curve γ on M, let
Lt(γ) be the length of γ with respect to ωt . We further denote by H the foliation
induced by h on M.

Proposition 3.1 Let {ωt}t∈[0,∞) be a smooth curve of Hermitian metrics on an
Oeljeklaus–Toma manifold such that

lim
t→∞

ωt = ω∞

pointwise. Assume that there exist T ∈ (0,∞) and C > 0 such that:
1. Lt(γ) ≤ CL0(γ), for every smooth curve γ in M.
2. Lt(γ) ≤ (C/

√
t)L0(γ), for every smooth curve γ in M such that γ̇ ∈ ker ω∞.

Assume further that:
3. For every ε, � > 0, there exists T > 0 such that ∣Lt(γ) − L∞(γ)∣ < ε, for every t > T

and every curve γ in M tangent to H and such that L∞(γ) < �.
Then (M , dt) converges in the Gromov–Hausdorff sense to (Tr , d), where d is the
distance induced by ω∞ onto Tr .

Proof We follow the approach in [28, Section 5] and in [32, Proof of Theorem 1.1].
Let M be an Oeljeklaus–Toma manifold. Consider the structure of M as Tr+2s-bundle
over a Tr . Let F∶M → Tr be the projection onto the base, and let G∶Tr → M be an
arbitrary map such that F ○ G = IdTr . We show that, for every ε > 0, there exists T > 0
such that

∣dt(p, q) − d(F(p), F(q))∣ ≤ ε,(4)

∣d(a, b) − dt(G(a), G(b))∣ ≤ ε,(5)

dt(p, G(F(p))) ≤ ε,(6)

d(a, F(G(a))) ≤ ε,(7)

for every t ≥ T , p, q ∈ M, a, b ∈ Tr , which implies the statement.
Note that (7) is trivial since

d(a, F(G(a))) = 0,

for every a ∈ Tr .
Then we show that (6) is satisfied. Let p, q ∈ M be two points in the same fiber over

Tr . Assume that p = π(z, w). We denote withL(z ,w) the leaf of the foliation ker ω∞ on
the universal covering of M passing through (z, w). We easily see that, for all (z, w) ∈
Hr ×Cs , L(z ,w) = {z} ×Cs . In view of [30, Section 2], for every z ∈ Hr , π({z} ×Cs)
is the leaf of the foliation ker ω∞ on M passing through p and it is dense in the fiber
F−1(F(p)). Let BR be the standard ball in Cs about the origin having radius R. We can
choose R so that every point in F−1(F(p)) has distance with respect to d0 less than
ε/2C to π({z} × B̄R). On the other hand, given two points in π({z} × B̄R), they can
be joined with a curve γ in F−1(F(p))which is tangent to ker ω∞. Hence, for any such
curve, condition 2 implies
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Lt(γ) ≤ C′√
t

,

for a uniform constant C′ depending only on R. Let p0 = π(z, 0), let γ1 be a curve in
F−1(F(p)) connecting p with p0 tangent to ker ω∞, and let γ2 be a curve connecting
p0 with q having minimal length with respect to d0. Hence, by using condition 1, for
t sufficiently large, we have

dt(p, q) ≤ Lt(γ1) + Lt(γ2) ≤
C′√

t
+ CL0(γ2) ≤

C′√
t
+ ε

2
≤ ε,

i.e.,

dt(p, q) ≤ ε,

and (6) follows.
Next, we show (4) and (5). First of all, we denote with g the Riemannian metric on

Tr induced by ω∞, for an explicit expression of g (see [32, Section 2]), and we observe
that

Lg(F(γ)) ≤ L∞(γ), for every curveγ in M ,(8)

and the equality holds if and only if

γ̇ ∈ Y = span
C
{ 1

2
√
−1

(Z i − Z̄ i) ∣ i = 1, . . . , r} .

Let p, q ∈ M. We can find a curve γ in M connecting p with a point q̃ in the Tr+2s-
fiber containing q which is tangent to Y and such that F(γ) is a minimal geodesic on
(Tr , g) (see, for instance, [28, Proof of Theorem 5.1] or [32, Proof of Theorem 1.1]). By
applying condition 3, we have

dt(p, q) ≤ dt(p, q̃) + dt(q̃, q) ≤ dt(p, q̃) + ε ≤ Lt(γ) + ε ≤ L∞(γ) + 2ε
= Lg(F(γ)) + 2ε = d(F(p), F(q)) + 2ε,

for t big enough, i.e.,

dt(p, q) − d(F(p), F(q)) ≤ 2ε,(9)

for t sufficiently large.
Next, using again (8), we obtain, for p, q ∈ M,

d(F(p), F(q)) ≤ Lg(F(γ)) ≤ L∞(γ) ≤ Lt(γ) + ε = dt(p, q) + ε,

for t big enough, where γ is a curve which realizes the distance dt(p, q). Hence, we
obtain

d(F(p), F(q)) − dt(p, q) ≤ ε.(10)

By substituting p = G(a) and q = G(b) in (9) and (10), we infer

−ε ≤ dt(G(a), G(b)) − d(a, b) ≤ 2ε,

and (4) and (5) follow. ∎
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4 The left-invariant Chern–Ricci flow on Oeljeklaus–Toma
manifolds

Given a Hermitian manifold (M , ω), the Chern connection of ω is the unique
connection ∇ on (M , ω) preserving both ω and the complex structure such that the
(1, 1)-component of its torsion tensor is vanishing. The Chern–Ricci form of ω is the
real closed (1, 1)-form

ρC(X , Y) ∶=
√
−1

n
∑
i=1

RC(X , Y , X i , X̄ i),

where RC is the curvature tensor of ∇ and {X i} is a unitary frame with respect to ω.
The Chern–Ricci flow is then defined as the geometric flow

∂t ωt = −ρC(ωt), ω∣t=0 = ω.

In this section, we prove the following Proposition.

Proposition 4.1 Let ω be a left-invariant Hermitian metric on an Oeljeklaus–Toma
manifold M. Then ω lifts to an expanding algebraic soliton for the Chern–Ricci flow on
the universal covering of M if and only if it takes the following expression with respect to
the coframe {ω1 , . . . , ωr , γ1 , . . . , γs} satisfying (1):

ω =
√
−1

⎛
⎝

A
r
∑
i=1

ω i ∧ ω̄ i +
s
∑

i , j=1
gr+i r+ jγ

i ∧ γ̄ j⎞
⎠

.(11)

Moreover, the Chern–Ricci flow starting from ω has a long-time solution {ωt} such that
(M , ω t

1+t ) converges as t →∞ in the Gromov–Hausdorff sense to (Tr , d), where d is
the distance induced by ω∞ onto Tr . Finally, (Hr ×Cs , ω t

1+t ) converges in the Cheeger–
Gromov sense to (Hr ×Cs , ω̃∞), where ω̃∞ is an algebraic soliton.

The proof of Proposition 4.1 is based on the following theorem of Lauret.

Theorem 4.2 (Lauret [15]) Let (G , J) be a Lie group with a left-invariant complex
structure. Then the Chern–Ricci form of a left-invariant Hermitian metric ω on (G , J)
does not depend on the Hermitian metric. Moreover, if P ≠ 0 is the endomorphism
associated with ρC with respect to ω, then the following are equivalent:

(1) ω is an algebraic soliton of the Chern–Ricci flow.
(2) P = cI + D, for some D ∈ Der(g).
(3) The eigenvalues of P are either 0 or c, for some c ∈ R with c ≠ 0, ker P is an abelian

ideal of the Lie algebra of G, and (ker P)⊥ is a subalgebra.

Proof of Proposition 4.1 Let M be an Oeljeklaus–Toma manifold. Since the Chern–
Ricci form does not depend on the choice of the left-invariant Hermitian metric, it is
enough to compute ρC for the “canonical metric”

ω =
√
−1

⎛
⎝

r
∑
i=1

ω i ∧ ω̄ i +
s
∑
j=1

γ j ∧ γ̄ j⎞
⎠

.(12)

https://doi.org/10.4153/S0008414X22000670 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000670


On the pluriclosed flow on Oeljeklaus–Toma manifolds 47

We recall that the Chern–Ricci form of a left-invariant Hermitian metric ω =√
−1∑n

a=1 αa ∧ ᾱa on a Lie group G2n with a left-invariant complex structure takes
the following algebraic expression:

ρC(X , Y) = −
n
∑
a=1

(ω([[X , Y]0,1 , Xa], X̄a) + ω([[X , Y]1,0 , X̄a], Xa)) ,(13)

for every left-invariant vector fields X , Y on G, where {α i} is a left-invariant unitary
(1, 0)-coframe with dual frame {Xa} (see, e.g., [31]). By applying (13) to the canonical
metric (12), we have

ρC(X , Y) = −
r
∑
a=1

{ω([[X , Y]0,1 , Za], Z̄a) + ω([[X , Y]1,0 , Z̄a], Za)}

−
s
∑
b=1

{ω([[X , Y]0,1 , Wb], W̄b) + ω([[X , Y]1,0 , W̄b], Wb)}.

Clearly,
ρC(Z i , Z̄ j) = 0 , for all i ≠ j, ρC(Wi , W̄j) = 0, for every i , j = 1, . . . , s.

Moreover, since J is an abelian ideal and ω makes J and h orthogonal, we have

ρC(Z i , W̄j) = 0, for all i = 1, . . . , r, j = 1, . . . , s.

Moreover, we have

ω([[Z i , Z̄ i]0,1 , Za], Z̄a) =
√
−1
4

δ ia , ω([[Z i , Z̄ i]1,0 , Z̄a], Za) =
√
−1
4

δ ia

and

ω([[Z i , Z̄ i]0,1 , Wb], W̄b) =
1
2

λ ib , ω([[Z i , Z̄ i]1,0 , W̄b], Wb) = − 1
2

λ̄ ib ,

which imply

ρC(Z i , Z̄ i) = −
√
−1( 1

2
+

s
∑
b=1

Im(λ ib)) = −
√
−1
4

,

and, consequently,

ρC = −ω∞,

where ω∞ is the degenerate metric induced on M by the Poincaré metric on Hr ,
namely,

ω∞ =
√
−1
4

r
∑
i=1

ω i ∧ ω̄ i .

In general, we have that

P j
i = (ρC)i k̄ g k̄ j =

⎧⎪⎪⎨⎪⎪⎩

− 1
4 g ī j , if i ∈ {1, . . . , r},

0, otherwise.

Then part (3) of Theorem 4.2 readily implies that any left-invariant Hermitian metrics
of the form (11) lifts to an expanding algebraic soliton on the universal covering of M
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with cosmological constant c = 1
4A . Conversely, let ω be an algebraic soliton for the

Chern–Ricci flow. Then, thanks to part (2) of Theorem 4.2, we have that

P − cI ∈ Der(g).

On the other hand, we can easily see that, if D ∈ Der(g), then h ⊆ ker D (see the proof
of Corollary 5.4 for the details). This readily implies that

− 1
4

g i ī = − 1
4

g j̄ j = c, for all i , j = 1, . . . , r, g ī j = 0, for all i ∈ {1, . . . , r}, j ≠ i ,

from which the claim follows.
Moreover, the Chern–Ricci flow evolves an arbitrary left-invariant Hermitian

metric ω as ωt = ω + tω∞ and ω t
1+t → ω∞ as t →∞. In order to obtain the claim

regarding the Gromov–Hausdorff convergence, we show that ω t
1+t satisfies conditions

1–3 in Proposition 3.1. Here, we denote by ∣ ⋅ ∣t the norm induced by ωt .
Condition 2 is trivially satisfied since ωt∣I⊕I = ω0, for every t ≥ 0, and

Lt(γ) = 1√
1 + t

L0(γ),

for every curve γ in M tangent to ker ω∞.
On the other hand, for a vector v ∈ h, we have

1√
1 + t

∣v∣t ≤ C∣v∣0 ,

for a constant C > 0 independent on v. This, together with condition 2, guarantees
condition 1.

In order to prove condition 3, let ε, � > 0 and T > 0 be such that

∣ ∣v∣t√
1 + t

− ∣v∣∞∣ ≤
ε
�

,

for every v ∈ h and t ≥ T . Let γ be a curve in M tangent to H which is parametrized
by arclength with respect to ω∞ and such that L∞(γ) < �. Then

∣Lt(γ) − L∞(γ)∣ ≤ ∫
b

0
∣ 1√

1 + t
∣γ̇∣t − ∣γ̇∣∞∣ da ≤ ε

�
b ≤ ε,

since b ≤ �.
For the last statement, we identify ωt with its pullback onto Hr ×Cs and we fix as

base point the identity element of Hr ×Cs . First, we observe that the endomorphism
D represented with respect to the frame {Z1 , . . . , Zr , W1 , . . . , Ws} by the following
matrix

(0 0
0 IJ

)

is a derivation of g. Moreover, we can construct

exp(s(t)D) = (Ih 0
0 es(t)IJ

) ∈ Aut(g, J), for every t ≥ 0,
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where s(t) = log(
√

1 + t) and define the one-parameter family {φt} ⊆ Aut(Hr ×
Cs , J) such that

dφt = exp(s(t)D), for every t ≥ 0.

Trivially, we see that

φ∗t
ωt

1 + t
(Z i , Z̄ j) =

√
−1 1

1 + t
(g i j̄ +

t
4

δ i j) →
√
−1
4

δ i j as t →∞,

φ∗t
ωt

1 + t
(Z i , W̄j) =

√
−1 es(t)

1 + t
g i r+ j → 0 as t →∞,

φ∗t
ωt

1 + t
(Wi , W̄j) =

√
−1 e2s(t)

1 + t
gr+i r+ j →

√
−1gr+i r+ j as t →∞.

These facts guarantee that

φ∗t
ωt

1 + t
→ ω∞ + ωJ⊕J as t →∞ ;

hence, the assertion follows. ∎

5 Proof of the main result

In this section, we prove Theorem 1.1.
The existence of pluriclosed metrics on Oeljeklaus–Toma manifolds was studied in

[1, 8, 18]. In particular, from [1] it follows the following result.

Theorem 5.1 ([1, Corollary 3]) An Oeljeklaus–Toma manifold of type (r, s) admits a
pluriclosed metric if and only if r = s and

σ j(u)∣σr+ j(u)∣2 = 1, for every j = 1, . . . , s and u ∈ U .(14)

Condition (14) in the previous theorem can be rewritten in terms of the structure
constants appearing in (1). Indeed, (1) together with (14) forces bki ∈ {0,−1} and
bki b l i = 0, for every i , k, l = 1, . . . , s with k ≠ l . In particular, using (3), for every fixed
index k ∈ {1, . . . , s}, there exists a unique ik ∈ {1, . . . , s} such that

bkik = −1, bki = 0,

for all i ≠ ik and, if k ≠ l , then ik ≠ i l . Hence, up to a reorder of the γ j ’s, we may and
do assume, without loss of generality, ik = k, for every k ∈ {1, . . . , s}, i.e.

λki =
⎧⎪⎪⎨⎪⎪⎩

− 1
2 cki , if i ≠ k,

− 1
2 ckk −

√
−1
4 , if i = k.

(15)

Proposition 5.2 (Characterization of left-invariant pluriclosed metrics on Oeljeklaus—
Toma manifolds). A left-invariant metric ω on an Oeljeklaus–Toma manifold admit-
ting pluriclosed metrics is pluriclosed if and only if it takes the following expression with
respect to a coframe {ω1 , . . . , ωs , γ1 , . . . , γs} satisfying (1) and (15):

ω =
√
−1

s
∑
i=1

A i ω i ∧ ω̄ i + B i γ i ∧ γ̄ i +
√
−1

k
∑
r=1

(Cr ωpr ∧ γ̄pr + C̄rγpr ∧ ω̄pr)(16)
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for some A1 , . . . , As , B1 , . . . , Bs ∈ R+, C1 , . . . , Ck ∈ C, where {p1 , . . . , pk} ⊆ {1, . . . , s}
are such that

λ jp i = 0 , for all j ≠ p i , for all i = 1, . . . , k.

Proof We assume s > 1 since the case s = 1 is trivial. Let

ω =
√
−1

s
∑

p,q=1
Apq̄ωp ∧ ω̄q + Bpq̄γp ∧ γ̄q + Cpq̄ωp ∧ γ̄q + C̄pq̄γq ∧ ω̄p

be an arbitrary real left-invariant (1, 1)-form on M, with Ap p̄ , Bp p̄ ∈ R, for every
p = 1, . . . , s, Apq̄ , Bpq̄ ∈ C, for all p, q = 1, . . . , s with p ≠ q, and Cpq̄ ∈ C, for every
p, q = 1, . . . , s.

From the structure equations (1), it easily follows
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂∂̄(ωp ∧ ω̄q) ∈ ⟨ωp ∧ ωq ∧ ω̄p ∧ ω̄q⟩,
∂∂̄(ωp ∧ γ̄q) ∈ ⟨ω i ∧ ω j ∧ ω̄ l ∧ γ̄m⟩,
∂∂̄(γp ∧ γ̄q) ∈ ⟨ω i ∧ ω̄ j ∧ γ l ∧ γ̄m⟩,

(17)

and that ω is pluriclosed if and only if the following three conditions are satisfied:
s
∑

p,q=1
Apq̄∂∂̄(ωp ∧ ω̄q) = 0,(18)

s
∑

p,q=1
Bpq̄∂∂̄(γp ∧ γ̄q) = 0,(19)

s
∑

p,q=1
Cpq̄∂∂̄(ωp ∧ γ̄q) = 0.(20)

The first relation in (17) yields that (18) is satisfied if and only if

Apq̄ = 0, for all p ≠ q.

Next, we focus on (19). We have

∂∂̄(γp ∧ γ̄q) =∂(−
s
∑
δ=1

λδ pω̄δ ∧ γp ∧ γ̄q − γp ∧
s
∑
δ=1

λ̄δq ω̄δ ∧ γ̄q)

and

∂∂̄(γp ∧ γ̄q) =
s
∑
δ=1

(λ̄δq − λδ p) (∂ω̄δ ∧ γp ∧ γ̄q − ω̄δ ∧ ∂γp ∧ γ̄q + ω̄δ ∧ γp ∧ ∂γ̄q) ,

which implies that

∂∂̄(γp ∧ γ̄q) =
s
∑
δ=1

√
−1
2
(λ̄δq − λδ p)ωδ ∧ ω̄δ ∧ γp ∧ γ̄q −

s
∑
δ=1
(λ̄δq − λδ p)ω̄δ ∧ (

s
∑
a=1

λa pωa ∧ γp) ∧ γ̄q

+
s
∑
δ=1
(λ̄δq − λδ p)ω̄δ ∧ γp ∧ (−

s
∑
a=1

λ̄aq ωa ∧ γ̄q)

=
s
∑
δ=1

√
−1
2
(λ̄δq − λδ p)ωδ ∧ ω̄δ ∧ γp ∧ γ̄q +∑

δ ,a
(λa p − λ̄aq)(λ̄δq − λδ p)ωa ∧ ω̄δ ∧ γp ∧ γ̄q .
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Finally, we get

∂∂̄(γp ∧ γ̄q) =
s
∑
δ=1

(λ̄δq − λδ p)(
√
−1
2

+ λδ p − λ̄δq)ωδ ∧ ω̄δ ∧ γp ∧ γ̄q

+∑
δ≠a

(λa p − λ̄aq)(λ̄δq − λδ p)ωa ∧ ω̄δ ∧ γp ∧ γ̄q

and that condition (19) is equivalent to

Bpq̄
⎛
⎝

s
∑
δ=1
(λ̄δq − λδ p)(

√
−1
2
+ λδ p − λ̄δq)ωδ ∧ ω̄δ + ∑

δ≠a
(λa p − λ̄aq)(λ̄δq − λδ p)ωa ∧ ω̄δ⎞

⎠
= 0,

for every p, q = 1, . . . , s.
By using our conditions on the bki ’s, it is easy to show that the quantity
s
∑
δ=1

(λ̄δq − λδ p)(
√
−1
2

+ λδ p − λ̄δq)ωδ ∧ ω̄δ + ∑
δ≠a

(λa p − λ̄aq)(λ̄δq − λδ p)ωa ∧ ω̄δ

is vanishing for p = q and, consequently, there are no restrictions on the Bqq̄ ’s. Now,
we observe that the real part of

(λ̄pq − λpp)(
√
−1
2

+ λpp − λ̄pq)

is different from 0, for every p, q with p ≠ q, which forces Bpq̄ = 0, for p ≠ q. Indeed,
we have

λ̄δq − λδ p =
1
2
(cδ p − cδq) −

√
−1
4

(bδ p + bδq),
√
−1
2

+ λδ p − λ̄δq = − 1
2
(cδ p − cδq) +

√
−1
2

(1 +
bδ p + bδq

2
) ,

which implies that

Re ((λ̄δq − λδ p)(
√
−1
2

+ λδq − λ̄δ p))(21)

= −
(cδ p − cδq)2

4
+ 1

4
(

bδ p + bδq

2
)(1 +

bδ p + bδq

2
) .

Since p ≠ q, we have

bpp = −1, bpq = 0 ,

and so (21) computed for δ = q gives

Re((λ̄pq − λpp)(
√
−1
2

+ λpq − λ̄pp))) = 1
4
(−(cpp − cpq)2 − 1

4
) ≠ 0,

as required. Therefore, equation (19) is satisfied if and only if

Bpq̄ = 0, for all p ≠ q.
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Next, we focus on (20). We have

∂∂̄(ωp ∧ γ̄q) = ∂(
√
−1
2

ωp ∧ ω̄p ∧ γ̄q − ωp ∧ (
s
∑
δ=1

λ̄δq ω̄δ ∧ γ̄q))

and

∂∂̄(ωp ∧ γ̄q) =
√
−1
2

(−
√
−1
2

ωp ∧ ωp ∧ ω̄p ∧ γ̄q + ωp ∧ ω̄p ∧ (−
s
∑
δ=1

λ̄δqωδ ∧ γ̄q))

+
s
∑
δ=1

√
−1
2

λ̄δqωp ∧ ωδ ∧ ω̄δ ∧ γ̄q +
s
∑
δ=1

λ̄δqωp ∧ ω̄δ ∧ (
s
∑
a=1

λ̄aqωa ∧ γ̄q) .

Hence, we get

∂∂̄(ωp ∧ γ̄q) =
s
∑
δ=1
δ≠p

√
−1
2

λ̄δqωp ∧ ω̄p ∧ ωδ ∧ γ̄q +
s
∑
δ=1
δ≠p

√
−1
2

λ̄δqωp ∧ ωδ ∧ ω̄δ ∧ γ̄q

+ ∑
δ ,a
a≠p

λ̄δq λ̄aqωp ∧ ω̄δ ∧ ωa ∧ γ̄q

and

∂∂̄(ωp ∧ γ̄q) =
s
∑
δ=1
δ≠p

√
−1
2

λ̄δqωp ∧ ω̄p ∧ ωδ ∧ γ̄q +
s
∑
a=1
a≠p

λ̄pq λ̄aqωp ∧ ω̄p ∧ ωa ∧ γ̄q

+
s
∑
δ=1
δ≠p

√
−1
2

λ̄δqωp ∧ ωδ ∧ ω̄δ ∧ γ̄q + ∑
δ ,a
δ≠p
a≠p

λ̄δq λ̄aqωp ∧ ω̄δ ∧ ωa ∧ γ̄q .

Therefore,

∂∂̄(ωp ∧ γ̄q) =
s
∑
δ=1
δ≠p

λ̄δq (
√
−1
2

+ λ̄pq)ωp ∧ ω̄p ∧ ωδ ∧ γ̄q

+
s
∑
δ=1
δ≠p

λ̄δq (
√
−1
2

− λ̄δq)ωp ∧ ωδ ∧ ω̄δ ∧ γ̄q + ∑
δ≠a
δ≠p
a≠p

λ̄δq λ̄aqωp ∧ ω̄δ ∧ ωa ∧ γ̄q

and (20) is equivalent to

Cpq̄

⎛
⎜⎜⎜⎜⎜
⎝

s
∑
δ=1
δ≠p

λ̄δq (
√
−1
2
+ λ̄pq) ω̄p ∧ ωδ +

s
∑
δ=1
δ≠p

λ̄δq (
√
−1
2
− λ̄δq)ωδ ∧ ω̄δ + ∑

δ≠a
δ≠p
a≠p

λ̄δq λ̄aq ω̄δ ∧ ωa

⎞
⎟⎟⎟⎟⎟
⎠

= 0,

for every p, q = 1, . . . , s. Since

λpq ≠ ±
√
−1
2

, for all p, q = 1, . . . , s ,
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the quantity

Epq̄ ∶=
s
∑
δ=1
δ≠p

λ̄δq (
√
−1
2
+ λ̄pq) ω̄p ∧ ωδ +

s
∑
δ=1
δ≠p

λ̄δq (
√
−1
2
− λ̄δq)ωδ ∧ ω̄δ + ∑

δ≠a
δ≠p
a≠p

λ̄δq λ̄aq ω̄δ ∧ ωa

is vanishing if and only if

λδq = 0 , for all δ ≠ p.

Since λqq ≠ 0, it follows

Epq̄ ≠ 0, for every p, q with p ≠ q

and

Ep p̄ = 0 if and only if cδ p = 0, for all δ ≠ p.

Hence, the claim follows. ∎
Proposition 5.3 Let

ω =
√
−1

s
∑
i=1

A i ω i ∧ ω̄ i + B i γ i ∧ γ̄ i +
√
−1

k
∑
r=1

(Cr ωpr ∧ γ̄pr + C̄rγpr ∧ ω̄pr)(22)

be a left-invariant pluriclosed Hermitian metric on an Oeljeklaus–Toma manifold, where
the components are with respect to a coframe {ω1 , . . . , ωs , γ1 , . . . , γs} satisfying (1) and
(15) and {p1 , . . . , pk} ⊆ {1, . . . , s} are such that

λ jp i = 0 , for all j ≠ p i , for all i = 1, . . . , k.

Then the (1, 1)-part of the Bismut–Ricci form of ω takes the following expression:

ρ1,1
B = −

√
−1

k
∑
r=1

3
4
(1 + ∣Cr ∣2

Apr Bpr − ∣Cr ∣2
)ωpr ∧ ω̄pr −

√
−1 ∑

i/∈{p1 , . . . , pk}

3
4

ω i ∧ ω̄ i

−
√
−1

k
∑
r=1

(− 3
16

−
c2

pr pr

4
−
√
−1cpr pr

4
)

Bpr Cr

Apr Bpr − ∣Cr ∣2
ωpr ∧ γ̄pr + conjugates.

Proof We recall that the Bismut–Ricci form of a left-invariant Hermitian metric ω =√
−1∑n

a ,b=1 gab̄ αa ∧ ᾱb on a Lie group G2n with a left-invariant complex structure
takes the following algebraic expression:

ρB(X , Y) = −
n
∑

a ,b=1
gab̄ ω([[X , Y]1,0 , Xa], X̄b) + g āb ω([[X , Y]0,1 , X̄a], Xb)(23)

+
√
−1

n
∑

a ,b=1
gab̄ ω([X , Y], J[Xa , X̄b]) ,

for every left-invariant vector fields X , Y on G, where {α i} is a left-invariant (1, 0)-
coframe with dual frame {Xa} and (g b̄a) is the inverse matrix of (g i j̄) (see, e.g., [31]).
We apply (23) to a left-invariant Hermitian metric on an Oeljeklaus–Toma manifold
of the form (22).
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We have

g ī s+i = {
0, if i /∈ {p1 , . . . , pk} ,
− Ci

Ai Bi−∣Ci ∣2
, otherwise , g ī i = Bi

Ai Bi − ∣Ci ∣2
, g s+i s+i = Ai

Ai Bi − ∣Ci ∣2
,

and taking into account that the ideal I is abelian, we have

ρB(X , Y) = −
4
∑
i=1

ρ i(X , Y),

where

ρ1(X , Y) =
s
∑
a=1

gaā(ω([[X , Y]1,0 , Za], Z̄a) −
√
−1
2

ω([X , Y], Za − Z̄a)

+ ω([[X , Y]0,1 , Z̄a], Za)),

ρ2(X , Y) =
s
∑
a=1

g s+as+a(ω([[X , Y]1,0 , Wa], W̄a) + ω([[X , Y]0,1 , W̄a], Wa)),

ρ3(X , Y) =
k
∑
r=1

g pr s+pr (ω([[X , Y]1,0 , Zpr ], W̄pr) − ω([X , Y], [Zpr , W̄pr ]))

+ g pr s+pr ω([[X , Y]0,1 , Z̄pr ], Wpr) ,

ρ4(X , Y) =
k
∑
r=1

g s+pr p̄r (ω([[X , Y]1,0 , Wpr ], Z̄pr) + ω([X , Y], [Wpr , Z̄pr ])))

+ g s+pr pr ω([[X , Y]0,1 , W̄pr ], Zpr).

Next, we focus on the computation of ρB(Z i , Z̄ j). Thanks to (1), we easily obtain
that

ρB(Z i , Z̄ j) = 0 , for every i , j = 1, . . . , s , i ≠ j.

On the other hand,

ρ1(Z i , Z̄ i) = −
√
−1
2

s
∑
a=1

gaā (−
√
−1
2

ω(Z i + Z̄ i , Za − Z̄a))

=
√
−1
2

g i ī A i =
√
−1
2

( A i B i

A i B i − ∣C i ∣2
) .

Moreover, we have

ρ2(Z i , Z̄ i) = −
√
−1
2

s
∑
a=1

g s+as+a(ω([Z i , Wa], W̄a) + ω([Z̄ i , W̄a], Wa)

= −
√
−1

s
∑
a=1

g s+as+a
Reω([Z i , Wa], W̄a).

Using (1), we have

ω([Z i , Wa], W̄a) = −
√
−1λ ia Ba ,

Reω([Z i , Wa], W̄a) =
Bab ia

4
= −Ba

4
δ ia .
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Then

ρ2(Z i , Z̄ i) =
√
−1 g s+i s+i B i

4
=
√
−1
4

A i B i

A i B i − ∣C i ∣2
.

Next, we observe that

ρ3(Z i , Z̄ i) + ρ4(Z i , Z̄ i) = 0,

which implies that

ρB(Z i , Z̄ i) =
⎧⎪⎪⎨⎪⎪⎩

−
√
−1 3

4 (1 + ∣Cr ∣2
Apr Bpr−∣Cr ∣2 ) , if there exists r = 1, . . . , k such that i = pr ,

−
√
−1 3

4 , if i /∈ {p1 , . . . , pk}.

(24)

We have

ρ3(Z i , Z̄ i) =
k
∑
j=1

g p j s+p j ω([Z i , Z̄ i], [Zp j , W̄p j ]) = −
√
−1
2

k
∑
j=1

g p j s+p j λ̄p j p j ω(Z i + Z̄ i , W̄p j)

={0, if i /∈ {p1 , . . . , pk},
1
2 g i s+i λ̄ i i C i , otherwise.

We compute the three addends in the expression of ρ4 separately:

ω([[Z i , Z̄ i]1,0 , Wp j], Z̄p j) = −
1
2

λ i p j C̄p j =
⎧⎪⎪⎨⎪⎪⎩

0, if i /∈ {p1 , . . . , pk} or i ≠ p j ,
− 1

2 λ i i C̄ i , otherwise,

ω([Z i , Z̄ i], [Wp j , Z̄p j]) =
1
2

λp j p j g i s+p j
=
⎧⎪⎪⎨⎪⎪⎩

0, if i /∈ {p1 , . . . , pk} or i ≠ p j ,
1
2 λ i i C̄ i , otherwise,

ω([[Z i , Z̄ i]0,1 , W̄p j], Zp j) =
1
2

λ̄ i p j gs+p j p j
=
⎧⎪⎪⎨⎪⎪⎩

0, if i ≠ p j ,
1
2 λ̄ i i C i , otherwise.

It follows

ρ3(Z i , Z̄ i) = ρ4(Z i , Z̄ i) = 0 if i /∈ {p1 , . . . , pk},

and, for i ∈ {p1 , . . . , pk},

ρ3(Z i , Z̄ i) + ρ4(Z i , Z̄ i)

= − 1
2

g i s+i λ̄ i i C i − g s+i i 1
2

λ i i C̄ i + g s+i i 1
2

λ i i C̄ i + g s+i i 1
2

λ̄ i i C i = 0.

Now, we focus on the calculation of ρB(Z i , W̄j). We have

ρ1(Z i , W̄j) =
s
∑
a=1

gaā λ̄ i j (−
√
−1
2

ω(W̄j , Za − Z̄a) + ω([W̄j , Z̄a], Za))

=
⎧⎪⎪⎨⎪⎪⎩

0, if i = j ∈ {p1 , . . . , pk} ,√
−1g i ī C i λ̄ i i (

√
−1
2 − λ̄ i i) , otherwise,
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and since I is abelian

ρ2(Z i , W̄j) = 0.

Furthermore,

ρ3(Z i , W̄j) =
k
∑
j=1

g p j s+p j ω([[Z i , W̄j]0,1 , Z̄p j], Wp j) = −
√
−1

k
∑
j=1

g p j s+p j λ̄ i j λ̄p j p j gs+ js+p j

=
⎧⎪⎪⎨⎪⎪⎩

0, if i = j ∈ {p1 , . . . , pk},
−
√
−1λ̄2

j j g js+ jB j , otherwise,

and

ρ4(Z i , W̄j) =
k
∑
j=1

g s+p j p̄ j ω([Z i , W̄j], [Wp j , Z̄p j]) =
√
−1

k
∑
j=1

g s+p j p̄ j λ̄ i j λp j p j gs+ js+p j

=
⎧⎪⎪⎨⎪⎪⎩

0, if i = j ∈ {p1 , . . . , pk},√
−1g s+ j j̄ λ̄ j j λ j jB j , otherwise.

It follows that ρB(Z i , W̄j) ≠ 0 if and only if i = j ∈ {p1 , . . . , pk}. In such a case, we
have

ρB(Z j , W̄j) = −
√
−1(g s+ j jB j (∣λ j j ∣2 − λ̄2

j j) + g j j̄C j λ̄ j j (
√
−1
2

− λ̄ j j)) .

Since

g s+ j j̄B j = −
B jC j

A jB j − ∣C j ∣2
and g j j̄C j =

B jC j

A jB j − ∣C j ∣2
,

we infer

ρB(Z j , W̄j) = −
√
−1(λ̄ j j (

√
−1
2

− λ̄ j j) − (∣λ j j ∣2 − λ̄2
j j))

B jC j

A jB j − ∣C j ∣2
.

Taking into account that λ j j = −
√
−1
4 − c j j

2 , we obtain

ρB(Z j , W̄j) = −
√
−1

⎛
⎝
− 3

16
−

c2
j j

4
−
√
−1c j j

4
⎞
⎠

B jC j

A jB j − ∣C j ∣2
,

and the claim follows. ∎

Corollary 5.4 Let ω be a left-invariant pluriclosed Hermitian metric on an Oeljeklaus–
Toma manifold M. Then ω lifts to an algebraic expanding soliton of the pluriclosed flow
on the universal covering of M if and only if it takes the following diagonal expression
with respect to a coframe {ω1 , . . . , ωs , γ1 , . . . , γs} satisfying ( 1 ) and ( 15 ):

ω =
√
−1

s
∑
i=1

Aω i ∧ ω̄ i + B i γ i ∧ γ̄ i .(25)

Proof Let ω be a pluriclosed left-invariant metric on an Oeljeklaus–Toma manifold
M. In view of [15, Section 7], ω lifts to an algebraic expanding soliton of the pluriclosed
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flow on the universal covering of M if and only if

ρ1,1
B (⋅, ⋅) = cω(⋅, ⋅) + 1

2
(ω(D⋅, ⋅) + ω(⋅, D⋅)) ,

for some c ∈ R− and some derivation D of g such that DJ = JD.
Assume that ω takes the expression in formula (25). Proposition 5.3 implies that

ρB is represented with respect to the basis {Z1 , . . . , Zs , W1 , . . . , Ws} by the matrix

P = − 3
4A

(Ih 0
0 0) .

Since
3

4A
(0 0

0 II
)

induces a symmetric derivation on g, ω lifts to an algebraic expanding soliton of the
pluriclosed flow on the universal covering of M and the first part of the claim follows.

In order to prove the second part of the statement, we need some preliminary
observations on derivations D of g that commute with J, i.e., such that

D(g1,0) ⊆ g
1,0 , D(g0,1) ⊆ g

0,1 .

We can write

DZ i =
s
∑
j=1

k i
j Z j + m i

jWj and DZ̄ i =
s
∑
j=1

l i
j Z̄ j + r i

jW̄j .

Since D is a derivation, we have, for all i = 1, . . . , s,

D[Z i , Z̄ i] = [DZ i , Z̄ i] + [Z i , DZ̄ i].

On the other hand,

D[Z i , Z̄ i] = −
√
−1
2

⎛
⎝

s
∑
j=1

k i
j Z j + l i

j Z̄ j + m i
jWj + r i

jW̄j
⎞
⎠

,

[DZ i , Z̄ i] = −
√
−1
2

k i
i(Z i + Z̄ i) −

s
∑
j=1

m i
j λ i jWj ,

[Z i , DZ̄ i] = −
√
−1
2

l i
j(Z i + Z̄ i) +

s
∑
j=1

r i
j λ̄ i jW̄j

and
0 =D[Z i , Z̄ i] − [DZ i , Z̄ i] − [Z i , DZ̄ i]

= −
√
−1
2 ∑

j≠i
k i

j Z j + l i
j Z̄ j +

√
−1
2

l i
i Z i +

√
−1
2

k i
i Z̄ i

+
s
∑
j=1

m i
j (λ i j −

√
−1
2

)Wj − r i
j (

√
−1
2

+ λ̄ i j) W̄j ,

which forces DZ i , DZ̄ i = 0, for all i = 1, . . . , s. It follows that D∣h = 0.
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Moreover, for all I, I′ ∈ J, we have

0 = D[I, I′] = [DI, I′] + [I, DI′] ,

which implies that

[DI, I′] = −[I, DI′].

Assume that

DWi =
s
∑
j=1

ks+i
j Z j + ms+i

j Wj and DW̄i =
s
∑
j=1

l s+i
j Z̄ j + rs+i

j W̄j ,

then

[DWi , W̄i] =
s
∑
j=1

ks+i
j [Z j , W̄i] ∈ J0,1 and [Wi , DW̄i] =

s
∑
j=1

l s+i
j [Wi , Z̄ j] ∈ J1,0 .

This implies that

DWi =
s
∑
j=1

ms+i
j Wj , DW̄i =

s
∑
j=1

rs+i
j W̄j ,

i.e., D(J) ⊆ J. Moreover, for all i = 1, . . . , s, we have that

D[Z i , Wi] = −λ i i DWi = −
s
∑
j=1

λ i i ms+i
j Wj ,

whereas [DZ i , Wi] = 0 and

[Z i , DWi] = −
s
∑
j=1

ms+i
j λ i jWj .

Using again the fact that D is a derivation, we have

DWi = ∑
j∈J i

m jWj ,

where

J i = { j ∈ {1, . . . , s} ∣ λ i i = λ i j}.

With analogous computations, we infer

DW̄i = ∑
j∈J i

rs+i
j W̄j .

Clearly, i ∈ J i . On the other hand, for all i = 1, . . . , s, we know that Im(λ i i) ≠ 0,
whereas, for all i ≠ j, λ i j ∈ R. This guarantees that, for all i = 1, . . . , s,

J i = {i}.

This allows us to write

DWi = ms+i
i Wi , DW̄i = rs+i

i W̄i .
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From the relations above, we obtain that

Der(g)1,0 = {E ∈ End(g)1,0 ∣ h ⊆ ker(E), E(⟨Wi⟩) ⊆ ⟨Wi⟩, for all i = 1, . . . , s}.

First of all, we suppose that ω is a pluriclosed Hermitian metric which takes the follow-
ing diagonal expression with respect to a coframe {ω1 , . . . , ωs , γ1 , . . . , γs} satisfying (1)
and (15):

ω =
√
−1

s
∑
i=1

A i ω i ∧ ω̄ i + B i γ i ∧ γ̄ i ,

such that there exist i , j ∈ {1, . . . , s} such that A i ≠ A j and we suppose that ω is an
algebraic soliton. Thanks to the facts regarding derivations proved before, we have
that

−
√
−1 3

4
= ρB(Z i , Z̄ i) = cω(Z i , Z̄ i) +

1
2
(ω(DZ i , Z̄ i) + ω(Z i , DZ̄ i)) =

√
−1cA i ,

−
√
−1 3

4
= ρB(Z j , Z̄ j) = cω(Z j , Z̄ j) +

1
2
(ω(DZ j , Z̄ j) + ω(Z j , DZ̄ j)) =

√
−1cA j ,

which is impossible, since A i ≠ A j .
Now, suppose that ω is a pluriclosed metric on M which is not diagonal. So, we

suppose that there exists j̃ = 1, . . . , s such that C j̃ ≠ 0. Then assume that there exist a
constant c ∈ R and D ∈ Der(g) such that

(ρB)1,1(⋅, ⋅) = cω(⋅, ⋅) + 1
2
(ω(D⋅, ⋅) + ω(⋅, D⋅)) , DJ = JD.

On the other hand,

0= ρB(Wj̃ , W̄j̃) = cω(Wj̃ , W̄j̃) +
1
2
(ω(DWj̃ , W̄j̃) + ω(Wj̃ , DW̄j̃)) =

√
−1cB j̃ +

√
−1
2
(rs+ j̃

j̃
+ms+ j̃

j̃
)B j̃ ,

ρB(Z j̃ , W̄j̃) =cω(Z j̃ , W̄j̃) +
1
2
(ω(DZ j̃ , W̄j̃) + ω(Z j̃ , DW̄j̃)) =

√
−1cC j̃ +

√
−1
2

rs+ j̃
j̃

C j̃ ,

ρB(Z̄ j̃ , Wj̃) =cω(Z̄ j̃ , Wj̃) +
1
2
(ω(DZ̄ j̃ , Wj̃) + ω(Z̄ j̃ , DWj̃)) = −

√
−1cC̄ j̃ −

√
−1
2

ms+ j̃
j̃

C̄ j̃ ,

which implies that

c = − 1
2
(rs+ j̃

j̃ + ms+ j̃
j̃ ).

On the other hand,

ρB(Z j̃ , W̄j̃) =
√
−1KC j̃ ,

where

K =
⎛
⎝

3
16

+
c2

j̃ j̃

4
+
√
−1c j̃ j̃

4
⎞
⎠

B j̃

A j̃B j̃ − ∣C j̃ ∣2
.

Then

K = c + 1
2

rs+ j̃
j̃ = − 1

2
ms+ j̃

j̃
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and

K̄ = c + 1
2

ms+ j̃
j̃ = − 1

2
rs+ j̃

j̃ .

From this, we obtain that

c = K + K̄ = 2Re(K) > 0.

On the other hand, we have

−
√
−1 3

4
⎛
⎝

1 +
∣C j̃ ∣2

A j̃B j̃ − ∣C j̃ ∣2
⎞
⎠
= ρB(Z j̃ , Z̄ j̃)

= cω(Z j̃ , Z̄ j̃) +
1
2
(ω(DZ j̃ , Z̄ j̃) + ω(Z j̃ , DZ̄ j̃)) =

√
−1cA j̃ ,

which implies that c must be negative. From this, the claim follows. ∎
Corollary 5.5 Let ω be a pluriclosed Hermitian metric on an Oeljeklaus–Toma mani-
fold which takes the form (16). Then the pluriclosed flow starting from ω is equivalent to
the following system of ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′i = 3
4 , if i /∈ {p1 , . . . , pk},

A′pr
= 3

4 (1 + ∣Cr ∣2
Apr Bpr−∣Cr ∣2 ) , for all r = 1, . . . , k ,

B′j = 0, for all j = 1, . . . , s ,

C′r = −( 3
16 + c2

pr pr
4 +

√
−1cpr pr

4 ) Bpr Cr

Apr Bpr−∣Cr ∣2 , for all r = 1, . . . , k .

(26)

Moreover, ∣Cr ∣ is bounded, for all r = 1, . . . , k, and the solution exists for all t ∈ [0,+∞)
and A i ∼ 3

4 t, as t → +∞, for all i = 1, . . . , s.
In particular,

ωt

1 + t
→ 3ω∞ ,

as t →∞.

Proof Observe that, for every r ∈ {1, . . . , k},

(∣Cr ∣2)′ = − (3
8
+

c2
pr pr

2
)

Bpr ∣Cr ∣2

Apr Bpr − ∣Cr ∣2
≤ 0 ,

which guarantees that ∣Cr ∣2 is bounded. On the other hand, denote, for all r = 1, . . . , k,

ur = Apr Bpr − ∣Cr ∣2 .

We have that

u′r = A′pr
Bpr − (∣Cr ∣2)′ =

3
4

Bpr + (9
8
+

c2
pr pr

2
)

Bpr ∣Cr ∣2

Apr Bpr − ∣Cr ∣2
≥ 0.

This guarantees

A′pr
= 3

4
(1 + ∣Cr ∣2

Apr Bpr − ∣Cr ∣2
) ≤ 3

4
(1 + K

ur(0)) ,
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where K > 0 such that ∣Cr ∣2 ≤ K, for all t ≥ 0. This implies the long-time existence. As
regards the last part of the statement, it is sufficient to prove that

lim
t→+∞

∣Cr ∣2
ur

= 0.

However,

u′r ≥
3
4

Bpr .

Therefore,

ur ≥
3
4

Bpr t + ur(0) → +∞ , t → +∞.

Then

lim
t→+∞

ur(t) = +∞ ,

and, since ∣Cr ∣2 is bounded, the assertion follows. ∎

Proof of Theorem 1.1 Let ω be a left-invariant pluriclosed metric on an Oeljeklaus–
Toma manifold. Corollary 5.5 implies that pluriclosed flow starting from ω has a long-
time solution ωt such that

ωt

1 + t
→ 3ω∞ as t →∞.

We show that ω t
1+t satisfies conditions 1–3 in Proposition 3.1. Here, we denote by ∣ ⋅ ∣t

the norm induced by ωt .
Taking into account that

ωt∣I⊕I = ω0∣I⊕I ,

condition 2 follows.
Thanks to the fact that condition 2 holds,

ωt∣h⊕h =
s
∑
i=1

A i(t)ω i ∧ ω̄ i

with A i(t)
1+t → 3

4 as t →∞, and there exist C , T > 0 such that, for every vector v ∈ h,

1√
1 + t

∣v∣t ≤ C∣v∣0 ,

for every t ≥ T , condition 1 is satisfied.
In order to prove condition 3, let ε, � > 0 and let γ be a curve in M tangent to H

which is parameterized by arclength with respect to 3ω∞ and such that L∞(γ) < �.
Let v = γ̇ and T > 0 such that

∣A i(t)
1 + t

− 3
4
∣ ≤ 3ε2

4�2 ,
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for t ≥ T . Then

∣ 1
1 + t

∣v∣2t − ∣v∣2∞∣ ≤
s
∑
i=1

∣A i(t)
1 + t

− 3
4
∣ ∣v i ∣2 ≤

ε2

�2

and

∣Lt(γ) − L∞(γ)∣ ≤ ∫
b

0
∣ 1√

1 + t
∣γ̇∣t − ∣γ̇∣∞∣ da ≤ ε

�
b ≤ ε,

since b ≤ �.
Now, we show the last part of the statement, using the same argument as in Propo-

sition 4.1, and we prove that (Hs ×Cs , ω t
1+t ) converges in the Cheeger–Gromov sense

to (Hs ×Cs , ω̃∞), where ω̃∞ is an algebraic soliton. Again, here we are identifying ωt
with its pullback onto Hs ×Cs and we are fixing as base point the identity element of
Hs ×Cs . It is enough to construct a one-parameter family of biholomorphisms {φt}
of Hs ×Cs such that

φ∗t
ωt

1 + t
→ ω̃∞.

As we already observed, since I is abelian, the endomorphism represented by the
matrix

D = (0 0
0 II

)

is a derivation of g that commutes with the complex structure J. Then we can consider

dφt = exp(s(t)D) = (Ih 0
0 es(t)II

) ∈ Aut(g, J),

where s(t) = log(
√

1 + t). Using dφt , we can define

φt ∈ Aut(Hs ×Cs , J).

For i = 1, . . . , s, we have
1

1 + t
(φ∗t ωt)(Z i , Z̄ i) =

1
1 + t

ωt(Z i , Z̄ i) →
3
4
√
−1 , as t →∞,

1
1 + t

(φ∗t ωt)(Z i , W̄i) =
1√

1 + t
ωt(Z i , W̄i) → 0 , as t →∞,

1
1 + t

(φ∗t ωt)(Wi , W̄i) =ωt(Wi , W̄i) =
√
−1B i(0).

Then
1

1 + t
φ∗t ωt → ω̃∞ , as t →∞,

where

ω̃∞ = 3 ω∞ + ω∣I⊕I .

Notice that ω̃∞ is an algebraic soliton diagonal since ω∣I⊕I is diagonal in view of
Proposition 5.2. ∎
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6 A generalization to semidirect product of Lie algebras

From the viewpoint of Lie groups, the algebraic structure of Oeljeklaus–Toma mani-
folds is quite rigid and some of the results in the previous sections can be generalized
to semidirect product of Lie algebras.

In this section, we consider a Lie algebra g which is a semidirect product of Lie
algebras

g = h ⋉λ I,

where λ∶h→ Der(I) is a representation. We further assume that g has a complex
structure of the form

J = Jh ⊕ JI ,

where Jh and JI are complex structures on h and I, respectively.
The following assumptions are all satisfied in the case of an Oeljeklaus–Toma

manifold:
i. h has (1, 0)-frame such that {Z1 , . . . , Zr} such that [Zk , Z̄k] = −

√
−1
2 (Zk + Z̄k),

for all k = 1, . . . , r, and the other brackets vanish.
ii. I is a 2s-dimensional abelian Lie algebra, and JI is a complex structure on I.
iii. λ(h1,0) ⊆ End(I)1,0.
iv. I has a (1, 0)-frame {W1 , . . . Ws} such that λ(Z) ⋅ W̄r = λr(Z)W̄r , for every r =

1, . . . , s, where λr ∈ Λ1,0(h).
v. ∑s

a=1 Im(λa(Z i)) is constant on i.
vi. I has a (1, 0)-frame {W1 , . . . Ws} such that λ(Z) ⋅ Wr = λ′r(Z)Wr , for every r =

1, . . . , s, where λ′r ∈ Λ1,0(h) and ∑s
a=1 Im(λ′a(Z i)) is constant on i.

Note that condition i is equivalent to require that h = f⊕ ⋅ ⋅ ⋅ ⊕ f
��������������������������������� 

r-times

equipped with the

complex structure Jh = Jf ⊕ ⋅ ⋅ ⋅ ⊕ Jf
����������������������������������������������� 

r-times

, whereas in condition iv, the existence of {Wr}

and λr is equivalent to require that

λ(Z) ○ λ(Z′) = λ(Z′) ○ λ(Z),

for every Z , Z′ ∈ h1,0.
The computations in Section 5 can be used to study solutions to the flow

∂t ωt = −ρ1,1
B (ωt)(27)

in semidirect products of Lie algebras (this flow coincides with the pluriclosed flow
only when the initial metric is pluriclosed). We have the following proposition.

Proposition 6.1 Let g = h ⋉λ I be a semidirect product of Lie algebras equipped with a
splitting complex structure J = Jh ⊕ JI, and let ω be a Hermitian metric on g making h
and I orthogonal. Then the Bismut–Ricci form of ω satisfies ρ1,1

B∣h⊕I = ρ1,1
B∣I⊕I = 0.

If conditions i–iv hold and ω∣h⊕h is diagonal with respect to the frame {Z i}, then the
(1, 1)-component of the Bismut–Ricci form of ω does not depend on ω and the solution
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to the flow (27) starting from ω takes the following expression:

ωt = ω − tρ1,1
B (ω).

If conditions i–iv and vi hold and ω∣h⊕h is a multiple of the canonical metric with
respect to the frame {Z i}, then ω is a soliton for flow (27) with cosmological constant
c = 1

2 +∑s
a=1 Im(λ′a(Z i)).

The previous proposition does not cover the case when properties i–iv are satisfied
and the restriction to h⊕ h of the initial Hermitian inner product

ω =
√
−1

r
∑

a ,b=1
gab̄ ωa ∧ ω̄b +

√
−1

s
∑

a ,b=1
gr+ar+bγa ∧ γ̄b

is not diagonal with respect to {Z i}. In this case flow (27) evolves only the components
g i ī of ω along ω i ∧ ω̄ i via the ODE

∂t g i ī =
1
4

r
∑
a=1

g āa
Re g i ā −

1
2

s
∑

c ,d=1
gr+dr+c {ω([Z i , Wc], W̄d) + ω([Z̄ i , W̄c], Wd)} ,

where g i ī depends on t. Note that the quantities − 1
2 ∑

s
c ,d=1 gr+dr+c {ω([Z i , Wc],

W̄d) + ω([Z̄ i , W̄c], Wd)} appearing in the evolution of g i ī are independent on t.
The same computations as in Section 4 imply the following proposition.

Proposition 6.2 Let g = h ⋉λ I be a semidirect product of Lie algebras equipped with
a splitting complex structure J = Jh ⊕ JI. Assume that properties i–iii are satisfied, and
let ω be a left-invariant Hermitian metric on g. Then

ρC∣I⊕I = ρC∣h⊕I = 0,

whereas ρC∣h⊕h is diagonal with respect to {Z1 , . . . , Zr}.
If, in addition, property iv holds, then

ρC(Z i , Z̄ i) = −
√
−1( 1

2
−

s
∑
a=1

Im(λa(Z i))) , for all i = 1, . . . , r.

If, in addition, property v holds, then ω is a soliton for the Chern–Ricci flow with
cosmological constant c = 1

2 −∑s
a=1 Im(λa(Z i)) if and only if ωh⊕h is a multiple of the

canonical metric on h with respect to the frame {Z i} and ωh⊕J = 0 .
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