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Figure 1 shows a unit quarter circle in the first quadrant with the lines

 and , where . Now  is the point

and . Now we have the area inequality

y = 1 y = tx t > 0 C ( 1
1 + t2

,
t

1 + t2)
∠COA = tan−1 t

2 [�OBC] < 2 [Sector OBC] < 2 [�OBD] ,
and hence

1
1 + t2

<
π
2

− tan−1 t <
1
t
.
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107.22 Quick proofs of two inequalities related to the
digamma function

We begin with some standard facts and notations which indicate the
context in which we are working. References [1, Chapter 2] and [2, p. 334]
give the assumed formula (3) and its consequence (4). Let  be a positive
integer and consider the harmonic number

n

Hn − 1 = ∑
n − 1

j = 1

1
j
. (1)

Recall the Euler-Mascheroni constant , whereγ = lim
n → ∞

γn

γn = ∫
n

1 ( 1
⎣x⎦

−
1
x ) dx = ∑

n − 1

j = 1
(1

j
− ∫

j + 1

j

1
t
dt) = Hn − 1 − log n. (2)

We consider the gamma function  as a function of the positive real
number . We assume that the digamma function, i.e. the derivative of the
log of the gamma function, is represented by the formula

Γ (t)
t

ψ(t) =
Γ′(t)
Γ(t)

= −γ + ∑
∞

j = 0
( 1
j + 1

−
1

j + t ) = −γ + ∑
∞

j = 0

t − 1
(j + 1)(j + t)

. (3)

This series is uniformly convergent for  bounded away from zero. It is
noteworthy, as well as obvious from (3), that

t

ψ (n) = −γ + Hn − 1.
Thus,  interpolates the sequence  and  interpolates theψ (t) −γ + Hn − 1 log t
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sequence . Equation (3) also implies−γn + Hn − 1

ψ′ (t) = ∑
∞

j = 0

1
(t + j)2

, (4)

which shows that  is strictly increasing for all .ψ t > 0
The inequalities alluded to in the title above are stated in parts (i) and

(ii) of the Proposition below. The work of Louis Gordon [3] motivated this
paper. G. J. O. Jameson [4] has also proved the inequalities stated in our
Proposition and given bounds on the differences defined by the inequalities.

The authors thank the Referee for the elegant proof of Lemma 1.
Lemma 1:
(i) For all , .t > 0 log t > ψ (t)
(ii) lim

t → ∞
(log t − ψ (t)) = 0.

Proof: 
(i) Since , the mean-value theorem

implies that there exists  such that  and .
Therefore, since  is a strictly increasing function,

, which proves (i).

log (Γ (t + 1)) − log (Γ (t)) = log t
ξ t < ξ < t + 1 ψ (ξ) = log t

ψ (t)
ψ (t) < log t < ψ (t + 1)

(ii)  From , by differentiating, we get
. Thus, we have ,

which implies (ii).

log(Γ(t + 1)) − log(Γ(t)) = logt
ψ(t + 1) − ψ(t) = 1/ t logt − ψ(t) < ψ(t + 1) − ψ(t) = 1/ t

Lemma 2:

ψ′ (t) −
1
t

−
1

2t2
=

1
2 ∑

∞

j = 0

1
(t + j)2 (t + j + 1)2

. (5)

Proof: We apply the partial fraction decomposition

1
x2 (x + 1)2

=
2 (x + 1) + 1

(x + 1)2
−

2x − 1
x2

with  to get the parenthesized middle of (6). By telescoping we
obtain

x = t + j

1
2 ∑

∞

j = 0

1
(t + j)2(t + j + 1)2

=
1
2 ∑

∞

j = 0
(2(t + j + 1) + 1

(t + j + 1)2
−

2(t + j) − 1
(t + j)2 )

= ∑
∞

j = 0

1
(t + j)2

−
1
t

−
1

2t2
. (6)

Use (4) to complete the proof of (5).

Lemma 3: For all t > 0
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1
6t3

>
1
2 ∑

∞

j = 0

1
(t + j)2 (t + j + 1)2

. (7)

Proof: Using the equalities 

(t + j + 1)3 − (t + j)3 = 3 (t + j)2 + 3 (t + j) + 1

= 3 (t + j) (t + j + 1) + 1

we get

1
6t3

=
1
6 ∑

∞

j = 0
( 1
(t + j)3

−
1

(t + j + 1)3) =
1
6 ∑

∞

j = 0

3(t + j)2 + 3(t + j) + 1
(t + j)3(t + j + 1)3

=
1
2 ∑

∞

j = 0

1 + (3(t + j)(t + j + 1))−1

(t + j)2(t + j + 1)2

or
1

6t3
=

1
2 ∑

∞

j = 0

1
(t + j)2(t + j + 1)2

+
1
6 ∑

∞

j = 0

1
(t + j)3(t + j + 1)3

, (8)

which implies (7).

Proposition:

(i) For all , ;t > 0 ψ (t) < log t −
1
2t

(ii) For all , t > 0 ψ (t) > log t −
1
2t

−
1

12t2
.

Proof: (i) Equation (5) implies that, for all , .

Therefore, using Lemma 1(ii) we obtain

t > 0 ψ′ (t) −
1
t

−
1

2t2
> 0

0 < ∫
∞

t (ψ′ (x) −
1
x

−
1

2x2) dx = ⎡⎢⎣ψ (x) − log x +
1
2x

⎤⎥⎦

 ∞

 t

= − (ψ (t) − log t +
1
2t ) .

This proves (i).

(ii) By subtracting (7) from (5) we obtain .

Therefore, , so (ii) is proved.

ψ′ (t) −
1
t

−
1

2t2
−

1
6t3

< 0

−(ψ(t) − logt +
1
2t

+
1

12t2) < 0

Corollary:

(i) .ψ (t) − log t +
1
2t

=
1
2 ∑

∞

j = 0
∫

∞

t

dx
(x + j)2 (x + j + 1)2
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(ii) .ψ (t) − log t +
1
2t

+
1

12t2
= −

1
6 ∑

∞

j = 0
∫

∞

t

dx
(x + j)3 (x + j + 1)3

Proof:  Equation (5) implies (i) and the difference, (5) – (8), implies (ii).
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107.23 Location of the inarc circle and its point of contact
with the circumcircle

The inarc circle of a triangle
An inarc circle of a triangle is a circle tangent to two sides of a triangle

and internally to the circumcircle of the triangle, see Figure 1. In this note
we consider first the interesting problem of locating the inarc centre, the
centre of this circle, , and then as a second problem we locate the point of
tangency  of the inarc circle and the circumcircle. In [1] the first problem
is solved geometrically by beautiful application of inversion. We will use
simple algebra, one well-known theorem and one famous formula.
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FIGURE 1: An inarc circle
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