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Abstract

We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators.
More precisely, we prove that if T € B(H) is an invertible operator, then ||T|| < \/zw(T).
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1. Introduction and preliminaries

Let B(H) denote the C*-algebra of all bounded linear operators on a complex Hilbert
space H with inner product (-,-) and let B~!(H) denote the set of all invertible
operators in B(H). For T € B(H), let

W(T) = sup{{Tx, x)| : |||l = 1}
and
1Tl = sup{||Tx| : ||x|| = 1},

respectively, denote the numerical radius and operator norm of 7'. It is well known that
w(+) is a norm on B(H) and that, for all T € B(H),

o(T) <|IT|l £ 2u(T). (1.1)
In [1], Berger proved that for any T € B(H) and natural number #,
w(T") < "(T).
Also, Holbrook in [6] showed that, for any A, B € B(H),
wW(AB) < 4w(A)w(B). (1.2)
In the case AB = BA,
W(AB) < 2w(A)w(B).
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If A and B are operators in B(H), we write the direct sum A & B for the 2 x 2
operator matrix [ %], regarded as an operator on H & H. Thus,

lA ® Bl = max{l|All, || BIl} (1.3)
and
w(A & B) = max{w(A), w(B)}. (1.4)
The following result from [5] may be stated as well: if 7' is normal, then
IT*II=NTII"  (n€N)
and
w(T) = IT]l. (1.5)

In [3], Dragomir has shown that if T € B(H),s € C—{0},r € R are such that
|T — sl|| < r, then

r2

1— —|IT||£w(T) (forr<]|s|). (1.6)
|s|?

In Section 2, we establish a considerable improvement of inequalities (1.1) and
(1.2). Also, for T € B(H), we find an upper bound for w*(T) — w(T?) and consider
some further inequalities for invertible operators.

2. Main results
In order to derive our main results, we need the following lemma.
Lemma 2.1. Let H be a Hilbert space. If a,b € H and t € R, then
lalPIBIP = Ka, b < llalP*lIb — tall®. 2.1
Proor. Since |Re{a, b)| < [{a, b)|, the discriminant of the quadratic polynomial
g(0) = llall*? - 2Re(a, bYllalP1 + K(a, b)
is not positive. This implies that g(#) > O for all # € R. Hence,
lalPIBIP = Ka, b < llall*#* - 2Re(a, b)lall’s + llalPlIbI* = llalPllb - . o
Now we are in a position to give a new proof for the inequality (1.6).
Tueorem 2.2. If T € B(H), B € C— {0} and r € R are such that |T — BI|| < r, then
2

r

i

T <w(T) (forr<|B)). (2.2)
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Proor. Suppose that x € H with ||x|| = 1. Choose a = Tx,b = Bx in (2.1) to give
TP = KTx, Bx)* < TPl Tx — Bl

whence 5
tTx —
I8P - KT, 0y < TPl A
1BI
Taking the supremum over x € H with ||x|| = 1 gives
tT — BI|I?
ITIE - w2y < rip 20
1Bl
By hypothesis, ||T — BI|| < r, so taking ¢ = 1 gives
r 2 2
(1 - W)HTII < WX(T). o

We need the following lemma to give some applications of the inequality (2.2).
Lemma 2.3 [2]. Ifa,b,e € H and |le|]| = 1, then
2[a, e){e, b)| < lall |1bl| + Ka, b)I. (2.3)
Tueorem 2.4. If T € B(H),B € C — {0} and r € R are such that ||T — BI|| < r, then

(2 TBE-~ )w (T) 2 w(T7)  (forr<|B).

Proor. Puttinga =Tx,b=T*xand e = x, ||x|]| = 1 in Lemma 2.3 gives
2T x, ) < KT%x, X)) + 1T x| | Tx]|.

Taking the supremum over x € H with ||x|| = 1 gives

2
203(T) < w(T?) +|ITI* < w(T?) + Iﬁlggl— > W (T)
by (2.2). Hence,
2- Iﬂ—lz)wz(T) < W(T?) 0
BP -2 S

We use the following lemma due to Dragomir and Sandor [4] to improve the second
inequality (1.1). See also [7] for more information.

Lemma 2.5 [4]. Ifa,b € H and p > 2, then
llall” + 11B11” < 3(lla + blI” + |la - b]I"). (2.4)
Tueorem 2.6. If T € B~V (H), s = infj =1 ITxI/IIT|| and p > 2, then

T + TP +||T — TP < 2PwP(T)
2(1 + sP) ST

> <
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Proor. For the first inequality, put a = Tx and b = T*x, where x € H and ||x|| = 1, in
(2.4). Then
TP + IT* 2" < ST x + TP + 1T x = T*x||P).

Now, by the definition of s,
SPITIP + 1T M < 5(ITx + T 6| + 1T = T*x]|7).
Taking the supremum over x,
(1 + MOITIP < 5UIT + TP + T = T*|IP).
For the second inequality, since (7% + T') and (T — T*) are normal, (1.5) yields
T +TN + T =T =’ (T +T")+ (T -T)

< ((T) + (T + ((T) + w(T*)) =27 WP (T).
Therefore,

T+ TP+ T =T")” _ 2Pw(T)

TP < < . O
2(1 + Sp) 1+ sP

ReMARK 2.7. f T € B (H),p>2and s = infjy=1 17" x||/||IT'||, employing an argument
similar to that used in the proof of Theorem 2.6,
1T+ T +1IT - T711” _ 2P"(T)

2(1 + Sp) 1+ 5P ’

17N <

Revark 2.8. If T € B (H),p=2and s = infq=1 IT*x||/IT|, the parallelogram law
gives
T+ T*| +||IT - T < 40w*(T)
2(1 + 52) T ol4s2
CoroLLARY 2.9. For A, B € B~'(H), define
o = inf A 1A
Pt A T T = Al
If @ = max{ay, ay} and B = max{B, B>}, then
2w(A)

ITIP <

_ g 1B

. 1B
= in , f
Ixi=1 | B]|

= 1n .
A =]

B2

Al < 22 25
1Al o (2.5)

and
w(AB) < U AB) (2.6)

YA+ ar)(T+B7)
Proor. The inequality (2.5) follows from Theorem 2.6 and Remark 2.7. Similarly,
2w(B)

e

Bl < 2.7)
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For the inequality (2.6), observe, using (1.1) in the first inequality and (2.5) and (2.7)
in the third, that

w(AB) < ||AB||
4w(A)w(B)

JA+ a1 +pP)

The inequalities (2.5) and (2.6) strengthen (1.1) and (1.2), respectively.
Tueorem 2.10. If T € B~Y(H), B € C — {0} and s = infjy=; | Tx||/|IT||, then

BT + T*|1*
1+s2

Proor. Puta = 8Tx and b = T*x, where x € H,||x|| = 1, in (2.1). We deduce that
BT xIPNT*xI1* = KBT x, T*x)* < |BT x|*|IBTx — T* x|

<llAllIBIl <

W (T) - w(T?) < i%f

Taking the supremum over x € H, ||x]| = 1 gives

sup (1T IT*xI)* < w(T%) + IITIPNBT - T (2.8)
=1

On the other hand, by (2.3) witha=Tx,b=T"x,e = x,
2T ox, ) = KT?x, x)| < I Tx|| | T x]
and taking the supremum over x € H, ||x|| = 1 gives
20X (T) — w(T?) < sup ATl T* ).
Hence, by (2.8) fort =1,
QWAT) - (TH)’ < T + ITIPIBT - TP (2.9)

and, applying (2.9) and Theorem 2.6,

4a)2(T)
1+ 2

4! (T) — 40X (DT < ITIPIBT - T7| < 18T — T*|I*.

Consequently,

T — T* 2
WX(T) - w(T?) < BT - T
1+ s2

and, finally,

) o . BT = TP

T) - w(T?) < inff ————.
W) — () s inf —=——5
Replacing T by iT gives the related inequality

T+ T
W (T) — w(T?) < inf u. o
B 1+s2
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CoroLLarY 2.11. If T € B~ (H), a, 8 € C — {0}, r € R are such that ||T — al|| < r, then
laf?

2 2
w (T) - w(T*) < 2l - 1)

inf||8T + T*|]*.
B
Proor. By Theorem 2.10,

T2
4w*(T)
From the hypothesis |7 — al|| < r and Theorem 2.2,

WX (T) — w(T?) < BT + T |.
laf?
4(lal* - r?)

From Theorem 2.6, we have an interesting result for invertible operators.

WX T) - (T?) < inf BT & T°II" o

Tueorem 2.12. Let T € B~V (H). Then |T|* < 20*(T) or |IT-|* < 20*(T).

Proor. Forany x € H, ||x|| = 1,
L yra
— < X|l|.
N1

Since (IT~NITID™" < s = infygs IT/NITI,

IT + TP +|IT = T*|
20T+ 1

7| <
by Remark 2.8, and so

1 1 . .
e TIPS ST + TP 4T = T71F) < 40

IF |71 < [IT1l, then

1
—— 4+ |ITI? < 4X(T).
(Al

Replacing T by T/||T|| in the last inequality gives
ITI” < 202(T). (2.10)

If, on the other hand, ||T|| < ||T~"|l, by replacing 7 by T~! in (2.10), we deduce the
desired result. O

CoroLLARY 2.13. If T € B~ (H), then
max{||T||,[IT~"[l} £ V2 max{w(T), w(T™")}.
Proor. Let A = [ ,%], so that A™! = [7" 9]. By Theorem 2.12,
IAIl < V2w(A) or [A7'| < V2w(A™).
Since ||A]| = |A7"|| and w(A) = w(A™Y), the result follows from (1.3) and (1.4). O
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The following theorem is a considerable improvement of the second inequality in
(1.1) for Hilbert space invertible operators.

Tueorem 2.14. If T € B~ (H), then
ITI < V20(T).
Proor. First we show that if ||77!|| < i, then ||T| < \/iw(T). By (1.2),
w(TT™ < 4w(T)(T™h)

and so

F<wMw(T™).

Since w(T71) < %, it follows that w(7~!) < w(T) and, by Corollary 2.13,

ITI < V20(T).
Now take T € 8~'(H) and put A = 4||T~"||T. Since |A7!|| = i,

IAll < V2w(A),
which leads to

4T~ < V2w@ITHIT)
and the result follows from the fact that w(-) is a norm. O
CorOLLARY 2.15. If A, B € B~ (H), then
W(AB) < 2w(A)w(B).

Proor. By Theorem 2.14,

Al < V2aw(A)
and also

IBIl < V2w(B).
Therefore,

w(AB) < ||A[l]1B]| < 2w(A)w(B),

which is exactly the desired result. O
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